OSI七层与TCP/IP五层网络架构详解

2024-05-04

OSI七层与TCP/IP五层网络架构详解(通用2篇)

篇1:OSI七层与TCP/IP五层网络架构详解

OSI和TCP/IP是很基础但又非常重要的网络基础知识,理解得透彻对运维工程师来说非常有帮助,今天偶又复习了一下:

(1)OSI七层模型

OSI中的层 功能 TCP/IP协议族

应用层 文件传输,电子邮件,文件服务,虚拟终端 TFTP,HTTP,SNMP,FTP,SMTP,DNS,Telnet

表示层 数据格式化,代码转换,数据加密 没有协议

会话层 解除或建立与别的接点的联系 没有协议

传输层 提供端对端的接口 TCP,UDP

网络层 为数据包选择路由 IP,ICMP,RIP,OSPF,BGP,IGMP

数据链路层 传输有地址的帧以及错误检测功能 SLIP,CSLIP,PPP,ARP,RARP,MTU

物理层 以二进制数据形式在物理媒体上传输数据 ISO2110,IEEE802,IEEE802.2

(2)TCP/IP五层模型的协议

应用层

传输层

网络层

数据链路层

物理层

物理层:中继器、集线器、还有我们通常说的双绞线也工作在物理层

数据链路层:网桥(现已很少使用)、以太网交换机(二层交换机)、网卡(其实网卡是一半工作在物理层、一半工作在数据链路层)

网络层:路由器、三层交换机

传输层:四层交换机、也有工作在四层的路由器

二、TCP/UDP协议

TCP (Transmission Control Protocol)和UDP(User Datagram Protocol)协议属于传输层协议。其中TCP提供IP环境下的数据可靠传输,它提供的服务包括数据流传送、可靠性、有效流控、全双工操作和多路复 用。通过面向连接、端到端和可靠的数据包发送。通俗说,它是事先为所发送的数据开辟出连接好的通道,然后再进行数据发送;而UDP则不为IP提供可靠性、流控或差错恢复功能。一般来说,TCP对应的是可靠性要求高的应用,而UDP对应的则是可靠性要求低、传输经济的应用。TCP支持的应用协议主要 有:Telnet、FTP、SMTP等;UDP支持的应用层协议主要有:NFS(网络文件系统)、SNMP(简单网络管理协议)、DNS(主域名称系 统)、TFTP(通用文件传输协议)等.

TCP/IP协议与低层的数据链路层和物理层无关,这也是TCP/IP的重要特点

三、OSI的基本概念

OSI是Open System Interconnect的缩写,意为开放式系统互联。

OSI七层参考模型的各个层次的划分遵循下列原则:

1、同一层中的各网络节点都有相同的层次结构,具有同样的功能。

2、同一节点内相邻层之间通过接口(可以是逻辑接口)进行通信。

3、七层结构中的每一层使用下一层提供的服务,并且向其上层提供服务。

4、不同节点的同等层按照协议实现对等层之间的通信。

第一层:物理层(PhysicalLayer),

规定通信设备的机械的、电气的、功能的和过程的特性,用以建立、维护和拆除物理链路连接。具体地讲,机械 特性规定了网络连接时所需接插件的规格尺寸、引脚数量和排列情况等;电气特性规定了在物理连接上传输bit流时线路上信号电平的大小、阻抗匹配、传输速率 距离限制等;功能特性是指对各个信号先分配确切的信号含义,即定义了DTE和DCE之间各个线路的功能;规程特性定义了利用信号线进行bit流传输的一组 操作规程,是指在物理连接的建立、维护、交换信息是,DTE和DCE双放在各电路上的动作系列。在这一层,数据的单位称为比特(bit)。属于物理层定义的典型规范代表包括:EIA/TIA RS-232、EIA/TIA RS-449、V.35、RJ-45等,

第二层:数据链路层(DataLinkLayer):

在物理层提供比特流服务的基础上,建立相邻结点之间的数据链路,通过差错控制提供数据帧(Frame)在信道上无差错的传输,并进行各电路上的动作系列。数据链路层在不可靠的物理介质上提供可靠的传输。该层的作用包括:物理地址寻址、数据的成帧、流量控制、数据的检错、重发等。在这一层,数据的单位称为帧(frame)。数据链路层协议的代表包括:SDLC、HDLC、PPP、STP、帧中继等。

第三层是网络层

在 计算机网络中进行通信的两个计算机之间可能会经过很多个数据链路,也可能还要经过很多通信子网。网络层的任务就是选择合适的网间路由和交换结点, 确保数据及时传送。网络层将数据链路层提供的帧组成数据包,包中封装有网络层包头,其中含有逻辑地址信息- -源站点和目的站点地址的网络地址。如 果你在谈论一个IP地址,那么你是在处理第3层的问题,这是“数据包”问题,而不是第2层的“帧”。IP是第3层问题的一部分,此外还有一些路由协议和地 址解析协议(ARP)。有关路由的一切事情都在这第3层处理。地址解析和路由是3层的重要目的。网络层还可以实现拥塞控制、网际互连等功能。在这一层,数据的单位称为数据包(packet)。网络层协议的代表包括:IP、IPX、RIP、OSPF等。

第 四层是处理信息的传输层

第4层的数据单元也称作数据包(packets)。但是,当你谈论TCP等具体的协议时又有特殊的叫法,TCP的数据单元称为段 (segments)而UDP协议的数据单元称为“数据报(datagrams)”。这个层负责获取全部信息,因此,它必须跟踪数据单元碎片、乱序到达的 数据包和其它在传输过程中可能发生的危险。第4层为上层提供端到端(最终用户到最终用户)的透明的、可靠的数据传输服务。所为透明的传输是指在通信过程中 传输层对上层屏蔽了通信传输系统的具体细节。传输层协议的代表包括:TCP、UDP、SPX等。

第五层是会话层

这一层也可以称为会晤层或对话层,在会话层及以上的高层次中,数据传送的单位不再另外命名,而是统称为报文。会话层不参与具体的传输,它提供包括访问验证和会话管理在内的建立和维护应用之间通信的机制。如服务器验证用户登录便是由会话层完成的。

第六层是表示层

这一层主要解决拥护信息的语法表示问题。它将欲交换的数据从适合于某一用户的抽象语法,转换为适合于OSI系统内部使用的传送语法。即提供格式化的表示和转换数据服务。数据的压缩和解压缩,加密和解密等工作都由表示层负责。

第七层应用层

应用层为操作系统或网络应用程序提供访问网络服务的接口。应用层协议的代表包括:Telnet、FTP、HTTP、SNMP等。

除了层的数量之外,开放式系统互联(OSI)模型与TCP/IP协议有什么区别?

www.dnzg.cn

开放式系统互联模型是一个参考标准,解释协议相互之间应该如何相互作用。TCP/IP协议是美国国防部发明的,是让互联网成为了目前这个样子的标准之一。开放式系统互联模型中没有清楚地描绘TCP/IP协议,但是在解释TCP/IP协议时很容易想到开放式系统互联模型。两者的主要区别如下:

TCP/IP协议中的应用层处理开放式系统互联模型中的第五层、第六层和第七层的功能。

TCP/IP协议中的传输层并不能总是保证在传输层可靠地传输数据包,而开放式系统互联模型可以做到。TCP/IP协议还提供一项名为UDP(用户数据报协议)的选择。UDP不能保证可靠的数据包传输。

TCP/UDP协议

TCP(Transmission Control Protocol)和UDP(User Datagram Protocol)协议属于传输层协议。其中TCP提供IP环境下的数据可靠传输,它提供的服务包括数据流传送、可靠性、有效流控、全双工操作和多路复用。通过面向连接、端到端和可靠的数据包发送。通俗说,它是事先为所发送的数据开辟出连接好的通道,然后再进行数据发送;而UDP则不为IP提供可靠性、流控或差错恢复功能。一般来说,TCP对应的是可靠性要求高的应用,而UDP对应的则是可靠性要求低、传输经济的应用。

TCP支持的应用协议主要有:Telnet、FTP、SMTP等;UDP支持的应用层协议主要有:NFS(网络文件系统)、SNMP(简单网络管理协议)、DNS(主域名称系统)、TFTP(通用文件传输协议)等。

TCP/IP协议与低层的数据链路层和物理层无关,这也是TCP/IP的重要特点。

OSI是Open System Interconnect的缩写,意为开放式系统互联。

篇2:OSI七层与TCP/IP五层网络架构详解

为了提高效率,每个协议只应该注意没有被其他协议处理过的那部分通信问题;为了主协议的实现更加有效,协议之间应该能够共享特定的数据结构;同时这些协议的组合应该能处理所有可能的硬件错误以及其它异常情况。为了保证这些协议工作的协同性,应当将协议设计和开发成完整的、协作的协议系列(即协议族),而不是孤立地开发每个协议。

在网络历史的早期,国际标准化组织(ISO)和国际电报电话咨询委员会(CCITT)共同出版了开放系统互联的七层参考模型。一台计算机操作系统中的网络过程包括从应用请求(在协议栈的顶部)到网络介质(底部) ,OSI参考模型把功能分成七个分立的层次。图1表示了OSI分层模型。

图1 OSI七层参考模型

OSI模型的七层分别进行以下的操作:

第一层 物理层

第一层负责最后将信息编码成电流脉冲或其它信号用于网上传输。它由计算机和网络介质之间的实际界面组成,可定义电气信号、符号、线的状态和时钟要求、数据编码和数据传输用的连接器。如最常用的RS-232规范、10BASE-T的曼彻斯特编码以及RJ-45就属于第一层。所有比物理层高的层都通过事先定义好的接口而与它通话。如以太网的附属单元接口(AUI),一个DB-15连接器可被用来连接层一和层二。

第二层 数据链路层

数据链路层通过物理网络链路提供可靠的数据传输。不同的数据链路层定义了不同的网络和协议特征,其中包括物理编址、网络拓扑结构、错误校验、帧序列以及流控。物理编址(相对应的是网络编址)定义了设备在数据链路层的编址方式;网络拓扑结构定义了设备的物理连接方式,如总线拓扑结构和环拓扑结构;错误校验向发生传输错误的上层协议告警;数据帧序列重新整理并传输除序列以外的帧;流控可能延缓数据的传输,以使接收设备不会因为在某一时刻接收到超过其处理能力的信息流而崩溃。

数据链路层实际上由两个独立的部分组成,介质存取控制(Media Access Control,MAC)和逻辑链路控制层(Logical Link Control,LLC)。MAC描述在共享介质环境中如何进行站的调度、发生和接收数据。MAC确保信息跨链路的可靠传输,对数据传输进行同步,识别错误和控制数据的流向。一般地讲,MAC只在共享介质环境中才是重要的,只有在共享介质环境中多个节点才能连接到同一传输介质上。IEEE MAC规则定义了地址,以标识数据链路层中的多个设备。逻辑链路控制子层管理单一网络链路上的设备间的通信,IEEE 802.2标准定义了LLC。LLC支持无连接服务和面向连接的服务。在数据链路层的信息帧中定义了许多域。这些域使得多种高层协议可以共享一个物理数据链路。

第三层 网络层

网络层负责在源和终点之间建立连接。它一般包括网络寻径,还可能包括流量控制、错误检查等。相同MAC标准的不同网段之间的数据传输一般只涉及到数据链路层,而不同的MAC标准之间的数据传输都涉及到网络层。例如IP路由器工作在网络层,因而可以实现多种网络间的互联。

第四层 传输层

传输层向高层提供可靠的端到端的网络数据流服务。传输层的功能一般包括流控、多路传输、虚电路管理及差错校验和恢复。流控管理设备之间的数据传输,确保传输设备不发送比接收设备处理能力大的数据;多路传输使得多个应用程序的数据可以传输到一个物理链路上;虚电路由传输层建立、维护和终止;差错校验包括为检测传输错误而建立的各种不同结构;而差错恢复包括所采取的行动(如请求数据重发),以便解决发生的任何错误。传输控制协议(TCP)是提供可靠数据传输的TCP/IP协议族中的传输层协议。

第五层 会话层

会话层建立、管理和终止表示层与实体之间的通信会话。通信会话包括发生在不同网络应用层之间的服务请求和服务应答,这些请求与应答通过会话层的协议实现,

它还包括创建检查点,使通信发生中断的时候可以返回到以前的一个状态。

第六层 表示层

表示层提供多种功能用于应用层数据编码和转化,以确保以一个系统应用层发送的信息可以被另一个系统应用层识别。表示层的编码和转化模式包括公用数据表示格式、性能转化表示格式、公用数据压缩模式和公用数据加密模式。

公用数据表示格式就是标准的图像、声音和视频格式。通过使用这些标准格式,不同类型的计算机系统可以相互交换数据;转化模式通过使用不同的文本和数据表示,在系统间交换信息,例如ASCII(American Standard Code for Information Interchange,美国标准信息交换码);标准数据压缩模式确保原始设备上被压缩的数据可以在目标设备上正确的解压;加密模式确保原始设备上加密的数据可以在目标设备上正确地解密。

表示层协议一般不与特殊的协议栈关联,如QuickTime是Applet计算机的视频和音频的标准,MPEG是ISO的视频压缩与编码标准。常见的图形图像格式PCX、GIF、JPEG是不同的静态图像压缩和编码标准。

第七层 应用层

应用层是最接近终端用户的OSI层,这就意味着OSI应用层与用户之间是通过应用软件直接相互作用的。注意,应用层并非由计算机上运行的实际应用软件组成,而是由向应用程序提供访问网络资源的API(Application Program Interface,应用程序接口)组成,这类应用软件程序超出了OSI模型的范畴。应用层的功能一般包括标识通信伙伴、定义资源的可用性和同步通信。因为可能丢失通信伙伴,应用层必须为传输数据的应用子程序定义通信伙伴的标识和可用性。定义资源可用性时,应用层为了请求通信而必须判定是否有足够的网络资源。在同步通信中,所有应用程序之间的通信都需要应用层的协同操作。

OSI的应用层协议包括文件的传输、访问及管理协议(FTAM) ,以及文件虚拟终端协议(VIP)和公用管理系统信息(CMIP)等。

TCP/IP分层模型

TCP/IP分层模型(TCP/IP Layening Model)被称作因特网分层模型(Internet Layering Model)、因特网参考模型(Internet Reference Model)。图2表示了TCP/IP分层模型的四层。

图2 TCP/IP四层参考模型

TCP/IP协议被组织成四个概念层,其中有三层对应于ISO参考模型中的相应层。ICP/IP协议族并不包含物理层和数据链路层,因此它不能独立完成整个计算机网络系统的功能,必须与许多其他的协议协同工作。

TCP/IP分层模型的四个协议层分别完成以下的功能:

第一层 网络接口层

网络接口层包括用于协作IP数据在已有网络介质上传输的协议。实际上TCP/IP标准并不定义与ISO数据链路层和物理层相对应的功能。相反,它定义像地址解析协议(Address Resolution Protocol,ARP)这样的协议,提供TCP/IP协议的数据结构和实际物理硬件之间的接口。

第二层 网间层

网间层对应于OSI七层参考模型的网络层。本层包含IP协议、RIP协议(Routing Information Protocol,路由信息协议),负责数据的包装、寻址和路由。同时还包含网间控制报文协议(Internet Control Message Protocol,ICMP)用来提供网络诊断信息。

第三层 传输层

传输层对应于OSI七层参考模型的传输层,它提供两种端到端的通信服务。其中TCP协议(Transmission Control Protocol)提供可靠的数据流运输服务,UDP协议(Use Datagram Protocol)提供不可靠的用户数据报服务。

第四层 应用层

上一篇:通信工程《安全生产操作规程》考试试卷答案下一篇:主题班会总结材料