第23讲抽屉原理

2022-06-20

第一篇:第23讲抽屉原理

抽屉原理第一课时教案

数学广角 抽屉原理

(一)

亢村中心校西刘小学主备人:王慧菊 王顺敏

教学内容:

人教版六年级下册数学广角例

1、“做一做”及相关练习。 教学目标:

1、经历“抽屉原理”探究过程,运用不同的证明思路:枚举法、假设法来初步了解“抽屉原理”。

2、经历将具体问题“数学化”的过程,培养学生数学思维能力。

3、通过“抽屉原理”的学习和简单应用,感受数学的魅力。

教学重点:

引导学生经历“抽屉原理”的探究过程,运用不同的证明思路:枚举法、反证法、假设法等,初步了解“抽屉原理”。

教学难点:

将具体问题“数学化”,在“说理”中体会“抽屉原理”的简单应用。 教学过程:

一、教学例1 1.组织游戏:抢凳子

2.出示例题:把4枝铅笔放进3个文具盒中,可以怎么放?有几种情况? (1)学生思考各种放法。

(2)与同学交流思维的过程和结果。 (3)汇报交流情况。

第一种放法: 第二种放法: 第三种放法: 第四种放法: 3.提出问题。

不管怎么放,总有一个文具盒里至少放进2枝铅笔。为什么?

4、解决问题:

(1)用数的分解法证明: 把4分解成三个数如下图所示:

4 4 0 0

4 3

0

4 0 2 2 2 1 1

由此发现,把4分解成3个数共有4种情况,每一种分得的3个数中,至少有一个数是大于等于2的。

(2)用“假设法”证明:

假设每个文具盒只放1枝铅笔,最多放3枝,剩下1枝还要放进其中的一个文具盒,所以至少有2枝铅笔放进同一个文具盒。

以上方法证明,把4枝铅笔放进3个文具盒里,不管怎样放,总有一个文具盒里至少放进了2枝铅笔。

二、认识“抽屉问题”:

1、像上面这个问题就是“抽屉原理”,在这里,“4枝铅笔”就是“4个要放的物体”,“3个文具盒”就是“3个抽屉”。把此问题用“抽屉原理”的语言来描述就是:把4个物体放进3个抽屉,总有一个抽屉里至少放了两个物体。

2、了解“抽屉原理”:

“ 抽屉原理”又称“鸽笼原理”,最先是由19世纪的德国数学家狄里克雷提出来的,所以又称“狄里克雷原理”,这一原理在解决实际问题中有着广泛的应用。“抽屉原理”的应用是千变万化的,用它可以解决许多有趣的问题,并且常常能得到一些令人惊异的结果。

“抽屉原理”:把m个物体任意放进n个空抽屉里(m>n,n是非0自然数),那么一定有1个抽屉中至少放进了2个物体。

三、巩固练习:

1、7只鸽子飞回5个鸽舍,至少有2只鸽子要飞进同一个鸽舍里。为什么? (1)说出想法。

如果每个鸽舍只飞进1只鸽子,最多飞回5只鸽子,剩下2只鸽子还要飞进其中的一个鸽舍或分别飞进其中的两个鸽舍。所以至少有2只鸽子飞进同一个鸽

舍。

(2) 尝试分析有几种情况。 (3) 说一说你有什么体会。

学生体会到,如果把各种情况都摆出来很复杂,也有一定的难度。如果找到数学方法来解决就方便了。

2、在我们班的任意13人中,总有至少几个人的属相相同,想一想,为什么?

3、六年级四个班的学生去春游,自由活动时,有6个同学在一起,可以肯定, 。为什么?

四、全课小结:

通过这节课的学习,你学到了什么新知识?

五、板书设计:

抽屉原理

4 4

0 4 2

0 0

4 3

1 4 2

0

“4枝铅笔”就是“4个要放的物体”,“3个文具盒”就是“3个抽屉”。 把4个物体放进3个抽屉,总有一个抽屉里至少放了两个物体。

“抽屉原理”:把m个物体任意放进n个空抽屉里(m>n,n是非0自然数),那么一定有1个抽屉中至少放进了2个物体。

第二篇:抽屉原理

《抽屉原理》教学设计

教材分析:现行小学教材人教版在十一册编入这一原理,旨在于让学生初步了解“抽屉原理”(也就是初步接触第一原理),会用“抽屉原理”解决实际有关“存在”问题;通过猜测、验证、观察、分析等数学活动,让孩子建立数学模型,发现规律;使孩子经历从具体到抽象的探究过程,提高学生有根据、有条理地进行思考和推理的能力;通过“抽屉原理”的灵活应用,提高学生解决数学问题的能力和兴趣,感受到数学文化及数学的魅力。

学情分析:使孩子经历从具体到抽象的探究过程,提高学生有根据、有条理地进行思考和推理的能力;通过“抽屉原理”的灵活应用,提高学生解决数学问题的能力和兴趣,感受到数学文化及数学的魅力。 教学目标:

1、经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。

2、通过操作发展学生的类推能力,形成比较抽象的数学思维。

3、通过“抽屉原理”的灵活应用感受数学的魅力。

教学重点:经历“抽屉原理”的探究过程,初步了解“抽屉原理”。

教学难点:理解“抽屉原理”,并对一些简单实际问题加以“模型化”。

教学过程

一、 游戏引入

3个人坐两个座位,3人都要坐下,一定有一个座位上至少坐了2个人。

这其中蕴含了有趣的数学原理,这节课我们一起学习研究。

二、新知探究

1、把4枝铅笔放进3个文具盒里,不管怎么放,总有一个文具盒里至少放进(

)枝铅笔先猜一猜,再动手放一放,看看有哪些不同方法。用自己的方法记录(4,0,0) (3,1,0) (2,2,0) (2,1,1)你有什么发现?

不管怎么放总有一个文具盒里至少放进2枝铅笔 。总有是什么意思?至少是什么意思

2、思考

有没有一种方法不用摆放就可以知道至少数是多少呢?

1、3人坐2个位子,总有一个座位上至少坐了2个人

2、4枝铅笔放进3个文具盒中,总有一个文具盒中至少放了2枝铅笔5枝铅笔放进4个文具盒中,6枝铅笔放进5个文具盒中。 99支铅笔放进98个文具盒中。 是否都有一个文具盒中

至少放进2枝铅笔呢? 这是为什么?可以用算式表达吗?

4、如果是5枝铅笔放到3个文具盒里,总有一个文具盒至少放进几枝铅笔?把7枝笔放进2个文具盒里呢? 8枝笔放进2个文具盒呢? 9枝笔放进3个文具盒呢?至少数=上+余数吗?

三、小试牛刀

1、7只鸽子飞回5个鸽舍,至少有几只鸽子要飞进同一个鸽舍里?

2、从扑克牌中取出两张王牌,在剩下的52张中任意抽出5张,至少有几张是同花色的?

四、数学小知识

数学小知识:抽屉原理的由来最先发现这些规律的人是谁呢?最先是由19世纪的德国数学家狄里克雷运用于解决数学问题的,后人们为了纪念他从这么平凡的事情中发现的规律,就把这个规律用他的名字命名,叫“狄里克雷原理”,又把它叫做“鸽巢原理”,还把它叫做

“抽屉原理”。

五、智慧城堡

1、把13只小兔子关在5个笼子里,至少有多少只兔子要关在同一个笼子里?

2、咱们班共59人,至少有几人是同一属相?

3、张叔叔参加飞镖比赛,投了5镖,镖镖都中,成绩是41环。张叔叔至少有一镖不低于9环。为什么?

4、六年级四个班的学生去春游,自由活时有6个同学在一起,可以肯定。 为什么?

六、小结

这节课你有什么收获?

七、作业:课后练习

第三篇:抽屉原理

一、 起源

抽屉原理最先是由19 世纪的德国数学家迪里赫莱(Dirichlet)运用于解决数学问题的,所以又称"迪里赫莱原理",也有称"鸽巢原理"的.这个原理可以简单地叙述为"把10个苹果,任意分放在9 个抽屉里,则至少有一个抽屉里含有两个或两个以上的苹果".这个道理是非常明显的,但应用它却可以解决许多有趣的问题,并且常常得到一些令人惊异的结果.抽屉原理是国际国内各级各类数学竞赛中的重要内容,本讲就来学习它的有关知识及其应用.

二、抽屉原理的基本形式

定理1,如果把n+1 个元素分成n 个集合,那么不管怎么分,都存在一个集合,其中至少有两个元素. 证明:(用反证法)若不存在至少有两个元素的集合,则每个集合至多1 个元素,从而n 个集合至多有n 个元素,此与共有n+1 个元素矛盾,故命题成立. 在定理1 的叙述中,可以把"元素"改为"物件",把"集合"改成"抽屉",抽屉原理正是由此得名. 同样,可以把"元素"改成"鸽子",把"分成n 个集合"改成"飞进n 个鸽笼中"."鸽笼原理"由此得名. 解答抽屉原理的关键:

假设有3 个苹果放入2 个抽屉中,则必然有一个抽屉中有2 个苹果,她的一般模型可以表述为:

第一抽屉原理:把( mn+1)个物体放入n 个抽屉中,其中必有一个抽屉中至少有( m+1)个物体。

若把3 个苹果放入4 个抽屉中,则必然有一个抽屉空着,她的一般模型可以表述为:

第二抽屉原理:把( mn-1)个物体放入n 个抽屉中,其中必有一个抽屉中至多有( m—1)个物体。

抽屉原理一

把4 只苹果放到3 个抽屉里去,共有4 种放法,不论如何放,必有一个抽屉里至少放进两个苹果。

同样,把5 只苹果放到4 个抽屉里去,必有一个抽屉里至少放进两个苹果。

更进一步,我们能够得出这样的结论:把n+1 只苹果放到n 个抽屉里去,那么必定有一个抽屉里至少放进两个苹果。这个结论,通常被称为抽屉原理。

利用抽屉原理,可以说明(证明)许多有趣的现象或结论。不过,抽屉原理不是拿来就能用的,关键是要应用所 学的数学知识去寻找“抽屉”,制造“抽屉”,弄清应当把什么看作“抽屉”,把什么看作“苹果”。

抽屉原理二

这里我们讲抽屉原理的另一种情况。先看一个例子:如果将13 只鸽子放进6 只鸽笼里,那么至少有一只笼子要放3 只或更多的鸽子。道理很简单。如果每只鸽笼里只放2 只鸽子,6 只鸽笼共放12 只鸽子。剩下的一只鸽子无论放入哪 只鸽笼里,总有一只鸽笼放了3 只鸽子。这个例子所体现的数学思想,就是下面的抽屉原理2。

抽屉原理2:将多于m×n 件的物品任意放到n 个抽屉中,那么至少有一个抽屉中的物品的件数不少于m+1。

说明这一原理是不难的。假定这n 个抽屉中,每一个抽屉内的物品都不到( m+1)件,即每个抽屉里的物品都不多于m 件,这样, n 个抽屉中可放物品的总数就不会超过m×n 件。这与多于m×n 件物品的假设相矛盾。这说明一开始的假定不能成立。所以至少有一个抽屉中物品的件数不少于m+1。 从最不利原则也可以说明抽屉原理2。为了使抽屉中的物品不少于(m+1)件,最不利的情况就是n 个抽屉中每 个都放入m 件物品,共放入(m×n)件物品,此时再放入1 件物品,无论放入哪个抽屉,都至少有一个抽屉不少于( m +1)件物品。这就说明了抽屉原理2。

不难看出,当m=1 时,抽屉原理2 就转化为抽屉原理1。即抽屉原理2 是抽屉原理1 的推广。 我们很容易理解这样一个事实:把3 只苹果放到两个抽屉中,肯定有一个抽屉中有2 只或2 只以上的苹果。用数学语言表达这一事实,就是:将n+1 个元素放入n 个集合内,则一定有一个集合内有两个或两个以上的元素(n 为正整数)。

这就是抽屉原理,也称为“鸽笼(巢)”原理。这一原理最先是由德国数学家狄里克雷明确提出来的,因此,称之为狄 里克雷原理。

抽屉原理还有另外的常用形式:

抽屉原理2:把m 个元素任意放入n (n < m) 个集合里,则一定有一个集合里至少有k 个元素,其中:

抽屉原理3:把无穷多个元素放入有限个集合里,则一定有一个集合里含有无穷多个元素。

抽屉原理又叫重叠原则,抽屉原则有如下几种情形。

抽屉原则①:把n+1 件东西任意放入n 只抽屉里,那么至少有一个抽屉里有两件东西。

抽屉原则②:把m 件东西放入n 个抽屉里,那么至少有一个抽屉里至少有[m/n]件东西。

抽屉原则③:如果有无穷件东西,把它们放在有限多个抽屉里,那么至少有一个抽屉里含无穷件东西。 利用抽屉原则解题时,其关键是如何利用题中已知条件构造出与题设密切相关的“抽屉”。

第四篇:抽屉原理进阶

抽屉原理

知识精讲

例1 口袋中有四种颜色的球,每种颜色足够多,一次至少要取几个球,才能保证其中一定有两个颜色相同? 口袋中有四种颜色的球,每种颜色足够多,一次至少要取几个球,才能保证其中一定有4个颜色相同?

练习1 箱子里有12种形状不同的积木,每种都足够多,一次至少取几个才能保证其中一定有3个形状相同?

例2 盒子里有四色球100个,每次从中摸出2个球,请问:至少要摸几次,才能保证其中有3次摸出的球的颜色相同?

练习2 小高把一副围棋混装在一个盒子里,然后每次从盒子中摸出4枚棋子,请问:他至少要摸几次,才能保证其中有3次摸出棋子的颜色情况相同?

例3 将3行7列的方格子的每格染成红、黄或绿色,要求每列的3个方格所染的颜色互不相同,请说明不管怎么染,至少有两列染色方式是一样的。

练习3 将2行5列的方格子的每格染成黑色或白色,请说明不管怎么染,至少有两列染色方式是一样的。

例4 1至30这30个自然数中,至少取出多少个数,才能保证其中一定有两个数的和等于31?至少取出多少个数,才能保证其中一定有两个数的差等于3?

练习4 1至20这20个自然数中,至少取出多少个数,才能保证其中一定有两个数的和等于21?至少取出多少个数,才能保证其中一定有两个数的差等于5?

挑战极限

例5 在边长为2的正方形里随意放入3个点,这3个点所能连出的三角形的面积最大是多少? 例6 在边长为4的正方形里随意放入9个点,这9中任意3点不共线,请说明:这9个点中一定有3个点所能连出的三角形的面积不超过2.

例7 试证明:任意六个人中,一定可以找到三个互相认识的人,或者三个互不认识的人。

课内练习

1. 一排椅子只有15个座位,部分座位已有人就座,乐乐来后一看,他无论坐在哪个座位,都将与已就座的人相邻。问:在乐乐之前已就座的最少有几人?

2. 箱子里有5中颜色相同的积木,每种都足够多,那么一次至少要取出多少个,才能保证一定有5个颜色相同?

3. 小高把一副围棋混装在一个盒子里,然后每次从盒子中左右手各摸出1枚棋子,那么他至少要摸几次,才能保证其中有3次摸出棋子的颜色情况相同?

4. 1至50中,至少取出多少个数,才能保证其中一定有两个数的和是奇数?

5. 能否在4行4列的方格表的每个空格中分别填上

1、

2、3这三个数之一,而使大正方形的每行、每列及对角线的各个数之和互不相同?

6. 任意写一个数字

1、

2、3组成的十一位数,从这个十一位数中任意截取相邻两位,可得到一个两位数,请说明:在从各个不同位置上截得的所有两位数中,至少有两个相等?

第五篇:抽屉原理例题解析

抽屉原理1:把多于n个的苹果放进n个抽屉里,那么至少有一个抽屉里有两个或两个以上的苹果 概念解析

1、把3个苹果任意放到两个抽屉里,可以有哪些放置的方法呢?一个抽屉放一个,另一个抽屉放两个;或3个苹果放在某一个抽屉里.尽管放苹果的方式有所不同,但是总有一个共同的规律:至少有一个抽屉里有两个或两个以上的苹果.

2、如果把5个苹果任意放到4个抽屉里,放置的方法更多了,但仍有这样的结果.由此我们可以想到,只要苹果的个数多于抽屉的个数,就一定能保证至少有一个抽屉里有两个或两个以上的苹果.道理很简单:如果每个抽屉里的苹果都不到两个(也就是至多有1个),那么所有抽屉里的苹果数的和就比总数少了.

3、我们从街上随便找来13人,就可以断定他们中至少有两个人属相(指鼠、牛、虎、兔、龙、蛇、马、羊、猴、鸡、狗、猪。等十二种生肖)相同.怎样证明这个结论是正确的呢?只要利用抽屉原理就很容易把道理讲清楚.事实上,由于人数(13)比属相数(12)多,因此至少有两个人属相相同(在这里,把13人看成13个“苹果”,把12种属相看成12个“抽屉”)。 应用抽屉原理要注意识别“抽屉”和“苹果”,苹果的数目一定要大于抽屉的个数。

例题讲解

例1 有5个小朋友,每人都从装有许多黑白围棋子的布袋中任意摸出3枚棋子.请你证明,这5个人中至少有两个小朋友摸出的棋子的颜色的配组是一样的。

解析(首先要确定3枚棋子的颜色可以有多少种不同的情况,可以有:3黑,2黑1白,1黑2白,3白共4种配组情况,看作4个抽屉.把每人的3枚棋作为一组当作一个苹果,因此共有5个苹果.把每人所拿3枚棋子按其颜色配组情况放入相应的抽屉.由于有5个苹果,比抽屉个数多,所以根据抽屉原理,至少有两个苹果在同一个抽屉里,也就是他们所拿棋子的颜色配组是一样的。) 例2 一副扑克牌(去掉两张王牌),每人随意摸两张牌,至少有多少人才能保证他们当中一定有两人所摸两张牌的花色情况是相同的?

解析(扑克牌中有方块、梅花、黑桃、红桃4种花色,2张牌的花色可以有:2张方块,2张梅花,2张红桃,2张黑桃,1张方块1张梅花,1张方块1张黑桃,1张方块1张红桃,1张梅花1张黑桃,1张梅花1张红桃,1张黑桃1张红桃共计10种情况.把这10种花色配组看作10个抽屉,只要苹果的个数比抽屉的个数多1个就可以有题目所要的结果.所以至少有11个人。) 例3 从

2、

4、

6、„、30这15个偶数中,任取9个数,证明其中一定有两个数之和是34。

解析(用题目中的15个偶数制造8个抽屉:

凡是抽屉中有两个数的,都具有一个共同的特点:这两个数的和是34。 现从题目中的15个偶数中任取9个数,由抽屉原理(因为抽屉只有8个),必有两个数在同一个抽屉中.由制造的抽屉的特点,这两个数的和是34。 ) 例4 从

1、

2、

3、

4、„、

19、20这20个自然数中,至少任选几个数,就可以保证其中一定包括两个数,它们的差是12。

解析(在这20个自然数中,差是12的有以下8对: {20,8},{19,7},{18,6},{17,5},{16,4},{15,3},{14,2},{13,1}。 另外还有4个不能配对的数{9},{10},{11},{12},共制成12个抽屉(每个括号看成一个抽屉).只要有两个数取自同一个抽屉,那么它们的差就等于12,根据抽屉原理至少任选13个数,即可办到(取12个数:从12个抽屉中各取一个数(例如取1,2,3,„,12),那么这12个数中任意两个数的差必不等于12)。 )

例5 从1到20这20个数中,任取11个数,必有两个数,其中一个数是另一个数的倍数。

解析(分析与解答 根据题目所要求证的问题,应考虑按照同一抽屉中,任意两数都具有倍数关系的原则制造抽屉.把这20个数按奇数及其倍数分成以下十组,看成10个抽屉(显然,它们具有上述性质): {1,2,4,8,16},{3,6,12},{5,10,20},{7,14},{9,18},{11},{13},{15},{17},{19}。 从这10个数组的20个数中任取11个数,根据抽屉原理,至少有两个数取自同一个抽屉.由于凡在同一抽屉中的两个数都具有倍数关系,所以这两个数中,其中一个数一定是另一个数的倍数。 )

例6 证明:在任取的5个自然数中,必有3个数,它们的和是3的倍数。 分析与解答 按照被3除所得的余数,把全体自然数分成3个剩余类,即构成3个抽屉.如果任选的5个自然数中,至少有3个数在同一个抽屉,那么这3个数除以3得到相同的余数r,所以它们的和一定是3的倍数(3r被3整除)。 如果每个抽屉至多有2个选定的数,那么5个数在3个抽屉中的分配必为1个,2个,2个,即3个抽屉中都有选定的数.在每个抽屉中各取1个数,那么这3个数除以3得到的余数分别为0、

1、2.因此,它们的和也一定能被3整除(0+1+2被3整除)。

例7 某校校庆,来了n位校友,彼此认识的握手问候.请你证明无论什么情况,在这n个校友中至少有两人握手的次数一样多。

分析与解答 共有n位校友,每个人握手的次数最少是0次,即这个人与其他校友都没有握过手;最多有n-1次,即这个人与每位到会校友都握了手.校友人数与握手次数的不同情况(0,1,2,„,n-1)数都是n,还无法用抽屉原理。 然而,如果有一个校友握手的次数是0次,那么握手次数最多的不能多于n-2次;如果有一个校友握手的次数是n-1次,那么握手次数最少的不能少于1次.不管是前一种状态0、

1、

2、„、n-2,还是后一种状态

1、

2、

3、„、n-1,握手次数都只有n-1种情况.把这n-1种情况看成n-1个抽屉,到会的n个校友每人按照其握手的次数归入相应的“抽屉”,根据抽屉原理,至少有两个人属于同一抽屉,则这两个人握手的次数一样多。

抽屉原理2:将多于m×n件的物品任意放到n个抽屉中,那么至少有一个抽屉中的物品的件数不少于m+1。 概念解析

1、假定这n个抽屉中,每一个抽屉内的物品都不到(m+1)件,即每个抽屉里的物品都不多于m件,这样n个抽屉中可放物品的总数就不会超过m×n件,这与多于m×n件物品的假设相矛盾。这说明一开始的假定不能成立,所以至少有一个抽屉中物品的件数不少于(m+1)件。

2、“抽屉原理1”和“抽屉原理2”的区别是:“抽屉原理1”物体多,抽屉少,数量比较接近;“抽屉原理2”虽然也是物体多,抽屉少,但是数量相差较大,物体个数比抽屉个数的几倍还多 例题讲解

1、如果将13只鸽子放进6只鸽笼里,那么至少有一只笼子要放3只或更多的鸽子。道理很简单,如果每只鸽笼里只放2只鸽子,6只鸽笼共放12只鸽子,剩下的一只鸽子无论放入哪只鸽笼里,总有一只鸽笼放了3只鸽子。

2、有40名小朋友,现有各种玩具122件,把这些玩具全部分给小朋友,是否会有小朋友得到4件或4件以上的玩具?

分析与解:将40名小朋友看成40个抽屉。有玩具122件,而122=3×40+2,应用抽屉原理2,取n=40,m=3,立即知道至少有一个抽屉中放有4件或4件以上的玩具,也就是说,至少会有一个小朋友得到4件或4件以上的玩具

3、布袋里有4种不同颜色的球,每种都有10个。最少取出多少个球,才能保证其中一定有3个球的颜色一样?

分析与解:把4种不同颜色看做4个抽屉,把布袋中的球看做元素。根据抽屉原理2,要使其中一个抽屉里有3个颜色一样的球,那么放入的球的个数最少应比抽屉个数的2倍多1,即最少取出(3-1)×4+1=9(个)球。

4、有47名学生参加一次数学竞赛,成绩都是整数,满分是100分。已知3名学生的成绩在60分以下,其余学生的成绩均在75~95分之间。问:至少有几名学生的成绩相同?

分析与解:关键是构造合适的“抽屉”。既然是问“至少有几名学生的成绩相同”,说明应以成绩为抽屉,学生为物品。除3名成绩在60分以下的学生外,其余学生的成绩均在75~95分之间,而75~95分中共有21个不同的分数,将这21个分数作为21个抽屉,把47-3=44(个)学生作为物品。则有44÷21=2„„2,根据抽屉原理2,至少有1个抽屉中至少有3件物品,即这47名学生中至少有3名学生的成绩是相同的

5、学校开办了语文、数学、美术三个课外学习班,每个学生最多可以参加两个(也可以不参加)。问:至少有多少名学生,才能保证有不少于5名学生参加学习班的情况完全相同?

分析与解:首先要弄清参加学习班有多少种不同的情况:不参加学习班有1种情况,只参加一个学习班有3种情况,参加两个学习班有语文和数学、语文和美术、数学和美术3种情况。共有1+3+3=7(种)情况。将这7种情况作为7个“抽屉”,根据抽屉原理2,要保证有不少于5名学生参加学习班的情况完全相同,那么至少有学生7×(5-1)+1=29(名)。

6、夏令营组织2000名营员活动,其中有爬山、参观博物馆和到海滩游玩三个项目。规定每人必须参加一项或两项活动。那么至少有几名营员参加的活动项目完全相同?

分析与解:本题的抽屉不是那么明显,因为问的是“至少有几名营员参加的活动项目完全相同”,所以应该把活动项目当成抽屉,营员当成物品。营员数已经有了,现在的问题是应当搞清有多少个抽屉。

因为“每人必须参加一项或两项活动”,共有3项活动,所以只参加一项活动的情况有3种,参加两项活动的有爬山与参观、爬山与海滩游玩、参观与海滩游玩3种情况,所以共有3+3=6(个)抽屉。则有2000÷6=333„„2,根据抽屉原理2,至少有一个抽屉中有333+1=334(件)物品,即至少有334名营员参加的活动项目是完全相同的。

7、幼儿园里有120个小朋友,各种玩具有364件。把这些玩具分给小朋友,是否有人会得到4件或4件以上的玩具?

把120个小朋友看做是120个抽屉,把玩具件数看做是元素。则364=120×3+4,4<120。根据抽屉原理的第(2)条规则:如果把m×x×k(x>k≥1)个元素放到x个抽屉里,那么至少有一个抽屉里含有m+1个或更多个元素。可知至少有一个抽屉里有3+1=4个元素,即有人会得到4件或4件以上的玩具

课堂练习

1. 五名同学在一起练习投篮,共投进了41个球,那么至少有一个人投进了几个球?

2. 有100名学生,他们都订阅甲、乙、丙三种杂志中的一种、两种或三种。问:至少有多少名学生订阅的杂志种类相同?

3. 篮子里有苹果、梨、桃和橘子,现有81个小朋友,如果每个小朋友都从中任意拿两个水果,那么至少有多少个小朋友拿的水果是相同的?

4. 放体育用品的仓库里有许多足球、排球和篮球,有66名同学来仓库拿球,要求每人至少拿1个球,至多拿2个球。问:至少有多少名同学所拿的球的种类是完全一样的?

5. ①求证:任意25个人中,至少有3个人的属相相同。 ②要想保证至少有5个人的属相相同,但不能保证有6个人的属相相同,那么人的总数应在什么范围内?

参考答案

1. 解:将5个同学投进的球数作为抽屉,将41个球放入抽屉中,41=5×8+1,所以至少有一个抽屉中放了9个球,即至少有一个人投进了9个球。

2. 解:首先应当弄清订阅杂志的种类共有多少种不同的情况。

订一种杂志有:订甲、订乙、订丙3种情况;

订两种杂志有:订甲乙、订乙丙、订丙甲3种情况;

订三种杂志有:订甲乙丙1种情况。

总共有3+3+1=7(种)订阅方法。我们将这7种订法看成是7个“抽屉”,把100名学生看作100件物品。因为100=14×7+2。根据抽屉原理2,至少有14+1=15(名)学生所订阅的杂志种类是相同的。

3. 解:首先应弄清不同的水果搭配有多少种。两个水果是相同的有4种,两个水果不同的有6种:苹果和梨、苹果和桃、苹果和橘子、梨和桃、梨和橘子、桃和橘子,所以不同的水果搭配共有4+6=10(种)。将这10种搭配作为10个“抽屉”,因为81=8×10+1,根据抽屉原理2,至少有8+1=9(个)小朋友拿的水果是相同的。

4. 解:拿球的配组方式有以下9种:{足},{排},{篮},{足,足},{排,排},{篮,篮},{足,排},{足,篮},{排,篮}。

把这9种配组方式看作9个抽屉,因为66=7×9+3,所以至少有7+1=8(名)同学所拿的球的种类是完全一样的。

5. 解:①把12种属相看作12个抽屉,因为25=2×12+1,所以根据抽屉原理2,至少有3个人的属相相同。

②要保证有5个人的属相相同,总人数最少为4×12+1=49(人)。 不能保证有6个人的属相相同的最多人数为5×12=60(人)。 所以总人数应在49人到60人的范围内。

练习1:

1、一个幼儿园大班有40个小朋友,班里有各种玩具125件。把这些玩具分给小朋友,是否有人会得到4件或4件以上的玩具?

2、把16枝铅笔放入三个笔盒里,至少有一个笔盒里的笔不少于6枝。为什么?

3、把25个球最多放在几个盒子里,才能至少有一个盒子里有7个球?

答案:

1、 把40名小朋友看做40个抽屉,将125件玩具放入这些抽屉,因为125=3×40+5,根据抽屉原理,可知至少有一个抽屉有4件或4件以上的玩具,所以肯定有人会得到4件或4件以上的玩具。

2、 把三个笔盒看做3个抽屉,因为16=5×3+1,根据抽屉原理可以至少有一个笔盒里的笔有6枝或6枝以上。

3、 把盒子数看成抽屉,要使其中一个抽屉里至少有7个球,那么球的个数至少应比抽屉个数的(7-1)倍多1,而25=4×(7-1)+1,所以最多方子4个盒子里,才能保证至少有一个盒子里有7个球。

例题2:

布袋里有4种不同颜色的球,每种都有10个。最少取出多少个球,才能保证其中一定有3个球的颜色一样? 解析:把4种不同颜色看做4个抽屉,把布袋中的球看做元素。据抽屉原理2要使其中一个抽屉里至少有3个颜色一样的球,那么取出的球的个数应比抽屉个数的2倍多1。即2×4+1=9(个)球。列算式为(3—1)×4+1=9(个)

练习2:

1、布袋里有组都多的5种不同颜色的球。最少取出多少个球才能保证其中一定有3个颜色一样的球?

2、一个容器里放有10块红木块、10块白木块、10块蓝木块,它们的形状、大小都一样。当你被蒙上眼睛去容器中取出木块时,为确保取出的木块中至少有4块颜色相同,应至少取出多少块木块?

3、一副扑克牌共54张,其中1—13点各有4张,还有两张王的扑克牌。至少要取出几张牌,才能保证其中必有4张牌的点数相同?

参考答案

1、 最少应取出(3-1)×5+1=11个球

2、 至少取出(4-1)×3+1=10块木块。

3、 如果没有两张王牌,至少要取(4-1)×13+1=40张,再加上两张王牌,至少要摸出40+2=42张,才能保证其中必有4张牌点数相同。

例题3:

某班共有46名学生,他们都参加了课外兴趣小组。活动内容有数学、美术、书法和英语,每人可参加1个、2个、3个或4个兴趣小组。问班级中至少有几名学生参加的项目完全相同?

解析:参加课外兴趣小组的学生共分四种情况,只参加一个组的有4种类型,只参加两个小组的有6个类型,只参加三个组的有4种类型,参加四个组的有1种类型。把4+6+4+1=15(种)类型看做15个抽屉,把46个学生放入这些抽屉,因为46=3×15+1,所以班级中至少有4名学生参加的项目完全相同。

练习3:

1、某班有37个学生,他们都订阅了三种报刊中的

一、

二、三种。其中至少有几位同学订的报刊相同?

2、学校开办了绘画、笛子、足球和电脑四个课外学习班,每个学生最多可以参加两个(可以不参加)。某班有52名同学,问至少有几名同学参加课外学习班的情况完全相同?

3、库房里有一批篮球、排球、足球和铅球,每人任意搬运两个,问:在31个 搬运者中至少有几人搬运的球完全相同?

参考答案

1、 小学六年中最多有2个闰年,共366×2+365×4=2191天,因为13170=6×2192+18,所以其中一定有7人是同年同月同日生的。

2、 参加课外兴趣小组的学生共分四种情况,只参加一个组的有4种类型,只参加两个组的有6种类型,只参加三个字的有4种类型,参加四个组的有1种类型。把4+6+4+1=15种类型看作15个抽屉,把46个学生放入这些抽屉,因为46=15×3+1,所以班级中至少有4名学生参加的项目完全相同。

3、 全班订阅报刊的类型共有3+3+1=7种,因为37=5×7+2,所以其中至少有6位学生订的报刊相同。

例题4:

从1至30中,3的倍数有30÷3=10个,不是3的倍数的数有30—10=20个,至少要取出20+1=21个不同的数才能保证其中一定有一个数是3的倍数。

练习4:

1、在1,2,3,„„49,50中,至少要取出多少个不同的数,才能保证其中一定有一个数能被5整除?

2、从1至120中,至少要取出几个不同的数才能保证其中一定有一个数是4的倍数?

3、从1至36中,最多可以取出几个数,使得这些数中没有两数的差是5的倍数?

参考答案 练4

1、 在1~50中,5的倍数有50÷5=10个,不是5的倍数的就有50-10=40个,至少要取

出40+1=41个不同的数才能保证其中有个数能贝5整除。

2、 在1~120中,4的倍数有120÷4=30个,不是4的倍数有120-30=90个,正是要取出90+1=91个不同的数才能保证其中一定有一个数是4的倍数。

3、 差是5的两数有下列5组:

1、6,

11、16,

21、26,

31、36;

2、7,

12、17,

22、27;

3、8,

13、18,

23、

28、33;

4、9,

14、19,

24、29,34;

5、10,

15、20,

25、30、35。要使取出的数中没有两个数的差是5的倍数,最多只能从每组中各取1个数,即最多可以取5个数。

例题5:

将400张卡片分给若干名同学,每人都能分到,但都不能超过11张,试证明:找少有七名同学得到的卡片的张数相同。

解析:这题需要灵活运用抽屉原理。将分得1,2,3,„„,11张可片看做11个抽屉,把同学人数看做元素,如果每个抽屉都有一个元素,则需1+2+3+„„+10+11=66(张)卡片。而400÷66=6„„4(张),即每个周体都有6个元素,还余下4张卡片没分掉。而这4张卡片无论怎么分,都会使得某一个抽屉至少有7个元素,所以至少有7名同学得到的卡片的张数相同。

练习5:

1、把280个桃分给若干只猴子,每只猴子不超过10个。证明:无论怎样分,至少有6只猴子得到的桃一样多。

2、把61颗棋子放在若干个格子里,每个格子最多可以放5颗棋子。证明:至少有5个格子中的棋子数目相同。

3、汽车8小时行了310千米,已知汽车第一小时行了25千米,最后一小时行了45千米。证明:一定存在连续的两小时,在这两小时内汽车至少行了80千米。

参考答案练5

1、 把11秒钟看做11个抽屉,把100米看作100个元素,因为100=9×11+1,所以必有1个抽屉里超过9米,即必有某一秒钟,他跑的距离超过9米。

2、 如图答30-1,把边长为2的等边三角形分成四个边长为1的小等边三角形。把它看作4个抽屉,5个点看作5个元素,则一定有一个小三角形内有2个点,这2个点之间的距离不超过1。

3、先把长方形的每边剪去宽1厘米的长条,余下一个50×40的长方形,它的面积为2000平方厘米,再把每个圆的半径放大1厘米成为3厘米的圆,若剪去后的长方形至少有一个点未被70个镶边后的圆盖住的话,那么原来的长方形中就能放进一个以这点为圆心的圆。因为×32×70的值就小于630×3.15=1984.52000,所以在原来的长方形中一定可以放进一个半径为1厘米的圆

上一篇:50条超感人语录下一篇:50个故事学词汇

本站热搜