2013年浙江省 高考数学 ( 理科) 试卷第9题 ( 以下称题1) 是: 如图, F1, F2是椭圆C1:与双曲线C2的公共焦点, A, B分别是C1, C2在第二、四象限的公共点, 若四边形AF1BF2的离心率为:这道题给笔者的第..."> 2013年浙江省 高考数学 ( 理科) 试卷第9题 ( 以下称题1) 是: 如图, F1, F2是椭圆C1:与双曲线C2的公共焦点, A, B分别是C1, C2在第二、四象限的公共点, 若四边形AF1BF2的离心率为:这道题给笔者的第"/>

浙江高考数学重难点

2024-04-09

浙江高考数学重难点(精选6篇)

篇1:浙江高考数学重难点

难点3 运用向量法解题

平面向量是新教材改革增加的内容之一,近几年的全国使用新教材的高考试题逐渐加大了对这部分内容的考查力度,本节内容主要是帮助考生运用向量法来分析,解决一些相关问题.●难点磁场

(★★★★★)三角形ABC中,A(5,-1)、B(-1,7)、C(1,2),求:(1)BC边上的中线 AM的长;(2)∠CAB的平分线AD的长;(3)cosABC的值.●案例探究

[例1]如图,已知平行六面体ABCD—A1B1C1D1的底面ABCD是菱形,且∠C1CB=∠C1CD=∠BCD.(1)求证:C1C⊥BD.(2)当CD的值为多少时,能使A1C⊥平面C1BD?请给出证明.CC1命题意图:本题主要考查考生应用向量法解决向量垂直,夹角等问题以及对立体几何图形的解读能力.知识依托:解答本题的闪光点是以向量来论证立体几何中的垂直问题,这就使几何问题代数化,使繁琐的论证变得简单.错解分析:本题难点是考生理不清题目中的线面位置关系和数量关系的相互转化,再就是要清楚已知条件中提供的角与向量夹角的区别与联系.技巧与方法:利用a⊥ba·b=0来证明两直线垂直,只要证明两直线对应的向量的数量积为零即可.(1)证明:设CD=a, CB=b,CC1=c,依题意,|a|=|b|,CD、CB、CC1中两两所成夹角为θ,于是BDCDDB=a-b,CC1BD=c(a-b)=c·a-c·b=|c|·|a|cosθ-|c|·|b|cosθ=0,∴C1C⊥BD.(2)解:若使A1C⊥平面C1BD,只须证A1C⊥BD,A1C⊥DC1,由CA1C1D(CAAA1)(CDCC1)

=(a+b+c)·(a-c)=|a|2+a·b-b·c-|c|2=|a|2-|c|2+|b|·|a|cosθ-|b|·|c|·cosθ=0,得 当|a|=|c|时,A1C⊥DC1,同理可证当|a|=|c|时,A1C⊥BD,∴CD=1时,A1C⊥平面C1BD.CC1[例2]如图,直三棱柱ABC—A1B1C1,底面△ABC中,CA=CB=1,∠BCA=90°,AA1=2,M、N分别是A1B1、A1A的中点.(1)求BN的长;

I(2)求cos的值;

(3)求证:A1B⊥C1M.命题意图:本题主要考查考生运用向量法中的坐标运算的方法来解决立体几何问题.属 ★★★★级题目.知识依托:解答本题的闪光点是建立恰当的空间直角坐标系O-xyz,进而找到点的坐标和求出向量的坐标.错解分析:本题的难点是建系后,考生不能正确找到点的坐标.技巧与方法:可以先找到底面坐标面xOy内的A、B、C点坐标,然后利用向量的模及方向来找出其他的点的坐标.(1)解:如图,以C为原点建立空间直角坐标系O-xyz.依题意得:B(0,1,0),N(1,0,1)∴|BN|=(10)2(01)2(10)23.(2)解:依题意得:A1(1,0,2),C(0,0,0),B1(0,1,2).∴BA1=(1,1,2),CB1=(0,1,2)BA1CB1=1×0+(-1)×1+2×2=3 |BA1|=(10)2(01)2(20)26

|CB1|(00)2(10)2(20)25 cosBA1,CB1BA1CB1|BC1||CB1|36530.10(3)证明:依题意得:C1(0,0,2),M(,2)

112211C1M(,0),A1B(1,1,2)

2211∴A1BC1M(1)1(2)00,A1BC1M,22∴A1B⊥C1M.●锦囊妙计

1.解决关于向量问题时,一要善于运用向量的平移、伸缩、合成、分解等变换,正确地进行向量的各种运算,加深对向量的本质的认识.二是向量的坐标运算体现了数与形互相转化和密切结合的思想.2.向量的数量积常用于有关向量相等,两向量垂直、射影、夹角等问题中.常用向量的直角坐标运算来证明向量的垂直和平行问题;利用向量的夹角公式和距离公式求解空间两条直线的夹角和两点间距离的问题.II 3.用空间向量解决立体几何问题一般可按以下过程进行思考:(1)要解决的问题可用什么向量知识来解决?需要用到哪些向量?

(2)所需要的向量是否已知?若未知,是否可用已知条件转化成的向量直接表示?

(3)所需要的向量若不能直接用已知条件转化成的向量表示,则它们分别最易用哪个未知向量表示?这些未知向量与由已知条件转化的向量有何关系?

(4)怎样对已经表示出来的所需向量进行运算,才能得到需要的结论? ●歼灭难点训练

一、选择题

1.(★★★★)设A、B、C、D四点坐标依次是(-1,0),(0,2),(4,3),(3,1),则四边形ABCD为()A.正方形

B.矩形 C.菱形

D.平行四边形

2.(★★★★)已知△ABC中,AB=a,a·b<0,S△ABC=AC=b,15,|a|=3,|b|=5,则a与b的夹角是()4A.30°

B.-150°

C.150°

D.30°或150°

二、填空题

3.(★★★★★)将二次函数y=x2的图象按向量a平移后得到的图象与一次函数y=2x-5的图象只有一个公共点(3,1),则向量a=_________.4.(★★★★)等腰△ABC和等腰Rt△ABD有公共的底边AB,它们所在的平面成60°角,若AB=16 cm,AC=17 cm,则CD=_________.三、解答题

5.(★★★★★)如图,在△ABC中,设AB=a,AC =b,AP =c, AD=λa,(0<λ<1),AE =μb(0<μ<1),试用向量a,b表示c.6.(★★★★)正三棱柱ABC—A1B1C1的底面边长为a,侧棱长为2a.(1)建立适当的坐标系,并写出A、B、A1、C1的坐标;(2)求AC1与侧面ABB1A1所成的角.7.(★★★★★)已知两点M(-1,0),N(1,0),且点P使MPMN,PMPN,NMNP成公差小于零的等差数列.(1)点P的轨迹是什么曲线?

(2)若点P坐标为(x0,y0),Q为PM与PN的夹角,求tanθ.8.(★★★★★)已知E、F、G、H分别是空间四边形ABCD的边AB、BC、CD、DA的中点.(1)用向量法证明E、F、G、H四点共面;(2)用向量法证明:BD∥平面EFGH;

III(3)设M是EG和FH的交点,求证:对空间任一点O,有OM 参考答案

难点磁场

解:(1)点M的坐标为xM=

1(OAOBOCOD).41172990;yM,M(0,)2222221.29|AM|(50)2(1)22(2)|AB|(51)2(17)210,|AC|(51)2(12)25

D点分BC的比为2.∴xD=121172211,yD

12312311114|AD|(5)2(1)22.333(3)∠ABC是BA与BC的夹角,而BA=(6,8),BC=(2,-5).cosABCBABC|BA||BC|62(8)(5)62(8)222(5)25210292629 145歼灭难点训练

一、1.解析:AB =(1,2),DC =(1,2),∴AB=DC,∴AB∥DC,又线段AB与线段DC无公共点,∴AB∥DC且|AB|=|DC|,∴ABCD是平行四边形,又|AB|=5,AC =(5,3),|AC|=34,∴|AB|≠|AC},∴ABCD不是菱形,更不是正方形;又BC=(4,1),∴1·4+2·1=6≠0,∴AB不垂直于BC,∴ABCD也不是矩形,故选D.答案:D 2.解析:∵1511·3·5sinα得sinα=,则α=30°或α=150°.242又∵a·b<0,∴α=150°.答案:C

二、3.(2,0)4.13 cm

IV

三、5.解:∵BP与BE共线,∴BP=mBE=m(AE-AB)=m(μb-a), ∴AP=AB+BP=a+m(μb-a)=(1-m)a+mμb

又CP与CD共线,∴CP=nCD=n(AD-AC)=n(λa-b), ∴AP=AC+CP=b+n(λa-b)=nλa+(1-n)b 由①②,得(1-m)a+μmb=λna+(1-n)b.②

1manm10∵a与b不共线,∴

即m1nnm10解方程组③得:m=

111,n代入①式得c=(1-m)a+mμb=[λ(1-μ)a+μ(1-111λ)b].6.解:(1)以点A为坐标原点O,以AB所在直线为Oy轴,以AA1所在直线为Oz轴,以经过原点且与平面ABB1A1垂直的直线为Ox轴,建立空间直角坐标系.由已知,得A(0,0,0),B(0,a,0),A1(0,0,2a),C1(-

3aa,222a).3a,0,0), 2(2)取A1B1的中点M,于是有M(0,,2a),连AM,MC1,有MC1=(-且AB=(0,a,0),AA1=(0,02a)

a2由于MC1·AB=0,MC1·AA1=0,所以MC1⊥面ABB1A1,∴AC1与AM所成的角就是AC1与侧面ABB1A1所成的角.∵AC1=(3aaa,2a),AM(0,2a), 222a29AC1AM02a2a

443212a232而|AC1|aa2a3a,|AM|2aa

444292a34 323aa2cosAC1,AM所以AC1与AM所成的角,即AC1与侧面ABB1A1所成的角为30°.V 7.解:(1)设P(x,y),由M(-1,0),N(1,0)得,PM =-MP=(-1-x,-y),PNNP =(1-x,-y),MN =-NM=(2,0),∴MP·MN=2(1+x), PM·PN=x2+y2-1,NMNP =2(1-x).于是,MPMN,PMPN,NMNP是公差小于零的等差数列,等价于

122x2y3xy1[2(1x)2(1x)] 即 2x02(1x)2(1x)0所以,点P的轨迹是以原点为圆心,3为半径的右半圆.(2)点P的坐标为(x0,y0)PMPNx0y012,|PM||PN|(1x)2y0(1x0)2y0(42x0)(42x0)24x0cosPMPN|PM|PN14x0222222

10x03,cos1,0,23sin1cos211sin2,tan3x|y0| 02cos4x08.证明:(1)连结BG,则EGEBBGEB(BCBD)EBBFEHEFEH 由共面向量定理的推论知:E、F、G、H四点共面,(其中(2)因为EHAHAE121BD=EH)21111ADAB(ADAB)BD.2222所以EH∥BD,又EH面EFGH,BD面EFGH

所以BD∥平面EFGH.(3)连OM,OA,OB,OC,OD,OE,OG 由(2)知EH被M平分,所以 11BD,同理FGBD,所以EHFG,EH22FG,所以EG、FH交于一点M且 VI OM1(OAOBOCOD).41111111(OEOG)OEOG[(OAOB)][(OCOD)]2222222.VII

篇2:浙江高考数学重难点

不等式的证明,方法灵活多样,它可以和很多内容结合.高考解答题中,常渗透不等式证明的内容,纯不等式的证明,历来是高中数学中的一个难点,本难点着重培养考生数学式的变形能力,逻辑思维能力以及分析问题和解决问题的能力.●难点磁场

(★★★★)已知a>0,b>0,且a+b=1.求证:(a+1125)(b+)≥.ba41112n(n∈N*)●案例探究

23n命题意图:本题是一道考查数学归纳法、不等式证明的综合性题目,考查学生观察能力、构造能力以及逻辑分析能力,属★★★★★级题目.知识依托:本题是一个与自然数n有关的命题,首先想到应用数学归纳法,另外还涉及不等式证明中的放缩法、构造法等.错解分析:此题易出现下列放缩错误: [例1]证明不等式1

这样只注重形式的统一,而忽略大小关系的错误也是经常发生的.技巧与方法:本题证法一采用数学归纳法从n=k到n=k+1的过渡采用了放缩法;证法二先放缩,后裂项,有的放矢,直达目标;而证法三运用函数思想,借助单调性,独具匠心,发人深省.证法一:(1)当n等于1时,不等式左端等于1,右端等于2,所以不等式成立;

111(2)假设n=k(k≥1)时,不等式成立,即1+<2k,23k则112131k1k12k1k1

2k(k1)1k1k(k1)12k1,∴当n=k+1时,不等式成立.综合(1)、(2)得:当n∈N*时,都有1+

12131n<2n.另从k到k+1时的证明还有下列证法:

2(k1)12k(k1)k2k(k1)(k1)(kk1)20,2k(k1)12(k1),k10,2k1k12k1.2k1k2k1k11k1,又如:2k12kk1证法二:对任意k∈N*,都有: 2k12k1.2(kk1),kkkk1

111因此122(21)2(32)2(nn1)2n.23nk证法三:设f(n)=2n(1*12212131n),那么对任意k∈N 都有:

f(k1)f(k)2(k1k)1k11k1[2(k1)2k(k1)1][(k1)2k(k1)k]1k1

(k1k)2k10∴f(k+1)>f(k)因此,对任意n∈N* 都有f(n)>f(n-1)>„>f(1)=1>0,1112n.∴123n[例2]求使xy≤axy(x>0,y>0)恒成立的a的最小值.命题意图:本题考查不等式证明、求最值函数思想、以及学生逻辑分析能力,属于★★★★★级题目.知识依托:该题实质是给定条件求最值的题目,所求a的最值蕴含于恒成立的不等式中,因此需利用不等式的有关性质把a呈现出来,等价转化的思想是解决题目的突破口,然后再利用函数思想和重要不等式等求得最值.错解分析:本题解法三利用三角换元后确定a的取值范围,此时我们习惯是将x、y与cosθ、sinθ来对应进行换元,即令x=cosθ,y=sinθ(0<θ<

2),这样也得a≥sinθ+cosθ,但是这种换元是错误的.其原因是:(1)缩小了x、y的范围;(2)这样换元相当于本题又增加了“x、y=1”这样一个条件,显然这是不对的.技巧与方法:除了解法一经常用的重要不等式外,解法二的方法也很典型,即若参数a满足不等关系,a≥f(x),则amin=f(x)max;若 a≤f(x),则amax=f(x)min,利用这一基本事实,可以较轻松地解决这一类不等式中所含参数的值域问题.还有三角换元法求最值用的恰当好处,可以把原问题转化.解法一:由于a的值为正数,将已知不等式两边平方,得:

x+y+2xy≤a2(x+y),即2xy≤(a2-1)(x+y),∴x,y>0,∴x+y≥2xy,① ②

当且仅当x=y时,②中有等号成立.比较①、②得a的最小值满足a2-1=1,∴a2=2,a=2(因a>0),∴a的最小值是2.解法二:设uxy(xy)2xyxyxy2xy2xy.1xyxy∵x>0,y>0,∴x+y≥2xy(当x=y时“=”成立),∴2xy2xy≤1,的最大值是1.xyxy从而可知,u的最大值为112,又由已知,得a≥u,∴a的最小值为2.解法三:∵y>0,∴原不等式可化为

x+1≤ayx1,y设x=tanθ,θ∈(0,).y2∴tanθ+1≤atan21;即tanθ+1≤asecθ ∴a≥sinθ+cosθ=2sin(θ+又∵sin(θ+

4),③

4)的最大值为1(此时θ=

4).由③式可知a的最小值为2.●锦囊妙计

1.不等式证明常用的方法有:比较法、综合法和分析法,它们是证明不等式的最基本的方法.(1)比较法证不等式有作差(商)、变形、判断三个步骤,变形的主要方向是因式分解、配方,判断过程必须详细叙述;如果作差以后的式子可以整理为关于某一个变量的二次式,则考虑用判别式法证.(2)综合法是由因导果,而分析法是执果索因,两法相互转换,互相渗透,互为前提,充分运用这一辩证关系,可以增加解题思路,开扩视野.2.不等式证明还有一些常用的方法:换元法、放缩法、反证法、函数单调性法、判别式法、数形结合法等.换元法主要有三角代换,均值代换两种,在应用换元法时,要注意代换的等价性.放缩性是不等式证明中最重要的变形方法之一,放缩要有的放矢,目标可以从要证的结论中考查.有些不等式,从正面证如果不易说清楚,可以考虑反证法.凡是含有“至少”“惟一”或含有其他否定词的命题,适宜用反证法.证明不等式时,要依据题设、题目的特点和内在联系,选择适当的证明方法,要熟悉各种证法中的推理思维,并掌握相应的步骤、技巧和语言特点.●歼灭难点训练

一、填空题

1.(★★★★★)已知x、y是正变数,a、b是正常数,且

ab=1,x+y的最小值为xy__________.2.(★★★★)设正数a、b、c、d满足a+d=b+c,且|a-d|<|b-c|,则ad与bc的大小关系是__________.3.(★★★★)若m<n,p<q,且(p-m)(p-n)<0,(q-m)(q-n)<0,则m、n、p、q的大小顺序是__________.二、解答题

4.(★★★★★)已知a,b,c为正实数,a+b+c=1.求证:(1)a2+b2+c2≥3(2)3a23b23c2≤6 5.(★★★★★)已知x,y,z∈R,且x+y+z=1,x2+y2+z2=6.(★★★★★)证明下列不等式:(1)若x,y,z∈R,a,b,c∈R+,则

12,证明:x,y,z∈[0,] 23bc2ca2ab

2z≥2(xy+yz+zx)xyabc(2)若x,y,z∈R+,且x+y+z=xyz,yzzxxy111则≥2()xyzxyz7.(★★★★★)已知i,m、n是正整数,且1<i≤m<n.(1)证明:niAim<miAin;

(2)证明:(1+m)n>(1+n)m

8.(★★★★★)若a>0,b>0,a3+b3=2,求证:a+b≤2,ab≤1.参考答案

难点磁场

证法一:(分析综合法)

欲证原式,即证4(ab)2+4(a2+b2)-25ab+4≥0,即证4(ab)2-33(ab)+8≥0,即证ab≤ab≥8.∵a>0,b>0,a+b=1,∴ab≥8不可能成立

∵1=a+b≥2ab,∴ab≤证法二:(均值代换法)设a=

1或41,从而得证.411+t1,b=+t2.2211,|t2|< 22∵a+b=1,a>0,b>0,∴t1+t2=0,|t1|<11a21b21(a)(b)abab111122(t1)21(t2)21(t1t11)(t2t21)42241111t1t2(t1)(t2)22221152222(t1t11)(t2t21)(t2)2t24441122t2t2442532254t2t22516216.1124t244显然当且仅当t=0,即a=b=证法三:(比较法)

∵a+b=1,a>0,b>0,∴a+b≥2ab,∴ab≤

1时,等号成立.21 41125a21b21254a2b233ab8(14ab)(8ab)(a)(b)0ab4ab44ab4ab 1125(a)(b)ab4证法四:(综合法)

1∵a+b=1,a>0,b>0,∴a+b≥2ab,∴ab≤.4252(1ab)1139(1ab)2125162 1ab1(1ab)14416ab4 4ab1125 即(a)(b)ab4证法五:(三角代换法)

∵ a>0,b>0,a+b=1,故令a=sin2α,b=cos2α,α∈(0,2)11112(a)(b)(sin2)(cos)22absincossin4cos42sin2cos22(4sin2)21624sin24sin22sin221,4sin22413.2 42sin221625(4sin22)22511244sin22sin241125即得(a)(b).ab4歼灭难点训练

一、1.解析:令

ba=cos2θ,=sin2θ,则x=asec2θ,y=bcsc2θ,∴x+y=asec2θ+bcsc

2yxθ=a+b+atan2θ+bcot2θ≥a+b+2atan2bcot2ab2ab.答案:a+b+2ab

2.解析:由0≤|a-d|<|b-c|(a-d)2<(b-c)2(a+b)2-4ad<(b+c)2-4bc

∵a+d=b+c,∴-4ad<-4bc,故ad>bc.答案:ad>bc

3.解析:把p、q看成变量,则m<p<n,m<q<n.答案:m<p<q<n

二、4.(1)证法一:a2+b2+c2-=

11=(3a2+3b2+3c2-1)331[3a2+3b2+3c2-(a+b+c)2] 31=[3a2+3b2+3c2-a2-b2-c2-2ab-2ac-2bc] 311=[(a-b)2+(b-c)2+(c-a)2]≥0 ∴a2+b2+c2≥ 33证法二:∵(a+b+c)2=a2+b2+c2+2ab+2ac+2bc≤a2+b2+c2+a2+b2+a2+c2+b2+c2 ∴3(a2+b2+c2)≥(a+b+c)2=1 ∴a2+b2+c2≥3a2b2c2abcabc证法三:∵∴a2+b2+c2≥

3331 3111证法四:设a=+α,b=+β,c=+γ.333∴a2+b2+c2≥∵a+b+c=1,∴α+β+γ=0 ∴a2+b2+c2=(=111+α)2+(+β)2+(+γ)2 3332 12+(α+β+γ)+α2+β2+γ3311=+α2+β2+γ2≥ 331∴a2+b2+c2≥

3(2)证法一:3a2(3a2)1同理3b23a21,23b33c3 ,3c2223(abc)93a23b23c262∴原不等式成立.证法二:3a23b23c2(3a2)(3b2)(3c2)

333(abc)63

3∴3a23b23c2≤33<6 ∴原不等式成立.5.证法一:由x+y+z=1,x2+y2+z2=次方程得:

11,得x2+y2+(1-x-y)2=,整理成关于y的一元二221=0,∵y∈R,故Δ≥0 2122∴4(1-x)2-4×2(2x2-2x+)≥0,得0≤x≤,∴x∈[0,]

2332同理可得y,z∈[0,]

3111证法二:设x=+x′,y=+y′,z=+z′,则x′+y′+z′=0,3331111于是=(+x′)2+(+y′)2+(+z′)2

233312=+x′2+y′2+z′2+(x′+y′+z′)33211132222(yz)=+x′+y′+z′≥+x′+=+x′2

2333211122故x′2≤,x′∈[-,],x∈[0,],同理y,z∈[0,]

933332y2-2(1-x)y+2x2-2x+证法三:设x、y、z三数中若有负数,不妨设x<0,则x2>0,21222

=x+y+z≥2(yz)2(1x)2311x2x2x>,矛盾.x+22222221x、y、z三数中若有最大者大于,不妨设x>,则=x2+y2+z2≥

33222312(yz)2(1x)x+=x+=x2-x+

22223211x(x-)+>;矛盾.23222故x、y、z∈[0,]

3bc2ca2ab26.(1)证明:xyz2(xyyzzx)2bcbacbac(x2y22xy)(y2z22yz)(z2x22zx)abbccaba2cb2ac2(xy)(yz)(zx)0abbccabc2caab2xyz2(xyyzzx)abc(2)证明:所证不等式等介于yzzxxyx2y2z2()2(xyyzzx)2xyz=

xyz[yz(yz)zx(zx)xy(xy)]2(xyyzzx)2(xyz)(y2zyz2z2xzx2x2yxy2)2(x2y2y2z2z2x2)4(x2yzxy2zxyz2)y3zyz3z3xzx3x3yxy32x2yz2xy2z2xyz2yz(yz)2zx(zx)2xy(xy)2x2(yz)2y2(zx)2z2(xy)20∵上式显然成立,∴原不等式得证.7.证明:(1)对于1<i≤m,且Aim =m·„·(m-i+1),Aimmm1Aimnn1mi1ni1,同理,iimmmnnnmn由于m<n,对于整数k=1,2,„,i-1,有

nkmk,nmAinAim所以ii,即miAinniAim

nm(2)由二项式定理有:

22nn(1+m)n=1+C1nm+Cnm+„+Cnm,22mm(1+n)m=1+C1mn+Cmn+„+Cmn,由(1)知mAini>nAimi

(1<i≤m),而

CimAimiAin,Cn= i!i!∴miCin>niCim(1<m<n)

00222211∴m0C0n=nCn=1,mCn=nCm=m·n,mCn>nCm,„,mmm+1m1mmCmCn>0,„,mnCnn>nCm,mn>0,∴1+C122nn1+C122mmnm+Cnm+„+Cnm>mn+Cmn+„+Cmn,即(1+m)n>(1+n)m成立.8.证法一:因a>0,b>0,a3+b3=2,所以(a+b)3-23=a3+b3+3a2b+3ab2-8=3a2b+3ab2-6 =3[ab(a+b)-2]=3[ab(a+b)-(a3+b3)]=-3(a+b)(a-b)2≤0.即(a+b)3≤23,又a+b>0,所以a+b≤2,因为2ab≤a+b≤2,所以ab≤1.证法二:设a、b为方程x2-mx+n=0的两根,则mabnab,因为a>0,b>0,所以m>0,n>0,且Δ=m2-4n≥0

因为2=a3+b3=(a+b)(a2-ab+b2)=(a+b)[(a+b)2-3ab]=m(m2-3n)m2所以n=323m

将②代入①得m2-4(m2323m)≥0,即m383m≥0,所以-m3+8≥0,即m≤2,所以a+b≤2,由2≥m 得4≥m2,又m2≥4n,所以4≥4n,即n≤1,所以ab≤1.证法三:因a>0,b>0,a3+b3=2,所以

2=a3+b3=(a+b)(a2+b2-ab)≥(a+b)(2ab-ab)=ab(a+b)于是有6≥3ab(a+b),从而8≥3ab(a+b)+2=3a2b+3ab2+a3+b3=(a+b)3,所以a+b≤2,(下略)

证法四:因为a3b32(ab32)(ab)[4a24b24aba2b22ab]3(ab8)(ab)28≥0,a、b,有a3b3所以对任意非负实数ab32≥(2)

>0,b>0,a+b=2,所以1=a3因为a33

b3ab32≥(2),∴ab2≤1,即a+b≤2,(以下略)

证法五:假设a+b>2,则

a3+b3=(a+b)(a2-ab+b2)=(a+b)[(a+b)2-3ab]>(a+b)ab>2ab,所以ab<1,又a3+b3=(a+b)[a2-ab+b2]=(a+b)[(a+b)2-3ab]>2(22-3ab)因为a3+b3=2,所以2>2(4-3ab),因此ab>1,前后矛盾,故a+b≤2(以下略)

篇3:浙江高考数学重难点

一、2009年浙江高考数学理科卷的特色

(一) 连续性、稳定性仍是命题的基石

2009年浙江高考数学理科卷延续了以往命题的思路和风格, 体现了其稳定性。 (1) 试题题型稳定, 即还是保留了选择题 (50分) 、填空题 (28分) 和解答题 (72分) 等几种题型。 (2) 题量稳定, 即选择题10个, 填空题7个, 解答题5个。 (3) 试题总体难度系数稳定。试题层次分明, 梯度合理, 坚持多角度、多层次进行考查, 试卷中各类题型的起点难度较低, 阶梯递进, 由浅入深, 使考生在解题过程中有拾级而上的感觉。 (4) 没有出现偏题怪题。支撑数学学科知识的主干知识———三角向量、概率统计、立体几何、解析几何、不等式、函数、导数———继续大放异彩, 但今年数列考查的重心有所下移。

(二) 稳中求变, 变中求新是一个亮点

1. 新课程理念得到体现

2009年浙江高考数学理科卷试题应用味重、探究味重、画图识图析图味重、知识网络交汇味重, 体现了新课程的理念。

(1) 应用味重。应用意识的培养是高中数学新课程的首要意识, 而第14题的峰谷电问题的考查让人感觉数学离我们的生活并不遥远, 而且给的数据也很有童趣味。

(2) 探究味重。如第22题是一个开放式设问探究题:“是否存在k……”是第一层次的探究;“若存在, 求出k的值”这是第二层次的探究。这两个层次都鼓励考生大胆猜想、用于探究。最后“若存在, 请说明理由”是第三层次的探究, 要求考生在感性认识的基础上回归到理性的探索。

(3) 画图识图析图味重。第6题“框图”, 第7题“直线与圆的位置图”, 第8题“三角函数曲线图”, 第12题“视图”, 第5、17、20题“棱锥立体几何图”, 第21题“椭圆、抛物线的解析几何图”, 等等, 考查的是学生的画图识图析图能力, 分值约占全卷的39%。

(4) 知识网络交汇味重。2009年的试卷在“知识网络交汇点命题”上有新的突破, 不少试题横跨了函数、数列、解析几何、导数、不等式、推理和证明等多个领域, 体现了现代数学不断融合的特点。如第6题“框图运算与数列有机结合”, 第18题“三角函数、三角形边角关系和平面向量的有机结合”, 第22题“函数和不等式的综合应用”, 等等。

2. 新增内容得到广泛考查

新课程要求的新增内容, 在第12、14、15题中得到了充分反映。如视图是高中数学新课标规定的数学基础知识, 过去学生不大重视, 今年第12题就以三视图为切入点考查了体积和简单运算。这些将对数学双基教学的理解和实施产生促进作用。

3. 人文关怀得以彰显

(1) 没有陈题, 但很多试题却又似曾相识, 难度梯度比较平缓。这些可以使考生较快地进入考试场景。今年高考题继续走朴实和紧扣课本之路, 选择题的第1~6题, 填空题的第11~13题, 解答题的第18题均为基础题, 约占总题数的45%, 这些题目考生可快速解答。此外, 试题的难度梯度也比较平缓, 如第15题是一个探究题, 命题者一连用了四个已知等式作铺垫。

(2) 全卷语言简洁, 内容朴实易懂, 没有晦涩冗长的句子, 不给学生在理解题意上造成过多障碍, 有利于减轻学生的负担。

(3) 背景材料贴近生活, 展现了一种亲切的场景。历年来, 许多考生在应用问题上失分很多, 这主要是数学问题情景多样化与学生生活环境的单一化之间的矛盾所致。为了减缓上述矛盾, 2009年浙江卷对数学应用问题进行了精心设计。特别是第14题, 这是一个峰谷电问题。对于生活在电力比较紧缺的浙江省的考生来说, 场景是最熟悉不过的, 连电价数据的设计也很符合实际情况。这既贯彻了新课程提倡的重视数学应用的理念, 又一改以往应用题的陌生脸孔。

二、2009年浙江高考数学理科卷对数学教学的启示

2009年浙江高考数学理科卷反映了课程改革的成果, 有效地保护了高中师生的积极性, 也对今后的数学教学和高考复习带来了有益的启示。

(一) 返璞归真, 依纲据本

课本是我们进行教学和复习的根本, 而每一年的考试大纲和考试说明是指导我们教学和复习及高考命题者命题的法纲。今年的高考表明, 试题在平凡中见真奇, 在朴实中考素养, 而技巧性很强的题目决不是考查的主体。高考很多试题源于课本又稍高于课本, 解题思路、方法、思想都可以在教材里找到其影子。教师要引导学生扎根教材, 不要被充斥市场的各种山寨版的参考资料所迷惑。舍近逐远是不可取的。

(二) 以点带面, 整合模块知识

课堂教学是全面实施素质教育的主渠道。课堂教学就是让学生在认识数学知识由易到难、由点线到面的发生、发展和应用的过程中, 逐步形成对数学思想方法的认识及利用其解决问题的能力。教学中要注重知识发生的过程, 不要以讲代练包办一切, 要让学生自己去动手, 去思索, 去探求, 去发现。同时, 教学中也要引导学生构建高中数学知识网络, 整合新增内容与传统内容, 促进学生对所学知识更广更深的理解。

(三) 注重数学思想方法的渗透

思想方法是数学大厦的神经, 是整合各种数学知识的桥梁和纽带。没有思想方法, 数学就会失去灵魂, 培养学生的数学素养和创新能力就会成为一句空话。高中阶段常用的思想有:分类讨论思想、数形结合思想、函数与方程思想、化归与转化思想。当然还有一些具体的方法:配方、换元消元、公式、待定系数、放缩等代数变换方面的方法和平移、伸缩、旋转、对称、割补等几何方面的方法。我们要在基础教学和复习中渗透数学思想方法, 在问题解析中引导学生运用数学思想方法, 使思想方法真正成为学生自己的东西。

(四) 能力的培养要常抓不懈

篇4:浙江高考数学重难点

2008年高考数学试题保持2007年试卷采用的三种题型“10+7+5”的题数结构,题型题量保持稳定. 全卷内容全面,重点突出,考点分布合理. 2008年高考数学试题以基础知识、基本方法为命题出发点,注重考查主干知识,重点内容常考常新.

变化之处

2008年高考数学深化能力立意,多角度、多层次地考查数学理性思维及数学素养和潜能. 引人注目的是,试卷重新把概率设置为解答题,三角函数只在客观题中体现而不在解答题中出现,作为中档题的立体几何题成了解答题的第一题.

创新盘点

试题知识点清楚明确,表达简约而不简单,在简约中体现了新要求,如理科第10、14、15、16、17、21、22等题蕴涵着丰富的数学内涵和思想方法. 其中第10题以圆柱被平面所截的形状为背景考查空间想象能力及动静转换的能力;第17题以线性规划为素材,以恒成立的二元一次不等式为条件计算动点(a,b)形成的区域面积;第22题汉字不足10个,所给递推关系也十分简洁,但需用到数学归纳法、数列求和法、放缩法等重要方法.

命题趋势

剖析试题的最终目的是想仔细分析整套试题对知识点的考查情况,以便为备考做好准备.

传统内容

1. 对集合的考查重点是集合与集合之间的关系、集合的计算与化简、充分与必要条件.

2. 向量与解析几何、函数、立体几何的有机结合成为一种趋势,向量和平面几何结合的选择、填空题将是高考命题的一个亮点.

3. 对函数奇偶性和单调性的考查将以抽象函数为载体,而函数与导数结合仍是高考的热门话题. 函数图象将是考查重点,应注意平移变换、伸缩变换、对称变换及函数图象的对称性、函数值的变化趋势.

4. 对三角函数变换的考查要求会有所降低,三角函数的单调性、图象、周期性和对称性,解斜三角形才是考查重点.

5. 数列是特殊的函数,而不等式是深刻认识函数与数列的重要工具,三者的综合求解题对基础和能力实现了双重检验;三者的综合求证题所运用的代数推理方法是近年高考命题的新热点. 递推数列是近年高考命题的热点内容之一,常考常新.

6. 对立体几何的考查要求会有所降低,但空间线面关系与三视图相结合的问题将是一个新亮点. 立体几何的线面关系是重点考查内容,注意向量在其中的应用.

7. 圆锥曲线主要考查圆锥曲线的概念和性质,直线和圆锥曲线的位置关系等(直线与抛物线的位置关系值得注意). 解析几何与导数相结合将是一个新亮点.

8. 概率与统计是大学统计学的基础,起着承上启下的作用,是每年高考命题的热点. 在解答题中,概率依然会以应用题的形式出现.

新增内容

1. 算法:以流程图为考查主体. 从知识内容方面看,选择结构和循环结构是主要的考查对象. 从知识综合角度看,算法与其他知识交汇的试题值得重视,如用循环语句给出递推数列;用条件语句给出分段函数、方程或不等式等,甚至可以将其与向量、复数等有机结合.

2. 几何概型:以简单几何为背景,可能会与解析几何、线性规划结合,或与方程、函数、不等式结合命题.

3. 二分法:二分法的核心思想是零点,涉及数形转化与逼近思想.

4. 三视图:以读图为主,考查空间想象能力.

由此可得出以下启示:复习时,同学们要“回归”课本(因为许多高考试题是由教材中的例题、习题引申变化得到的),浓缩所学知识,夯实基础,熟练掌握解题的通性通法,提高解题速度.

一、选择题:本大题共10小题,每小题5分,共50分.

1. 已知a是实数,是纯虚数,则a等于()

A. 1B. -1C. D. -

2. 已知U=R,A={x

x>0},B={x

x≤-1},则(A∩CUB)∪(B∩CUA)等于()

A. B. {x

x≤0}

C. {x

x>-1} D. {x

x>0或x≤-1}

3. 已知a,b都是实数,那么“a2>b2”是“a>b”的()

A. 充分而不必要条件B. 必要而不充分条件

C. 充分必要条件 D. 既不充分也不必要条件

4. 在(x-1)(x-2)(x-3)(x-4)(x-5)的展开式中,含x4的项的系数是()

A. -15 B. 85 C. -120 D. 274

5. 在同一平面直角坐标系中,函数y=cos

+(x∈[0,2π])的图象和直线y=的交点个数是()

A. 0 B. 1C. 2 D. 4

6. 已知{an}是等比数列,a2=2,a5=,则a1a2+a2a3+…+anan+1等于()

A. 16(1-4-n) B. 16(1-2-n)

C. (1-4-n) D. (1-2-n)

7. 若双曲线-=1的两个焦点到一条准线的距离之比为3∶2,则双曲线的离心率为()

A. 3 B. 5C.D.

8. 若cosα+2sinα=-,则tanα等于()

A. B. 2C. - D. -2

9. 已知a,b是平面内两个互相垂直的单位向量,若向量c满足(a-c)·(b-c)=0,则c的最大值是()

A. 1B. 2C. D.

10. 如图1,AB是平面α的斜线段,A为斜足,若点P在平面α内运动,使得△ABP的面积为定值,则动点P的轨迹是()

A. 圆 B. 椭圆

C. 一条直线 D. 两条平行线

二、填空题:本大题共7小题,每小题4分,共28分.

11. 已知a>0,若平面内三点A(1,-a),B(2,a2),C(3,a3)共线,则a=_______.

12. 已知F1,F2为椭圆+=1的两个焦点,过F1的直线交椭圆于A,B两点,若F2A+F2B=12,则AB=______.

13. 在△ABC中,角A,B,C所对的边分别为a,b,c,若(b-c)cosA=acosC,则cosA=_______.

14. 如图2,已知球O的面上四点A,B,C,D,DA⊥平面ABC,AB⊥BC,DA=AB=BC=,则球O的体积等于______.

15. 已知t是常数,函数y=x2-2x-t在区间[0,3]上的最大值为2,则t=________.

16. 用1,2,3,4,5,6组成六位数(没有重复数字),要求任何相邻两个数字的奇偶性不同,且1和2相邻,这样的六位数的个数是__________(用数字作答).

17. 若a≥0,b≥0,且当x≥0,

y≥0,

x+y≤1时,恒有ax+by≤1,则以a,b为坐标的点P(a,b)所形成的平面区域面积等于______.

三、解答题:本大题共5小题,共72分.

18. 如图3,矩形ABCD和梯形BEFC所在平面互相垂直,BE//CF,∠BCF=∠CEF=90°,AD=,EF=2.

(Ⅰ)求证:AE//平面DCF;

(Ⅱ)当AB的长为何值时,二面角A-EF-C的大小为60°?

19. 一个袋中装有若干个大小相同的黑球、白球和红球,已知从袋中任意摸出1个球,得到黑球的概率是;从袋中任意摸出2个球,至少得到1个白球的概率是.

(Ⅰ)若袋中共有10个球,(i)求白球的个数;(ii)从袋中任意摸出3个球,记得到白球的个数为ξ,求随机变量ξ的数学期望.

(Ⅱ)求证:从袋中任意摸出2个球,至少得到1个黑球的概率不大于,并指出袋中哪种颜色球的个数最少.

20. 已知曲线C是到点P

,和到直线y=-距离相等的点的轨迹. l是过点Q(-1,0)的直线,M是C上(不在l上)的动点;A,B在l上,MA⊥l,MB⊥x轴(如图4).

(Ⅰ)求曲线C的方程;

(Ⅱ)求出直线l的方程,使得为常数.

21. 已知a是实数,函数f(x)=(x-a).

(Ⅰ)求函数f(x)的单调区间.

(Ⅱ)设g(a)为f(x)在区间[0,2]上的最小值,(i)写出g(a)的表达式;(ii)求a的取值范围,使得-6≤g(a)≤ -2.

22. 已知数列{an},an≥0,a1=0,a+an+1-1=a(n∈N+).

记Sn=a1+a2+…+an,Tn=++…+.

当n∈N+时,求证:

(Ⅰ)an

(Ⅱ)Sn>n-2;

篇5:浙江高考数学重难点

函数与方程思想是最重要的一种数学思想,高考中所占比重较大,综合知识多、题型多、应用技巧多.函数思想简单,即将所研究的问题借助建立函数关系式亦或构造中间函数,结合初等函数的图象与性质,加以分析、转化、解决有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题;方程思想即将问题中的数量关系运用数学语言转化为方程模型加以解决.●重点重点难点磁场

1.(★★★★★)关于x的不等式2•32x–3x+a2–a–3>0,当0≤x≤1时恒成立,则实数a的取值范围为

.2.(★★★★★)对于函数f(x),若存在x0∈R,使f(x0)=x0成立,则称x0为f(x)的不动点.已知函数f(x)=ax2+(b+1)x+(b–1)(a≠0)(1)若a=1,b=–2时,求f(x)的不动点;

(2)若对任意实数b,函数f(x)恒有两个相异的不动点,求a的取值范围;

(3)在(2)的条件下,若y=f(x)图象上A、B两点的横坐标是函数f(x)的不动点,且A、B关于直线y=kx+ 对称,求b的最小值.●案例探究

[例1]已知函数f(x)=logm

(1)若f(x)的定义域为[α,β],(β>α>0),判断f(x)在定义域上的增减性,并加以说明;

(2)当0<m<1时,使f(x)的值域为[logm[m(β–1)],logm[m(α–1)]]的定义域区间为[α,β](β>α>0)是否存在?请说明理由.命题意图:本题重在考查函数的性质,方程思想的应用.属★★★★级题目.知识依托:函数单调性的定义判断法;单调性的应用;方程根的分布;解不等式组.错解分析:第(1)问中考生易忽视“α>3”这一关键隐性条件;第(2)问中转化出的方程,不能认清其根的实质特点,为两大于3的根.技巧与方法:本题巧就巧在采用了等价转化的方法,借助函数方程思想,巧妙解题.解:(1)x<–3或x>3.∵f(x)定义域为[α,β],∴α>3 设β≥x1>x2≥α,有

当0<m<1时,f(x)为减函数,当m>1时,f(x)为增函数.(2)若f(x)在[α,β]上的值域为[logmm(β–1),logmm(α–1)] ∵0<m<1, f(x)为减函数.∴

即α,β为方程mx2+(2m–1)x–3(m–1)=0的大于3的两个根 ∴

∴0<m<

故当0<m< 时,满足题意条件的m存在.[例2]已知函数f(x)=x2–(m+1)x+m(m∈R)(1)若tanA,tanB是方程f(x)+4=0的两个实根,A、B是锐角三角形ABC的两个内角.求证:m≥5;(2)对任意实数α,恒有f(2+cosα)≤0,证明m≥3;(3)在(2)的条件下,若函数f(sinα)的最大值是8,求m.-1-命题意图:本题考查函数、方程与三角函数的相互应用;不等式法求参数的范围.属 ★★★★★级题目.知识依托:一元二次方程的韦达定理、特定区间上正负号的充要条件,三角函数公式.错解分析:第(1)问中易漏掉Δ≥0和tan(A+B)<0,第(2)问中如何保证f(x)在[1,3]恒小于等于零为关键.技巧与方法:深挖题意,做到题意条件都明确,隐性条件注意列.列式要周到,不遗漏.(1)证明:f(x)+4=0即x2–(m+1)x+m+4=0.依题意:

又A、B锐角为三角形内两内角 ∴ <A+B<π

∴tan(A+B)<0,即

∴ ∴m≥5(2)证明:∵f(x)=(x–1)(x–m)又–1≤cosα≤1,∴1≤2+cosα≤3,恒有f(2+cosα)≤0 即1≤x≤3时,恒有f(x)≤0即(x–1)(x–m)≤0 ∴m≥x但xmax=3,∴m≥xmax=3(3)解:∵f(sinα)=sin2α–(m+1)sinα+m= 且 ≥2,∴当sinα=–1时,f(sinα)有最大值8.即1+(m+1)+m=8,∴m=3 ●锦囊妙计

函数与方程的思想是最重要的一种数学思想,要注意函数,方程与不等式之间的相互联系和转化.考生应做到:

(1)深刻理解一般函数y=f(x)、y=f–1(x)的性质(单调性、奇偶性、周期性、最值和图象变换),熟练掌握基本初等函数的性质,这是应用函数思想解题的基础.(2)密切注意三个“二次”的相关问题,三个“二次”即一元二次函数、一元二次方程、一元二次不等式是中学数学的重要内容,具有丰富的内涵和密切的联系.掌握二次函数基本性质,二次方程实根分布条件,二次不等式的转化策略.●歼灭重点重点难点训练

一、选择题

1.(★★★★★)已知函数f(x)=loga[ –(2a)2]对任意x∈[ ,+∞]都有意义,则实数a的取值范围是()A.(0,B.(0,)

C.[ ,1

D.(,)2.(★★★★★)函数f(x)的定义域为R,且x≠1,已知f(x+1)为奇函数,当x<1时,f(x)=2x2–x+1,那么当x>1时,f(x)的递减区间是()A.[,+∞

B.(1,C.[ ,+∞

D.(1, ]

二、填空题

3.(★★★★)关于x的方程lg(ax–1)–lg(x–3)=1有解,则a的取值范围是

.4.(★★★★★)如果y=1–sin2x–mcosx的最小值为–4,则m的值为

.三、解答题

5.(★★★★)设集合A={x|4x–2x+2+a=0,x∈R}.(1)若A中仅有一个元素,求实数a的取值集合B;

(2)若对于任意a∈B,不等式x2–6x<a(x–2)恒成立,求x的取值范围.6.(★★★★)已知二次函数f(x)=ax2+bx(a,b为常数,且a≠0)满足条件:f(x–1)=f(3–x)且-2-方程f(x)=2x有等根.(1)求f(x)的解析式;

(2)是否存在实数m,n(m<n=,使f(x)定义域和值域分别为[m,n]和[4m,4n],如果存在,求出m、n的值;如果不存在,说明理由.7.(★★★★★)已知函数f(x)=6x–6x2,设函数g1(x)=f(x), g2(x)=f[g1(x)], g3(x)=f [g2(x)], „gn(x)=f[gn–1(x)],„

(1)求证:如果存在一个实数x0,满足g1(x0)=x0,那么对一切n∈N,gn(x0)=x0都成立;(2)若实数x0满足gn(x0)=x0,则称x0为稳定不动点,试求出所有这些稳定不动点;(3)设区间A=(–∞,0),对于任意x∈A,有g1(x)=f(x)=a<0, g2(x)=f[g1(x)]=f(0)<0,且n≥2时,gn(x)<0.试问是否存在区间B(A∩B≠),对于区间内任意实数x,只要n≥2,都有gn(x)<0.8.(★★★★)已知函数f(x)=(a>0,x>0).(1)求证:f(x)在(0,+∞)上是增函数;

(2)若f(x)≤2x在(0,+∞)上恒成立,求a的取值范围;

(3)若f(x)在[m,n]上的值域是[m,n](m≠n),求a的取值范围.参 考 答 案

●重点重点难点磁场

1.解析:设t=3x,则t∈[1,3],原不等式可化为a2–a–3>–2t2+t,t∈[1,3].等价于a2–a–3大于f(t)=–2t2+t在[1,3]上的最大值.答案:(–∞,–1)∪(2,+∞)2.解:(1)当a=1,b=–2时,f(x)=x2–x–3,由题意可知x=x2–x–3,得x1=–1,x2=3.故当a=1,b=–2时,f(x)的两个不动点为–1,3.(2)∵f(x)=ax2+(b+1)x+(b–1)(a≠0)恒有两个不动点,∴x=ax2+(b+1)x+(b–1),即ax2+bx+(b–1)=0恒有两相异实根 ∴Δ=b2–4ab+4a>0(b∈R)恒成立.于是Δ′=(4a)2–16a<0解得0<a<1 故当b∈R,f(x)恒有两个相异的不动点时,0<a<1.(3)由题意A、B两点应在直线y=x上,设A(x1,x1),B(x2,x2)又∵A、B关于y=kx+ 对称.∴k=–1.设AB的中点为M(x′,y′)∵x1,x2是方程ax2+bx+(b–1)=0的两个根.∴x′=y′=,又点M在直线 上有,即

∵a>0,∴2a+ ≥2 当且仅当2a= 即a= ∈(0,1)时取等号,故b≥–,得b的最小值–.●歼灭重点重点难点训练

一、1.解析:考查函数y1= 和y2=(2a)x的图象,显然有0<2a<1.由题意 得a=,再结合指数函数图象性质可得答案.答案:A 2.解析:由题意可得f(–x+1)=–f(x+1).令t=–x+1,则x=1–t,故f(t)=–f(2–t),即f(x)=–f(2–x).当x>1,2–x<1,于是有f(x)=–f(2–x)=–2(x–)2–,其递减区间为[,+∞).答案:C-3-3.解析:显然有x>3,原方程可化为

故有(10–a)•x=29,必有10–a>0得a<10 又x= >3可得a>.答案: <a<10 4.解析:原式化为.当 <–1,ymin=1+m=–4 m=–5.当–1≤ ≤1,ymin= =–4 m=±4不符.当 >1,ymin=1–m=–4 m=5.答案:±5

二、5.解:(1)令2x=t(t>0),设f(t)=t2–4t+a.由f(t)=0在(0,+∞)有且仅有一根或两相等实根,则有 ①f(t)=0有两等根时,Δ=0 16–4a=0 a=4 验证:t2–4t+4=0 t=2∈(0,+∞),这时x=1 ②f(t)=0有一正根和一负根时,f(0)<0 a<0 ③若f(0)=0,则a=0,此时4x–4•2x=0 2x=0(舍去),或2x=4,∴x=2,即A中只有一个元素

综上所述,a≤0或a=4,即B={a|a≤0或a=4}(2)要使原不等式对任意a∈(–∞,0]∪{4}恒成立.即g(a)=(x–2)a–(x2–6x)>0恒成立.只须

<x≤2 6.解:(1)∵方程ax2+bx=2x有等根,∴Δ=(b–2)2=0,得b=2.由f(x–1)=f(3–x)知此函数图象的对称轴方程为x=– =1得a=–1,故f(x)=–x2+2x.(2)f(x)=–(x–1)2+1≤1,∴4n≤1,即n≤

而抛物线y=–x2+2x的对称轴为x=1 ∴n≤ 时,f(x)在[m,n]上为增函数.若满足题设条件的m,n存在,则

又m<n≤ ,∴m=–2,n=0,这时定义域为[–2,0],值域为[–8,0].由以上知满足条件的m、n存在,m=–2,n=0.7.(1)证明:当n=1时,g1(x0)=x0显然成立; 设n=k时,有gk(x0)=x0(k∈N)成立,则gk+1(x0)=f[gk(x0)]=f(x0)=g1(x0)=x0 即n=k+1时,命题成立.∴对一切n∈N,若g1(x0)=x0,则gn(x0)=x0.(2)解:由(1)知,稳定不动点x0只需满足f(x0)=x0 由f(x0)=x0,得6x0–6x02=x0,∴x0=0或x0= ∴稳定不动点为0和.(3)解:∵f(x)<0,得6x–6x2<0 x<0或x>1.∴gn(x)<0 f[gn–1(x)]<0 gn–1(x)<0或gn–1(x)>1 要使一切n∈N,n≥2,都有gn(x)<0,必须有g1(x)<0或g1(x)>1.由g1(x)<0 6x–6x2<0 x<0或x>1 由g1(x)>0 6x–6x2>1

故对于区间()和(1,+∞)内的任意实数x,只要n≥2,n∈N,都有gn(x)<0.8.(1)证明:任取x1>x2>0,f(x1)–f(x2)=

-4-∵x1>x2>0,∴x1x2>0,x1–x2>0, ∴f(x1)–f(x2)>0,即f(x1)>f(x2),故f(x)在(0,+∞)上是增函数.(2)解:∵ ≤2x在(0,+∞)上恒成立,且a>0, ∴a≥ 在(0,+∞)上恒成立,令(当且仅当2x= 即x= 时取等号),要使a≥ 在(0,+∞)上恒成立,则a≥.故a的取值范 围是[ ,+∞).(3)解:由(1)f(x)在定义域上是增函数.∴m=f(m),n=f(n),即m2– m+1=0,n2– n+1=0 故方程x2– x+1=0有两个不相等的正根m,n,注意到m•n=1,故只需要Δ=()2–4>0,由于a>0,则0<a<.重点难点37 数形结合思想

数形结合思想在高考中占有非常重要的地位,其“数”与“形”结合,相互渗透,把代数式的精确刻划与几何图形的直观描述相结合,使代数问题、几何问题相互转化,使抽象思维和形象思维有机结合.应用数形结合思想,就是充分考查数学问题的条件和结论之间的内在联系,既分析其代数意义又揭示其几何意义,将数量关系和空间形式巧妙结合,来寻找解题思路,使问题得到解决.运用这一数学思想,要熟练掌握一些概念和运算的几何意义及常见曲线的代数特征.●重点难点磁场

1.曲线y=1+(–2≤x≤2)与直线y=r(x–2)+4有两个交点时,实数r的取值范围

.2.设f(x)=x2–2ax+2,当x∈[–1,+∞)时,f(x)>a恒成立,求a的取值范围.●案例探究

[例1]设A={x|–2≤x≤a},B={y|y=2x+3,且x∈A},C={z|z=x2,且x∈A },若C B,求实数a的取值范围.命题意图:本题借助数形结合,考查有关集合关系运算的题目.属★★★★级题目.知识依托:解决本题的关键是依靠一元二次函数在区间上的值域求法确定集合C.进而将C B用不等式这一数学语言加以转化.错解分析:考生在确定z=x2,x∈[–2,a]的值域是易出错,不能分类而论.巧妙观察图象将是上策.不能漏掉a<–2这一种特殊情形.技巧与方法:解决集合问题首先看清元素究竟是什么,然后再把集合语言“翻译”为一般的数学语言,进而分析条件与结论特点,再将其转化为图形语言,利用数形结合的思想来解决.解:∵y=2x+3在[–2, a]上是增函数

∴–1≤y≤2a+3,即B={y|–1≤y≤2a+3} 作出z=x2的图象,该函数定义域右端点x=a有三种不同的位置情况如下:

①当–2≤a≤0时,a2≤z≤4即C={z|z2≤z≤4} 要使C B,必须且只须2a+3≥4得a≥ 与–2≤a<0矛盾.②当0≤a≤2时,0≤z≤4即C={z|0≤z≤4},要使C B,由图可知: 必须且只需

解得 ≤a≤2 ③当a>2时,0≤z≤a2,即C={z|0≤z≤a2},要使C B必须且只需

-5-解得2<a≤3 ④当a<–2时,A= 此时B=C=,则C B成立.综上所述,a的取值范围是(–∞,–2)∪[ ,3].[例2]已知acosα+bsinα=c, acosβ+bsinβ=c(ab≠0,α–β≠kπ, k∈Z)求证:

.命题意图:本题主要考查数学代数式几何意义的转换能力.属★★★★★级题目.知识依托:解决此题的关键在于由条件式的结构联想到直线方程.进而由A、B两点坐标特点知其在单位圆上.错解分析:考生不易联想到条件式的几何意义,是为瓶颈之一.如何巧妙利用其几何意义是为瓶颈之二.技巧与方法:善于发现条件的几何意义,还要根据图形的性质分析清楚结论的几 何意义,这样才能巧用数形结合方法完成解题.证明:在平面直角坐标系中,点A(cosα,sinα)与点B(cosβ, sinβ)是直线l:ax+by=c与单位圆x2+y2=1的两个交点如图.从而:|AB|2=(cosα–cosβ)2+(sinα–sinβ)2 =2–2cos(α–β)

又∵单位圆的圆心到直线l的距离

由平面几何知识知|OA|2–(|AB|)2=d2即

∴.●锦囊妙计

应用数形结合的思想,应注意以下数与形的转化:(1)集合的运算及韦恩图(2)函数及其图象

(3)数列通项及求和公式的函数特征及函数图象(4)方程(多指二元方程)及方程的曲线

以形助数常用的有:借助数轴;借助函数图象;借助单位圆;借助数式的结构特征;借助于解析几何方法.以数助形常用的有:借助于几何轨迹所遵循的数量关系;借助于运算结果与几何定理的结合.●歼灭重点难点训练

一、选择题

1.(★★★★)方程sin(x–)= x的实数解的个数是()A.2

B.3

C.4

D.以上均不对

2.(★★★★★)已知f(x)=(x–a)(x–b)–2(其中a<b,且α、β是方程f(x)=0的两根(α<β,则实数a、b、α、β的大小关系为()A.α<a<b<β

B.α<a<β<b C.a<α<b<β

D.a<α<β<b

二、填空题

3.(★★★★★)(4cosθ+3–2t)2+(3sinθ–1+2t)2,(θ、t为参数)的最大值是

.4.(★★★★★)已知集合A={x|5–x≥ },B={x|x2–ax≤x–a},当A B时,则a的取值范围是

.三、解答题

-6-5.(★★★★)设关于x的方程sinx+ cosx+a=0在(0,π)内有相异解α、β.(1)求a的取值范围;(2)求tan(α+β)的值.6.(★★★★)设A={(x,y)|y= ,a>0},B={(x,y)|(x–1)2+(y–3)2=a2,a>0},且A∩B≠,求a的最大值与最小值.7.(★★★★)已知A(1,1)为椭圆 =1内一点,F1为椭圆左焦点,P为椭圆上一动点.求|PF1|+|PA|的最大值和最小值.8.(★★★★★)把一个长、宽、高分别为25 cm、20 cm、5 cm的长方体木盒从一个正方形窗口穿过,那么正方形窗口的边长至少应为多少?

参 考 答 案 ●重点难点磁场

1.解析:方程y=1+ 的曲线为半圆,y=r(x–2)+4为过(2,4)的直线.答案:(]

2.解法一:由f(x)>a,在[–1,+∞)上恒成立 x2–2ax+2–a>0在[–1,+∞)上恒成立.考查函数g(x)=x2–2ax+2–a的图象在[–1,+∞]时位于x轴上方.如图两种情况:

不等式的成立条件是:(1)Δ=4a2–4(2–a)<0 a∈(–2,1)(2)a∈(–3,–2,综上所述a∈(–3,1).解法二:由f(x)>a x2+2>a(2x+1)令y1=x2+2,y2=a(2x+1),在同一坐标系中作出两个函数的图象.如图满足条件的直线l位于l1与l2之间,而直线l1、l2对应的a值(即直线的斜率)分别为1,–3,故直线l对应的a∈(–3,1).●歼灭重点难点训练

一、1.解析:在同一坐标系内作出y1=sin(x–)与y2= x的图象如图.答案:B 2.解析:a,b是方程g(x)=(x–a)(x–b)=0的两根,在同一坐标系中作出函数f(x)、g(x)的图象如图所示:

答案:A

二、3.解析:联想到距离公式,两点坐标为A(4cosθ,3sinθ),B(2t–3,1–2t)点A的几何图形是椭圆,点B表示直线.考虑用点到直线的距离公式求解.答案:

4.解析:解得A={x|x≥9或x≤3},B={x|(x–a)(x–1)≤0},画数轴可得.答案:a>3

三、5.解:①作出y=sin(x+)(x∈(0,π))及y=– 的图象,知当|– |<1且– ≠

时,曲线与直线有两个交点,故a∈(–2,–)∪(– ,2).②把sinα+ cosα=–a,sinβ+ cosβ=–a相减得tan,故tan(α+β)=3.-7-6.解:∵集合A中的元素构成的图形是以原点O为圆心,a为半径的半圆;集合B中的元素是以点O′(1,)为圆心,a为半径的圆.如图所示

∵A∩B≠,∴半圆O和圆O′有公共点.显然当半圆O和圆O′外切时,a最小

a+a=|OO′|=2,∴amin=2 –2 当半圆O与圆O′内切时,半圆O的半径最大,即 a最大.此时 a–a=|OO′|=2,∴amax=2 +2.7.解:由 可知a=3,b= ,c=2,左焦点F1(–2,0),右焦点F2(2,0).由椭圆定义,|PF1|=2a–|PF2|=6–|PF2|, ∴|PF1|+|PA|=6–|PF2|+|PA|=6+|PA|–|PF2| 如图:

由||PA|–|PF2||≤|AF2|= 知 – ≤|PA|–|PF2|≤.当P在AF2延长线上的P2处时,取右“=”号; 当P在AF2的反向延长线的P1处时,取左“=”号.即|PA|–|PF2|的最大、最小值分别为,–.于是|PF1|+|PA|的最大值是6+ ,最小值是6–.8.解:本题实际上是求正方形窗口边长最小值.由于长方体各个面中宽和高所在的面的边长最小,所以应由这个面对称地穿过窗口才能使正方形窗口边长尽量地小.如图:

设AE=x,BE=y, 则有AE=AH=CF=CG=x,BE=BF=DG=DH=y ∴

∴.高考数学重点难点突破 重点难点38 分类讨论思想.txt人永远不知道谁哪次不经意的跟你说了再见之后就真的再也不见了。一分钟有多长?这要看你是蹲在厕所里面,还是等在厕所外面„„

重点难点38 分类讨论思想

分类讨论思想就是根据所研究对象的性质差异,分各种不同的情况予以分析解决.分类讨论题覆盖知识点较多,利于考查学生的知识面、分类思想和技巧;同时方式多样,具有较高的逻辑性及很强的综合性,树立分类讨论思想,应注重理解和掌握分类的原则、方法与技巧、做到“确定对象的全体,明确分类的标准,分层别类不重复、不遗漏的分析讨论.”

●重点难点磁场

1.(★★★★★)若函数在其定义域内有极值点,则a的取值为

.2.(★★★★★)设函数f(x)=x2+|x-a|+1,x∈R.(1)判断函数f(x)的奇偶性;(2)求函数f(x)的最小值.●案例探究

[例1]已知{an}是首项为2,公比为的等比数列,Sn为它的前n项和.(1)用Sn表示Sn+1;

(2)是否存在自然数c和k,使得成立.命题意图:本题主要考查等比数列、不等式知识以及探索和论证存在性问题的能力,属★★★★★级题目.知识依托:解决本题依据不等式的分析法转化,放缩、解简单的分式不等式;数列的基本性质.错解分析:第2问中不等式的等价转化为学生的易错点,不能确定出.技巧与方法:本题属于探索性题型,是高考试题的热点题型.在探讨第2问的解法时,采取优化结论的策略,并灵活运用分类讨论的思想:即对双参数k,c轮流分类讨论,从而获得答案.解:(1)由Sn=4(1-),得

,(n∈N*)

(2)要使,只要

因为

所以,(k∈N*)

故只要Sk-2<c<Sk,(k∈N*)

因为Sk+1>Sk,(k∈N*)

所以Sk-2≥S1-2=1.又Sk<4,故要使①成立,c只能取2或3.当c=2时,因为S1=2,所以当k=1时,c<Sk不成立,从而①不成立.当k≥2时,因为,由Sk<Sk+1(k∈N*)得

Sk-2<Sk+1-2

故当k≥2时,Sk-2>c,从而①不成立.当c=3时,因为S1=2,S2=3,所以当k=1,k=2时,c<Sk不成立,从而①不成立

因为,又Sk-2<Sk+1-2

所以当k≥3时,Sk-2>c,从而①成立.综上所述,不存在自然数c,k,使成立.[例2]给出定点A(a,0)(a>0)和直线l:x=-1,B是直线l上的动点,∠BOA的角平分线交AB于点C.求点C的轨迹方程,并讨论方程表示的曲线类型与a值的关系.命题意图:本题考查动点的轨迹,直线与圆锥曲线的基本知识,分类讨论的思想方法.综合性较强,解法较多,考查推理能力和综合运用解析几何知识解题的能力.属★★★★★级题目.知识依托:求动点轨迹的基本方法步骤.椭圆、双曲线、抛物线标准方程的基本特点.错解分析:本题易错点为考生不能巧妙借助题意条件,构建动点坐标应满足的关系式和分类讨论轨迹方程表示曲线类型.技巧与方法:精心思考,发散思维、多途径、多角度的由题设条件出发,探寻动点应满足的关系式.巧妙地利用角平分线的性质.解法一:依题意,记B(-1,b),(b∈R),则直线OA和OB的方程分别为y=0和y=-bx.设点C(x,y),则有0≤x<a,由OC平分∠AOB,知点C到OA、OB距离相等.根据点到直线的距离公式得|y|=

依题设,点C在直线AB上,故有

由x-a≠0,得

将②式代入①式,得y2[(1-a)x2-2ax+(1+a)y2]=0 若y≠0,则

(1-a)x2-2ax+(1+a)y2=0(0<x<a)若y=0则b=0,∠AOB=π,点C的坐标为(0,0)满足上式.综上,得点C的轨迹方程为

(1-a)x2-2ax+(1+a)y2=0(0<x<a(i)当a=1时,轨迹方程化为y2=x(0≤x<1

③ 此时方程③表示抛物线弧段;(ii)当a≠1,轨迹方程化为

所以当0<a<1时,方程④表示椭圆弧段; 当a>1时,方程④表示双曲线一支的弧段.解法二:如图,设D是l与x轴的交点,过点C作CE⊥x轴,E是垂足.(i)当|BD|≠0时,设点C(x,y),则0<x<a,y≠0 由CE∥BD,得.∵∠COA=∠COB=∠COD-∠BOD=π-∠COA-∠BOD ∴2∠COA=π-∠BOD ∴

∴整理,得

(1-a)x2-2ax+(1+a)y2=0(0<x<a)(ii)当|BD|=0时,∠BOA=π,则点C的坐标为(0,0),满足上式.综合(i)、(ii),得点C的轨迹方程为(1-a)x2-2ax+(1+a)y2=0(0≤x<a)以下同解法一.解法三:设C(x,y)、B(-1,b),则BO的方程为y=-bx,直线AB的方程为

∵当b≠0时,OC平分∠AOB,设∠AOC=θ,∴直线OC的斜率为k=tanθ,OC的方程为y=kx于是

又tan2θ=-b ∴-b=

① ∵C点在AB上 ∴

由①、②消去b,得

③ 又,代入③,有

整理,得(a-1)x2-(1+a)y2+2ax=0

当b=0时,即B点在x轴上时,C(0,0)满足上式:

a≠1时,④式变为

当0<a<1时,④表示椭圆弧段;

当a>1时,④表示双曲线一支的弧段; 当a=1时,④表示抛物线弧段.●锦囊妙计

分类讨论思想就是依据一定的标准,对问题分类、求解,要特别注意分类必须满足互斥、无漏、最简的原则.分类讨论常见的依据是:

1.由概念内涵分类.如绝对值、直线的斜率、指数对数函数、直线与平面的夹角等定义包含了分类.2.由公式条件分类.如等比数列的前n项和公式、极限的计算、圆锥曲线的统一定义中图形的分类等.3.由实际意义分类.如排列、组合、概率中较常见,但不明显、有些应用问题也需分类讨论.在学习中也要注意优化策略,有时利用转化策略,如反证法、补集法、变更多元法、数形结合法等简化甚至避开讨论.●歼灭重点难点训练

一、选择题

1.(★★★★)已知其中a∈R,则a的取值范围是()

A.a<0

B.a<2或a≠-2

C.-2<a<2

D.a<-2或a>2

2.(★★★★★)四面体的顶点和各棱的中点共10个点,在其中取4个不共面的点,不同的取法共有()

A.150种

B.147种

C.144种

D.141种

二、填空题

3.(★★★★)已知线段AB在平面α外,A、B两点到平面α的距离分别为1和3,则线段AB的中点到平面α的距离为

.4.(★★★★★)已知集合A={x|x2-3x+2=0},B={x|x2-ax+(a-1)=0},C={x|x2-mx+2=0},且A∪B=A,A∩C=C,则a的值为,m的取值范围为

.三、解答题

5.(★★★★)已知集合A={x|x2+px+q=0},B={x|qx2+px+1=0},A,B同时满足:

①A∩B≠,②A∩B={-2}.求p、q的值.6.(★★★★)已知直角坐标平面上点Q(2,0)和圆C:x2+y2=1,动点M到圆C的切线长与|MQ|的比等于常数λ(λ>0).求动点M的轨迹方程,并说明它表示什么曲线.7.(★★★★★)已知函数y=f(x)的图象是自原点出发的一条折线.当n≤y≤n+1(n=0,1,2,...)时,该图象是斜率为bn的线段(其中正常数b≠1),设数列{xn}由f(xn)=n(n=1,2,...)定义.(1)求x1、x2和xn的表达式;

(2)计算xn;

(3)求f(x)的表达式,并写出其定义域.8.(★★★★★)已知a>0时,函数f(x)=ax-bx2

(1)当b>0时,若对任意x∈R都有f(x)≤1,证明a≤2b;

(2)当b>1时,证明:对任意x∈[0,1],|f(x)|≤1的充要条件是b-1≤a≤2;

(3)当0<b≤1时,讨论:对任意x∈[0,1],|f(x)|≤1的充要条件.-11-

参 考 答 案

●重点难点磁场

1.解析:即f(x)=(a-1)x2+ax-=0有解.当a-1=0时,满足.当a-1≠0时,只需Δ=a2-(a-1)>0.答案:或a=1

2.解:(1)当a=0时,函数f(-x)=(-x)2+|-x|+1=f(x),此时f(x)为偶函数.当a≠0时,f(a)=a2+1,f(-a)=a2+2|a|+1.f(-a)≠f(a),f(-a)≠-f(a)

此时函数f(x)既不是奇函数,也不是偶函数.(2)①当x≤a时,函数f(x)=x2-x+a+1=(x-)2+a+

若a≤,则函数f(x)在(-∞,a]上单调递减.从而函数f(x)在(-∞,a上的最小值为f(a)=a2+1

若a>,则函数f(x)在(-∞,a上的最小值为f()=+a,且f()≤f(a).②当x≥a时,函数f(x)=x2+x-a+1=(x+)2-a+

若a≤-,则函数f(x)在[a,+∞]上的最小值为f(-)=-a,且f(-)≤f(a);

若a>-,则函数f(x)在[a,+∞)单调递增.从而函数f(x)在[a,+∞]上的最小值为f(a)=a2+1.综上,当a≤-时,函数f(x)的最小值为-a;

当-<a≤时,函数f(x)的最小值是a2+1;

当a>时,函数f(x)的最小值是a+.●歼灭重点难点训练

一、1.解析:分a=

2、|a|>2和|a|<2三种情况分别验证.答案:C

2.解析:任取4个点共C=210种取法.四点共面的有三类:(1)每个面上有6个点,则有4×C=60种取共面的取法;(2)相比较的4个中点共3种;(3)一条棱上的3点与对棱的中点共6种.答案:C

二、3.解析:分线段AB两端点在平面同侧和异侧两种情况解决.答案:1或2

4.解析:A={1,2},B={x|(x-1)(x-1+a)=0},由A∪B=A可得1-a=1或1-a=2;

由A∩C=C,可知C={1}或.答案:2或3 3或(-2,2)

三、5.解:设x0∈A,x0是x02+px0+q=0的根.若x0=0,则A={-2,0},从而p=2,q=0,B={-}.此时A∩B=与已知矛盾,故x0≠0.将方程x02+px0+q=0两边除以x02,得

.即满足B中的方程,故∈B.∵A∩={-2},则-2∈A,且-2∈.设A={-2,x0},则B={},且x0≠2(否则A∩B=).若x0=-,则-2∈B,与-2B矛盾.又由A∩B≠,∴x0=,即x0=±1.-12-

即A={-2,1}或A={-2,-1}.故方程x2+px+q=0有两个不相等的实数根-2,1或-2,-1

6.解:如图,设MN切圆C于N,则动点M组成的集合是P={M||MN|=λ|MQ|,λ>0}.∵ON⊥MN,|ON|=1,∴|MN|2=|MO|2-|ON|2=|MO|2-1

设动点M的坐标为(x,y),则

即(x2-1)(x2+y2)-4λ2x+(4λ2+1)=0.经检验,坐标适合这个方程的点都属于集合P,故方程为所求的轨迹方程.(1)当λ=1时,方程为x=,它是垂直于x轴且与x轴相交于点(,0)的直线;

(2)当λ≠1时,方程化为:

它是以为圆心,为半径的圆.7.解:(1)依题意f(0)=0,又由f(x1)=1,当0≤y≤1,函数y=f(x)的图象是斜率为b0=1的线段,故由

∴x1=1

又由f(x2)=2,当1≤y≤2时,函数y=f(x)的图象是斜率为b的线段,故由

即x2-x1= ∴x2=1+ 记x0=0,由函数y=f(x)图象中第n段线段的斜率为bn-1,故得

又由f(xn)=n,f(xn-1)=n-1 ∴xn-xn-1=()n-1,n=1,2,......由此知数列{xn-xn-1}为等比数列,其首项为1,公比为.因b≠1,得(xk-xk-1)=1++...+ 即xn=(2)由(1)知,当b>1时,当0<b<1,n→∞, xn也趋于无穷大.xn不存在.(3)由(1)知,当0≤y≤1时,y=x,即当0≤x≤1时,f(x)=x;当n≤y≤n+1,即xn≤x≤xn+1由(1)可知 f(x)=n+bn(x-xn)(n=1,2,...),由(2)知 当b>1时,y=f(x)的定义域为[0,);当0<b<1时,y=f(x)的定义域为[0,+∞).8.(1)证明:依设,对任意x∈R,都有f(x)≤1 ∵ ∴≤1 ∵a>0,b>0 ∴a≤2.(2)证明:必要性:

对任意x∈[0,1],|f(x)|≤1-1≤f(x),据此可以推出-1≤f(1)-13-

即a-b≥-1,∴a≥b-1

对任意x∈[0,1],|f(x)|≤1f(x)≤1.因为b>1,可以推出f()≤1即a•-1≤1,∴a≤2,∴b-1≤a≤2

充分性:

因为b>1,a≥b-1,对任意x∈[0,1].可以推出ax-bx2≥b(x-x2)-x≥-x≥-1

即ax-bx2≥-1

因为b>1,a≤2,对任意x∈[0,1],可以推出ax-bx2≤2x-bx2≤1

即ax-bx2≤1,∴-1≤f(x)≤1

综上,当b>1时,对任意x∈[0,1],|f(x)|≤1的充要条件是b-1≤a≤2.(3)解:∵a>0,0<b≤1

∴x∈[0,1],f(x)=ax-bx2≥-b≥-1

即f(x)≥-1

f(x)≤1f(1)≤1a-b≤1

即a≤b+1

a≤b+1f(x)≤(b+1)x-bx2≤1

篇6:2022年浙江高考数学试卷

高考填报志愿的技巧

各批次志愿填报注意落差

“平行志愿”不是“平等志愿”,也不是“平行录取”。考生填报的平行志愿有自然顺序,并不是只要成绩达到所填报的4个平行志愿院校录取条件,就可能会被4所院校同时录取。实际上,只要考生档案投到一所志愿高校后,就不会到其他高校,对每个考生而言投档录取机会只有一次。

注重学校录取平均分

考生在填报志愿时,首先要了解自己在学校、区所处的位次,这个是最关键的参考因素。可根据自己一模、二模的成绩,看看自己在区、学校的排名,并 排一排自己在全市的位次所在。咨询老师往年该名次段考生的去向,掌握自己可能被录取的学校范围,然后再根据个人的兴趣爱好以及家庭背景等因素,在这个范围 内做选择。

避免被调剂慎写“不服从调剂”

选学校退一步,选专业进一步 高考填报志愿中,究竟是选学校,还是选专业,是考生和家长最难把握的问题。尤其是对各批次的中分段、低分段考生来说,这一难题最为显现。选好的学校,有可能要舍弃好专业:想填个自己喜欢的专业,学校上就得有所顾忌,因为好学校的好专业肯定是要“挤破头”的。

高考先填志愿还是先出分数

现在都是先高考完知道分数之后再填志愿。高考考生填志愿时所报考的学校层次要根据考生所在省份的分数线决定,所以现在一般都是先出成绩再填相关志愿。

在查到高考分数之后,就可以提前预估自己分数可以报的学校和专业,现在是填报的平行志愿,考生可以一次性填报多所高校,多个专业,按照惯例,填报志愿一般是在出分后,在这之前,考生们要确定好自己的意向学校和专业,认真考虑,不要盲目或者瞎填报。

本文来自 360文秘网(www.360wenmi.com),转载请保留网址和出处

【浙江高考数学重难点】相关文章:

高考数学浙江卷05-13

浙江高考地理05-09

历届浙江高考默写07-08

浙江高考满分作文07-28

浙江高考考生守则07-28

浙江高考语文卷09-26

浙江高考考试说明04-23

浙江高考满分作文04-24

高考浙江语文作文05-06

浙江高考语文卷解析09-11

上一篇:王沟希望小学梯级名师培养方案下一篇:钢的热处理总结