浙江大学流体力学

2024-04-20

浙江大学流体力学(精选6篇)

篇1:浙江大学流体力学

2012年流体力学实验注意事项

一、本学期流体力学实验自10月22日开始,内容如下

I.CAI(计算机辅助实验)

1. 根据教师安排,操作计算机;

2. CAI成果分析中之数据,不得记录于报告中;

3. 请勿在计算机上操作与本实验无关的内容。

II.演示类实验

选择任1项,回答其分析讨论题。

III.操作类实验

1. 必做实验4项:静水、能量、动量、沿程;

2. 选做实验2项:其它实验至少选做二个;

二、实验室开放时间

1、本实验室实行弹性开放式教学实验,每周一、周二、四下午

(13:15~17:00)开放。在首次实验后,学生可在实验室开放时间,自行安排完成实验。

2、在其它工作时间,五人以上可一起提前一天预约。预约方式: 电话: 章老师,祝老师 88206145zhangjjcivil@zju.edu.cn

三、实验要求

1、进入实验室前必须认真阅读实验中心的实验室须知;

2、实验前必须认真预习实验教材—《应用流体力学实验》;

3、操作类实验每组人数1 ~ 5人;

4、实验完成后,须在实验登记册上注明实验完成日期;

5、实验报告要求用学校统一的实验报告纸,内容要求包括课程名称、实验项目、内容和原理、实验设备、数据记录和处理、分析思考等。

6、操作类实验应在2013年1月3日前完成,由小班统一收集上交实验室指导教师(西四211)。

7、上交实验报告时,需附一份本学期实验心得小结。

实验老师联系电话:章军军老师:***(短号651307)

祝丽丽老师:***(短号682751)

篇2:浙江大学流体力学

Hg

油=0.92,水银的相对密度d=13.6,活塞与缸壁无泄漏和摩擦。当活塞重为15N时,h=700㎜,试计算U形管测压计的液面高差Δh值。

2.如图2-17所示为双杯双液微压计,杯内和U形管内分别装有密度ρ1=lOOOkg/m3和密度ρ2 =13600kg/m3的两种不同液体,大截面杯的直径D=100mm,U形管的直径d=10mm,测得h=30mm,计算两杯内的压强差为多少?

3.已知密闭水箱中的液面高度h4=60mm,测压管中的液面高度h1=100cm,U形管中右端工作介质高度,如图2-19所示。试求U形管中左端工作介质高度h3为多少?

4.图2-22表示一个两边都承受水压的矩形水闸,如果两边的水深分别为h1=2m,h2=4m,试求每米宽度水闸上所承受的净总压力及其作用点的位置。

二.

1、在重力作用下静止液体中,等压面水平面的条件是()

A 同 一 种 液 体

B 相 互 连 通

C 不 连 通

D 同 一 种 液 体,相 互 连 通。

2、金属压力表的读值是(): A绝对压强;

B相对压强;

C绝对压强加当地大气压; D相对压强加当地大气压。

3、某点的真空压强为65 000Pa,当地大气压为0.1MPa,该点的绝对压强为:()

A 65 000 Pa;

B 55 000 Pa;

C 35 000 Pa;

D 165 000 Pa;

4、静止流场中的压强分布规律()

A 仅适用于不可压缩流体;

B 仅适用于理想流体;

C 仅适用于粘性流体;

篇3:四川大学力学学科简介

四川大学力学学科前身是1954年成立的成都工学院力学教研室。在康振黄、冯广占、陈君楷、宁交贤等老一批科学家与知名学者的带领下,力学学科得到了进一步的建设和发展。1978年恢复建立工程力学系,1986年获得固体力学博士学位授予权,1992年固体力学被评为四川省重点学科。1995年获准建立生物力学工程四川省重点实验室。特别是自2003年以来,以谢和平院士为学术带头人的中、青年创新团队已经形成,学科建设得到跨越发展,2003年、2004年先后得到学校专项重点支持,建立了“生物材料与生物力学临床应用”与“重大工程安全与灾害力学”两个校级交叉科学研究中心。2006年获得力学一级学科博士学位授予权。2007年固体力学被评为国家重点学科,并获准建立力学博士后流动站和四川省力学实验教学示范中心。力学学科始终坚持“提高水平、鼓励交叉、形成特色、重点突破”的建设方针,并发挥四川大学多学科的综合优势,在生物力学与生物工程,工程安全与灾害力学,新型材料超长寿命疲劳断裂及动态破坏力学行为等研究领域已形成鲜明特色和优势。

力学学科现有院士一人,博士生指导教师13人,教授18人,副教授20人,教育部新/跨世纪优秀人才3人,宝钢教育基金会高校优秀教师3人,四川省学术带头人7人。学科主要带头人包括:谢和平院士、陈君楷教授、袁之润教授、王清远教授、樊瑜波教授、许唯临教授、林鹏智教授、王启智教授、于建华教授、曾祥国教授、秦世伦教授、王晓春教授、朱哲明教授等。此外还聘请美国、英国、法国及国内数名院士在内的30余名中外著名学者作为力学学科的名誉及客座教授。学科现有在站博士后人员5人、博士研究生13人、硕士研究生37人、本科生195人。

学科近年承担的项目有国家“973”项目(首席科学家)、国家自然科学基金创新研究群体项目及其后续支持、国家自然科学基金重点项目、国家杰出青年基金及其他国际与地方合作项目100余项,科研经费超过4000万元。获国家自然科学奖1项,国家发明奖1项,教育部自然科学一等奖2项,其他部(省)级奖10项,出版教材专著10余部,发表论文600余篇,其中SCI等3大国际检索论文200余篇。

篇4:浙江省大学生力学竞赛的几点思考

关键词:力学竞赛选拔竞赛辅导

近年来,由浙江省教育厅主办的“浙江省大学生力学竞赛”(以下简称为“力学竞赛”)是一个深受大学生欢迎和关注的综合性设计竞赛项目,它为参赛者搭建了学以致用的良好创新平台。随着大学生自我发展意识的不断提高和力学竞赛机制的逐步完善,省内高校的参与度逐届提升。2013年,我校首次派出2支队伍参赛,其中一支即荣获了省级三等奖。回顾参赛历程,仍存诸多思考。以下浅谈三点。

1.选拔学生很重要

连续几届,力学竞赛均以“火箭助推滑翔机的设计与制作”为题,要求学生不仅具备包括理论力学、材料力学等相关理论基础知识,还须具有较强的实践动手(制作)能力,能够运用所学知识分析和解决实际问题。本着公平、公正和公开的原则,并注重学生的自愿、自觉和自励作用,选拔赛面向校内所有在校大学生展开,要求以组队形式参赛。从前期报名实际情况来看,大一新生的热情有余却能力尚缺,大三、大四同学又似乎动力不足,响应者寥寥无几。而作为主力军的大二学生虽已学完理论力学,但材料力学却才刚开始学习中。对此,一方面,指导教师积极动员力学成绩相对较好的、动手能力较强的高年级学生积极参赛,另一方面,从原则上要求参赛队伍须至少有1名大三及以上同学,形成老中新的竞赛团队,促进竞赛可持续发展。此外,将学生的心理素质也纳入考查范畴,毕竟,只有具备良好心理素质,有较强的承受挫折的能力和较佳的临场应变能力者,才能在残酷的比赛中脱颖而出。总之,选拔出理论基础扎实、动手能力较强和心理素质过硬的参赛团队是取得良好竞赛成绩的重要基础。所以,在校内选拔时,对各参赛者实行全过程跟踪考查。

2.竞赛辅导很关键

竞赛辅导是提高竞赛能力的重要手段之一,培训效果的优劣将直接影响参赛成绩。对无生源优势的我校,竞赛培训的重要性更是不言而喻。

从校内选拔赛情况来看,参赛队员普遍存在查阅文献的能力明显不够,综合应用力学知识的能力比较有限、理论方案报告质量不高、知识面较窄等问题。对此,指派有较丰富竞赛经验的老师组成指导团队对参加省赛的学生进行有针对性的辅导。首先,与学生一道深入研读竞赛说明,进一步明确竞赛要求。然后就竞赛的四个环节:①理论方案设计;②火箭装配与滑翔机加工制作;③飞行试验;④答辩作专项培训,重点引导学生学会思考和分析问题,掌握力学分析的方法,强化其表达能力。同时,对可能出现的心理困难进行有效疏导。最后,形成一个师生互动、亦师亦友的竞赛合作团队,为参赛学生营造一种健康向上的竞赛氛围。

通过培训,参赛学生对滑翔机的飞行原理、飞行中的力学问题和飞行时间估算等的理解和分析更加全面和深入了,对滑翔机制作的工艺流程更加熟练了,绘图能力和力学应用能力也明显提高了。为比赛取得较好的成绩奠定了扎实的基础。

3.以赛促学很给力

力学竞赛的开展,极大地丰富了校园的力学学习气氛,学生学习力学的兴趣也明显提高了。越来越多曾经见“力”生畏的同学,也勇敢地迈进了力学竞赛的园地,与其团队成员共同享受参与力学竞赛的乐趣。通过参加比赛,他们经历了精心而艰苦的竞赛准备过程,收获了知识与能力的发展,科学素养得以提升、创新思维得以扩展、研究兴趣得以激发、协作精神得以培养。有位原来修学包装专业的同学似乎在力学竞赛中找到了兴趣,在直通浙大的立交桥考试中毅然决然地选择并顺利抵考取了浙大的航空航天专业。可见,力学竞赛的魅力是多么无穷,以赛促学、以赛促教、以赛促改,何尝不是一条基础力学教学改革的有效途径。

4.结语

充分重视并有效组织和开展力学竞赛,将有助于全面培养大学生的创新思维和实践动手能力、活跃校园学术氛围、激发同学们学习力学及相关专业知识的热情。通过力学竞赛,可以促进高等学校工科基础力学教学的改革与发展。

参考文献:

篇5:浙江大学流体力学

工程流体力学水力学实验报告 实验一 流体静力学实验

实验原理

在重力作用下不可压缩流体静力学基本方程

(1.1)

式中: z被测点在基准面的相对位置高度;

p被测点的静水压强,用相对压强表示,以下同;

p0水箱中液面的表面压强;

γ液体容重;

h被测点的液体深度。

另对装有水油(图1.2及图1.3)U型测管,应用等压面可得油的比重S0有下列关系:

(1.2)据此可用仪器(不用另外尺)直接测得S0。实验分析与讨论

1.同一静止液体内的测管水头线是根什么线?

测压管水头指,即静水力学实验仪显示的测管液面至基准面的垂直高度。测压管水头线指测压管液面的连线。实验直接观察可知,同一静止液面的测压管水头线是一根水平线。2.当PB<0时,试根据记录数据,确定水箱内的真空区域。,相应容器的真空区域包括以下三部分:

(1)过测压管2液面作一水平面,由等压面原理知,相对测压管2及水箱内的水体而言,该水平面为等压面,均为大气压强,故该平面以上由密封的水、气所占的空间区域,均为真空区域。

(2)同理,过箱顶小水杯的液面作一水平面,测压管4中,该平面以上的水体亦为真空区域。(3)在测压管5中,自水面向下深度某一段水柱亦为真空区。这段高度与测压管2液面低于水箱液面的高度相等,亦与测压管4液面高于小水杯液面高度相等。3.若再备一根直尺,试采用另外最简便的方法测定γ0。

最简单的方法,是用直尺分别测量水箱内通大气情况下,管5油水界面至水面和油水界面至油面的垂直高度h和h0,由式,从而求得γ0。

4.如测压管太细,对测压管液面的读数将有何影响?

设被测液体为水,测压管太细,测压管液面因毛细现象而升高,造成测量误差,毛细高度由下式计算

式中,为表面张力系数;为液体的容量;d为测压管的内径;h为毛细升高。常温(t=20℃)的水,=7.28dyn/mm,=0.98dyn/mm。水与玻璃的浸润角很小,可认为cosθ=1.0。于是有

(h、d单 位 为mm)

哈尔滨工程大学

一般来说,当玻璃测压管的内径大于10mm时,毛细影响可略而不计。另外,当水质不洁时,减小,毛细高度亦较净水小;当采用有机玻璃作测压管时,浸润角较大,其h较普通玻璃管小。

如果用同一根测压管测量液体相对压差值,则毛细现象无任何影响。因为测量高、低压强时均有毛细现象,但在计算压差时,互相抵消了。

5.过C点作一水平面,相对管1、2、5及水箱中液体而言,这个水平面是不是等压面?哪一部分液体是同一等压面?

不全是等压面,它仅相对管1、2及水箱中的液体而言,这个水平面才是等压面。因为只有全部具备下列5个条件的平面才是等压面:(1)重力液体;(2)静止;(3)连通;(4)连通介质为同一均质液体;(5)同一水平面。而管5与水箱之间不符合条件(4),因此,相对管5和水箱中的液体而言,该水平面不是等压面。

6.用图1.1装置能演示变液位下的恒定流实验吗?

关闭各通气阀门,开启底阀,放水片刻,可看到有空气由c进入水箱。这时阀门的出流就是变液位下的恒定流。因为由观察可知,测压管1的液面始终与c点同高,表明作用于底阀上的总水头不变,故为恒定流动。这是由于液位的降低与空气补充使箱体表面真空度的减小处于平衡状态。医学上的点滴注射就是此原理应用的一例,医学上称之为马利奥特容器的变液位下恒定流。

7.该仪器在加气增压后,水箱液面将下降而测压管液面将升高H,实验时,若以P0=0时的水箱液面作为测量基准,试分析加气增压后,实际压强(H+δ)与视在压强H的相对误差值。本仪器测压管内径为0.8cm,箱体内径为20cm。

加压后,水箱液面比基准面下降了,而同时测压管1、2的液面各比基准面升高了H,由水量平衡原理有

本实验仪

d=0.8cm, D=20cm, 故

H=0.0032 于是相对误差有

因而可略去不计。

其实,对单根测压管的容器若有D/d10或对两根测压管的容器D/d7时,便可使0.01。

实验二 不可压缩流体恒定流能量方程(伯诺利方程)实验

实验原理

在实验管路中沿管内水流方向取n个过断面。可以列出进口断面(1)至另一断面(i)的能量方程式(i=2,3,„„,n)

取a1=a2=„an=1,选好基准面,从已设置的各断面的测压管中读出值,测出通过管路的流量,即可计算出断面平均流速v及,从而即可得到各断面测管水头和总水头。

哈尔滨工程大学

成果分析及讨论

1.测压管水头线和总水头线的变化趋势有何不同?为什么?

测压管水头线(P-P)沿程可升可降,线坡JP可正可负。而总水头线(E-E)沿程只降不升,线坡J恒为正,即J>0。这是因为水在流动过程中,依据一定边界条件,动能和势能可相互转换。测点5至测点7,管收缩,部分势能转换成动能,测压管水头线降低,Jp>0。测点7至测点9,管渐扩,部分动能又转换成势能,测压管水头线升高,JP<0。而据能量方程E1=E2+hw1-2, hw1-2为损失能量,是不可逆的,即恒有hw1-2>0,故E2恒小于E1,(E-E)线不可能回升。(E-E)线下降的坡度越大,即J越大,表明单位流程上的水头损失越大,如图2.3的渐扩段和阀门等处,表明有较大的局部水头损失存在。2.流量增加,测压管水头线有何变化?为什么? 有 如 下 二 个 变 化 :

(1)流量增加,测压管水头线(P-P)总降落趋势更显著。这是因为测压管水头,任一断面起始时的总水头E及管道过流断面面积A为定值时,Q增大,就增大,则必减小。而且随流量的增加阻力损失亦增大,管道任一过水断面上的总水头E相应减小,故的减小更加显著。

(2)测压管水头线(P-P)的起落变化更为显著。因为对于两个不同直径的相应过水断面有

式中为两个断面之间的损失系数。管中水流为紊流时,接近于常数,又管道断面为定值,故Q增大,H亦增大,(P-P)线的起落变化就更为显著。

3.测点2、3和测点10、11的测压管读数分别说明了什么问题?

测点2、3位于均匀流断面(图2.2),测点高差0.7cm,HP=

均为37.1cm(偶有毛细影响相差0.1mm),表明均匀流同断面上,其动水压强按静水压强规律分布。测点10、11在弯管的急变流断面上,测压管水头差为7.3cm,表明急变流断面上离心惯性力对测压管水头影响很大。由于能量方程推导时的限制条件之一是“质量力只有重力”,而在急变流断面上其质量力,除重力外,尚有离心惯性力,故急变流断面不能选作能量方程的计算断面。在绘制总水头线时,测点10、11应舍弃。4.试问避免喉管(测点7)处形成真空有哪几种技术措施?分析改变作用水头(如抬高或降低水箱的水位)对喉管压强的影响情况。

下述几点措施有利于避免喉管(测点7)处真空的形成:(1)减小流量,(2)增大喉管管径,(3)降低相应管线的安装高程,(4)改变水箱中的液位高度。

显然(1)、(2)、(3)都有利于阻止喉管真空的出现,尤其(3)更具有工程实用意义。因为若管系落差不变,单单降低管线位置往往就可完全避免真空。例如可在水箱出口接一下垂90弯管,后接水平段,将喉管的高程降至基准高程0—0,比位能降至零,比压能p/γ得以增大(Z),从而可能避免点7处的真

哈尔滨工程大学

空。至于措施(4)其增压效果是有条件的,现分析如下: 当作用水头增大h时,测点7断面上

值可用能量方程求得。

取基准面及计算断面1、2、3,计算点选在管轴线上(以下水柱单位均为cm)。于是由断面1、2的能量方程(取a2=a3=1)有

(1)因hw1-2可表示成此处c1.2是管段1-2总水头损失系数,式中e、s分别为进口和渐缩局部损失系数。又由连续性方程有

故式(1)可变为

(2)式中可由断面1、3能量方程求得,即

(3)由此得

(4)代入式(2)有(Z2+P2/γ)随h递增还是递减,可由(Z2+P2/γ)加以判别。因

(5)若1-[(d3/d2)4+c1.2]/(1+c1.3)>0,则断面2上的(Z+p/γ)随h同步递增。反之,则递减。文丘里实验为递减情况,可供空化管设计参考。

在实验报告解答中,d3/d2=1.37/1,Z1=50,Z3=-10,而当h=0时,实验的(Z2+P2/γ)=6,将各值代入式(2)、(3),可得该管道阻力系数分别为c1.2=1.5,c1.3=5.37。再将其代入式(5)得

表明本实验管道喉管的测压管水头随水箱水位同步升高。但因(Z2+P2/γ)接近于零,故水箱水位的升高对提高喉管的压强(减小负压)效果不显著。变水头实验可证明该结论正确。

5.由毕托管测量显示的总水头线与实测绘制的总水头线一般都有差异,试分析其原因。

与毕托管相连通的测压管有1、6、8、12、14、16和18管,称总压管。总压管液面的连续即为毕托

哈尔滨工程大学

管测量显示的总水头线,其中包含点流速水头。而实际测绘的总水头是以实测的值加断面平均流速水头v2/2g绘制的。据经验资料,对于园管紊流,只有在离管壁约0.12d的位置,其点流速方能代表该断面的平均流速。由于本实验毕托管的探头通常布设在管轴附近,其点流速水头大于断面平均流速水头,所以由毕托管测量显示的总水头线,一般比实际测绘的总水线偏高。

因此,本实验由1、6、8、12、14、16和18管所显示的总水头线一般仅供定性分析与讨论,只有按实验原理与方法测绘总水头线才更准确。

实验三 不可压缩流体恒定流动量定律实验

实验原理

恒定总流动量方程为

取脱离体,因滑动摩擦阻力水平分离

式中:

hc——作用在活塞形心处的水深;

D——活塞的直径;

Q——射流流量;

V1x——射流的速度;

β1——动量修正系数。

实验中,在平衡状态下,只要测得Q流量和活塞形心水深hc,由给定的管嘴直径d和活塞直径D,代入上式,便可验证动量方程,并率定射流的动量修正系数β1值。其中,测压管的标尺零点已固定在活塞的园心处,因此液面标尺读数,即为作用在活塞园心处的水深。实验分析与讨论

1、实测β与公认值(β=1.02~1.05)符合与否?如不符合,试分析原因。

实测β=1.035与公认值符合良好。(如不符合,其最大可能原因之一是翼轮不转所致。为排除此故障,可用4B铅笔芯涂抹活塞及活塞套表面。)

2、带翼片的平板在射流作用下获得力矩,这对分析射流冲击无翼片的平板沿x方向的动量力有无影响?为什么?

无影响。

因带翼片的平板垂直于x轴,作用在轴心上的力矩T,是由射流冲击平板是,沿yz平面通过翼片造成动量矩的差所致。即

式中

Q——射流的流量;

Vyz1——入流速度在yz平面上的分速;

Vyz2——出流速度在yz平面上的分速;

α1——入流速度与圆周切线方向的夹角,接近90°;

α2——出流速度与圆周切线方向的夹角;

r1,2——分别为内、外圆半径。,可忽略不计,故x方向的动量方程化为

哈尔滨工程大学

该式表明力矩T恒与x方向垂直,动量矩仅与yz平面上的流速分量有关。也就是说平板上附加翼片后,尽管在射流作用下可获得力矩,但并不会产生x方向的附加力,也不会影响x方向的流速分量。所以x方向的动量方程与平板上设不设翼片无关。

3、通过细导水管的分流,其出流角度与V2相同,试问对以上受力分析有无影响? 无影响。

当计及该分流影响时,动量方程为

该式表明只要出流角度与V1垂直,则x方向的动量方程与设置导水管与否无关。

4、滑动摩擦力为什么可以忽略不记?试用实验来分析验证的大小,记录观察结果。(提示:平衡时,向测压管内加入或取出1mm左右深的水,观察活塞及液位的变化)

因滑动摩擦力<5墸,故可忽略而不计。

如第三次实验,此时hc=19.6cm,当向测压管内注入1mm左右深的水时,活塞所受的静压力增大,约为射流冲击力的5。假如活动摩擦力大于此值,则活塞不会作轴向移动,亦即hc变为9.7cm左右,并保持不变,然而实际上,此时活塞很敏感地作左右移动,自动调整测压管水位直至hc仍恢复到19.6cm为止。这表明活塞和活塞套之间的轴向动摩擦力几乎为零,故可不予考虑。

5、V2x若不为零,会对实验结果带来什么影响?试结合实验步骤7的结果予以说明。

按实验步骤7取下带翼轮的活塞,使射流直接冲击到活塞套内,便可呈现出回流与x方向的夹角α大于90°(其V2x不为零)的水力现象。本实验测得135°,作用于活塞套圆心处的水深hc’=29.2cm,管嘴作用水头H0=29.45cm。而相应水流条件下,在取下带翼轮的活塞前,V2x=0,hc=19.6cm。表明V2x若不为零,对动量立影响甚大。因为V2x不为零,则动量方程变为

(1)就是说hc’随V2及α递增。故实验中hc’> hc。

实际上,hc’随V2及α的变化又受总能头的约束,这是因为由能量方程得

(2)而

所以

哈尔滨工程大学

从式(2)知,能量转换的损失实验原理 较小时,实验四 毕托管测速实验

(4.1)

式中:u-毕托管测点处的点流速;

c-毕托管的校正系数;

-毕托管全压水头与静水压头差。

(4.2)

(4.3)

联解上两式可得

式中:u -测点处流速,由毕托管测定;

- 测点流速系数;

ΔH-管嘴的作用水头。

实验分析与讨论

1.利用测压管测量点压强时,为什么要排气?怎样检验排净与否?

毕托管、测压管及其连通管只有充满被测液体,即满足连续条件,才有可能测得真值,否则如果其中夹有气柱,就会使测压失真,从而造成误差。误差值与气柱高度和其位置有关。对于非堵塞性气泡,虽不产生误差,但若不排除,实验过程中很可能变成堵塞性气柱而影响量测精度。检验的方法是毕托管置于静水中,检查分别与毕托管全压孔及静压孔相连通的两根测压管液面是否齐平。如果气体已排净,不管怎样抖动塑料连通管,两测管液面恒齐平。

2.毕托管的动压头h和管嘴上、下游水位差H之间的大关系怎样?为什么? 由于

一般毕托管校正系数c=11‟(与仪器制作精度有关)。喇叭型进口的管嘴出流,其中心点的点流速系数=0.9961‟。所以Δh<ΔH。

本实验Δh=21.1cm,ΔH=21.3cm,c=1.000。3.所测的流速系数说明了什么?

若管嘴出流的作用水头为H,流量为Q,管嘴的过水断面积为A,相对管嘴平均流速v,则有

称作管嘴流速系数。

若相对点流速而言,由管嘴出流的某流线的能量方程,可得

哈尔滨工程大学

式中:为流管在某一流段上的损失系数;为点流速系数。

本实验在管嘴淹没出流的轴心处测得=0.995,表明管嘴轴心处的水流由势能转换为动能的过程中有能量损失,但甚微。

4.据激光测速仪检测,距孔口2-3cm轴心处,其点流速系数为0.996,试问本实验的毕托管精度如何?如何率定毕托管的修正系数c?

若以激光测速仪测得的流速为真值u,则有

而毕托管测得的该点流速为203.46cm/s,则ε=0.2‰ 欲率定毕托管的修正系数,则可令

本例:

5.普朗特毕托管的测速范围为0.2-2m/s,轴向安装偏差要求不应大于10度,试说明原因。(低流速可用倾斜压差计)。

(1)施测流速过大过小都会引起较大的实测误差,当流速u小于0.2m/s时,毕托管测得的压差Δh亦有

若用30倾斜压差计测量此压差值,因倾斜压差计的读数值差Δh为,那么当有0.5mm的判读误差时,流速的相对误差可达6%。而当流速大于2m/s时,由于水流流经毕托管头部时会出现局部分离现象,从而使静压孔测得的压强偏低而造成误差。

(2)同样,若毕托管安装偏差角(α)过大,亦会引起较大的误差。因毕托管测得的流速u是实际流速u在其轴向的分速ucosα,则相应所测流速误差为

α若>10,则

6.为什么在光、声、电技术高度发展的今天,仍然常用毕托管这一传统的流体测速仪器?

毕托管测速原理是能量守恒定律,容易理解。而毕托管经长期应用,不断改进,已十分完善。具有结构简单,使用方便,测量精度高,稳定性好等优点。因而被广泛应用于液、气流的测量(其测量气体的流速可达60m/s)。光、声、电的测速技术及其相关仪器,虽具有瞬时性,灵敏、精度高以及自动化记录等诸多优点,有些优点毕托管是无法达到的。但往往因其机构复杂,使用约束条件多及价格昂贵等因素,从

哈尔滨工程大学

而在应用上受到限制。尤其是传感器与电器在信号接收与放大处理过程中,有否失真,或者随使用时间的长短,环境温度的改变是否飘移等,难以直观判断。致使可靠度难以把握,因而所有光、声、电测速仪器,包括激光测速仪都不得不用专门装置定期率定(有时是利用毕托管作率定)。可以认为至今毕托管测速仍然是最可信,最经济可靠而简便的测速方法。

实验五 雷诺实验

实验原理

实验分析与讨论

⒈流态判据为何采用无量纲参数,而不采用临界流速?

雷诺在1883年以前的实验中,发现园管流动存在两种流态——层流和紊流,并且存在着层流转化为紊流的临界流速V’,V’与流体的粘性ν及园管的直径d有关,即

(1)

因此从广义上看,V’不能作为流态转变的判据。

为了判别流态,雷诺对不同管径、不同粘性液体作了大量的实验,得出了用无量纲参数(vd/ν)作为管流流态的判据。他不但深刻揭示了流态转变的规律,而且还为后人用无量纲化的方法进行实验研究树立了典范。用无量纲分析的雷列法可得出与雷诺数结果相同的无量纲数。可以认为式(1)的函数关系能用指数的乘积来表示。即

(2)

其中K为某一无量纲系数。式(2)的量纲关系为

(3)

从量纲和谐原理,得

L:2α1+α2=1 T:-α1=-1

联立求解得α1=1,α2=-1 将上述结果,代入式(2),得

雷诺实验完成了K值的测定,以及是否为常数的验证。结果得到K=2320。于是,无量纲数vd/ν便成了适应于任何管径,任何牛顿流体的流态转变的判据。由于雷诺的奉献,vd/ν定命为雷诺数。

随着量纲分析理论的完善,利用量纲分析得出无量纲参数,研究多个物理量间的关系,成了现今实验研究的重要手段之一。

⒉为何认为上临界雷诺数无实际意义,而采用下临界雷诺数作为层流与紊流的判据?实测下临界雷诺数为多少?

根据实验测定,上临界雷诺数实测值在3000~5000范围内,与操作快慢,水箱的紊动度,外界干扰等密切相关。有关学者做了大量实验,有的得12000,有的得20000,有的甚至得40000。实际水流中,干扰总是存在的,故上临界雷诺数为不定值,无实际意义。只有下临界雷诺数才可以作为判别流态的标准。

哈尔滨工程大学

凡水流的雷诺数小于下临界雷诺数者必为层流。一般实测下临界雷诺数为2100左右。

⒊雷诺实验得出的圆管流动下临界雷诺数2320,而目前一般教科书中介绍采用的下临界雷诺数是2000,原因何在?

下临界雷诺数也并非与干扰绝对无关。雷诺实验是在环境的干扰极小,实验前水箱中的水体经长时间的稳定情况下,经反复多次细心量测才得出的。而后人的大量实验很难重复得出雷诺实验的准确数值,通常在2000~2300之间。因此,从工程实用出发,教科书中介绍的园管下临界雷诺数一般是2000。⒋试结合紊动机理实验的观察,分析由层流过渡到紊流的机理何在?

从紊动机理实验的观察可知,异重流(分层流)在剪切流动情况下,分界面由于扰动引发细微波动,并随剪切流速的增大,分界面上的波动增大,波峰变尖,以至于间断面破裂而形成一个个小旋涡。使流体质点产生横向紊动。正如在大风时,海面上波浪滔天,水气混掺的情况一样,这是高速的空气和静止的海水这两种流体的界面上,因剪切流动而引起的界面失稳的波动现象。由于园管层流的流速按抛物线分布,过流断面上的流速梯度较大,而且因壁面上的流速恒为零。相同管径下,如果平均流速越大则梯度越大,即层间的剪切流速越大,于是就容易产生紊动。紊动机理实验所见的波动→破裂→旋涡→质点紊动等一系列现象,便是流态从层流转变为紊流的过程显示。

⒌分析层流和紊流在运动学特性和动力学特性方面各有何差异? 层流和紊流在运动学特性和动力学特性方面的差异如下表:

运动学特性:

动力学特性:

层流: 1.质点有律地作分层流动

1.流层间无质量传输

2.断面流速按抛物线分布

2.流层间无动量交换

3.运动要素无脉动现象

3.单位质量的能量损失与流速的一次方成正比

紊流: 1.质点互相混掺作无规则运动

1.流层间有质量传输

2.断面流速按指数规律分布

2.流层间存在动量交换

3.运动要素发生不规则的脉动现象

3.单位质量的能量损失与流速的(1.75~2)次方成正比

实验六 文丘里流量计实验

实验原理

根据能量方程式和连续性方程式,可得不计阻力作用时的文氏管过水能力关系式

式中:Δh为两断面测压管水头差。

由于阻力的存在,实际通过的流量Q恒小于Q’。今引入一无量纲系数µ=Q/Q’(μ称为流量系数),对计算所得的流量值进行修正。即

另,由水静力学基本方程可得气—水多管压差计的Δh为 实验分析与讨论

哈尔滨工程大学

⒈本实验中,影响文丘里管流量系数大小的因素有哪些?哪个因素最敏感?对d2=0.7cm的管道而言,若因加工精度影响,误将(d2-0.01)cm值取代上述d2值时,本实验在最大流量下的μ值将变为多少? 由式

可见本实验(水为流体)的μ值大小与Q、d1、d2、Δh有关。其中d1、d2影响最敏感。本实验中若文氏管d1 =1.4cm,d2=0.71cm,通常在切削加工中d1比d2测量方便,容易掌握好精度,d2不易测量准确,从而不可避免的要引起实验误差。例如当最大流量时μ值为0.976,若d2的误差为-0.01cm,那么μ值将变为1.006,显然不合理。

⒉为什么计算流量Q’与实际流量Q不相等?

因为计算流量Q’是在不考虑水头损失情况下,即按理想液体推导的,而实际流体存在粘性必引起阻力损失,从而减小过流能力,Q

如图6.4所述,⒋试应用量纲分析法,阐明文丘里流量计的水力特性。

运用量纲分析法得到文丘里流量计的流量表达式,然后结合实验成果,便可进一步搞清流量计的量测特性。

对于平置文丘里管,影响ν1的因素有:文氏管进口直径d1,喉径d2、流体的密度ρ、动力粘滞系数μ及两个断面间的压强差ΔP。根据π定理有

从中选取三个基本量,分别为:

共有6个物理量,有3个基本物理量,可得3个无量纲π数,分别为:

哈尔滨工程大学

根据量纲和谐原理,π1的量纲式为

分别有

L:1=a1+b1-3c1

T:0=-b1 M:0= c1 联解得:a1=1,b1=0,c1=0,则

同理

将各π值代入式(1)得无量纲方程为

或写成

进而可得流量表达式为

(2)

式(2)与不计损失时理论推导得到的

(3)

相似。为计及损失对过流量的影响,实际流量在式(3)中引入流量系数µQ计算,变为

(4)

比较(2)、(4)两式可知,流量系数µQ与Re一定有关,又因为式(4)中d2/d1的函数关系并不一定代表了式(2)中函数所应有的关系,故应通过实验搞清µQ与Re、d2/d1的相关性。

哈尔滨工程大学

通过以上分析,明确了对文丘里流量计流量系数的研究途径,只要搞清它与Re及d2/d1的关系就行了。由实验所得在紊流过渡区的µQ~Re关系曲线(d2/d1为常数),可知µ因恒有μQ随Re 的增大而增大,<1,故若使实验的Re增大,µQ将渐趋向于某一小于1 的常数。

另外,根据已有的很多实验资料分析,µQ与d1/d2也有关,不同的d1/d2值,可以得到不同的µQ~Re关系曲线,文丘里管通常使d1/d2=2。所以实用上,对特定的文丘里管均需实验率定µQ~Re的关系,或者查用相同管径比时的经验曲线。还有实用上较适宜于被测管道中的雷诺数Re>2×105,使µQ值接近于常数0.98。

流量系数µQ的上述关系,也正反映了文丘里流量计的水力特性。

⒌文氏管喉颈处容易产生真空,允许最大真空度为6~7mH2O。工程中应用文氏管时,应检验其最大真空度是否在允许范围内。据你的实验成果,分析本实验流量计喉颈最大真空值为多少?

本实验若d1= 1.4cm,d2= 0.71cm,以管轴线高程为基准面,以水箱液面和喉道断面分别为1—1和2—2计算断面,立能量方程得

> 0

篇6:兰州大学力学发展

『2011-05-27 09:44:01』『字号:大 中 小』『浏览:2544次』『打印』

兰州大学土木工程与力学学院 暨西部灾害与环境力学教育部重点实验室

引子

兰州大学力学学科创办50余年来,在老一辈力学家、力学教育家叶开沅教授与新一代学科带头人郑晓静院士、周又和教授的不懈努力下,在办学的核心指标上开创了兰州大学多项第一:国家首批博士点之一,培养出第一位院士、第一位国家杰出青年科学基金获得者,第一项完全由校内成员独立完成的国家自然科学二等奖,叶开沅培养的学生中3人当选院士位列校内个人第一,唯一有本学科教师担任国外学术机构主办的国际学术期刊主编,唯一有二位教授获宝钢教育基金会高校优秀教师特等奖的学科,唯一的发展中国家科学院院士,唯一的非在职博士生入选全国优秀博士学位论文,唯一的由教师个人争取获得的国际学术组织捐资在我校设立的人才培养奖励基金、二篇学术论文获国际学术奖励(即最佳贡献论文奖与最佳论文奖)。目前,该学科还拥有国家重点学科、教育部重点实验室、一级学科博士点、博士后科研流动站,本科生人才培养省级基地、实验教学省级示范中心、教育部长江学者创新团队、国家精品课程、国家特色专业建设点、国家级教学名师、国家级教学团队、国家教学成果奖、国家科技进步奖、中科院院士、长江学者奖励计划特聘教授等办学条件与核心指标。面对国际间激烈的科技与经济竞争,我国正在大力实施科教兴国和人才强国战略,高等学校培养高水平创新人才的使命更加重大。我校力学专业在极其困难条件下,经过几代人的不屈努力和不懈奋斗,由“弱势学科”逐步发展成为多项办学指标位于学校前列的优势学科,其崇尚卓越、追求一流的办学经验是值得我们加以总结与思考的。今天力学学科的“喷发”,是力学教师特别是学科带头人长期坚持“甘坐板凳十年冷、追求一流代代新”的办学精神的必然结果。只有知道什么是好、也知道如何在西部地区不利环境与条件下去追求好,我们才有可能找到切实可行的办学途径并通过有效的实施来办好学,才可能根据自身条件逐步发展成为好,才不至于鹦鹉学舌地生搬硬套别人的方法(或说法)以致于水土不服,才不至于没有独立见解地进行一些无谓的“空调”(读tiao,即调整之意),进而才有可能避免某些“形左实右”的“乱调”。十年树木、百年树人,作为肩负培养高水平创新人才重任的我们,要有长远的办学追求,尤其对于肩负更大使命的学科带头人和学术带头人,在此征途上既要言传更要身教,要通过一步步的成功实践、一步步的向前发展,来激励斗志、鼓舞士气,为后来者探索出一条行之有效的办学道路。为此,也需要对过去的办学经历进行有效总结,包括成功的与失败的,这样方可使未来的发展不至于有形无实,才有可能有的放矢地真正实现国家的目标和人民的期盼。这里,我们仅针对力学学科的发展历程、科研成果、科研与人才培养硬件条件作客观表述,从中可以看出一些发展的脉络。

发展历程

兰州大学力学学科创建于我国建设事业大发展的1959年。当时,在苏联人造地球卫星成功发射的推动下,力学被认为是与高新技术密切联系的学科,全国许多重点大学相继开始建立力学专业,兰州大学力学专业就是在这种大背景下建立起来的。借鉴苏联莫斯科大学与北京大学力学专业的办学经验,兰州大学所建立的力学专业及其教研室放在了数学系(随后改为数学力学系),首任力学教研室的党政负责人为潘朝艳同志和郭秉荣同志。当时,从已进校的数学专业学生中挑选出一部分转到了力学专业,于1962年有了首届毕业生。相关教师队伍主要来源于北京大学等高校的毕业生或教师,如北京大学5位力学专业创办人之一的叶开沅于1959年随江隆基校长来到兰州大学,北京大学力学专业毕业生程昌均、苗天德和王廷栋,清华大学力学班的汤任基与王凯,南京大学天文专业毕业生俞焕然,兰州大学力学专业毕业生刘人怀、陈山林与王璞等在上世纪50年代末与60年代初期充实到兰州大学力学专业的教师队伍。到“文革”时,力学专业的教师与实验人员达到40余人。在“文革”结束后不久,一批力学教师相继调离兰州大学到国内其它高校与科研机构,如刘人怀1978年调到中国科大,此后不久以出色科研业绩在没有博士学位的情形下成为国内首批获洪堡奖学金资助赴陈山林1979年考入清华大学著名力学家钱伟长教授门下攻读研究生等。西德留学的学者;

上世纪80年代初,随着高等教育恢复正常及本学科带头人叶开沅教授的冤假错案被彻底平反,兰州大学力学学科进入快速发展时期。在叶开沅教授的带领下,1981年申请的固体力学硕士与博士学科培养点获国务院学位委员会批准设立,成为兰州大学的6个首批博士点之一,叶开沅教授也成为该学科点的唯一博士生指导教师。从此,兰州大学力学专业开始了高层次人才培养的新时代。1986年,兰州大学力学系独立建系,叶开沅教授出任首任系主任,从而使其办学理念得到了有效的贯彻执行。在叶开沅教授的指导下,郑晓静以其博士学位论文的研究成果于1988年获首届中国科协授予的“中国青年科技奖”和1991年获国家教委与国务院学位委员会联合授予的“做出有突出贡献的中国博士学位获得者称号”,叶开沅教授也因此被甘肃省授予“优秀博士生指导教师”称号。到上世纪末,在本博士学科点被批准为博士生指导教师的还有:汤任基(1985;1986年调出)、程昌钧(1989;1996年调出)、朱正佑(1993;1996年调出)、苗天德(1995;2006年退休)、俞焕然(1995;2006年退休)、郑晓静(1995)、周又和(1998)。在叶开沅教授卸任力学系主任后,苗天德教授(1991-1994)和俞焕然教授(1994-1999)先后继任力学系主任。1991年,由苗天德教授领衔申报的力学二级学科岩土力学硕士点获批准设立,在1997年国家进行学科调整时,这一硕士点从力学学科中被取消,于是被学校转化为地质工程硕士学科点。1997年郑晓静教授获“国家杰出青年科学基金”并入选“教育部跨世纪人才”,成为兰州大学首位获得“国家杰出青年科学基金”(当时还称其为“总理基金”)的教师。同年,郑晓静教授因其教学与科研的成绩获宝钢教育基金会授予的“中国高等学校优秀教师特等奖”,并被甘肃省政府授予“甘肃省优秀专家”称号。

IEEE超导委员会主席Spargo教授(右)和该委员会奖励委员会主席Nisenoff教授(左)在美国芝加哥召开的2008年度IEEE应用超导国际会议开幕式的授奖仪式上向周又和教授(中)授于2007年度发表在IEEE Trans.Applied Superconductivity学术期刊上的“最佳贡献论文奖”。

1991年9月北京大学力学系主任、中科院院士、时任中国力学学会理事长的王仁教授在兰州大学出席全国现代力学与数学学术会议后,得知兰州大学已开始电磁固体力学这一新兴交叉学科的研究,欣然约请周又和与郑晓静面谈并给予了热忱鼓励。面谈完后在王仁先生下榻的兰州大学外宾招待所楼前用王仁先生所带的相机摄于此照片,大约三周就收到了王先生寄来的这一照片。左为周又和(时任兰州大学力学系讲师),中为王仁院士,右为郑晓静(时任兰州大学力学系副

教授)。

1999年6月,力学系与物理系、材料系、现代物理系一道组成了物理科学与技术学院,周又和教授出任其力学系主任。1999年3月,申报的教育部“长江学者奖励计划特聘教授”固体力学学科岗位被批准设立,同年底周又和被批准为该岗位的特聘教授(第二批)。1999年,固体力学学科被甘肃省批准为省级重点学科。1999年底,叶开沅指导培养的学生刘人怀教授当选为中国工程院院士,成为兰州大学首位获院士殊荣的毕业生。2000年,周又和教授获“国家杰出青年科学基金”,并获宝钢教育基金会“中国高校优秀教师特等奖”。2003年由郑晓静教授领衔申报的工程力学硕士学科点被批准设立,2004年由周又和教授与郑晓静教授领衔申报的力学一级学科博士后科研流动站被人事部批准设立,2005年工程力学博士学科点被国务院学位委员会批准设立,同年力学一级学科硕士点获批准设立。

1994年7月-1995年7月底,周又和作为日本资助的外国研究员在东京大学核工程研究实验室进行合作研究。在周又和教授及其研究成果的促成下,日本东京大学电磁固体力学知名学者K.Miya教授任会长的日本应用电磁材料与力学学会两度向兰州大学捐资400万日元的研究生奖励基金。图为周又和于1995年3月陪同Miya教授来兰州大学讲学并与学校商谈设立基金期间的合影。左为周又和(时任兰州大学力学系副教授),中为Miya教授,右为郑晓静教授。

2005年6月,力学学科与地质工程学科、土木工程学科(后者由力学学科于2002年负责组建)一道成立了土木工程与力学学院,周又和出任院长,王省哲任该学院的力学与工程科学系主任。2005年底,“理论与应用力学”本科专业被甘肃省批准为人才培养与科研基地。同年,周又和被中国教科文卫体工会授予“全国师德标兵”称号,2006年他又被中国科协授予“西部开发突出贡献奖”。2005年以来,学校按学科点成立了固体力学研究所与工程力学研究所,周又和教授与郑晓静教授分别担任这两研究所的所长(后者于2010年由黄宁教授接替),而且周又和教授被指定为力学博士后科研流动站负责人。2005年底,以风沙环境力学成果为主申报的“西部灾害与环境力学”教育部重点实验室获批准建设,2008年通过建设验收正式挂牌,周又和教授被任命为重点实验室主任,刘人怀院士被任命为重点实验室学术委员会主任。2007年协同甘肃省地震局一道申报的“兰州地球物理”国家野外科学观测站被批准建设,周又和兼任副站长。2007-2008年,由周又和领衔并组织协调土木工程与力学学院(以力学为主)、物理与科学技术学院、化学化工学院、核科学与技术学院一同申报的“特殊功能材料与结构设计”教育部重点实验室(B类)获批准建设(申请书由王省哲主写和统稿),王省哲担任该实验室的一研究室主任(注:后期的建设因周又和已担任一教育部重点实验室主任,学校决定让物理科学与技术学院一教授担任该B类重点实验室的主任)。2005年力学一级学科入选为甘肃省重点学科,2007年固体力学学科入选为国家重点学科。2006年和2008年,由周又和领衔的力学教师队伍先后入选为教育部“长江学者奖励计划创新团队”和国家级教学团队。2007年周又和为本科生主讲的《理论力学》入选国家级精品课程,2008年周又和获高等学校“国家级教学名师奖”,2009年周又和教授被教育部授予“全国优秀教师”称号,“理论与应用力学”本科专业入选为国家特色专业建设点,教学研究项目获国家教学成果二等奖(完成人:周又和、王省哲、武建军、郑晓静)。2009年底郑晓静教授当选为中国科学院数理学部院士,2010年她又当选为发展中国家科学院工程领域的院士(即原第三世界科学院院士)。2010年,叶开沅教授指导培养的孙博华博士(1989年获博士学位)当选为南非科学院院士,成为该学科培养的第三位当选院士的学者。2010年,周又和指导的博士研究生张兴义的博士学位论文入选“全国优秀博士学位论文”。此前,郑晓静与周又和指导的博士中,已有6人入选教育部新世纪优秀人才支持计划(即武建军,2004;王省哲,2005;黄宁,2005;高原文,2006;王记增,2009;苟晓凡,2009)。2010年,以力学为主的学院工程实验中心被甘肃省批准为省级本科实验教学示范中心,力学一级学科博士点获批准设立。同年,郑晓静院士被国外学术机构聘请担任《Computers, Materials & Continua(CMC)》这一SCI收录国际学术期刊(影响因子超过2)的共同主编,周又和被邀请担任国外三种国际学术期刊的编委。

周又和教授(即站立的右边者)在2005年12月于波兰召开的国际动力系统理论与应用会议上主持分组学术会议,照片中的论文报告人为本届国际学术会议的大会主席(即站立的左边者)。

截止目前,该学科在岗教师22人,其中教授9人(含两院士1人,国家杰青2人、长江学者1人、教育部新世纪优秀人才支持计划入选者5人、全国优博入选者1人)、副教授5人;力学实验人员3人,其中高级实验师1人;在固体力学与工程力学这二个招生博士点上,拥有博士生指导教师8人。近年来,每年招收本科生近50人、硕士研究生30余人、博士研究生10余人。

科学研究及成果

兰州大学力学学科秉承教学与科研相结合的办学宗旨,通过以科学研究带动教师队伍建设和人才培养,在科学研究与人才培养方面均取到了显著成效。叶开沅在1959年来兰州大学前,在著名科学家钱伟长院士(当时为学部委员)的指导下,在北京大学针对当时非线性固体力学的热点课题之一的柔韧板壳非线性力学开展理论研究,取得了丰硕成果,他们一道完成的科研项目于1956年获首届国家自然科学二等奖。1959年叶开沅来兰州大学后,在兰州大学力学专业的创办与发展过程中起到了决定性的作用。在“文革”前,该学科的科研工作主要围绕叶开沅早年在北京大学所形成的研究方向——柔韧梁板壳结构的几何非线性弯曲与失稳开展理论研究。

在2006年于兰州大学召开的“中美土壤风蚀与环境力学国际研讨会”上,郑晓静教授作学术报告,坐在前排左边者为土壤风蚀的国际知名学者Gillette

教授。

(一)以前的主要科研情况

(1)板壳非线性力学。在叶开沅教授的指导下,上世纪60年代刘人怀的本科毕业论文(1963)及他毕业后留校的研究工作主要集中在这一领域。他们针对求解薄板非线性弯曲的有效方法即“钱伟长摄动法”在非线性柔韧扁球壳稳定性问题分析时所遇到的困难,一道提出“修正迭代法”有效地解决了这一问题。这一方法在夹层薄板薄壳非线性弯曲与失稳中得到了广泛应用,被学界认为是一高精度的有效分析方法,这是30年后刘人怀作为当选中国工程院院士的重要成果之一。进入上世纪80年代,随着计算技术的快速发展,针对当时圆(环)板非线性大挠度问题求解的近似解析方法在手工推演到高阶解时计算量显著增加的问题,叶开沅与其学生及合作者一起提出了计算机推演计算摄动解与迭代解的“解析电算法”。其博士研究生郑晓静、周又和针对圆薄板大挠度问题的精确解及各类解析方法的收敛性证明这些棘手难题、柔韧结构非线性静动力学为基础的谐振弹性元件的载荷-频率特性等定量分析课题所开展的博士学位论文研究,取得了显著进展,两博士学位论文的研究成果分别于1992年和1996年获甘肃省科技进步二等奖。郑晓静的博士学位论文研究成果被学术界评价为是“国内外少见的优秀工作”,“已处国内外领先地位,是五十年来该课题最完备的一项研究”。基于郑晓静博士学位论文所撰写的专著《圆薄板大挠度理论及应用》于1992年获全国优秀科技图书二等奖。此外,叶开沅与其博士生孙博华一道,还开展了锥壳、锥壳与圆柱壳的组合结构弯曲的力学特性研究,获得了一些新结果。

(2)非均匀力学及结构优化。在上世纪60年代,这类研究工作极少,叶开沅是我国这一领域研究的早期开拓者之一。1965年,他提出了用分段局部均匀化的近似方法来逼近非均匀体的阶梯折算法,利用每段上的弹性解和不同段在交界处的位移与力的连续条件及边界条件,就可以给出非均匀弹性构件力学问题的解的基本代数方程组,进而可以获得问题的解。在此基础上,他完成了一系列论文,给出了非均匀柱、梁、板的变形、振动、稳定性等力学问题的解的解析表达式。进入80年代,鉴于非均匀弹性力学的解析解已得到,叶开沅教授开始推动将这一研究结果应用于结构优化的力学研究中。他与合作者俞焕然教授共同给出了工程结构优化设计问题的一种解析表达方式,由此得到了由其它数值方法难以得到的一类经典问题的优化结果。这一结构优化方法改变了全部用数值计算求解优化问题的困境,提高了结构优化的计算速度和精度,为结构优化设计开辟了一条新的途径。叶开沅与俞焕然在非均匀力学及结构优化方面的研究成果于1987年获甘肃省科技进步二等奖。

(3)结构的屈曲、分叉与非线性分析。这一方向的主要学术带头人为程昌钧教授和朱正佑教授。他们与其博士生尚新春、何录武、杨骁等人一道从非线性分析出发,针对结构静载失稳的分叉特征开展理论方法及定量研究,获得了一些有价值的成果。相关研究成果于1992年获甘肃省科技进步二等奖、1995年获甘肃省科技进步三等奖、1998年获教育部科技进步奖(基础类)一等奖。

(4)连续统力学与岩土力学。这一方向的主要学术带头人为苗天德教授。在他的指导下,前期主要与研究生王正贵、朱久江等人一道针对湿埳性黄土与滑坡等力学特性开展研究。相关研究成果于1988年获甘肃省科技进步三等奖、1993年获国家教委科技进步三等奖。在后期(1998年以后)与研究生马崇武、慕青松等人针对金川公司矿石开采中的力学特性与风沙地貌动力学等开展了研究。

(5)断裂力学。这一方向的学术带头人为汤任基教授,主要开展三维裂纹的断裂力学分析研究。在汤任基教授于1986年调到上海交通大学后,这一研究方向主要由其硕士研究生王银邦继续(后者为叶先生培养的第一位博士,曾任组院前的力学系副主任,组院后任物理科学与技术学院副院长,2002年调到中国海洋大学)。

(6)流体力学计算方法。这一方向的主要成员为王璞教授与何光渝副教授(前者于上世纪80年代去加拿大后居留国外,后者于1992年调离)。他们针对流体力学问题主要开展样条近似解法的研究,其成果于1987年获甘肃省科技进步三等奖。

(7)固体力学与冻土力学实验。这一方向的主要成员为王廷栋教授(2002年退休),主要针对一些工程问题开展固体力学实验与冻土力学实验测量的研究。

本照片为在我校举办的“2007年度海峡两岸工程力学研讨会”两岸到会学者的合影。前排左起第5为美国工程院院士,曾任台湾大学工程力学研究所所长、国际波动力学的著名学者、电磁固体力学创始人、曾任美国康纳尔大学理论与应用力学系主任的鲍亦兴教授。其紧邻右侧为郑晓静教授,前排左1为周又和教授。

(二)目前主要开展的多场耦合非线性力学研究

进入上世纪90年代,在郑晓静教授和周又和教授的带领下,兰州大学力学学科的科学研究逐步拓展到电磁固体力学和风沙环境力学等复杂系统的多场耦合非线性力学等研究领域。

电磁固体介质的多场耦合非线性力学研究领域。本学科是国内的早期开拓并取得卓有成效的研究单位。主要针对铁磁、超导、超磁致伸缩材料、压电等电磁与智能材料结构在电磁场作用下的力学特性,开展了从表征电磁力、建立多场耦合非线性本构模型到提出多场耦合非线性分析方法与调试计算程序等基础环节的理论研究和实验研究,获得了一系列实质性的突破。在所建立相关理论模型基础上,其定量预测结果均与实验吻合良好,从而为这一领域的力学研究建立了基本的理论模型和分析方法。1999年,在他们研究成果基础上撰写的专著《电磁固体结构力学》(作者:周又和,郑晓静)获国家科学技术著作出版基金资助后由科学出版社出版,这是这一领域国内的第一部著作。通过这一系列研究,他们培养出的博士王省哲、王记增、高原文、苟晓凡和武建军先后入选教育部新世纪优秀人才支持计划,张兴义的博士学位论文入选全国优秀博士学位论文。独立完成的相关成果于1998年获甘肃省科技进步二等奖(完成人:周又和,郑晓静)、2005年获教育部提名国家自然科学奖一等奖(完成人:周又和、郑晓静、王省哲、高原文、王记增、李世荣、武建军)、2008年获国家自然科学二等奖(完成人:郑晓静、周又和)。有关超导悬浮振动漂移特性的理论研究论文于2007年在IEEE Trans.Applied Superconductivity国际学术期刊上发表后(作者:苟晓凡、郑晓静、周又和),于2008年被 IEEE 超导委员会授予该期刊论文2007年度最佳贡献论文奖(即the Best Contributed Paper Award 或 Van Duzer Prize), 这是该国际学术组织首次授予中国学者的学术奖励、也是该国际学术组织唯一授予非电工电子学者的奖励。其次,这一领域的模型、方法与理论等研究结果得到了国内外学术同行的充分肯定与认可,包括电工、超导、材料、动力控制等领域的学者。而且在这一研究的初期及后来的发展过程中,周又和在日本东京大学核工程实验室受国际电磁固体力学知名学者Kenzu Miya教授资助以外国研究员身份开展合作研究取得成果后,促成日本应用电磁材料与力学学会于1995年和2007年两度向兰州大学共捐赠400 万日元的研究生奖励基金。此外,王省哲教授与新加坡教授合作完成的学术论文于2008年在国际学术期刊Int.J.Structural Stability and Dynamics(IJSSD)上发表后,获该学术期刊授予的2008年度最佳论文奖(即Best Paper Award 2008)。

在2009年于我校西部灾害与环境力学教育部重点实验室召开的“大气边界层中的多相流,即土壤风蚀、沙尘暴、风沙跃移运动与风吹雪”国际学术会议上,美国三院院士(即科学院、工程院、艺术与科学院)、国际著名流体力学家Dan Joseph教授在作完学术报告时,郑晓静教授提问并与之进行学术讨论。图中作报告者为Dan Joseph教授,提问者为郑晓静教授。在郑晓静教授于此次会议上就其领导的研究组实现百年百平方公里沙丘场的跨尺度理论模拟与演化的大规模计算模型、方法及结果作完学术报告后,Dan Jesoph院士高度赞扬这一研究工作为“The central role of Lanzhou University in these kinds of studies

was new to us”。

风沙环境力学研究领域。从2000年开始,该学科针对我国北方沙漠化过程及沙尘暴等重大环境课题,将研究拓展到这一研究领域。主要针对风沙运动的基础力学问题如随机粒-床碰撞模型、风沙电实验、风-沙-电多场耦合的跃移运动理论研究、风沙运动的风洞实验及高精度数据处理方法、野外沙尘暴测试系统的研制与调试以及实测数据分析等开展了深入研究,获得了一系列规律性的研究成果。其研究结果在国际国内学术期刊上发表后,受到包括《Nature》等著名学术期刊上的颗粒物理、地学、大气、太空科学和医药等非力学学科的国际学者的广泛引用,并多次应邀在国际学术会议上做大会邀请报告。相关的部分研究成果于2006年获甘肃省科技进步一等奖和2007年获国家科技进步二等奖(郑晓静:2/10;周又和:7/10)。由郑晓静教授独立完成的英文学术专著《Mechanics of Wind-Blown Sand Movements》于2009年作为环境科学与工程的系列丛书由Springer Verlag出版。与此同时,一批年轻学术骨干得以成长,包括黄宁教授、武生智教授、武建军教授、谢莉副教授等人,其中,黄宁教授于2006年入选教育部新世纪优秀人才支持计划。在郑晓静教授的指导下,梁轶瑞博士自主开发出了有关风沙电场测量精度更高且能测三维分量的仪器,正在申报发明专利。在这些研究成果的支撑下,促成兰州大学力学学科于2010年经中国力学学会推荐申报的以“气候变化导致的极端事件动力学(即The dynamics of extreme events influenced by climate change)”为主题的IUTAM高级别小型学术研讨会(即IUTAM Symposium)被国际理论与应用力学联合会(IUTAM)批准,将于2013年在兰州召开。会议主席由郑晓静院士和英国剑桥大学Paul Linden教授共同担任,秘书长由教育部重点实验室副主任黄宁教授担任。

甘肃省最大的风沙力学多功能环境风洞

目前,在这两复杂力学领域已培养出博士30余人,其中部分留在本学科从事教学与科研工作,成为本学科新一代的学术骨干。

科研与人才培养硬件条件

2002-2007年期间,通过参与“985工程” 的平台建设和“211工程”的学科建设,已建立了能开展风沙环境力学、电磁结构多场耦合研究的实验平台和高性能并行计算机群等,为兰州大学力学学科的科学研究与人才培养提供了强有力的硬件支撑。目前,拥有科研用实验设备近600台件,总值2000余万元。建成了多功能环境风洞、工程与科学高性能计算中心、民勤(甘肃)风沙野外观测站、西部灾害与环境力学教育部重点实验室、兰州地球物理国家野外科学观测站(国家级台站,协同甘肃省地震局共建)等科研平台,购置与研制了高温超导磁悬浮测试系统、力磁耦合测量系统、输沙强度测量系统、粉尘仪、低温系统、幅射探测仪、植物生长仪、便携式多功能地质雷达、土壤非饱水率仪等大型科研仪器设备。2008年来的后续实验室的硬件建设已独立立项列入“211工程”三期建设和“985工程”的继续建设项目。除此之外,2005年前后新购置了总价值400余万元的本科教学实验设备。此前,兰州大学力学学科的实验设备总价值仅150万元,而且几乎都是1990年前购置的,现已基本上全部被淘汰。

美国康纳尔大学理论与应用力学系主任、航空工程系主任、美国工程院院士、电磁固体力学开创人、电磁固体力学与非线性动力学的国际知名学者F.C.Moon教授在2004年来兰州大学讲学期间,周又和教授与郑晓静教授陪同他参观力学实验室。图为周又和教授向Moon教授演示沙粒带点现象的定性方法。

结束语

本文是在应中国力学学会编撰《中国力学教育的发展》之约所撰写的“兰州大学力学学科发展概况”(周又和撰稿)的基础上而写的,除正文部分外,其余为本文所新加。对于一个学科的发展,如何评价与定位是一件看似简单而实质上很复杂的事,涉及到方方面面。这里,我们仅就与此相关的主要话题谈一点体会与思考来作为本文的结束。

1、本文标题中用“不屈的使命”这是没有问题的,这已从正文中的客观表述得到了验证。至于“辉煌的成就”之提法,我们深知这是需要界定在一定的时空范围内才能成立的。如果将其放置在国家乃至于世界范围,这些成绩只不过是几个“瞬间”冒出的“泡泡”而已。但当我们将其放置在百年兰州大学这一时空内时,我们就不难发现这些成绩还是算得上“稳定”位于学校前列的。当然,各学科有各自的特点,这不像体育比赛的项目,可以用同一把尺子去度量。这就需要我们各自去“盘点”自身的“家底”,通过总结来推进办学,本文就是在这一想法下写成的。

2、本文作为我校力学学科办学历程的总结,与大多数写史的手法相类似,即只写了成绩而没有提及办学中的经验教训。我们未能脱俗,也按这类“潜规则”进行。事实上,在办学过程中,总结人才培养、科学研究、平台建设与队伍建设以及与它们相互关联的管理等方面的经验教训可能更有利于改进我们的工作,更有利于发展。尤其对于那些由“空调”与“乱调”所形成的观念、政策、机制和体制等进行深层次的总结与改进,必将更能推动高等教育的发展。但这毕竟不是件容易的事,加之我们学院也还没有足够的积累,所以,本文没有对此进行总结。

3、我校力学学科办学已50余年,而我们学院成立还不到6年,本文以学院的名义来写似有“摘桃子”的嫌疑。应该来讲,力学学科近几年的“喷发”是这一学科长期积累的结果,是其学科带头人及教师们努力奋斗的结果,这点是确定无疑的。实际上,以力学为主的各学科发展也的确为学院赢得了良好的声誉(5年连续被学校评为优秀)。作为学校办学主体的学院,对于所属学科的办学成绩给予肯定是正常的,也是应该的。否则,就会使其学科感到是在“寂静环境”中“自娱自乐”,就会使参与者“甘坐冷板凳”的自愿奉献演变为管理层使他们“干坐”的漠视,即使他们的工作已得到国家层面上的认可也罢。当然,学院在为各学科的发展上,无论是在形成教师个人既独立又合作的科研方面,还是在学科既自主发展又相互支持方面,出台了一些有利于形成良好学术氛围的有特色的政策和措施,包括提供良好的后勤保障服务等。如,在学院成立之初,为了促进各学科教师团队的形成,在制定“岗位业绩津贴”的分配方案时,就决定将学校计算到个人的津贴直接分配到本人;当津贴超过了学校规定的部分时,由其本人直接在其小组成员内调整。学院的科研经费能由建院初年的不足500万元上升到2010年的1200万元以上,津贴分配的这一调控措施可能是主要的原因之一。又如,经学院的促进和力学的参与,土木工程学科的“防灾减灾工程及防护工程”硕士点在学院初年获批设立,地质工程学科的博士后科研流动站也于2009年获批设立,扭转了地质工程学科长期无本学科在岗教师担任博士生指导教师的局面(现已有3位),等等。

4、有关“科学研究与学科建设、人才培养的关系”一直是高等教育探讨的重要话题。总体来讲,一个学科的发展依赖于一批为此学科努力工作的教师,尤其依赖于其学科带头人的出色工作和引导,这已成大家的共识。除此之外,还特别依赖于其学科带头人的研究工作确实是在该学科完成的(这一点往往不为人所重视,似乎不成问题)。惟有如此,才可能通过其科研业绩来带动学科队伍水平的提升,培养出优秀的人才,进而来保持学科的稳定发展和可持续发展。现在,很多情况下,大家都在强调与“强手”合作来实现“跨越式发展”。这种想法是好的,但却对其自身独立发展有所忽视,往往容易被某些“聪明者”利用,成为其谋取不当利益的“漏洞”。那些对其学科发展、人才培养或队伍建设没有起到多少实质性推动作用的看似“光鲜”的“合作”科研成果,其“独立的真本事”就值得商榷。我们无疑需要合作和交流,但这种合作应该是实质性的“为我所用”,即要能促进队伍建设、人才培养与学科发展。与此同时,这种合作也不应伤害到其它学科经独立努力才取得的发展(现实中就有以合作研究成果的数量评价来冲淡独立研究成果质量的现象)。当然,成果总是多多益善,没有什么不好,但评价要客观得当。从力学学科的发展历程可以看出,这个学科独立完成的科研成绩就强有力地推动了学科发展、队伍建设和高层次人才培养。

5、如何对待与使用引进的“洋”人才和本土成长的“土”人才是近些年来高等教育探讨的又一重要话题。应该讲,如果确实是从“能力和业绩效果”方面来评估人才,就不存在这类话题(如在欧美日等西方发达国家),因为这是使用人才的正常环境。实际上,我院也一直重视与国际学术界的合作与交流,也在努力物色和引进高层次人才。如在2008年7月国家下达执行“千人计划”前夕,学校动员各学科着手物色符合条件的国外正教授,周又和院长积极响应,于8月在赴美领取国际学术奖励途径洛杉矶时,就邀请加州大学Riveriside分校机械系蒋庆教授,参与兰州大学力学学科“千人计划” 的申报。蒋教授答应并参与了当年年底在兰州大学的申报,只是后来华中科技大学校长李培根院士亲赴美国邀请他从而使他改变了申报单位,并于当年成功获批。又如,2010年我院力学教师与德国学者建立了合作研究与交流框架,德方由此合作获得了欧盟的立项支持,等等。现实中,人们经常企望以“洋”来突破“土”。当然,在中国大学工作的几乎全是中国人,即使引进的“洋”人才也多为中国人。这样,“土”人才似乎太多了,往往不被重视。与之相类似,还有所谓的“学缘结构”问题。这些似乎都成为阻碍教育与科技发展的重大问题,只要改革就可以带来学科与人才培养的大发展。事实上,这是将问题简单化了,是只知国际一流办学之皮毛、没有认真掌握其实质精髓的一知半解,甚至是“形似而实不是”的“简单”模仿办学。我国著名力学家钱学森是先“土”后“洋”再回国服务的享誉国际的一流杰出领军科学家,他的“世纪之问”是值得我们深思的。可见,即使像他这样的大家,也难以实现培养国际一流领军人才的办学目标,从而可知这一使命之艰巨。与评价其它事物一样,这是一个复杂的多维度问题,特别是如何确定评价标准。事实上,“洋”人才与“土”人才各自既没有都好,也没有都不好,不能“一刀切”、绝对化。我院力学学科的发展就再好不过地证明了“土”中也有好的这一事实。我们办学,是否应在立足本土的基础上坚持“土”“洋”并重(包括环境与氛围,精神的与物质的),并通过探索能促进学科发展的有效途径来实现高水平人才培养的目标呢?这不仅值得我们关注与思考,更需要通过不断的成功实践来推进。

上一篇:镇推普周活动方案下一篇:当前中国安全形势论文