减速箱体课程设计

2024-05-02

减速箱体课程设计(通用6篇)

篇1:减速箱体课程设计

河南理工大学

目录

前言..................................................错误!未定义书签。1.产前准备............................................错误!未定义书签。1.1年生产纲领.........................................错误!未定义书签。1.2生产条件............................................................3 1.3零件工艺分析.......................................错误!未定义书签。2.夹具结构设计.........................................................5 2.1定位机构............................................................5 2.2夹紧机构............................................................6 2.3机床夹具的总体设计图................................................8 2.4 绘制夹具装配图.....................................................9 3.定位误差设计........................................................11 3.1误差分析...........................................................11 3.1.1定位误差.........................................................11 3.1.2产生定位误差的原因...............................................11 结论..................................................................13 致谢..................................................................14 参考文献..............................................................15

河南理工大学

前言

机械制造技术基础是机械设计制造及其自动化(或机械工程及自动化)专业的一门重要的专业基础课。

机械设计是机械工程的重要组成部分,是决定机械性能的最主要因素。由于各产业对机械的性能要求不同而有许多专业性的机械设计。

在机械制造厂的生产过程中,用来安装工件使之固定在正确位置上,完成其切削加工、检验、装配、焊接等工作,所使用的工艺装备统称为夹具。如机床夹具、检验夹具、焊接夹具、装配夹具等。

机床夹具的作用可归纳为以下四个方面:

1.保证加工精度

机床夹具可准确确定工件、刀具和机床之间的相对位置,可以保证加工精度。

2.提高生产效率

机床夹具可快速地将工件定位和夹紧,减少辅助时间。3.减少劳动强度

采用机械、气动、液动等夹紧机构,可以减轻工人的劳动强度。

4.扩大机床的工艺范围

利用机床夹具,可使机床的加工范围扩大,例如在卧式车床刀架处安装镗孔夹具,可对箱体孔进行镗孔加工。

机械制造装备设计课程设计是机械设计中的一个重要的实践性教学环节,也是机械类专业学生较为全面的机械设计训练。其目的在于:

1.培养学生综合运用机械设计基础以及其他先修课程的理论知识和生产实际知识去分析和解决工程实际问题的能力,通过课设训练可以巩固、加深有关机械课设方面的理论知识。

2.学习和掌握一般机械设计的基本方法和步骤。培养独立设计能力,为以后的专业课程及毕业设计打好基础,做好准备。

3.使学生具有运用标准、规范手册、图册和查询有关设计资料的能力。

我国的装备制造业尽管已有一定的基础,规模也不小,实力较其它发展中国家雄厚。但毕竟技术基础薄弱,滞后于制造业发展的需要。我们要以高度的使命感和责任感,采取更加有效的措施,克服发展中存在的问题,把我国从一个制造业大国建设成为一个制造强国,成为世界级制造业基础地之一。

河南理工大学

1.产前准备

1.1年生产纲领

工件的年生产量是确定机床夹具总体方案的重要依据之一。如工件的年生产量很大,可采用多工件加工、机动夹紧或自动化程度较高的设计方案,采用此方案时,机床夹具的结构较复杂,制造成本较高;如工件的年生产量不大,可采用单件加工,手动夹紧的设计方案,以减小机床夹具的结构复杂程度及夹具的制作成本。如5万件以上夹具复杂用全自动化的设备,2000件小批量生产用手动设备。

1.2生产条件

1、卧式铣床:X6012、X60(6H80Γ)、X60W(6H80)、X602、X61(6H81Γ)、X6H81、X6030、X6130、X2、(6H82Γ)、X62W(6H82)、X6232、X6232A、X63、(6H83Γ)X63W、6H83Y、6H83、B1-169A、6H81A、FU2A、4FWA、FA5H、FA5U。

2、立式铣床:X50、X51(6H11)、X52、X52k(6H12)、X53、X53k(6H13)、X53T(FA5V)、X5430A、X50T、X5350、XS5040、X518、6П

10、F1-250、F2-250、FA4AV、652、VF222、FSS、FB40V、6H13П,FYA41M、4MK-V、UF/05-135、6A54。

3、数控立式铣床:XsK5040Ⅲ。

4、万能工具铣:x8119(678M)、x8126(679)、x8140、680。(1)台式铣床:小型的用于铣削仪器、仪表等小型零件的铣床。

(2)悬臂式铣床:铣头装在悬臂上的铣床,床身水平布置,悬臂通常可沿床身一侧立柱导轨作垂直移动,铣头沿悬臂导轨移动。

(3)滑枕式铣床:主轴装在滑枕上的铣床,床身水平布置,滑枕可沿滑鞍导轨作横向移动,滑鞍可沿立柱导轨作垂直移动。

(4)龙门式铣床:床身水平布置,其两侧的立柱和连接梁构成门架的铣床。铣头装在横梁和立柱上,可沿其导轨移动。通常横梁可沿立柱导轨垂向移动,工作台可沿床身导轨纵向移动。用于大件加工。

(5)平面铣床:用于铣削平面和成型面的铣床,床身水平布置,通常工作台沿床身导轨纵向移动,主轴可轴向移动。它结构简单,生产效率高。

(6)仿形铣床:对工件进行仿形加工的铣床。一般用于加工复杂形状工件。

河南理工大学

1.3零件工艺分析

本次课设是要为左支撑座设计一个的夹具完成Φ36的镗削加工,最终实现将工件定位,更加精确和方便的完成镗削工作,并保证能夹紧工件,夹紧力要适中,不要使工件变形,又能保证工件所要求的加工精度。

图1-3-1

零件图标出了工件的尺寸、形状和位置总体要求,它决定了工件在机床夹具中的放置方法,是设计机床夹具总体结构的依据,本工件放置方法应如图1-3-1所示。工序图给出了零件本工序的工序基准、已加工表面、待加工表面,以及本工序的定位、夹紧原理方案。工件的工序基准、已加工表面决定了机床夹具的方位方案,如选用平面定位;定位方案的选择依据六点定位原理和采用的机床加工方法,定位方案不一定要定六个自由度,但要完全定位。工件的待加工表面是选择机床、刀具的依据。确定夹紧机构要依据零件的外型尺寸,选择合适的定位点,确保夹紧力安全、可靠同时夹紧机构不能与刀具的运动轨迹相冲突。

河南理工大学

2.夹具结构设计

2.1定位机构

图2-1-1定位平面

在夹具设计中,若定位方案不合理,工件的加工精度就无法保证。工作定位方案的确定是夹具设计中首先要解决的问题。

根据工序图给出的定位元件方案,按有关标准正确选择定位元件或定位的组合。在机床夹具的使用过程中,工件的批量越大,定位元件的磨损越快,选用标准定位元件增加了夹具零件的互换性,方便机床夹具的维修和维护。

设计夹具是原则上应选该工艺基准为定位基准。无论是工艺基准还是定为基准,均应符合六点定位原理。

由于该零件的加工是镗Φ36孔并以下表面作为定位面,属面定位类型,因此本次设计采用的定位机构主要以支撑钉为主。三个支承钉组成的大平面限制三个自由度,两个支承钉限制两个自由度,一个支承钉限制一个自由度。装夹工件时,通过旋转螺母使压板移动压紧工件。

河南理工大学

2.2夹紧机构

图2-2-1工件放置方式

1.夹紧的目的:使工件在加工过程中保持已获得的定位不被破坏,同时保证加工精度。.夹紧力的方向的确定:

1)夹紧力的方向应有利于工件的准确定位,而不能破坏定位,一般要求主夹紧力应垂直于第一定位基准面。

2)夹紧力的方向应与工件刚度高的方向一致,以利于减少工件的变形。

3)夹紧力的方向尽可能与切削力、重力方向一致,有利于减小夹紧力。.夹紧力的作用点的选择:

1)夹紧力的作用点应与支承点“点对点”对应,或在支承点确定的区域内,以避免破坏定位或造成较大的夹紧变形。

2)夹紧力的作用点应选择在工件刚度高的部位。

3)夹紧力的作用点和支承点尽可能靠近切削部位,以提高工件切削部位的刚度和

河南理工大学

抗振性。

4)夹紧力的反作用力不应使夹具产生影响加工精度的变形。

4.选择夹紧机构:

设计夹紧机构一般应遵循以下主要原则: 1)夹紧必须保证定位准确可靠,而不能破坏定位。2)工件和夹具的变形必须在允许的范围内。

3)夹紧机构必须可靠。夹紧机构各元件要有足够的强度和刚度,手动夹紧机构 4)必须保证自锁,机动夹紧应有联锁保护装置,夹紧行程必须足够。5)夹紧机构操作必须安全、省力、方便、迅速、符合工人操作习惯。

6)夹紧机构的复杂程度、自动化程度必须与生产纲领和工厂的条件相适应。选用压板机构来对被加工工件进行夹紧。

图2-2-2夹紧机构

河南理工大学

2.3夹具体的总体设计图:

图2-3-1总体图

河南理工大学

2.4绘制夹具装配图

1.装配图按2:1的比例绘制,用局部剖视图和半剖视图完整清楚地表示出夹具的主要结构及夹具的工作原理。

2.视工件为透明体,用双点划线画出主要部分(如轮廓、定位面、夹紧面和加工表面)。画出定位元件、夹紧机构、导向装置的位置。3.按夹紧状态画出夹紧元件和夹紧机构。

4.画出夹具体及其它联接用的元件(联接体、螺钉等),将夹具各组成元件联成一体。

此机床夹具要用到的零件如下:(1)夹具体

(2)支承钉

(3)镗套

(4)六角螺母

(5)螺柱

(6)垫圈

(7)压板

(8)圆柱销

河南理工大学

(9)紧定螺钉

5.标注必要的尺寸、配合、公差等

(1)夹具的外形轮廓尺寸,所设计夹具的最大长、宽、高尺寸。

(2)夹具与机床的联系尺寸,即夹具在机床上的定位尺寸。如车床夹具的莫氏硬度、铣床夹具的对定装置等。

(3)夹具与刀具的联系尺寸,如用对刀块塞尺的尺寸、对刀块表面到定位表面的尺寸及公差。

(4)夹具中所有有配合关系的元件间应标注尺寸和配合种类。

(5)各定位元件之间,定位元件与导向元件之间,各导向元件之间应标注装配后的位置尺寸和形位公差。

6.夹具装备图上应标注的技术要求(1)定位元件的定位面间相互位置精度。

(2)定位元件的定位表面与夹具安装基面、定向基面间的相互位置精度。(3)定位表面与导向元件工作面间的相互位置精度。(4)各导向元件的工作面间的相互位置精度。

(5)夹具上有检测基准面的话,还应标注定位表面,导向工作面与该基准面间的位置精度。

对于不同的机床夹具,对于夹具的具体结构和使用要求,应进行具体分析,订出具体的技术要求。设计中可以参考机床夹具设计手册以及同类的夹具图样资料。7.对零件编号,填写标题栏和零件明细表:

每一个零件都必须有自己的编号,此编号是唯一的。在工厂的生产活动中,生产部件按零件编号生产、查找工作。

完整填写标题栏,如装配图号、名称、单位、设计者、比例等。

完整填写明细表,一般来说,加工工件填写在明细表的下方,标准件、装配件填写在明细表的上方。注意,不能遗漏加工工件和标准件、配套件。8.机床夹具应满足的基本要求包括下面几方面:

1)保证加工精度 这是必须做到的最基本要求。其关键是正确的定位、夹紧和导向方案,夹具制造的技术要求,定位误差的分析和验算。

2)夹具的总体方案应与年生产纲领相适应 在大批量生产时,尽量采用快速、高效的定位、夹紧机构和动力装置,提高自动化程度,符合生产节拍要求。在中、小批量生产

河南理工大学

时,夹具应有一定的可调性,以适应多品种工件的加工。

3)安全、方便、减轻劳动强度 机床夹具要有工作安全性考虑,必要时加保护装置。要符合工人的操作位置和习惯,要有合适的工件装卸位置和空间,使工人操作方便。大批量生产和工件笨重时,更需要减轻工人劳动强度。

4)排屑顺畅 机床夹具中积集切屑会影响到工件的定位精度,切屑的热量使工件和夹具产生热变形,影响加工精度。清理切屑将增加辅助时间,降低生产率。因此夹具设计中要给予排屑问题充分的重视。

5)机床夹具应有良好的强度、刚度和结构工艺性 机床夹具设计时,要方便制造、检测、调整和装配,有利于提高夹具的制造精度。

3.定位误差设计

3.1误差分析

3.1.1定位误差

工件的加工误差,是指工件加工后在尺寸,形状和位置三个方面偏离理想工件的大小,它是由三部分因素产生的: 1)工件在夹具中的定位、夹紧误差。

2)夹具带着工件安装在机床上,夹具相对机床主轴(或刀具)或运动导轨的位置误差,也称对定误差。

3)加工过程中误差,如机床几何精度,工艺系统的受力、受热变形、切削振动等原因引起的误差。

其中定位误差是指工序基准在加工方向上的最大位置变动量所引起爱的加工误差。

3.1.2产生定位误差的原因 1.基准不重合来带的定位误差:

夹具定位基准与工序基准不重合,两基准之间的位置误差会反映到被加工表面的位置上去,所产生定位误差称之为基准转换误差。2.间隙引起的定位误差

在使用心轴、销、定位套定位时,定位面与定位元件间的间隙可使工件定心不准产生定位误差。

河南理工大学

3.与夹具有关的因素产生的定位误差

1)定位基准面与定位元件表面的形状误差。

2)导向元件、对刀元件与定位元件间的位置误差,以及其形状误差导致产生的导向误差和对刀误差。

3)夹具在机床上的安装误差,即对定误差导致工件相对刀具主轴或运动方向产生的位置误差。

4)夹紧力使工件与定位元件间的位置误差,以及定位元件、对刀元件、导向元件、定向元件等元件的磨损。

河南理工大学

结论

为期两周的专用夹具课程设计已经接近尾声,回顾整个过程,在老师的指导下,顺利完成了这次课程设计,专用夹具课程设计作为机械装备制造课程的重要环节,使理论与实践更加接近,加深了理论知识的理解,强化了生产实习中的感性认识。

首先,我觉得老师给我们的课程设计是十分必要的,这不仅可以提起我们对这门课的学习兴趣,同时还可以在专业上用实践锻炼一下我们,使我们不但不在对所学专业感到陌生,而且还可以培养大家的积极性。

其次,我觉得应该培养我们同学之间精神,虽然我们的题目不尽相同,但是在设计的过程中,我们都互相鼓励,互相帮助着,更好的发挥我们的特长。

回顾起此课程设计,至今我仍感慨颇多,从理论到实践,在这段日子里,可以说得是苦多于甜,但是可以学到很多很多的东西,同时不仅可以巩固了以前所学过的知识,而且学到了很多在书本上所没有学到过的知识。通过这次课程设计使我懂得了理论与实际相结合是很重要的,只有理论知识是远远不够的,只有把所学的理论知识与实践相结合起来,从理论中得出结论,才能真正融入今后的工作中,从而提高自己的实际动手能力和独立思考的能力。在设计的过程中遇到问题,可以说得是困难重重,但可喜的是最终都得到了解决。

此次设计也让我明白了思路即出路,有什么不懂不明白的地方要及时请教或上网查询,只要认真钻研,动脑思考,动手实践,就没有弄不懂的知识,收获颇丰。

河南理工大学

致谢

通过本次课题设计,我在赵老师的精心指导和严格要求下,获得了丰富的理论知识,极大地提高了实践能力,装备制造领域这对我今后进一步学习装备制造、结构设计方面的知识有极大的帮助。

首先我要感谢我的老师在课程设计上给予我的指导、提供给我的支持和帮助,这是我能顺利完成这次报告的主要原因,更重要的是老师帮我解决了许多技术上的难题,让我能把系统做得更加完善。在此期间,我不仅学到了许多新的知识,而且也开阔了视野,提高了自己的设计能力。

其次,我要感谢帮助过我的同学,他们也为我解决了不少我不太明白的设计和结构方面的难题。同时也感谢老师和同学们为我提供良好的做设计的环境。

最后再一次感谢所有在设计中曾经帮助过我的良师益友和同学,在此,忠心感谢赵老师的精心讲解和认真答疑,以及同学们的耐心指导和支持。

河南理工大学

参考文献

[1] 作者:吴宗泽,罗圣国,书名《机械设计课程设计手册》,出版者:高等教育出版社,出版年:1999,引用部分起止页:37~46。

[2] 作者:李庆余,书名《机械制造装备设计》,出版者:机械工业出版社,出版年:2008年,版次:2版

[3] 作者:张海华,书名《机械制造装备设计指导书》,出版者:机械工程系,引用部分起止页:44~46页。

[4] 作者:薛源顺,书名《机床夹具图册》,出版者:机械工业出版社,出版年2003年,版次:1版

篇2:减速箱体课程设计

本文通过对齿轮减速箱体的工艺分析,正确处理加工中的装夹,制定合理的加工路线,从而完成了产品的加工,并达到了质量要求。

关键词:箱体;加工;装夹

引言

图1为一个齿轮减速箱体零件的加工图,是广西南宁万昌机械制造有限公司委托本人制定加工工艺。

该零件的材料为HT200,加工数量为100个,该箱体是机床排屑器上的变速装置,结构复杂,内部呈腔型,主要的加工位置为平面M和各孔系,并且面和孔之间有相对较高的要求:1、平面M是加工中的设计基准,需要有较的高精度和表面粗糙度。

2、本箱体中的孔系主要用来安装轴承,为了保证轴的回转精度,孔的尺寸精度分别为IT7和IT9,表面粗糙度为Ra1.6。

同时两边的轴心线与A-B基准的平行度公差为0.02mm。

1.工艺分析

齿轮减速箱体由于内腔和外形结构复杂,因此毛坯选择铸造成型。

在铸造时由于存在内应力,需要采用人工时效消除毛坯里面残留的内应力,防止产生加工变形。

然后在加工中心上进行粗、精加工平面和孔系,钻好孔和攻好螺纹孔。

接下来在钳工台上去除毛刺。

然后在清洗机上清洗。

最后送检。

加工中心上是工序最复杂的时候,是决定箱体能否达到合格尺寸的关键一步,因此我们把加工步骤具体分为装夹、粗加工、精加工阶段,合理完成箱体的实际加工。

2.加工步骤

2.1装夹

采用螺钉和压板装夹工件,工件的M平面先加工完毕,以它为定位面,首先轻压工件,用划针根据F面找正工件,使F面与机床导轨运动方向平行,然后用螺钉和压板把工件压紧在工作台上。

工件装夹后,以?90圆台的外圆,找正主轴位置,确定工件原点的偏移值量,同时完成原点偏移量的设定。

2.2粗加工

粗加工按以下顺序进行:

2.2.1以轴孔为基准首先铣削两个凸缘的端面,选用?80mm的面铣刀,转速为300r/min,进给量为60mm/min;

2.2.2钻?35的孔,留0.5mm的余量。

先加工正面,再转动工作台180度。

加工另外一面。

钻孔的转速选择为600r/min,进给量为60mm/min;

2.2.3粗镗2x45H7,留0.5mm的余量。

转动工作台180度,粗镗另外一边的2x45H7。

加工时的转速为300r/min,进给量为60mm/min

2.2.4粗镗2x58H9的内孔,留0.5mm的余量。

加工时的转速为300r/min,进给量为60mm/min;

2.2.5钻2x?18的内孔,加工时的转速为600r/min。

进给量为60mm/min;

2.2.6钻?90圆台上4XM8处的螺纹内孔(共8处),转速为700r/min,进给量为60mm/min。

到此完成所有的粗加工。

2.3精加工

精加工时基准的选择非常重要,为了保证加工精度,考虑基准重合原则.本箱体的设计基准是上盖面、凸台面及一侧外壁。

根据基准重合的原则,选设计基准为精基准。

精加工顺序:

2.3.1先面后孔。

先精加工两处?90的平面,能够为孔加工提供可靠的定位基准。

同时由于箱体是浇铸类的零件,先加工面也可以去除铸件毛坯表面的凹凸不平、砂孔等缺陷,防止加工时刀具产生大的`磨损或倾斜,为后续加工奠定了基础。

2.3.2先基准面,后其他面,基准先行。

该箱体在精加工时有A、B两个基准,因此先半精镗和精镗正、反两面?35H7的内孔至合格尺寸。

加工时的转速为100r/min,进给量为40mm/min。

然后半精镗和精镗正面的2x45H7内孔至合格尺寸。

加工时的转速为100r/min,进给量为40mm/min,再转动工作台180度,加工另外一面的2x45H7内孔至合格尺寸;接着半精镗和精镗2x58H9的内孔至合格尺寸。

加工时的转速为100r/min,进给量为40mm/min。

2.3.3先主后次。

箱体上用于紧固的螺孔、小孔一般属于次要表面。

因为这些次要孔往往要依据主要表面(轴孔)定位,所以这些螺孔的加工应在主要轴孔加工后进行。

否则会使主要孔的精加工产生断续切削和振动,影响主要孔的加工质量。

因此把攻两处4xM8的螺纹放在最后。

3.加工中的难点分析与处理

在铣削平面和车削孔系时容易产生振动,引起圆度误差、同轴度误差、孔和面的垂直度误差,同时表面粗糙度也较差。

在加工中我们采取一些方法解决了以上问题。

3.1回转工作台中心不准

在卧式加工中心上装夹时,由于采用的是回转工作台,一面加工完成后通过指令,让机床的回转工作台转动180度,然后再加工箱体的另外一面。

因此箱体各孔系的同轴度依赖着回转工作台。

因此在加工前我们须对工作台的X向、Y向、Z向三个方向回转中心进行测量和调整,保证工件的加工精度。

测量和调整有三种方法:第一种为心轴、量块配合百分表测量;第二种为心轴、直角尺配合百分表测量;第三种为试镗的方法。

前面两种是机床静止时候测量的,精度不是很准确。

我们采用前两种方法结合然后进行试切,先在工件的一端进行试切,然后工作台回转180度,再进行试切。

结合两边的差值进行补偿。

这样就可以保证工件加工的精度。

3.2箱体加工时刚性较差

齿轮箱体是中空类零件,在加工时容易产生振动,我们在夹紧的时候增加定位地方的支撑点,在箱体内部增加支撑杆,增加箱体两侧的刚性。

合理选择正确的铸铁刀片减少零件的变形。

最终保证工件加工的精度。

4.结束语

通过实践证明,我们通过此种加工方案,合理地选用刀具和切削用量,不但成功完成了齿轮箱体的加工,而且能够达到图纸的要求。

该方案大大缩短了工艺流程、减少了劳动强度、保证了加工精度、提高了生产效率。

值得在箱体类零件加工中推广。

参考文献:

[1]韩鸿鸾.《数控铣工/加工中心操作工全技师培训教程》,化学工业出版社,.8.

篇3:减速箱体课程设计

在制定零件机械加工工艺规程时, 对产品零件图进行细致的审查, 现将其主要加工表面及位置要求分述如下:

(4) 粗糙度要求Φ40、Φ47、Φ35圆孔的内表面粗糙度要求最高, 粗糙度Ra为1.6um。

2 确定减速器箱体的生产类型

机器零件的生产纲领可按下式计算:

式中:N零:机器零件的生产纲领;N:机器产品在计划期内的产量;n:每台机器产品中该零件的数量;α:备品率;β:平均废品率。

依设计题目知:该零件的产量N=5000台/年, n=1件/台, 结合生产实际, 备品率和废品率分别取10%和1%, 代入公式中得:N零5550。

该零件是机器设备上的一减速箱, 根椐文献可知其属中型零件, 生产类型为大量生产。

3 基准的选择

3.1 粗基准的选择

对于零件粗加工而言, 尽可能选择不加工表面为粗基准。而对有若干个不加工表面的工件, 则应以与加工表面要求相对位置精度较高的不加工表面作粗基准。根据这个基准选择原则, 现选取工件顶面和两个主要孔作为粗基准。

3.2 精基准的选择

根据精基准的选择原则, 主要考虑基准重合问题, 对于本零件选用箱座下表面和底座对角线上两地脚螺栓孔作精定位基准。从而避免了基准不重合造成的误差, 从便于装夹来讲也是应该的。

4 制定工艺路线

工序号1, 工序内容铸造

工序号2, 工序内容清理, 消除浇冒口, 型砂、飞边、毛刺等

工序号3, 工序内容时效处理

工序号4, 工序内容油漆, 内壁, 非加工外表面

工序号5, 工序内容钳工划各外表面加工线, 定位基准以顶面及两个主要孔40、35定位

工序号6, 工序内容粗铣底面, 定位基准以顶面及两个主要孔40、35定位

工序号7, 工序内容粗铣顶面, 定位基准底面

工序号8, 工序内容精铣顶面, 定位基准底面

工序号9, 工序内容洗底座四个侧面, 定位基准顶面

工序号10, 工序内容粗铣底座两侧上表面, 定位基准底面及一个侧面

工序号11, 工序内容粗铣40和35孔侧面, 定位基准底面及一个侧面

工序号12, 工序内容半精铣40和35孔侧面, 定位基准底面及一个侧面

工序号13, 工序内容粗镗42、47、75三个孔, 定位基准以高15的台面及两个侧面

工序号14, 工序内容半精镗47孔, 定位基准以高15的台面及两个侧面

工序号15, 工序内容精镗47孔, 定位基准以高15的台面及两个侧面

工序号16, 工序内容钻、铰8孔, 定位基准底面、47孔及一侧面定位

工序号17, 工序内容粗镗35孔, 定位基准底面、47孔及一底面8孔定位

工序号18, 工序内容半精镗35孔, 定位基准底面、47孔及一底面8孔定位

工序号19, 工序内容精镗35孔, 定位基准底面、47孔及一底面8孔定位

工序号20, 工序内容粗镗40孔, 定位基准底面、47孔及一底面8孔定位

工序号21, 工序内容半精镗40孔, 定位基准底面、47孔及一底面8孔定位

工序号22, 工序内容精镗40孔, 定位基准底面、47孔及一底面8孔定位

工序号23, 工序内容钻6x9孔, 锪6x14孔, 定位基准顶面

工序号24, 工序内容钻顶面四个螺纹孔, 定位基准底面及两个侧面

工序号25, 工序内容钻凸缘端面18个螺纹孔, 定位基准底面及一个侧面

工序号26, 工序内容攻所有M5螺纹, 定位基准底面、顶面、侧面

工序号27, 工序内容钳工修底面四个锐角及去毛刺

工序号28, 工序内容检验

工序号29, 工序内容入库

5 切削用量、时间额定的计算

切削用量的计算

1) 工序6:粗铣底面 (硬质合金三面韧铣刀)

(1) 背吃刀量的确定:取ap=3mm。

(2) 进给量的确定:根据参考选取fz=0.12mm/z。

(3) 切削速度的确定:根据参考文献取v=50m/min。

(4) 铣削速度计算:

2) 工序7:精铣顶面 (高速钢三面韧铣刀)

(1) 背吃刀量的确定:取ap=2mm。

(2) 进给量的确定:根据参考文献选取fz=0.1mm/z。

(3) 切削速度的确定:根据参考文献取v=80m/min。

(4) 铣削速度计算:

摘要:减速器是原动机和工作机之间的独立的闭式传动装置, 用来降低转速和增大转矩, 以满足工作需要。而减速箱的工艺规程设计也是非常重要的, 它是告诉人们怎样就行对减速箱体的加工。从零件的分析到工艺路线的确定再到切削用量、时间额定的计算等等, 这都是一个机械设计人员都要必须掌握的基本知识。

篇4:减速箱体课程设计

摘要:文章介绍了连杆凸轮减速器的工作原理和结构,利用PROE建立连杆凸轮减速器箱体的三维模型,将其导入ANSYS,对箱体进行模态分析,得到10阶固有频率和相应的振型,从相对位移云图中可以看出在振动时振动位移最大的部位出现在离安装部位较远的突出凸缘,为连杆凸轮减速器噪音分析奠定基础。

关键词:连杆凸轮减速器;箱体;模态分析;ANSYS;固有频率;振型

中图分类号:TN249 文献标识码:A 文章编号:1009-2374(2013)02-0016-04

连杆凸轮减速器具有传动效率高、承载能力大、出轴形式灵活、刚性好、性价比高等特点。该减速器在一定程度上吸纳了渐开线齿轮减速器和摆线针轮减速器的优点。但是,该样机在试验中所产生的噪音比较大,而噪音是由于机器的振动所产生的。振动现象是机械结构系统经常遇到的问题之一。对于大部分系统来说,都不希望有振动的发生,振动会造成结构的共振或结构疲劳而破坏。然而,由于结构本身具有某种程度的刚性,所以其固有振动频率及振型是结构必须了解的特性之一,进而避免外力频率和结构的固有频率相同或接近,以防止共振现象的发生。

本文从模态分析的角度、利用工程分析软件ANSYS进行数值模拟分析,以期得到连杆凸轮减速器箱体的固有频率和相应的振型,从而为更深入的噪声分析研究做一个基础性的工作。

1 连杆凸轮减速器的工作原理及结构设计

1.1 工作原理

图1是自由度为1的连杆凸轮组合机构。即将平行四边形机构ABCD的连杆BC与差动凸轮机构的凸轮1(或者推杆2)制成一个构件,凸轮1(或者推杆2)的几何中心位于连杆的铰链B处,与凸轮接触的摆动推杆2(或者凸轮1)的回转中心在固定铰链A处,摆动推杆2(或者凸轮1)的回转中心与凸轮1(或者推杆2)的几何中心的距离等于主从动曲柄3、5的长度。

1.凸轮 2.摆动推杆 3.凸轮 4.机架 5.曲柄

图1 连杆凸轮减速器的工作原理

由于在平行四边形机构ABCD中,连杆作平动,其上各点的轨迹形状、速度、加速度均相等,所以固连于连杆BC上的凸轮1(或者推杆2)的几何中心B点的轨迹是以A为圆心,以曲柄长度为半径的圆。这样设计的目的是当曲柄3带动连杆上的凸轮1(或者推杆2)作圆平面运动,其廓线应推动摆动推杆2(或者凸轮1)匀角速转动某一给定角度,实现减速传动。

在图1所示的机构中,当曲柄5带动与连杆BC固联的凸轮1作圆平面运动时,凸轮1上的廓线推动推杆2转动某一给定角度,只要凸轮廓线设计恰当,则推杆2可以实现等速转动。为了使传动连续进行,借用一齿差原理即给凸轮基圆上一周均匀分布Z1个廓线,推杆构件2上一周均布Z2个推杆,Z2=Z1+1,组成特殊的一齿差高副,从而实现连续等速传动。

1.2 结构设计

为了实现上述组合机构运动方案,同时尽可能地减小结构尺寸,确定的连杆凸轮减速器结构如图2所示。连杆凸轮减速器主要由主动曲柄1、推杆2、凸轮连杆7、从动曲柄3、输出轴5和箱体(机盖)共六部分组成。其主体结构为两根高速轴,它们对称地布置在低速轴(输出轴)的两侧。

1.输入轴 2.滚子 3.凸轮 4.均载装置 5.输出轴 6.高速轴 7.从动曲柄 8.推杆 9.主动曲柄

图2 连杆凸轮减速器的结构

2 模态分析的理论基础

模态分析是以振动理论为基础,以模态参数为目标的分析方法,是研究系统物理参数模型、模态参数模型和非参数模型的关系,并通过一定的手段确定这些系统模型的理论及应用的一门学科。模态分析是研究结构动力特性的一种近代方法,是系统辨别方法在工程振动领域中的应用。模态是机械结构的固有振动特性,每一个模态具有特定的固有频率、阻尼比和模态振型。

由弹性力学有限元法可知,系统的运动方程为:

(1)

式(1)中,、、分别为节点位移向量、速度向量和加速度向量;F(t)为节点动载荷向量;[M]、[K]、[C]分别为系统总体质量矩阵、刚度矩阵、阻尼矩阵。

若无外力作用,即F(t)=0,则得到系统的自由振动方程。在求结构自由振动的频率和振型即求结构的固有频率和固有振型,阻尼对它们影响不大,因此,阻尼项可以略去,这时无阻尼自由振动的运动方程为:

(2)

结构的自由振动可视为一系列简谐振动的迭加,因而可以假设(2)式的解的形式为:

(3)

式(3)中,[]为振幅列阵;为简谐振动频率;为时间变量。

将(3)代入式(2)并消除因子,得到无阻尼模态分析求解的基本方程:

(4)

式(4)中,[K]为刚度矩阵振型;为第i阶模态的振型向量(特征向量);i为第i阶模态的固有频率(特征值);[M]为质量矩阵。

上式有解的条件为:

(5)

式(5)称为结构的特征方程,求解该特征方程可得到n个特征值,,…,,以及对应每个特征值的n个线性无关的n维特征列向量,,

…,。

3 连杆凸轮减速器箱体的模态分析过程和结果

ANSYS软件是一个功能强大而灵活的大型通用有限元分析软件,能够进行包括结构、热、流体、声场、电磁场等多学科的研究,其中模态分析包括建模、划分网格、施加载荷、求解、扩展模态和查看结果等几个步骤。

3.1 建立箱体的模型

据所给出的零件图,在三维软件Pro/E中分别建立机座和机盖零件的三维模型,再装配在一起,得到的三维模型图如图3所示,并将该装配文件“.asm”格式以保存副本的方式保存为“.igs”格式。要特别注意的是,为了使导入到ANSYS中的模型能够被ANSYS所识别,对于零件上的一些小结构如倒角、圆角、拔模斜度等将被忽略。

3.2 定义单元及相关参数

定义单元类型为“Solid186”,该单元是一个高阶3维20节点固体结构单元,该单元通过20个节点来定义,每个节点有3个沿着x、y、z方向平移的自由度。SOLID186具有二次位移模式,可以更好地模拟不规则的网,例如通过不同的CAD/CAM系统建立的模型。

根据箱体的材料为HT200,查阅相关资料,得到该材料的弹性模量E=120GPa、泊松比μ=0.25、密度ρ=7340kg/m3。这里值得注意的是,PROE和ANSYS这两种软件的默认长度单位不同,PROE在建立零件三维模型时的单位是“mm”,ANSYS中的单位是“m”;当从PROE中将模型导入到ANSYS中时,单位变得和PROE中的一样,都是“mm”了,如果这时输入的是“1.2e11”和“7.34e3”,就会出现计算出的固有频率非常小,显然这和实际是不相符的。

经过单位换算:E=120GPa=1.2e11N/m2=

1.2e11×e-6N/mm2=1.2e5N/mm2

ρ=7340kg/m3=7.34e3kg/m3=7.34e3×e-9kg/mm3=7.34e-6kg/mm3

图3 机盖、机座的装配模型 图4 划分网格后的箱体

3.3 划分网格

连杆凸轮减速器箱体采用水平剖分式,由机座和机盖组成,由灰铸铁铸造而成。由于采用多个螺栓连接使机盖机座之间不会产生相对移动,因而建立箱体整体式的模型,所以,导入后用布尔运算中的“和”运算将机盖和机座合二为一,成为一个整体,然后进行划分网格,对箱体模型共划分了134246个单元,得到如图4所示的网格模型。

3.4 施加约束及指定分析类型并求解

连杆凸轮减速器箱体在实际安装中是联接到固定的工作台上。为了能够准确地反映连杆凸轮减速器箱体的实际状态,箱体的边界条件取为箱体底面和与工作台联接的4个螺栓孔以及台阶孔的台阶面,它们的自由度为全部约束,即“ALL DOF”。

指定分析类型为“modal”,方法为“Block Lanczos”,设置为10阶扩展模态,求解并查看结果,得到连杆凸轮减速器箱体的10阶固有频率和相应的振型。

图5 输出的10阶固有频率

图6 箱体前10阶模态对应的振型

4 结语

(1)利用Pro/E建立的箱体简化模型,导入到ANSYS中进行了模态分析。

(2)利用ANSYS的模态分析模块所提供的Block lanczos方法,得到了连杆凸轮减速器箱体的10阶固有频率和相应的振型等固有振动特性。

(3)连杆凸轮减速器箱体的10阶固有频率在16.142~66.897Hz之间,随着频率的增加,振型愈复杂。

(4)在箱体的底板处于全约束的状态下,最大振动及最大相对位移主要发生在箱体的机盖上,而且在箱体上有突缘的部位,这几个部位是产生噪音的部位和最有可能被破坏的部位,为箱体的进一步深入研究奠定基础。

参考文献

[1] 张国海,王保民,张景学,等.连杆凸轮减速器的研制[J].机械工程学报,2004,40(7):171-174.

[2] 张国海,王保民.连杆凸轮减速器性能试验[J].机械传动,2010,(8):70-72.

[3] 张力.模态分析与实验[M].北京:清华大学出版社,2011:10-11.

[4] 高耀东.ANSYS机械工程应用精华30例[M].北京:电子工业出版社,2010:97-129.

[5] 任重.ANSYS实用分析教程[M].北京:北京大学出版社,2003:177-184.

[6] 徐兆华,崔志琴,张腾.基于ANSYS的6300柴油机曲轴的模态分析[J].煤矿机械,2012,(2):102-103.

[7] 北京科技大学,东北大学.材料力学[M].北京:高等教育出版社,2009.

作者简介:陈鹏飞(1974-),陕西渭南人,陕西理工学院讲师,研究方向:图学教育及机械CAD。

篇5:一级减速器课程设计

第一部分

课程设计任务书及传动装置总体设计............................................................1

一、课程设计任务书................................................................................................1

二、该方案的优缺点................................................................................................4 第二部分

电动机的选择...............................................................................................4

一、原动机选择.......................................................................................................4

二、电动机的外型尺寸(mm)..............................................................................5 第三部分

计算减速器总传动比及分配各级的传动比.....................................................6

一、减速器总传动比................................................................................................6

二、减速器各级传动比分配.................................................................................6 第四部分

V带的设计.................................................................................................6

一、外传动带选为普通V带传动..............................................................................6

二、确定带轮的结构尺寸,给制带轮零件图.............................................................8 第五部分

各齿轮的设计计算........................................................................................9

一、齿轮设计步骤....................................................................................................9

二、确定齿轮的结构尺寸,给制齿轮零件图.........................................................11 第六部分

轴的设计计算及校核计算............................................................................11

一、从动轴设计.....................................................................................................11

二、主动轴的设计..................................................................................................16 第七部分

滚动轴承的选择及校核计算........................................................................20

一、从动轴上的轴承..............................................................................................20

二、主动轴上的轴承..............................................................................................20 第八部分

键联接的选择及校核计算............................................................................21

一、根据轴径的尺寸,选择键................................................................................21

二、键的强度校核..................................................................................................21 第九部分

减速器箱体、箱盖及附件的设计计算........................................................22

一、减速器附件的选择...........................................................................................22

二、箱体的主要尺寸..............................................................................................23 第十部分

润滑与密封.................................................................................................24

一、减速器的润滑..................................................................................................24

二、减速器的密封..................................................................................................25 第十一部分

参考资料目录..........................................................................................25 第十二部分

设计小结.................................................................................................25

第一部分

传动装置总体设计

一、课程设 计任务书

1设计带式运输机传动装置(简图如下)

数据编号 1 2 3 4 5 6 7 8

运输机工作

800 600 750 600 500 700 650

700 转矩T(N·m)运输机带速

1.4

1.4

1.5

1.5

1.6 1.6

1.7

1.7 V(m/s)卷筒直径D/mm 300 300 300 300 300 300 300 300 原始数据: 工作条件:

连续单向运转,工作时有轻微振动,两班制工作(16小时/天),5年大修,运输速度允许误差为5%。课程设计内容

1)传动装置的总体设计。2)传动件及支承的设计计算。3)减速器装配图及零件工作图。4)设计计算说明书编写。

每个学生应完成:

1)部件装配图一张(A0)。2)零件工作图两张(A3)

3)设计说明书一份(6000--8000字)。本组设计数据:

第8组数据:运输机工作轴转矩T/(N.m)700

运输机带速V/(m/s)

1.70

卷筒直径D/mm

300

已给方案:外传动机构为带传动。

减速器为单级圆柱齿轮减速器。

传动装置总体设计 传动方案(上面已给定)

1)外传动为带传动。

2)减速器为单级圆柱齿轮减速器 3)方案简图如下:

3二、该方案的优缺点

该工作机有轻微振动,由于V带有缓冲吸振能力,采用V带传动能减小振动带来的影响,并且该工作机属于中小功率、载荷变化不大,可以采用V带这种简单的结构,并且价格便宜,标准化程度高,大幅降低了成本。减速器为一级圆柱齿轮减速器,原动机部分为Y系列三相交流异步电动机,减速器低速轴与工作机轴连接用的联轴器选用凸缘联轴器,滚动轴承选用深沟球轴承等。

总体来讲,该传动方案满足工作机的性能要求,适应工作条件、工作可靠,此外还结构简单、尺寸紧凑、成本低传动效率高。

第二部分

电动机的选择

一、原动机选择

选用Y系列三相交流异步电动机,同步转速1500r/min,满载转速1460r/min。

传动装置总效率:a

4a1234567

0.96

120.99

3=0.97 640.99 0.99 50.96 0.99

(见课程设计手册P5,表1-7)

73其中:1为V带的传动效率

2为Ⅰ轴轴承效率

为齿轮传动效率

4为Ⅱ轴轴承效率 5为联轴器效率 6为卷筒效率

7为卷筒轴承效率

得a0.960.990.970.990.990.960.990.86

电动机的输出功率:Pd

PPdWa

其中 PW 为工作机(即输送带)所需功率

其中:PWnwTnw9550nw7001088.246Kw 95500.961V1.70108RminD3.140.30(卷筒转速)

工作机的效率w =0.96(见课程设计手册P5,表1-7)

所以PdPWa8.2469.6Kw 0.86

取Pd11Kw

选择电动机为Y160M-4型

(见课程设计手册P167,表12-1)

技术数据:额定功率(Kw)

满载转矩(rmin)

1460

额定转矩(Nm)

2.2 最大转矩(Nm)

2.3

Y132S-4

二、电动机的外型尺寸(mm)

A:254 B:210

C:108 D:42 E:110 F:12 G:37 H:160

5K:15 AB:330 AC:325 AD:255 HD:385 BB:270 L:600(参考课程设计手册P169,表12-4)

第三部分

计算减速器总传动比及分配各级的传动比

一、减速器总传动比

ianmn1460188,表13-2)

13.52(见课程设计手册P108

二、减速器各级传动比分配

iiia12

ia13.523.384

初定:i23.38(带传动)

i14.0(单级减速器)

第四部分

V带的设计

一、外传动带选为普通V带传动

(1)确定计算功率:Pc

查表13-8得Ka1.2,故PcKaP1.211kW13.2kW

(2)选带型号 根据 Pc13.2kW,n11460r/min由图13-15查此坐标点位于窄V带选型区域处,所以选用窄V带SPZ型。

d(3)确定大、小带轮基准直径d1、6

参考图13-16及表13-9选取小带轮直径

d1125mm

d21H

(电机中心高符合要求)

从动带轮直径 did213.38125422.5mm,取d2425mm

(4)验算带速

V146012519.56ms带速在5~25 m/s范围内,合适

60100060100011nd

(5)从动轮带速及传动比

1n114604254323.n2,id2Rmini3.38d112(6)确定V带基准长度Ld和中心距a

初步选取中心距 0.7da1da2a02da1da2 所以 385a01100 取a0800mm

由式(13-2)得带长

L02a02(d1d2)(d2d1)24a0(425125)2(2800(125425))mm

248002492mm查表13-2,对SPZ型带选用Ld2500mm。再由式(: 13-6)计算实际中心距LLaa2d00(80025002492)mm804mm 2(7)验算小带轮包角1 由式(13-1)得 1180d2d1a57.315.86120 合适

(8)确定SPZ型窄V带根数Z 由式(13-15)得

ZP(PP)KKc00

L查表13-4知单根SPZ带的基本额定功率P03.28kW

查表13-6知单根SPZ带的基本额定功率的增量式P00.23kW 由1158.6查表13-7用线性插值法求得K0.95 查表13-2得KL1.07,由此可得

13.2(3.280.23)0.951.07,取4根 3.7Z

(9)求作用在带轮轴上的压力FQ

查表13-1得q=0.07kg/m,故由式13-17得单根V带的初拉力

Pc(2.51)qv2[50013.2(2.51)0.079.562]288N作用500F0zvK49.560.95在轴上的压力

FQ2ZF0sin21(24288sin158.6)N2264N

2二、确定带轮的结构尺寸,给制带轮零件图

小带轮基准直径d1125mm采用实心式结构。大带轮基准直径d2425mm采用轮辐式结构

大带轮的简图如下:

第五部分

各齿轮的设计计算

一、齿轮设计步骤

选用直齿圆柱齿轮,均用软齿面。齿轮精度用8级,轮齿表面精糙度为Ra1.6,软齿面闭式传动,失效形式为占蚀。(1)选择材料及确定许用应力

小齿轮采用

40MnB

调质,齿面硬度为

241~286HBS,Hlim1700MPa,FE1590MPa(表11-1),大齿轮用ZG35SiMn调质,齿面硬度为241~269HBS,Hlim2600MPa,FE2510MPa(表11-1),由表11-5,取SH1.15,SF1.35

[H1]Hlim1SH700MPa609MPa 1.19

[H2]Hlim2SH600MPa522MPa 1.15590MPa437MPa 1.35510MPa378MPa 1.35

[F1]

[F2]FE1SFFE2SF(2)按齿面接触强度设计

设齿轮按8级精度制造。取载荷系数K=1.5(表11-3),齿宽系数d1.0(表11-6)小齿轮上的转矩

T19.55106P610.45459.5510Nmm2.32710Nmm n1429取ZE188.9(表11-4)

d13(3ZEZH22KT1u1)[H]du5(41)188.92.5221.52.32710()mm89.4mm45221.01204 30

齿数取Z130,则Z2303.98120。故实际传动比i模数

md189.42.98

z130齿宽 bdd11.089.4mm89.4mm,取b290mm,b195mm

按表4-1取m=3mm,实际的d1zm303mm90mm,d21203mm360mm 中心距 ad1d290360mm225mm 22(3)验算轮齿弯曲强度

611-8)齿形系数

YFa12.(图

YSa11.63(图11-9)

YFa22.1

3YSa21.82

由式(11-5)

52KT1YFa1YSa121.52.3271102.61.63Fbm2z2MPa122MPa[F1]437MPa190330YFa2YSa2F2FY1222.131.82163MPa112MPa[F2]378MPa,安全 Fa1YSa12.61.(4)齿轮的圆周速度

Vπd1n16010003.1490429600002.02m/s

对照表11-2可知选用8级精度是合适的。

总结: 直齿圆柱齿轮 z130,z2120,m3

二、确定齿轮的结构尺寸,给制齿轮零件图

大齿轮示意图

第六部分

轴的设计计算及校核计算

一、从动轴设计

111、选择轴的材料

确定许用应力

选轴的材料为45号钢,调质处理。查表14-1知

强度极限B650MPa,屈服极限S360MPa,弯曲疲劳极限1300MPa,2、按扭转强度估算轴的最小直径

单级齿轮减速器的低速轴为转轴,输出端与联轴器相接,从结构要求考虑,输出端轴径应最小,最小直径为:dC3p n按扭转强度初估轴的直径,查表14-2得c=118~107,取c=112则:

从动轴: dC3p10.04mm1123mm51mm n107考虑键槽的影响以及联轴器孔径系列标准,取d55mm3、轴的结构设计

轴结构设计时,需要考虑轴系中相配零件的尺寸以及轴上零件的固定方式,按比例绘制轴系结构草图

0.015A-B0.015A-B0.011.60.062?70++0.043E0.0050.80.021?65++0.002R10.0051.61.60.060?55++0.041E0.010.012A2×M8-6H121.63.20.80.021?65++0.002?78?602×B4/12.523.R***9801003411 1)、联轴器的选择

可采用弹性柱销联轴器,查[2]表9.4可得联轴器的型号为 :

2GY7凸缘联轴器 Y55112 GBY55112-2003 主动端:Y型轴孔、A型键槽、d155mm、L112mm;从动端:Y型轴孔、A型键槽、d155mm、L112mm;

2)、确定轴上零件的位置与固定方式

单级减速器中,可以将齿轮安排在箱体中央,轴承对称布置

在齿轮两边。轴外伸端安装联轴器,齿轮靠油环和套筒实现

轴向定位和固定,靠平键和过盈配合实现周向固定,两端轴

承靠套筒实现轴向定位,靠过盈配合实现周向固定,轴通 过两端轴承盖实现轴向定位,联轴器靠轴肩平键和过盈配合 分别实现轴向定位和周向定位。

3)确定各段轴的直径

将估算轴d=55mm作为外伸端直径d1与联轴器相配(如图),考虑联轴器用轴肩实现轴向定位,取第二段直径为d2=60mm 齿轮和右端轴承从右侧装入,考虑装拆方便以及零件固定的要求,装轴承处d3应大于d2,取d3=65mm,为便于齿轮装拆与齿轮配合处轴径d4应大于d3,取d4=70mm。齿轮右端用用套筒固定,左端用轴肩定位,轴肩直径d578mm,满足齿轮定位的同时,还应满足左侧轴承的安装要求,根据选定轴承型号确定.右端轴承型号与左端轴承相同,取d665mm

4)选择轴承型号.由 表16-2及表16-4初选深沟球轴承,代号为6213,查机械设计手册可得:轴承宽度B=23,安装尺寸damin74mm,选轴肩直径d5=78mm.15)确定各段轴的长度

Ⅰ段:d1=55mm

长度取L1=100mm II段:d2=86mm

长度取 L290mm

III段直径d3=65mm,此段安装轴承,轴承右端靠套筒定位,轴承左端靠轴承盖定位初选用6213深沟球轴承,其内径为65mm,宽度为23mm,取轴肩挡圈长为10mm L3=5+10+11.5+11.5=38mm Ⅳ段直径d4=70mm,此段安装从动齿轮,由上面的设计从动齿轮齿宽b=90mm,L490585mm Ⅴ段直径d5=78mm.长度L5=12mm Ⅵ段直径d665mm,长度L624mm 由上述轴各段长度可算得轴支承跨距

L(11.5+12+45)×2=137mm

4、轴的强度校核 按弯矩复合强度计算

从动齿轮分度圆直径d2360mm,此段轴直径d70mm 1)绘制轴受力简图(如图a)

齿轮所受转矩 T9550P10.049550Nmm896Nm n107

作用在齿轮上的圆周力:Ft=2T/d=28.96105/360N4978N

径向力:Fr=Fttan200=4978×tan200 =1812N

4该轴两轴承对称,所以LALB2)求垂直面的支承反力

FAYFBY11Fr1812906N 22L68.5mm 2求水平面的支承反力

FAZFBZ11Ft4978N2489N 223)由两边对称,知截面C的弯矩也对称。截面C在垂直面弯矩为 MC1=FAy L/2=906×68.5×10=62N·m 截面C在水平面上弯矩为:

MC2=FAZ L/2=2489×68.5×103=170.5N·m 4)绘制垂直面弯矩图(如图b)

绘制水平面弯矩图(如图c)5)绘制合弯矩图

(如图d)

MC=(MC12+MC22)1/2=(622+170.52)1/2=181.4N·m 6)绘制扭矩图

(如图e)转矩:T=9550×(P/n)=896N·m 7)绘制当量弯矩图

(如图f)

截面c处最危险,如认为轴的扭切应力是脉动循环变应力,取折合系数0.6,截面C处的当量弯矩:

3Mec=[MC2+(αT)2]1/2

=[181.42+(0.6×896)2]1/2=567.4N·m 8)校核危险截面C的强度

5轴的材料选用45钢,调制处理,由表14-1查得B650MPa,由表14-3查得-1b60MPa,则

eMec567.4Pa16.6MPa1b60MPa 3390.1d0.17010∴该轴强度足够。图a--f 如下图:

二、主动轴的设计

1、选择轴的材料

确定许用应力

选轴的材料为45号钢,调质处理。查表14-1知

强度极限B650MPa,屈服极限S360MPa,弯曲疲劳极限1300MPa2、按扭转强度估算轴的最小直径

初估轴径,按扭转强度初估轴的直径,查表14-2得c=118~107,取c=112则 主动轴:dC3p10.4544mm1123mm32.5mm n429考虑到键槽对轴的削弱,取 d1.0532.5mm35mm

3、轴的结构设计

轴结构设计时,需要考虑轴系中相配零件的尺寸以及轴上零件的固定方式,按比例绘制轴系结构草图,草图类似从动轴。

确定轴上零件的位置与固定方式

单级减速器中,可以将齿轮安排在箱体中央,轴承对称布置

在齿轮两边。齿轮靠油环和套筒实现轴向定位和固定,靠平键和过盈配 合实现周向固定,两端轴承靠套筒实现轴向定位,靠过盈配合实现周向 固定,轴通过两端轴承盖实现轴向定位。4 确定轴的各段直径

初选用6209深沟球轴承,其内径为45mm, 宽度为19mm。

将估算轴d=35mm作为外伸端直径d1,取第二段直径为d2=40mm 齿轮和右端轴承从右侧装入,考虑装拆方便以及零件固定的要求,装轴承处d3应大于d2,取d3=45mm,为便于齿轮装拆与齿轮配合处轴径d4应大于d3,17

取d4=50mm。齿轮右端用用套筒固定,左端用轴肩定位,轴肩直径d558mm,满足齿轮定位的同时,还应满足左侧轴承的安装要求,根据选定轴承型号确定.右端轴承型号与左端轴承相同,取d6=45mm.选择轴承型号.由 表16-2及表16-4初选深沟球轴承,代号为6209,查机械设计手册可得:轴承宽度B=19,安装尺寸damin52mm,选轴肩直径d5=58mm.5 确定各段轴的长度

Ⅰ段:d1=35mm

长度取L1=75mm II段:d2=40mm

长度取 L278mm

III段直径d3=45mm,此段安装轴承,轴承右端靠套筒定位,轴承左端靠轴承盖定位初选用6209深沟球轴承,其内径为45mm,宽度为19mm,取轴肩挡圈长为10mm L3=5+24+19=48mm Ⅳ段直径d4=50mm,此段安装主动齿轮,由上面的设计从动齿轮齿宽b=95mm,L495590mm Ⅴ段直径d5=58mm.长度L5=10mm Ⅵ段直径d645mm,长度L610+20=30mm 由上述轴各段长度可算得轴支承跨距

L(9.5101047.5)2154mm 轴的强度校核 按弯矩复合强度计算 1)绘制轴受力简图(如图a)

齿轮所受的转矩:T=9550P/n=9550×10.4544/429Nm=232.5Nm 作用在齿轮上的圆周力:Ft=2T/d= 2232.510/905167N

径向力:Fr=Fttan200=5167×tan200 =1881N

该轴两轴承对称,所以LALB2)求垂直面的支承反力

FAYFBY11Fr1881940.5N 22L77mm 2求水平面的支承反力

FAZFBZ11Ft5167N2583.5N 223)由两边对称,知截面C的弯矩也对称。截面C在垂直面弯矩为 MC1=FAy L/2=940.5×77×10-3=72.4N·m 截面C在水平面上弯矩为:

MC2=FAZ L/2=2583.5×77×10-3=199N·m 4)绘制垂直面弯矩图(如图b)

绘制水平面弯矩图(如图c)5)绘制合弯矩图

(如图d)

MC=(MC12+MC22)1/2=(72.42+1992)1/2=212N·m 6)绘制扭矩图

(如图e)转矩:T=9550×(P/n)=232.5N·m 7)绘制当量弯矩图

(如图f)

截面c处最危险,如认为轴的扭切应力是脉动循环变应力,取折合系数0.6,截面C处的当量弯矩:

Mec=[MC2+(αT)2]1/2

=[2122+(0.6×232.5)2]1/2=254N·m 8)校核危险截面C的强度

轴的材料选用45钢,调制处理,由表14-1查得B650MPa,由表14-3查得-1b60MPa,则

eMe254Pa20.4MPa1b60MPa 0.1d30.1503109该轴强度足够

图a--f 类似从动轴,此图省略。

第七部分

滚动轴承的选择及校核计算

一、从动轴上的轴承

由初选的轴承的型号为: 6213,查表6-1(课程设计手册)可知:d=65mm,外径D=120mm,宽度B=23mm,基本额定动载荷Cr57.2kN,基本额定静载荷C0r40.0kN 极限转速6300r/min

根据设计条件要求,轴承预计寿命为Lh=5×300×16=24000h

1/fpP60n轴承基本额定动载荷为CL h6ft10转速n107r/min,ft1,(表对于球轴承3 16-8)fp1.(表516-9)1.590660107所以C2400061101/37286N7.286kN

因为Cr57.2kN,所以CCr,故所选轴承适用

二、主动轴上的轴承

由初选的轴承的型号为: 6209,查表6-1(课程设计手册)可知:d=45mm,外径D=85mm,宽度B=19mm,基本额定动载荷Cr31.5kN,基本额定静载荷C0r20.5kN 极限转速9000r/min 根据设计条件要求,轴承预计寿命为Lh=5×300×16=24000h

fpP60n1/轴承基本额定动载荷为C6Lh

ft10深沟球轴承只考虑径向载荷,则当量动载荷PFr940.5N

转速n429r/min,ft1,(表对于球轴承3 16-8)fp1.(表516-9)1.5940.560429所以C2400061101/312015N12.015kN

因为Cr57.2kN,所以CCr,故所选轴承适用

第八部分

键联接的选择及校核计算

一、根据轴径的尺寸,选择键

键1,主动轴与V带轮连接的键为:GB/T1096 键10×8×63 键2,主动轴与小齿轮连接的键为:GB/T1096 键14×9×70 键3,从动轴与大齿轮连接的键为:GB/T1096 键20×12×70

键4,从动轴与联轴器连接的键为:GB/T1096 键16×10×80

查课程设计(表4-1)

二、键的强度校核

键1,GB/T1096 键10×8×63 工作长度lLb631053mm 挤压强度p4T4232.5103MPa62.7MPa dhl358

21p70~80MPa(轮毂材料为铸铁)pp所选键的强度足够

键2,GB/T1096 键14×9×70 工作长度lLb701456mm

4T4232.5103MPa40MPa 挤压强度 pdhl50956

p125~150MPa(轮毂材料为钢)pp所选键的强度足够

键3,GB/T1096 键16×10×70 工作长度lLb702050mm

挤压强

p4T4896103MPa85.4MPa

dhl701250

p125~150MPa(轮毂材料为钢)pp所选键的强度足够

键4,GB/T1096 键16×10×80 工作长度lLb801664mm

挤压强度p4T4896103MPa102MPa dhl551064125~150MPa(轮毂材料为钢)所选键的强度ppp

第九部分

减速器箱体、箱盖及附件的设计计算

一、减速器附件的选择

通气器:由于在室内使用,选通气器(一次过滤),采用M12×1.5 油面指示器:选用游标尺M12 起吊装置:采用箱盖吊耳、箱座吊耳 放油螺塞:选用外六角油塞及垫片M12×1.5 根据《机械设计基础课程设计》表11-1选择适当型号:

2起盖螺钉型号:GB/T5782-2000

M12×45,材料5.8

高速轴轴承盖上的螺钉:GB5783~86 M8×25,材料5.8 低速轴轴承盖上的螺钉:GB5782-2000 M8×25,材料5.8 螺栓:GB5782~2000 M16×120,材料5.8

二、箱体的主要尺寸(1)箱座壁厚:=0.025a+1=0.025×225+1= 6.625 取=10mms

(2)箱盖壁厚:1=0.02a+1=0.02×225+1= 5.5mm

取1=10mm(3)箱盖凸缘厚度:b1=1.51=1.5×10=15mm(4)箱座凸缘厚度:b=1.5=1.5×10=15mm(5)箱座底凸缘厚度:b2=2.5=2.5×10=25mm(6)地脚螺钉直径:df =0.036a+12=0.036×225+12=20.1mm

取df =20mm(7)地脚螺钉数目:n=4(因为a<250)

(8)轴承旁连接螺栓直径:d1= 0.75df =0.75×20= 15mm

取 d1=16mm

(9)盖与座连接螺栓直径: d2=(0.5-0.6)df =10~12mm

取d2= 12mm

(10)连接螺栓d2的间距:L=150~200mm(11)轴承端盖螺钉直径:d3=(0.4-0.5)df=8~10mm取d3= 8mm

mm 2

3(12)检查孔盖螺钉直径:d4=(0.3-0.4)df=6~8mm取d4=8mm(13)定位销直径:d=(0.7-0.8)d2=8.4~9.6mm取d=8mm(14)df、d1、d2至外箱壁距离C1=26mm(15)df、d2至外箱壁距离C2=24mm(16)轴承旁凸台半径R1=C2=24mm(17)凸台高度:根据低速级轴承座外径确定,以便于扳手操作为准(18)外箱壁至轴承座端面的距离:l1C1+C2+﹙5~10﹚=58mm(19)铸造过度尺寸 x3mm,y15mm,R5mm(20)大齿轮顶圆与内箱壁间的距离:11.2,取114mm(21)齿轮端面与内箱壁间的距离2,取212mm

(22)箱盖、箱座肋厚:

m10.8518.5mm,取m19mm.m0.858.5mm,取m9mm.(23)轴承端盖外径为︰D2=D+﹙5~5﹚d3 ,D-轴承外径

小轴承端盖D2=135mm,大轴承端盖D2=170mm(24)轴承旁连接螺栓距离S:取S=225mm.第十部分

润滑与密封

一、减速器的润滑

1.齿轮的润滑

采用浸油润滑,由于为单级圆柱齿轮减速器,速度ν<12m/s,当

m<20 时,浸油深度h约为1个齿高,但不小于10mm,所以浸油高度约为

436mm。

2.滚动轴承的润滑

由于轴承周向速度为,所以宜开设油沟、飞溅润滑。3.润滑油的选择

齿轮与轴承用同种润滑油较为便利,考虑到该装置用于小型设备,选用GB443-1989全损耗系统用油L-AN15润滑油。

二、减速器的密封

选用凸缘式端盖易于调整,采用闷盖安装骨架式旋转轴唇型密封圈实现密封。密封圈型号按所装配轴的直径确定为GB894.1-86-25轴承盖结构尺寸按用其定位的轴承的外径决定。

第十一部分

参考资料目录

[1]《机械设计基础课程设计手册》,高等教育出版社,吴宗泽、罗圣国主编,2006年5月第3版;

[2] 《机械设计基础》,高等教育出版社,杨可桢、程光蕴、李仲生

主编,2006年5月第5版

[3] 《机械制图》,高等教育出版社,何铭新、钱可强 主编,2004年1月第5版

第十二部分

设计小结

5课程设计体会

篇6:二级减速器的课程设计

第一章 二级斜齿轮减速器结构及其计算

3.1 设计任务

设计带式运输机的减速传动装置;

(1)已知条件:运输带工作拉力F=5100N,运输带工作速度V=1.1m/s,卷筒直径D=350mm.(2)传动装置简图,如下:

图 3-3.1

(3)相关情况说明

工作条件:一班制连续单向运转,载荷平稳,室内工作有粉尘;

使用寿命:十年(大修期三年);

生产条件:中等规模机械厂,可加工7-8级精度齿轮。

动力来源:电力,三相交流(220/380V);

运输带速度允许误差 5%。3.2传统方法设计设计过程

1.总体传动方案

初步确定传动系统总体方案如图3-3.1所示。二级圆柱斜齿轮减速器(展开式)。传动装置的总效率ηa

=0.972×0.983×0.99×0.98=0.86;

η =0.97为齿轮的效率(齿轮为8级精度),η =0.98为轴承的效率(磙子轴承),η =0.99为弹性联轴器的效率,=0.98为刚性联轴器

2.电动机的选择

电动机所需工作功率为: P0=Pw/ηa=5.61/0.86=6.5kw 卷筒轴工作转速为n=60.02r/min,经查表按推荐的传动比合理范围,二级圆柱斜齿轮减速器传动比i =8~40,则总传动比合理范围为i =8~40,电动机转速的可选范围为n =i ×n=(8~40)×60.02=480~2400r/min。综合考虑电动机和传动装置的尺寸、重量、价格和带传动、减速器的传动比,选定型号为Y160M—6的电动机,额定功率为7.5kW,额定电流17.0A,满载转速n =970 r/min,同步转速1000r/min。

3.传动装置的总传动比和传动比分配

(1)总传动比

由选定的电动机满载转速n 和工作机主动轴转速n,可得传动装置总传动比为i =n /n=

970/60.02=16.16(2)传动装置传动比分配 i=i =16.16为减速器的传动比。(3)分配减速器各级传动比

考虑润滑条件,为使两级大齿轮直径相近,查的i1=4.85,i2=i/i1=3.33

4.传动装置运动和动力参数的计算

(1)各轴转速

Ⅰ轴 nI=n =970r/min Ⅱ轴 nII=nI/ i1=200 r/min Ⅲ轴 nIII=nII/ i2=60.06 r/min

卷筒轴 nIV=nIII=60.06

(2)各轴输入功率

Ⅰ轴 PI=P0×η3=6.5×0.99=6.44 kW Ⅱ轴 PII=PI×η1×η2=6.44×0.97×0.98=6.12 kW Ⅲ轴 PIII=PII×η1×η2=6.12×0.97×0.98=5.82 kW 卷筒轴 PIV= PIII×η2× =5.82×0.98×0.98=5.59 kW

(3)各轴输入转矩

电动机轴输出转矩 T0=9550×P0/ n =63.99 N.m

Ⅰ轴 TI=T0×η3=63.35 N.m Ⅱ轴 TII=TI×i1×η1×η2=292.07 N.m Ⅲ轴 TIII=TII×i2×η1×η2=924.55 N.m

卷筒轴 TIV= TIII×η2× =887.94 N.m

5.齿轮的设计计算

(一)高速级齿轮传动的设计计算 1.齿轮材料,热处理及精度

考虑此减速器的功率及现场安装的限制,故大小齿轮都选用硬齿面渐开线斜齿轮

(1)齿轮材料及热处理

小齿轮材料为45钢(调质),齿面硬度为240HBS,大齿轮材料为45钢(常化),齿面硬

度为200HBS,2.初步设计齿轮传动的主要尺寸

因为硬齿面齿轮传动,具有较强的齿面抗点蚀能力,故先按齿根弯曲疲劳强度设计,再校

核持面接触疲劳强度。

(1)计算小齿轮传递的转矩T1=63.35N•m

(2)确定齿数z 因为是硬齿面,故取z1=25,z2=i1 z1=4.85×25=121 传动比误差 i=u=z2/ z1=121/25=4.84 Δi=(4.85-4.84)/4.85=0.21% 5%,允许

(3)初选齿宽系数

按非对称布置,由表查得 =1

(4)初选螺旋角

初定螺旋角 =12(5)载荷系数K 载荷系数K=KA K V K K =1×1.17×1.4×1.37=2.24

(6)齿形系数Y 和应力修正系数Y 查得Y =2.58 Y =2.16 Y =1.599 Y =1.81

(7)重合度系数Y 端面重合度近似为 =1.69,重合度系数为Y =0.684

(8)螺旋角系数Y

纵向重合度系数 =1.690,Y =0.89

(9许用弯曲应力

安全系数由表查得S =1.25 工作寿命两班制,7年,每年工作300天

小齿轮应力循环次数N1=60nkt =60×271.47×1×7×300×2×8=5.473×10 大齿轮应力循环次数N2=N1/u=5.473×10 /6.316=0.866×10 查图得寿命系数 ,;实验齿轮的应力修正系数 ,查图取尺寸系数

许用弯曲应力

比较 , 取

(10)计算模数

按GB/T1357-1987圆整为标准模数,取

(11)初算主要尺寸 初算中心距 ,取a=355mm

修正螺旋角 分度圆直径 齿宽 ,取 , ,齿宽系数(12)验算载荷系数

圆周速度 查得 按,查得,又因,查图得,则K=1.6,又Y =0.930,Y =0.688。从而得

满足齿根弯曲疲劳强度。3.校核齿面接触疲劳强度(1)载荷系数,,(2)确定各系数 材料弹性系数 查表得 节点区域系数 查图得 重合度系数 查图得 螺旋角系数(3)许用接触应力 试验齿轮的齿面接触疲劳极限 , 寿命系数 查图得,;工作硬化系数 ;

安全系数 查表得 ;尺寸系数 查表得,则许用接触应力为:

(4)校核齿面接触强度,满足齿面接触疲劳强度的要求。

(二)低速级齿轮传动的设计计算 1.齿轮材料,热处理及精度

考虑此减速器的功率及现场安装的限制,故大小齿轮都选用硬齿面渐开线斜齿轮

(1)齿轮材料及热处理

大小齿轮材料为45钢。调质后表面淬火,齿面硬度为40~50HRC。经查图,取 = =

1200MPa,= =370Mpa。

(2)齿轮精度

按GB/T10095-1998,选择6级,齿根喷丸强化。

2.初步设计齿轮传动的主要尺寸

因为硬齿面齿轮传动,具有较强的齿面抗点蚀能力,故先按齿根弯曲疲劳强度设计,再校

核持面接触疲劳强度。

(10)计算小齿轮传递的转矩 = kN•m

(11)确定齿数z 因为是硬齿面,故取z =33,z =i z =3.92×33=129 传动比误差 i=u=z / z =129/33=3,909

Δi= =0.28% 5%,允许(12)初选齿宽系数

按非对称布置,由表查得 =0.6

(13)初选螺旋角

初定螺旋角 =12(14)载荷系数K 使用系数K 工作机轻微冲击,原动机均匀平稳,所以查表得K =1.25 动载荷系数K 估计齿轮圆周速度v=0.443m/s 查图得K =1.01;齿向载荷分布系数K 预估齿宽b=80mm 查图得K =1.171,初取b/h=6,再查图得K =

1.14

齿间载荷分配系数 查表得K =K =1.1 载荷系数K=K K K K =1.25×1.01×1.1×1.14=1.58

(15)齿形系数Y 和应力修正系数Y 当量齿数 z =z /cos =19/ cos =35.26

z =z /cos =120/ cos =137.84 查图得Y =2.45 Y =2.15 Y =1.65 Y =1.83

(16)重合度系数Y 端面重合度近似为 =【1.88-3.2×()】cos =【1.88-3.2×(1/33+1/129)】×cos12

=1.72 =arctg(tg /cos)=arctg(tg20 /cos12)=20.41031

=11.26652 因为 = /cos,则重合度系数为Y =0.25+0.75 cos / =0.669

(17)螺旋角系数Y 轴向重合度 = =1.34,取为1

Y =1- =0.669(18)许用弯曲应力

安全系数由表查得S =1.25 工作寿命两班制,7年,每年工作300天

小齿轮应力循环次数N1=60nkt =60×43.09×1×7×300×2×8=8.687×10

大齿轮应力循环次数N2=N1/u=8.687×10 /3.909=2.22×10 查图得寿命系数 ,;实验齿轮的应力修正系数 ,查图取尺寸系数

许用弯曲应力

比较 , 取

(10)计算模数

按GB/T1357-1987圆整为标准模数,取

(11)初算主要尺寸

初算中心距 ,取a=500mm

修正螺旋角 分度圆直径 齿宽 ,取 , ,齿宽系数(12)验算载荷系数

圆周速度 查得 按,查得,又因,查图得,则K=1.611,又Y =0.887,Y =0.667。从而得

满足齿根弯曲疲劳强度。3.校核齿面接触疲劳强度(5)载荷系数,,(6)确定各系数 材料弹性系数 查表得 节点区域系数 查图得 重合度系数 查图得 螺旋角系数(7)许用接触应力 试验齿轮的齿面接触疲劳极限 寿命系数 查图得,;工作硬化系数 ;

安全系数 查表得 ;尺寸系数 查表得,则许用接触应力为:

(8)校核齿面接触强度,满足齿面接触疲劳强度的要求。二.具体二级齿轮减速器轴的方案设计

(1)高速轴I材料为20CrMnTi,经调质处理,硬度为241~286HBS,查得对称循环弯曲许用应力。按扭转强度计算,初步计算轴径,取

由于轴端开键槽,会削弱轴的强度,故需增大轴径5%~7%,取最小轴径

(2)轴II材料为45钢,经调质处理,硬度为217~255HBS,查得对称循环弯曲许用应力。

按扭转强度计算,初步计算轴径,取,取安装小齿轮处轴径

(3)轴III材料为40Cr,经调质处理,硬度为241~286HBS,查得对称循环弯曲许用应力。

按扭转强度计算,初步计算轴径,取

由于轴端开键槽,会削弱轴的强度,故需增大轴径5%~7%,取最小轴径

轴I,轴II,轴III的布置方案与具体尺寸分别如图2—8,图2—9,图2—10所示。

图2—8

图2—9

图2—10

第三节 轴承的选择及寿命计算

(一)第一对轴承 齿轮减速器高速级传递的转矩

具体受力情况见图3—1(1)轴I受力分析 齿轮的圆周力 齿轮的径向力 齿轮的轴向力(2)计算轴上的支反力 经计算得垂直面内

图3—1

水平面内(3)轴承的校核 初选轴承型号为32014 轻微冲击,查表得冲击载荷系数 ① 计算轴承A受的径向力

轴承B受的径向力 ②计算附加轴向力 查表得3000型轴承附加轴向力

则 轴承A,轴承B ③计算轴承所受轴向载荷

由于,即B轴承放松,A轴承压紧

由此得 ④计算当量载荷 轴承A e=0.43,则 , 轴承B e=0.43,则 ⑤轴承寿命 计算 因,按轴承B计算

(二)第二对轴承 齿轮减速器低速级传递的转矩

具体受力情况见图3—2(1)轴II受力分析 齿轮的圆周力 齿轮的径向力 齿轮的轴向力(2)计算轴上的支反力 经计算得垂直面内

水平面内(3)轴承的校核 初选轴承型号为32928 轻微冲击,查表得冲击载荷系数 ①计算轴承A受的径向力 轴承B受的径向力 ②计算附加轴向力 查表得3000型轴承附加轴向力

则 轴承A,轴承B ③计算轴承所受轴向载荷 由于,即B轴承放松,A轴承压紧

由此得 ④计算当量载荷 轴承A e=0.36,则 , 轴承B e=0.36,则

⑤轴承寿命 计算 因,按轴承A计算

图3—2

(三)第三对轴承 具体受力情况见图3—3(1)轴III受力分析 齿轮的圆周力 齿轮的径向力 齿轮的轴向力

(2)计算轴上的支反力 经计算得垂直面内

水平面内(3)轴承的校核 初选轴承型号为32938 轻微冲击,查表得冲击载荷系数 ①计算轴承A受的径向力 轴承B受的径向力 ②计算附加轴向力 查表得3000型轴承附加轴向力

则 轴承A,轴承B ③计算轴承所受轴向载荷,即B轴承放松,A轴承压紧由此得 ④计算当量载荷 轴承A e=0.48,则 , 轴承B e=0.48,则 ⑤轴承寿命 计算 因,按轴承B计算

图3—3

由于

试设计一带式输送机减速器的斜齿圆柱齿轮传动。已知输入功率P1=40kW,小齿轮转速n1=960r/min,齿数比u=3.2,由电动机驱动,工作寿命15年(设每年工作300天),两班制,带式输送机工作平稳,转向不变,试设计此传动。

[解]

1.选精度等级、材料及齿数

1)材料及热处理仍按直齿轮传动例题:大、小齿轮都选用硬齿面。由表1选得大、小齿轮的材料均为40Cr,并经调质及表面淬火,齿面硬度为48~55HRC;

2)精度等级仍选7级精度;

3)仍选小齿轮齿数z1=24,大齿轮齿数z2=77;

4)初选螺旋角β=14°

2.按齿面接触强度设计

齿面接触强度计算公式为:

1)确定公式内的各计算数值

(1)试选Kt=1.6。

(2)由图10查取区域系数ZH=2.433。

(3)由图8查得端面重合度

εα1=0.78,εα2=0.87,则 εα=εα1+εα2=1.65。

(4)许用接触应力 =1041.5 MPa。

2)计算

(1)试算小齿轮分度圆直径d1t

mm =60.49 mm

(2)计算圆周速度

(3)计算齿宽b及模数mnt

h=2.25 mnt=5.51mm b/h=9.88

(4)计算纵向重合度εβ

(5)计算载荷系数K

已知使用系数 =l。

根据v=3.04m/s,7级精度,由图5查得动载系数 =l.11;

由表4查得接触强度计算用的齿向载荷分布系数 =1.41; 由图6查得弯曲强度计算的齿向载荷分布系数 =1.37。

由表3查得齿间载荷分配系数 = =1.2。

故载荷系数

(6)按实际的载荷系数校正所算得的分度圆直径

(7)计算模数mn

3.按齿根弯曲强度设计

由式

1)确定计算参数

(1)计算载荷系数

(2)根据纵向重合度 =1.713,从图9查得螺旋角影响系数Yβ=0.8。

(3)计算当量齿数

(4)查取齿形系数

由表5查得YFa1=2.592;YFa2=2.2l1

(5)查取应力校正系数

由表5查得Ysa1=1.596;Ysa2=1.774

(6)计算大、小齿轮的 并加以比较

小齿轮的数值大。

2)设计计算

对比计算结果,由齿面接触疲劳强度计算的法向模数mn略大于由齿根弯曲疲劳强度计算的法向模数,按表12,取标准模数mn=2.5mm,可满足弯曲强度。为满足接触疲劳强度,按接触强度算得的分度圆直径d1=63.83mm,由

,取z1=25,则z2=uz1=80。

4.几何尺寸计算

1)计算中心距

将中心距圆整为135mm。

2)按圆整后的中心距修正螺旋角

因β改变不多,故参数εα,Kβ,ZH等不必修正。

3)计算大、小齿轮的分度圆直径

4)计算齿轮宽度

圆整后取B2=58mm;B1=63mm。

5.结构设计

上一篇:妇儿工作成员单位装档资料下一篇:企业车间安全生产目标责任书