一级圆柱齿轮减速器课程设计的设计心得

2024-05-23

一级圆柱齿轮减速器课程设计的设计心得(精选8篇)

篇1:一级圆柱齿轮减速器课程设计的设计心得

《一级圆柱齿轮减速器课程设计的设计心得》

这次关于带式运输机上的两级展开式圆柱斜齿轮减速器的课程设计是我们真正理论联系实际、深入了解设计概念和设计过程的实践考验,对于提高我们机械设计的综合素质大有用处。通过三个星期的设计实践,使我对机械设计有了更多的了解和认识.为我们以后的工作打下了坚实的基础.1、机械设计是机械工业的基础,是一门综合性相当强的技术课程,它融《机械原理》、《机械设计》、《理论力学》、《材料力学》、《公差与配合》、《CAD实用软件》、《机械工程材料》、《机械设计手册》等于一体。

2、这次的课程设计,对于培养我们理论联系实际的设计思想;训练综合运用机械设计和有关先修课程的理论,结合生产实际反系和解决工程实际问题的能力;巩固、加深和扩展有关机械设计方面的知识等方面有重要的作用。

3、在这次的课程设计过程中,综合运用先修课程中所学的有关知识与技能,结合各个教学实践环节进行机械课程的设计,一方面,逐步提高了我们的理论水平、构思能力、工程洞察力和判断力,特别是提高了分析问题和解决问题的能力,为我们以后对专业产品和设备的设计打下了宽广而坚实的基础。

4、本次设计得到了指导老师的细心帮助和支持。衷心的感谢老师的指导和帮助.5、设计中还存在不少错误和缺点,需要继续努力学习和掌握有关机械设计的知识,继续培养设计习惯和思维从而提高设计实践操作能力。

篇2:一级圆柱齿轮减速器课程设计的设计心得

这次关于带式运输机上的两级展开式圆柱齿轮减速器的课程设计是我们真正理论联系实际、深入了解设计概念和设计过程的实践考验,对于培养我们理论联系实际的设计思想;训练综合运用机械设计和有关先修课程的理论,结合生产实际和解决工程实际问题的能力;巩固、加深和扩展有关机械设计方面的知识;提高我们机械设计的综合素质等方面有重要的作用。

通过两个星期的设计实践,使我们对机械设计有了更多的了解和认识。为我们以后的工作打下了坚实的基础。在此次设计过程中,不但使我们树立起了正确的设计思想,而且,也使我们学到了很多机械设计的一般方法,基本掌握了一般机械设计的过程,还培养了我们的基本设计技能,所以这次课程设计我们的收获是非常巨大的。

机械设计是机械工业的基础,是一门综合性相当强的技术课程,它融《机械原理》、《机械设计》、《理论力学》、《材料力学》、《公差与配合》、《CAD实用软件》、《机械工程材料》、《机械设计手册》等于一体。

在这次的课程设计过程中,综合运用先修课程中所学的有关知识与技能,结合各个教学实践环节进行机械课程的设计,逐步提高了我们的理论水平、构思能力、工程洞察力和判断力,特别是提高了分析问题和解决问题的能力,为我们以后对专业产品和设备的设计打下了宽广而坚实的基础。

一分耕耘一分收获,虽然两周的设计时间很紧迫,每天都要计算、画图到深夜,但是我们的收获也是很巨大的,相信这次的课程设计必将是我们走向成功的一个坚实基础。

篇3:一级圆柱齿轮减速器课程设计的设计心得

关键词:二级圆柱齿轮减速器,装配,运动仿真,机械制图,Inventor

课程设计是中职《机械制图》课程学习的重要实践环节, 它可以使学生感到课本理论上空洞的东西变清楚明了, 让学生感到“实践出真知”的真谛, 所以《机械制图》教学应安排一定课时的实体零件测绘课程设计环节。本文以二级直齿圆柱齿轮减速器装配体的测绘为载体, 利用Inventor三维软件完成所有零件和总装配图的绘制。通过Inventor走三维路线可以更直观的完成所有零件图和总装配图的绘制, 让学生进一步巩固《机械制图》中已掌握的绘图和识图技能, 并且在此基础上使绘图和识图能力上一个新的台阶, 为后续课程打下坚实的基础。

二级圆柱齿轮减速器是应用于原动机和工作机之间的独立传动装置, 具有结构紧凑、传动效率较高、传递运动准确可靠、使用维护方便和可成批生产等特点, 如图1。而传统的减速器课程设计环节教学手段, 通常是采用直接手工铅笔或者计算机二维软件绘制二维工程图来实现。这种做法不仅不能以模型直观逼真地显现出减速器的结构特征, 而且对于一个视图上某些尺寸的修改, 还不能自动反应在其它对应视图上;这种传统的教学手段对学生的制图能力还提出了较大的要求, 使相当大的一部分学生感觉完成任务吃力。所以现在改变传统的教学观念, 建立以三维软件INVENTOR为载体来实施满足教学, 体现参数化内涵——修改一个尺寸参数所有的将会自动更新, 降低任务难度, 提升学生兴趣。建立减速器的三位数字模型后, 同学们还可以进行运动模拟仿真, 通过运动模拟仿真同学们还可以非常直观的认识零件的结构、干涉、强度、刚度、动力情况, 运动是否正确。

1 测绘零件, 实现参数化三维建模与生成零件图

教师讲解减速器的拆装过程, 讲清绘图尺寸是通过对实体减速箱的测绘得来。首先观察减速器各部分的结构, 判断传动方式、级数、输入、输出轴如图2;其次用扳手拆下观察孔的盖板, 观察观察孔的位置是否恰当, 大小是否合适。再拧下箱盖和箱座联接螺栓以及轴承端盖螺钉, 拔出定位销, 打开箱盖。

分析整个结构, 测量各零件尺寸;如先测量齿轮端面与箱体内壁的距离, 大齿轮的顶圆与箱体内壁之间的距离, 轴承内端面到箱体内壁之间的距离;再测量底座与上盖的各部分尺寸与结构、轴承的组合结构与尺寸、齿轮的尺寸与结构、键与键槽的尺寸与结构, 如图3。

得到零件参数的同时, 学生就可以利用Inventor开始参数化建模。箱体模型也是建模过程当中最复杂的部分, 在建模过程当中需要大量地使用系统提供的建模特征, 当然可以分析到上盖和底座有相同的基本结构比如螺栓孔、定位销和相互贴合面, 建模时画上盖和底座可以充分利用共同结构, 减少工作量, 降低画图难度如图4。Inventor有标准件模块, 在齿轮建模时, 可以直接调取使用, 当然也可以参数化建模, 通过草图、拉伸、扫略、阵列命令来实现。同样也是适用标件轴承、键、端盖、螺栓、螺母等, 这些标准件在绘制的时候要特别注意标准值的使用, 要能正确配合其他零件的装配尺寸, 这样才能保证齿轮的正常啮合, 如图5。建立了三维零件就可以通过Inventor工程图模块生成工程图, 结合制图模块能够充分利用三个基本视图、半剖、阶梯剖、断面图等表达形式正确合理的表达工程图, 进而充分培养学生机械制图的视图表达能力。并对工程图进行标注。

2 参数化装配的建立与生成装配图

在所有零件参数化建模完成以后, 就可以实现虚拟装配。利用软件满足装配要求, 可以让学生清楚的认识到该产品的性能与结构是否满足要求, 通过分析评估改进产品的设计和装配体的结构, 实现产品装配的高效性。而且虚拟的展现了减速器的整个装配过程, 并规划减速器的装配步骤和路线。打开Inventor, 进入装配环境, 调入下盖, 这样就以下盖为基准实现有效有序的自下而上、自里而外的装配。Inventor里面的装配功能有面对齐、同轴、距离等多种标准配合关系, 通过这些功能可以让同学们实现齿轮与轴、轴承等所有零件的装配。要注意的是齿轮与齿轮一定要正确的啮合关系, 装配体如图6。

装配完成以后, 就让学生对整个装配体进行干涉检查, 主要是装配过程的碰撞检查, 以及装配完成之后的干涉检查。零件按装配路线移动, 若与其他零件发生碰撞, 则零件无法移动到正确的位置, 就会影响减速器的正常装配。利用碰撞检查, 可以检测装配过程中的碰撞问题, 碰撞部分会以高亮显示, 以此对装配体进行修改和规划合理的装配路线。对已建立好的静态模型, 可采用干涉检查装配完成的模型, 并不一定完全正确, 之间是否发生重叠现象, 需要反复地检查和修改在干涉检查中, 装配体会高亮地显示干涉区域, 通过在装配体中直接点击或单独打开零件, 即可快速地对零件进行调整修改, 达到正确合理状态。

3 运动仿真分析

Inventor自带的运动仿真模块, 可以让学生自己实现减速器的动态仿真, 该模块主要进行机械系统运动仿真, 可分析减速器各运动部件的速度、位移、受力、干涉等情况, 并可以输出相应的实验数据作为分析产品性能的保障和依据。注意指导在进行运动仿真之前要解除多余的约束关系, 不然将影响接下来的运动仿真参数设置。

点击环境下的运动仿真功能, 进入仿真模块。学生因为初次进入仿真模块, 系统会自动定义固定件, 所以应该取消“自动将约束转换为标准联接”和“当机械装置被过约束时发出警告”。隐藏上盖, 以便不会影响分析传动结构, 如图7。

把每一轴上的构件设置为一个部件整体, 其中包括构件有轴、齿轮、轴承、键, 这样构件将会作为一个整体转动起来, 设置主动轴。在减速器中涉及到的约束主要有固定副、旋转福、齿轮副。首先定义传动形式为外齿轮啮合运动, 并且保证为一个约束传动, 特别要注意的定义齿轮传动关系时, 一定要保证齿轮与齿轮之间的啮合关系, 一个很好的处理办法就是分别画出两齿轮的分度圆周, 设置齿轮外啮合就直接点取两分度圆。依次定义好两两传动关系, 形成传动结构。分析机构状态, 包括自由度、实体数和运动实体数, 保证整个机构有确定的运动方案。为齿轮添加运动动力, 选择高速级输入轴, 定义运动为恒定角速度为绕Z轴旋转。齿轮实际工作中会受到力的相互作用, 可以添加作用力矩, 分析受力, 也可以导出受力分析表, 至此就可以运动仿真了。点击“仿真播放器”, 运行播放, 观察整个系统运行情况, 分析运行状态, 查看有没有运动干涉情况。若有, 则修改装配关系和调整各零件基本尺寸, 无则可以录制动画视频。这样学生就掌握了齿轮的传动关系, 认识了二级减速器的运转情况。

4 总结

通过Inventor实现二级减速器零件和装配图的绘制, 首先, 为中职《机械制图》实践环节——课程设计提供一个全新的学习手段和方法, 改变原有传统二维制图为三维制图的教学手段, 并在制图过程中体现引导作用, 使其更为直观、形象、生动。其次, 通过这种教学手段更好地理解、掌握零部件的结构及装配关系, 并且可以实现二级圆柱齿轮减速器的运动仿真, 使整个齿轮传动系统的分析具有良好的交互性。最后, 分析二级圆柱齿轮减速器各部件之间的尺寸约束关系, 并运用自底向上的思路建立二级圆柱齿轮减速器总装图, 并对整个系统进行动力分析。这让学生更有感觉学习, 更有兴趣学习, 收获更多知识。

参考文献

[1]倪莉.机械制图课程设计指导书.中国电力出版社, 2008.

[2]柴鹏飞, 王晨光.机械设计课程设计指导书.机械工业出版社, 2011.

[3]刘昌丽.Autodesk Inventor2013中文版标准培训教程.电子工业出版社, 2013.

篇4:一级圆柱齿轮减速器课程设计的设计心得

关键词:差速器;虚拟样机;动力学分析;仿真

中图分类号:S223.99 文献标识码:A 文章编号:1674-1161(2014)07-0018-04

汽車行驶时,左右车轮在同一时间内所滚过的路程通常不等,如果驱动桥的左右车轮刚性连接,则行驶时驱动轮在路面上会不可避免地滑移或滑转,不仅会加剧轮胎磨损与功率、燃料的消耗,而且可能导致转向和操作性能恶化。为防止这些现象发生,汽车左右轮间都装有轮间差速器。但是当汽车越野行驶或在泥泞、冰雪路面上行驶,一侧驱动车轮与地面的附着系数很小时,尽管另一侧车轮与地面有良好的附着,其驱动转矩也会随之减小,无法发挥潜在的牵引力,进而使汽车停驶。为保证汽车行驶,越野汽车通常装设差速锁和防滑差速器,这些结构通常比较复杂,不适用于农业机械。

农业机械的驱动系统通常不安装差速器,所以转向比较困难。轮距窄的开沟机、田园管理机等转向时,利用人力强行扭转机械使机具的左右轮在地面相对滑动。轮距相对较宽的移栽机、插秧机等,靠人力扭转机械基本不能转向。所以通常在驱动系统中采用牙嵌式转向离合器,转向时通过分离该侧的牙嵌式离合器,切断动力传递,另外一侧因动力没有被切断而继续行驶,实现大轮距农业机械转向。牙嵌式离合器转向虽然可以满足上述要求,但操作复杂、转向灵活性差、牙嵌齿轮有冲击。为此,设计一种滑动齿轮式差速器,差速时保证至少有一只动力输出轴运动,能够可靠的传递驱动力矩,且结构简单、使用方便、实用性强。

1 滑动齿轮差速器的总体结构

滑动齿轮差速器(见图1)主要由滑动齿轮、滚轮、滚轮轴、滚轮架、弹簧、滚轮轴卡箍、支撑轴、输出轴等组成。其中支撑轴通过动力输出轴内端的圆孔定位和支撑,滑动齿轮安装在支撑轴上,滚轮通过滚轮轴安装在滚轮架上组成滚轮传动组件,滚轮传动组件相对滑动齿轮对称布置;滑动齿轮两端圆周方向均布凸台,滚轮安装在凸台凹槽一半处,当动力输出轴两端阻力矩相同时,滑动齿轮位于两滚轮架中间,动力输出轴同向等速旋转,当动力输出轴两端助力矩不同时,滑动齿轮向力矩小的一端移动,小力矩端驱动转速加快,大力矩断转速降低;当两端助力矩相差在一定程度时,大力矩端动力中断,小力矩端保持动力传递,实现差速。该差速器能产生一定的差速锁紧扭矩,特别适合低速车辆和农业机械动力传递使用。

2 滑动齿轮差速器的工作原理

滑动齿轮式差速器工作时,滑动齿轮在一定范围内左右移动,实现对两侧驱动轮的差速驱动。

2.1 直线行驶运动分析

滑动齿轮差速器的核心工作部件是滑动齿轮。在滑动齿轮的两侧端面分别对称设置凸台。凸台(见图2)由两侧斜面、底端面、顶端面、内台面、外台面组成。

初始状态时,在弹簧弹力的作用下,滑动齿轮凸台底端面与滚轮体相距半个滚轮体半径位置,滚轮体与滑动齿轮凸台斜面接触。在直线行驶时,两侧滚轮对应的驱动力矩相等,滑动齿轮处于正中心位置,等速驱动两侧车辆。直线行驶示意图如图3所示。

2.2 转向行驶运动分析

以水平公路左转向为例,如驾驶员小扭矩扭转机械,相当于在滑动齿轮中心作用一个扭矩M1(见图4)。由于扭矩M1的作用,左侧滚轮作用在凸台斜面的轴向分力大于右侧滚轮作用在凸台斜面的轴向分力,设此分力为F1。当F1的分力小于右侧弹簧在x/2位置变相的胡克力F2时,在F1的作用下,滑动齿轮开始向左侧滑动一个小于x/2的位置t,同时左侧滚轮向后移动一段距离b,右侧滚轮向前移动一段相同距离b,从而两轮走过的路程出现差别,实现小幅度转向差速。驾驶员大扭矩扭转机械时,扭矩M1增大,分力F1增加。当分力F1大于右侧弹簧在x/2位置变相的胡克力F2时,滑动齿轮滑动到右侧极限位置,使左侧滚轮向后移动距离b1,到凸台顶面并向下继续移动至下一个凸台斜面,左侧滚轮向后移动,左侧驱动力在此位置打滑,直至分力F1小于右侧弹簧在x/2位置变相的胡克力F2,停止打滑。同时右侧滚轮向前移动距离b2,右侧滚轮继续保持直线行驶,两侧动力轮走过的路程差加大,实现大幅度转向差速或原地掉头,F2即为该差速器的锁紧力。同理可实现向右转向。

3 Adams运动仿真分析

在Adams中建立复杂三维模型的难度较大,为此先在UG软件中建立模型,再导入ADAMS中进行约束和运动幅等相关参数设置和分析。建立的Adams模型如图5所示。

3.1 等速行驶(两轮阻力相同)运动仿真

对于两轮所受地面给其阻力相同的情况,可看成直线行驶,即齿轮中间位置带动两个半轴同速转动。分别给两半轴和中心轴之间添加一个固定幅,定义构建方式类型为两体一点定位。测量两轮的输出力矩,如图6所示。

3.2 差速行驶(两轮阻力不同)运动仿真

对于差速转向行驶的情况,以右转弯为例,右轮受到的阻力大于左轮受到的阻力,根据该差速器原理,中间齿轮受到右边弹簧的力大于左边弹簧的力,齿轮被压到与左边半轴啮合的更多一些,从而带动左轮更快速转动,实现差速。在软件环境中,给右轮加载一个额外的阻力矩,而左轮受力情况不变,其差速仿真结果如图7所示。测量左右轮的速度、加速度、位移等情况,如图8所示。

仿真结果表明,左轮基本保持测试形态,而右侧车轮的速度、加速度发生了大幅变化,位移不断增大,右轮位移先保持一段距离,然后后移。当转向力消除后继续前进,表明差速效果明显,将上述图形集成后如图9所示。

4 结论

仿真分析结果表明,该差速器符合低速农业机械差速转向要求。仿真结果与机构的运动原理相符合,说明UG建立的实体模型与Adams建立的数据模型真实可靠。

参考文献

[1] 陈立平,张云清,任卫群,等.机械系统动力学分析及ADAMS应用教程[M].北京:清华大学出版社,2005.

[2] 杜中华,王兴贵,狄长春.用Pro/E和ADAMS联合建立复杂机械系统的仿真模型[J].机械,2002,29(增刊):153-154.

[3] 李三群,贾长治,武彩岗,等.基于虚拟样机技术的齿轮啮合动力学仿真研究[J].系统仿真学报,2007,19(4):901-902.

[4] 龙凯,程颖.齿轮啮合力仿真计算的参数选取研究[J].计算机仿真,2002,19(6):87-88.

[5] 曲红.FD420 型集装箱叉车转向机构优化设计[J].叉车技术,2004(1):25-26.

[6] 李军,邢俊文,覃文洁.ADAMS实例操作教程[M].北京:北京理工大学出版社,2002.

篇5:一级圆柱齿轮减速器课程设计的设计心得

1.求轴上的功率,转速和转矩

由前面算得Pr/min,T125.48Nm 12.74kw,n110252.求作用在齿轮上的力

已知高速级小齿轮的分度圆直径为:d170mm

Ft2T1225.4810005096Nd170

FrFttan5096Ntan20o1855N3.初步确定轴的最小直径

现初步估算轴的最小直径。选取轴的材料为45钢,调质处理。据[2]表15-3,取A0112,于是得:dminA03P115.54mm d1因为轴上应开键槽,所以轴径应增大5%得d16.317mm,又此段轴与大带轮装配,综合考虑两者要求取dmin25mm,查知带轮宽B75mm故此段轴长取73mm。

4.轴的结构设计

(1)拟定轴上零件的装配方案

通过分析比较,得出输入轴示意图

(2)据轴向定位的要求确定轴的各段直径和长度 1)第一段是与带轮连接的其d125mm l173mm

2)第二段用于安装轴承端盖,轴承端盖的e21mm(由减速器及轴的结构设计而定)。根据轴承端盖的拆卸及便于对轴承添加润滑油的要求,取端盖与第一段右端的距离为38mm。故取l260mm,因其右端面需制出一轴肩故取d230mm。

3)初选轴承,因为有轴向力故选用深沟球轴承,参照工作要求并据d230mm,查表初选6207号轴承,其尺寸为dDB35mm72mm17mm故d335mm,取l344mm。又右边采用轴肩定位取d448mm所以l475mm。

4)因为该轴是齿轮轴,故齿轮段轴径为d548mm,l550mm。齿轮左端与左轴承之间用套筒定位,已知齿轮宽度为50mm为使套筒端面可靠地压紧齿轮,此轴段应略短于齿轮宽度,且继续选用6207轴承,则此处故取d635mm,l643mm。

(3)轴上零件的周向定位

带轮与轴之间的定位采用平键连接。按

d125由表查得平键截面bh87键槽用键槽铣刀加工长为63mm。同时为了保证带轮与轴之间配合有

H7良好的对中性,故选择带轮与轴之间的配合为

n6(4)确定轴上圆角和倒角尺寸

参考[2]表15-2取轴端倒角为245.其他轴肩处圆倒角见图。7.2 中间轴的设计计算

1.求轴上的功率,转速和转矩

由前面的计算得P22.60kw,n2266.23r/min,T293.25Nm 2.求作用在齿轮上的力

已知中间轴大小齿轮的分度圆直径为 d2174mm,d368mm

Ft12T21071.84Nmd2

Fr1Ft1tan1071.84Ntan200390.12Nm 同理可解得: Ft22T22742.65Nmd3

Fr2Ft2tan2742.65Nmtan200998.24Nm 3.初步确定轴的最小直径

现初步估算轴的最小直径。选取轴的材料为45钢,调质处理.据[2]表15-3,取A0112,于是得:dminA03P223.934mm T2 因为轴上应开2个键槽,所以轴径应增大5% 故dmin25.13mm,又此段轴与轴承装配,故同时选取轴承,因为轴承上承受径向力,故选用深沟球轴承,参照工作条件可选6206号其尺寸为:dDB30mm62mm16mm故d130mm右端用套筒与齿轮定位,套筒长度取24mm所以l144mm。

4.轴的结构设计

(1)拟定轴上零件的装配方案

通过分析比较,得出中间轴示意图

(2)据轴向定位的要求确定轴的各段直径和长度

1)第二段为高速级大齿轮,由前面可知其宽度为45mm,为了使套筒端面与大齿轮可靠地压紧此轴段应略短于齿轮轮毂宽度。故取l240mm,d238mm。

2)第三段为大小齿轮的轴向定位,此段轴长度应由同轴条件计算得l36mm,d350mm。

3)第四段为低速级小齿轮的轴向定位,由其宽度为73mm可取l470mm,d438mm。

4)第五段为轴承同样选用深沟球轴承6206号,左端用套筒与齿轮定位,取套筒长度为24mm则 l544mm,d530mm。

(3)轴上零件的周向定位

两齿轮与轴之间的定位均采用平键连接。按d2由表查得平键bhL10832,按d4查得平键截面bhL10863其与轴的配合均为H7。轴承与轴之间的周向定位是用过渡配合实现的,此处选轴的直径尺寸公差n6为m6。

(4)确定轴上圆角和倒角尺寸

参考[2]表15-2取轴端倒角为245.个轴肩处圆倒角见图。7.3 输出轴的设计计算

1.求轴上的功率,转速和转矩

由前面算得P32.47kw,n395.42r/minT3247.32Nm 2.求作用在齿轮上的力

已知低速级大齿轮的分度圆直径为 d4190mm

Ft2T32603.37Nmd4

FrFttan200947.55Nm3.初步确定轴的最小直径

现初步估算轴的最小直径。选取轴的材料为45钢,调质处理,据[2]表15-3,取A0112,于是得:dminA03P333.14mm T3同时选取联轴器型号。联轴器的计算转矩TcaKAT3查[2]表14-1取KA1.3。则TcaKAT31.3247.32Nm321.516Nm

按计算转矩应小于联轴器的公称转矩的条件查[5]P99表8-7可选用LT7型弹性柱销联轴器。其公称转矩为500Nm。半联轴器孔径d40mm,故取d140mm半联轴器长度L112mm,半联轴器与轴配合的毂孔长度为82mm。4.轴的结构设计

(1)拟定轴上零件的装配方案

通过分析比较,得出输出轴示意图

(2)据轴向定位的要求确定轴的各段直径和长度

1)为满足半联轴器的轴向定位,第一段右端需制出一轴肩故第二段的直径d246mm;左端用轴端挡圈定位取轴端挡圈直径D65mm。半联轴器与轴配合的毂孔长为84mm,为保证轴端挡圈只压在联轴器上而不压在轴上,故第一段长度应比L1略短一些,现取l182mm。

2)第二段是固定轴承的轴承端盖e21mm。据d246mm和方便拆装可取l275mm。

3)初选轴承,因为有轴向力故选用深沟球轴承,参照工作要求d246mm。查

表选6210型号其尺寸为dDB50mm90mm20mm,故l320mm由于右边是轴肩定位,d462mm,l464mm。

4)第五段轴肩定位,取d568mm,l512mm。

4)取安装齿轮段轴径为d660mm,已知齿轮宽为68mm取l664mm。齿轮右边为轴套定位,轴肩高h5mm则此处d750mm,取l751mm。(3)轴上零件的周向定位

齿轮,半联轴器与轴之间的定位均采用平键连接。按d1由表查得平键截面bh128键槽用键槽铣刀加工长为70mm。选择半联轴器与轴之间的配合为H7,齿轮与轴的连接用平键bh1811键槽用键槽铣刀加工长为56mm。齿k6H7轮与轴之间的配合为轴承与轴之间的周向定位是用过渡配合实现的,此处选

n6轴的直径尺寸公差为m6。(4)确定轴上圆角和倒角尺寸

篇6:一级圆柱齿轮减速器课程设计的设计心得

二级展开式圆柱齿轮减速器

一.设计题目

设计一用于卷扬机传动装置中的两级圆柱齿轮减速器。轻微震动,单向运转,在室内常温下长期连续工作。卷筒直径D=500mm,运输带的有效拉力F=10000N, 卷筒效率=0.96,运输带速度v0.3m/s,电源380V,三相交流.二.传动装置总体设计:

1.组成:传动装置由电机、减速器、工作机组成。

2.特点:齿轮相对于轴承不对称分布,故沿轴向载荷分布不均匀,要求轴有较大的刚度。

3.确定传动方案:考虑到电机转速高,传动功率大,将V带设置在高速级。其传动方案如下:

三.选择电动机

1.选择电动机类型:

按工作要求和条件,选用三相笼型异步电动机,封闭型结果,电压380V,Y型。

2.选择电动机的容量

Pd

电动机所需的功率为:

PWFV KW 1000PWa

篇7:一级圆柱齿轮减速器课程设计的设计心得

一、电动机的选择(1电机类型和转速Y系列三相交流异步电机(2电机功率和型号工作机的有效功率(kwPw 弹性联轴器η1

电动机所需的功率(kwPd工作机滚轮转速n(r/min 电机型号的确定轴外伸长度E

二、传动比的分配高速级传动比i1各轴的运动及动力参数计算

轴号ⅠⅡⅢⅣ 齿轮的设计 F(kn1.9 转速(r/min

1000 2.3750.99闭式齿轮(7级)η20.982.73608170474.60387957总传动比12.86796351Y132S-6额定功率(kw380轴外伸轴径D38 总传动比12.86796351 4.090030875低速级传动比i23.146177596 转速(r/min 960234.717054574.6038795774.60387957功率2.7087208872.6280010042.5496865742.498947811转矩26.94612965106.9262293326.3839216319.8888816 高速级(斜齿圆柱齿轮)

精度等级材料硬度

选小齿轮齿数z1初选螺旋角β 设计计算公式: 7级

45钢调质处理(大)40Cr(调质)(小)2402414 d 1≥ HBS 大齿轮齿数z20.244346095 28098.16074101 ⎫⎪⎪⎭ 2 2KT 1u ±1⎛z E z H d αu H ⎝试选Kt 区域系数ZH端面重合度εα

小齿轮转矩T1齿宽系数φd 应力循环次数N1

接触疲劳寿命系数弯曲疲劳寿命系数接触疲劳安全系数许用接触应力许用接触应力许用弯曲应力小齿轮分度圆d1t圆周速度vh 1.62.433εα11.6226946.12965

1189.8

***00.910.85

0.961.4546537303.571428636.589045821.83916604136.589045821.4792581163.32833076110.993212051.9028713182.321741.423468131.67470892 0.78N.mm 图10-30εα2 表10-7

大接触疲劳强度大弯曲疲劳强度238.8571429 m/s 载荷系数K 校正的分度圆直径d1 计算模数mn 计算齿根弯曲强度

m n ≥2.207251.9028713180.8826.27234788 2KT 1Y βcos 2β 2φd z 1εα ∙ Y Fa Y Sa σF β

计算当量齿轮Zv1 图10-28 计算当量齿轮Zv2

齿形系数应力校正系数大小齿轮的比较设计计算mn 0.0136294041.220059343

2.5918295632.173301252 0.016347711 由计算可知,齿面接触疲劳强度计算的法面模数大于齿根弯曲疲劳强度计算的

230.043478355.95652174(变位圆柱齿轮)3.1461775962.628001004 7级

45钢调质处理(大)大齿轮分度圆直径d2 齿宽低速级齿轮设计低速级传动比i2输入功率精度等级材料

硬度

初选小齿轮齿数Z1圆整55 小齿轮转速n1234.7170545 40Cr(调质)24024HBS 大齿轮齿数z228075.50826232 试选Kt 小齿轮转矩T1齿宽系数φd

应力循环次数N1

接触疲劳寿命系数弯曲疲劳寿命系数接触疲劳安全系数许用接触应力许用弯曲应力1.3106926.2293 1189.8

***0

0.910.8511.4546303.5714286

大接触疲劳强度大弯曲疲劳强度表10-7

h b/h载荷系数K校正的分度圆直径d1 计算模数m

n 计算齿根弯曲强度

66.613195160.81865993166.613195162.7755497986.24498704610.666666671.867687575.164692563.13186219 m/s

计算载荷系数K齿形系数

应力校正系数大小齿轮的比较设计计算mn 2KT Y Y m ≥⋅2 φd Z 1[σF ]

0.0137226352.21192782

由计算可知,齿面接触疲劳强度计算的法面模数大于齿根弯曲疲劳强度计算的 齿数Z1齿数Z2几何尺寸计算小齿轮分度圆直径d1大齿轮分度圆直径d2 齿宽中心距a变位后的压力角变位系数和小齿轮变位系数 25.0548975278.6544399***.50.389734615 0.65 0.48 圆整 2580 80 160 22.33014857大齿轮变位系数 0.17 轴的设计

轴上的功率齿轮上受到的力小齿轮分度圆直径d1 材料

选用弹性柱销联轴器

初选轴承轴结构设计周向定位键连接

2.70872088755.9565217445调质K A LT67209C 325810

转速(r/min 960963.1095292***计算转矩Tca 3245451950 min 1.3 半联轴器孔径d1 d 40458 载荷水平面垂直面

支反力弯矩总弯矩扭矩计算应力轴上的功率齿轮上受到的力小齿轮分度圆直径d1 大齿轮受力材料初选轴承轴结构设计

套筒周向定位键载荷支反力弯矩总弯矩扭矩计算应力轴上的功率齿轮上受到的力大齿轮分度圆直径d2 材料初选轴承轴结构设计

套筒周向定位键载荷支反力弯矩总弯矩扭矩计算应力 720.2107603242.8987689311.9361432 32985.652826967.61260433713.5123932987.5 26946.12965 1.73100776安全2.628001004 75

转速(r/min 234.7170545 2851.366114 963.1095292 45调质d min 25.055994757210C d 50505581386280D 57d b 16h 水平面垂直面

1716.0314172.2251852223.859632893180.5050212365.76829-17933.90215 94890.62842106926.2293 9.16347184安全<602.54968657424045调质

62126040D 转速(r/min 74.603879572851.36611436.34626742 608212d min d 707260 水平面垂直面

919.09516881932.270946334.5232839 122699.20544658.8 130573.7667326383.9216

6.862099051安全<60 机械设计课程设计

转速(m/s1.25滚筒直径(mm320 1500 滚动轴承η30.99滚筒η40.96总效率η0.868029634 20.10619298 同步转速(r/min1000满载转速(r/min 中心高H132 960总传动比12.86796351 传动比4.0900308753.146177596 1 HBS 相差99 0.84 图10-26 550图10-21d380图10-20c 计算载荷系数K使用系数KA1.251.09 1.421.35

1.21.2 40 点1 ***7070 图10-2

图10-8表10-4表10-13 插值函数 点2 1.45802.627272.181501.791502802002.24801.75 80 2.571.62.141.833202.221.77 1.5951.463 1.5963617391.796698748 2 表10-5表10-5 计算的法面模数mn=2mm,d1=41.421mm 误差

0.005154053 0.89 60 HBS 相差76-40 550380图10-21c,d图10-20c,b图10-19图10-18 计算载荷系数K使用系数KA1.251.051.4231.3511 图10-2

图10-8表10-4 表10-13 1.59 1.773

表10-5表10-5 计算的法面模数mn=3mm,d1=75.16mm 误差 0.017107236 转矩(N.mm 26946.12965363.244041616.61772864 828560100 261.598203 加入键槽35029.96855长度LD 525 L1B 526060194510 a 5 18.219 垂直面

51.30789841-351.4501501987.52505 σ 0.6 转矩(N.mm

106926.2293

1037.812393363.2440416 261.598203 D 90B 20 5750***.54510 L 40 垂直面

450.708718232360.88597 σ0.6 转矩(N.mm 326383.92161037.812393 D 110B ***0 82 67 10 垂直面

703.2891087658.8584

σ0.6

跨距L距离X181.6135.8181.6135.8197133.5197133.5 a 19.4 da 69 351 轴外伸轴径38轴外伸长度80 横坐标 24 26.27234788 26.27234788 108.373435 108.373435 200 72 72值1.44482.591831.5963622.1733011.7966993202.2361.754 #DIV/0!#DIV/0!#DIV/0!

篇8:斜齿圆柱齿轮减速器的优化设计

关键词:减速器,优化设计,复合形法

0引言

减速器是一种由封闭在刚性壳体内的齿轮传动、蜗轮蜗杆传动所组成的独立部件。减速器结构紧凑、效率高、传递运动准确可靠、使用维护简单、可批量生产, 故在机械工程领域内得到了广泛的应用。

目前通用圆柱齿轮减速器虽已有标准系列, 但其参数的配合并不见得是最优的[1], 而现在的优化方法都比较成熟, 且有通用优化程序[2], 因此只需编制目标函数和约束条件, 采用计算机进行优化计算就能在短时间内得到最佳的设计结果。本文提出了一种基于复合形法的斜齿圆柱齿轮减速器的优化设计方法。

1优化设计数学模型的建立

1.1 建立目标函数

减速器优化的目标可以有很多, 但最小体积可以节省材料、降低成本, 且可满足许多特殊工况场合。因此, 本文对两级斜齿轮减速器进行优化设计, 使其在传递一定功率、转速和满足使用寿命要求下具有最小体积。两级斜齿圆柱齿轮减速器相关尺寸如图1所示。设计的寻优目标函数为:

undefined。

其中:V为两级齿轮具有的体积;sj为图1中5个区域的面积, j=1, 2, 3, 4, 5;dk为斜齿轮的分度圆直径, k=1、2、3、4;l为使一级大齿轮与二级小齿轮不发生干涉的间距;b1、b3分别为一级和二级齿轮的齿宽;B为一级和二级齿轮总宽。

1.2 选择设计变量

因为齿轮的变位对体积影响不大, 为使问题简化, 在优化过程中, 假定4个齿轮均为标准齿轮, 两级斜齿轮减速器优化设计选取9个设计变量:

X= (mn1, mn3, Z1, Z2, Z3, β1, β3, b1, b3) T。

其中:mn1、mn3、β1、β3、Z1、Z3分别为一级和二级齿轮模数、螺旋角以及小齿轮的齿数;Z2为一级大齿轮齿数。

1.3 约束条件

(1) 依据齿轮法面模数mn≥1.5 mm, 有:

g1 (X) =mn1-1.5≥0 。

g2 (X) =mn3-1.5≥0 。

(2) 依据不发生根切的最少齿数Zv≥17, 有:

undefined。

undefined。

(3) 依据斜齿轮螺旋角的取值范围为8o≤β≤15o, 有:

undefined。

undefined。

undefined。

undefined。

(4) 为确保齿轮传动润滑条件, 应使i1= (1.1~1.5) i2, i=i1·i2, 有:

undefined。

undefined。

其中:i为减速器总传动比;i1为高速级传动比;i2为低速级传动比。

(5) 依据齿轮齿宽系数0.6≤Ψd≤1.2 (该设计问题属于齿轮为软齿面非对称分布传动) , 有:

undefined。

undefined。

undefined。

undefined。

(6) 依据满足齿面接触强度条件σH≤[σ]H, 有:

undefined。

undefined。

其中:[σ]H12、[σ]H34分别为Z1和Z2、Z3和Z4的接触疲劳许用应力;ZE为材料弹性影响系数;K为载荷系数;ZH1、ZH3、Zε1、Zε3、T1、T3分别为一、二级斜齿轮传动的节点啮合系数[3]、接触强度重合度系数以及传递的转矩。

(7) 依据满足齿轮齿根弯曲强度σF≤[σ]F, 有:

undefined。

undefined。

其中:YF1、YF3、Yε1、Yε3、Yβ1、Yβ3、YS1、YS3分别为一、二级斜齿轮传动的的齿形系数、弯曲强度重合度系数、螺旋角影响系数以及齿根应力集中系数。

2优化方法

本优化过程的目标函数和约束条件较为复杂, 需要大量的数值计算, 因此采用MATLAB编程, 选用求解约束问题极小值的复合形法进行求解。复合形法是求解约束非线性最优化问题的一种重要方法, 其大致过程是在可行域内选取p个设计点作为初始复合形的顶点, 通常取n+1≤p≤2n (n为设计变量个数) 。比较这些顶点的目标函数值, 其中目标函数值最大的点为坏点, 以坏点之外其余各点的中心为映射中心, 寻找坏点的反射点。如果反射点优于坏点, 则以反射点代替坏点, 构成新的复合形。依此步骤重复多次, 使复合形的位置越来越靠近最优点, 最后输出复合形中目标函数值最小的点作为近似最优点[4]。

3实例计算与结果分析

试设计两级斜齿圆柱齿轮减速器, 输入功率P=4.5 kW, 转速n1=960 r/min, 传动比i=20, 齿轮材料为45钢调质, [σ]H=540 MPa, [σ]F=167 MPa, 取齿面接触疲劳强度计算时的齿间载荷分配系数KH=1.4, 取齿根弯曲疲劳强度计算时的齿间载荷分配系数KF=1.5。

复合形法不需要计算目标函数的导数, 也不进行一维搜索, 对目标函数和约束函数都没有特殊的要求, 适应范围较广, 程序编制也较简单。本文采取复合形法对两级斜齿轮进行优化设计, 优化前、后两级斜齿轮各参数值见表1。由于减速器部分设计参数如Z1、Z2、Z3、mn1、mn3是离散值, 需要对原程序加入取整处理。经优化后的最优解为f (X*) =220 047.629 2 mm3, 设计方案齿轮和轴的总体积和为f=294 024.090 4 mm3, 体积下降25.16%, 效果显著。

4结论

通过建立两级斜齿圆柱齿轮减速器的数学模型, 添加对应的约束条件, 运用复合形法在保证减速器承载能力的前提下, 成功地对其结构参数进行了优化设计, 减小了两级斜齿圆柱齿轮减速器的体积、降低了制造成本、节省了金属材料、拓展了其应用场合, 为产品的改进设计提供了理论依据, 并且由于使用了MATLAB工具箱大大地简化了优化过程。

参考文献

[1]孙靖明.机械优化设计[M].北京:机械工业出版社, 2004.

[2]王晨曦.基于混合离散复合形法的工程优化设计[J].长安大学学报 (自然科学版) , 2004, 24 (4) :92-96.

[3]李克勤, 刘小鹏.基于MATLAB的二级圆柱斜齿轮减速器优化[J].湖北工学院学报, 2003, 18 (2) :41-42.

上一篇:企业营销策划期末试题下一篇:医院先进集体事迹材料