中国燃料电池车发展现状简介

2024-05-17

中国燃料电池车发展现状简介(精选6篇)

篇1:中国燃料电池车发展现状简介

中国燃料电池车发展现状简介

CCTV.com 2007年09月28日 10:18 来源:中国电动汽车网

从20世纪50年代开始,中国一直进行燃料电池相关技术的研究,但直到20世纪90年代,全球环境署(GEF,s)支持在中国进行燃料电池公共汽车示范,(GEF计划将在下一部分论述),中国对其产生了浓厚兴趣。从那时起,中国在此方面有了很大进步。客车、两轮车和公共汽车正在试车,他们希望能够在2008年奥运会(绿色奥运)和2010年上海世界博览会使燃料电池汽车真正投入运营。

目前在中国有60个机构在从事燃料电池的研究。这些机构中的大多数为研究所,大多数研究的重点是PEM技术。预计有四分之三工作是针对车辆进行的。例如,SAIC打算在2005年在路上投放少量示范车。同济大学要在今后几年研制出5至7辆燃料电池汽车,该计划得到了政府的资助。还有计划准备生产几辆最新的小型客车和公共汽车。以燃料电池为动力的船也正处于试验阶段。

中国的交通政策是鼓励发展公共交通,这一政策推进这项活动的进行。中国正在修建可持续的新的公路基础设施。中国每季度汽车的总销量超过了一百万辆,其中包括大约四十万辆小客车,这个比重正逐年增长。北京、上海以及部分其它城市已经采取限制自行车的使用政策。

同时,中国是一个石油进口国,但中国有大量的煤炭储备可用来生产氢。

2001年,中国加大了它在燃料电池车辆研究方面的投资,保证在五年内每年投资2000万美元。2002年,中国科学院宣布大约用三年的时间,投资1200万美元进行氢技术研究,其中包括质子交换膜燃料电池技术。

最近,通用汽车公司进行了全新的尝试,要使中国人确信燃料电池汽车时代即将到来。在2003年年末,通用公司举行了一次高级会晤,提出修建氢基础设施应与扩建汽油基础设施相互合作,要使中国大步跨过内燃机时代,直接奔向燃料电池发动机时代。

通用公司估计建立一个充分满足消费者使用的氢基础设施,大约需花费60亿到150亿美元,而中国每年进口石油大约需花费220亿美元(每天两百万桶,一桶30美元)。

一、轿车和客车

中国起点较低,但已取得了显著的进步。1998年,清华大学在中国研制出了第一辆燃料电池汽车,该汽车是一辆高尔夫车,它靠一组5千瓦的燃料电池提供动力,由北京富源世纪燃料电池能源提供。1999年展示了电动轿车。这个团队取得的标志性进展是北京富源正在测试的用于公共汽车发动机的140千瓦燃料电池堆。

2001年,北京绿能公司与清华大学和北京工业学院合作,研制出了以燃料电池为动力的出租车、客车和12个座位的公共汽车。清华大学也研制了以燃料电池为动力的公共汽车,现在他们与三星和丰田合作进行车辆的研制工作。

2001年,泛亚汽车技术中心研制出一款功能型车,冠名为凤凰。它采用了别克的小型货车车身和通用的燃料电池技术。该车采用通用车型HyWire,2002年在中国的一个技术论坛进行展示,通用宣布要增加它在中国的投资。

上海汽车集团有自己独立的计划。它与同济大学合作,在2003年研制出了名为超越1号的燃料电池较车,该车是以桑塔那2000为基础设计的。上海汽车集团希望在2005年有一个实验车队。

上海神力科技有限公司创建于1998年。在短短的时间里它示范了用40千瓦燃料电池的jitney、汽车、摩托车和电动自行车。现在正在研究在面包车上装用80千瓦的质子交换膜燃料电池发动机。

二、两轮车

因为机动车辆种类繁多,中国不仅从事小客车和公共汽车方面的研究,而且还对两轮车辆投入了大量研究。中国已经生产了大约2500万辆电动自行车,相当于2001年生产的总的汽车数。他们认为燃料电池比蓄电池的性能更优越。

苏州小羚羊电动汽车公司已经与PALCAN合作研制以燃料电池为动力的电动自行车;他们与北京富源公司还有一个独立的计划,将生产发动机达功率达5千瓦的一系列两轮车辆。上海永久牌自行车公司也正在和PALCAN合作研究以燃料电池为动力的电动自行车和小型摩托车。

在台湾,亚太燃料电池技术有限公司已经生产了几种燃料电池摩托车。

责编:刘娜娜

中国燃料电池汽车驶向何方?

2000年的第一轮燃料电池汽车试运行高潮过后,世界各国对燃料电池汽车的投入,已从建造示范汽车重新回到加强应用基础研究。因为科学家冷静地认识到,燃料电池汽车要走向商业化,必定是一场需要厚积薄发的“长跑”。

2006年8月17日,是我国燃料电池汽车研制进程中一个特别的日子,由中科院大连化学物理研究所等自主研发的两辆燃料电池观光示范车,在大连市的星海广场投入了交车的试运行,中国的燃料电池汽车又前进了重要的一步。

然而,比起几年前“超越2号”燃料电池汽车等竞相亮相时的情景,此次在大连的燃料电池汽车的试运行似乎显得冷清得多,没有媒体大篇幅的报道,也没有引起圈内专家和坊间百姓过多的讨论。科学家对此显得头脑异常地清醒:“此次它在大连的试运行,主要的目的之一,是为了让公众提高对燃料电池汽车的认识,知道一个浅显的基本道理,虽然目前已经出现全球性的石油高价位局面,但即便将来世界上一滴汽油都没有了,我们还能用氢源燃料电池开车。这也是为将来燃料电池产业化所作的一个舆论准备。另一个目的,就是考核燃料电池的寿命。”

“不是百米冲刺,而是厚积薄发的长跑”

“氢源燃料电池汽车要真正走向商业化不是百米冲刺,而是厚积薄发的长跑。”中国工程院院士、大连化学物理研究所燃料电池工程中心总工程师衣宝廉,谈到燃料电池汽车的未来走向感慨地说,这是经过一连串的实验、试运行得出的结论。

燃料电池是一种高效、环境友好的发电装置,它可以直接将贮存在燃料与氧化剂中的化学能转化为电能。衣宝廉院士介绍,世界上第一轮燃料电池汽车研发高潮在2000年左右,当时,美国、欧洲和日本的各大汽车生产厂家,无不都在加紧开发燃料电池技术,企业界尤其是各大汽车生产厂家看到燃料电池巨大的市场潜力,纷纷投入巨资,组成联盟,进行燃料电池车的相关研究、试验与生产。各大汽车公司,包括奔驰、通用、丰田等都认为,到2004年燃料电池车将能够批量生产,实现产业化。戴姆勒—克莱斯勒甚至宣称,预计届时燃料电池汽车的售价将降至每台约1万8100美元。美国能源部长佩耶1998年在接受《纽约时报》的采访时也作出自己如意的预测:燃料电池进入家庭、汽车和其他领域的步伐将比人们的想象要快得多。

我国关于燃料电池车研究的竞争也非常激烈。长期从事氢源燃料电池研究的中科院大连化物所,早在上个世纪90年代初期,就开始对氢源质子交换膜燃料电池的研究。1996年底,这一研究得到国家科技部、中科院、国家自然基金委的经费支持,并在国家“九五”计划中立项。2000年,大连化物所研发出第一台质子交换膜燃料电池发动机,并与中科院电工所、二汽集团合作,组装出了一台燃料电池中巴车,于2001年进行了试运行。随后不久,又组装了一台30千瓦功率的燃料电池中巴车。“当时,我们许多人都乐观地估计,燃料电池汽车已经到了产业化的前夕。”除大连化物所外,至2004年,国内在北京、上海等地,陆续出现了燃料电池汽车的试运行,当时许多人同样怀有迎接临盆婴儿般的喜悦期待:燃料电池汽车已经“接近‘走出实验室,实行量产’的大门”。

然而,事实却并非预料中的那么乐观。2003年7月,最早将燃料电池汽车投入商业运营之一的日本丰田汽车公司,召回了其出租的6辆燃料电池汽车,并宣布推迟另外6辆燃料电池汽车的租赁。原因是储存氢燃料的高压氢气罐,它在加注氢气时出现了泄漏。几乎与此同时,各个国家都在燃料电池汽车的试运行中,发现了一系列防不胜防、需要马上就解决的难题。目前,国际社会关于燃料电池汽车未来的预测是,“要达到产业化至少要到2015之后”,第二次试运行高潮将出现在2010年左右。

电池寿命决定研究生择业

可以说,2004年左右实现产业化的预测以失败告终,但世界各国对燃料电池汽车研究的热情有增无减。“世界范围内已经‘烧’掉了几百亿美元,市场潜力又十分巨大,谁也不愿意就此停顿下来。”作为我国燃料电池研究的第一代亲历者,衣宝廉院士相当感慨。

当前,国际上燃料电池汽车又进入了第二轮研究,与早些年的热血沸腾、踌躇满志相比,现在人们对燃料电池车的研究持更加冷静的态度。2000年之前,各国主要是投入造车和示范,从2001年到现在,各国在继续进行示范的同时,都将重点重新转向应用基础研究。希望通过研究燃料电池各种基础性的问题,找到解决车用燃料电池寿命问题的根本办法。(例如研究氢能本身的技术问题、制氢和储氢技术、高效的氢能转换技术等。)即找到解决车用燃料电池(汽车的动力源)动态响应、环境适应性与降低贵金属担量等影响电池寿命、成本的办法。

质子交换膜燃料电池具有可在室温下快速启动、负载响应快的特点,成为交通运输领域如电动汽车等和各种可移动电源的最佳候选者。“它作为燃料电池汽车最为核心、最为重要的部件,其实关键也就在那一张膜,现在科研人员希望研究出增强的、自增湿的,在中温120摄氏度左右的复合质子交换膜,以提高燃料电池的寿命和性能,包括如何解决动态响应对电池性能的影响等。”衣宝廉院士说得比较“专业”。

记者在采访中询问,燃料电池观光车在大连试运行,是否预示着它能于近期在全国推广,无论是致力于燃料电池研究已30年的衣宝廉院士,还是大连化物所燃料电池联合实验室主任张华民研究员等,科学家们都显得格外出奇的冷静。张华民指出,燃料电池汽车要成为真正的商品,要与现在非常成熟的内燃机车在各个方面进行竞争,必须解决寿命、成本、稳定性、耐久性、环境适应性等诸多问题,其中最为关键的是寿命和成本问题。

“寿命和成本,是在第二轮应用基础研究中,各个国家首先要早日解决的关键问题。”衣宝廉院士也介绍,对2015年实现氢源燃料电池车商业化的第二次预测能否实现,解决以上两个问题的时间表将起到决定性的作用。其中,摆在第一位的是在2010年左右能否解决电池寿命问题,只有这个问题得到彻底解决,燃料电池汽车才能走向成功,否则一切都无从谈起。但如果燃料电池汽车的电堆动态寿命能达到5000小时以上,接下来的降低成本,主要靠关键零部件的批量生产和降低铂担量,难度相对较低。

现在国际上每辆氢源燃料电池汽车的成本,一般在100万美元到200万美元之间,造价的确非常昂贵,“因为现在这些氢源燃料电池汽车的打造,基本都是人们用一双双手‘抠’出来的,如果能实现流水线上的批量生产,成本自然而然也就降下来。可以说,解决寿命问题是能否实现产业化最关键的判据”。

美国总统布什前些时候曾推断,美国现在的小孩到了今后他们可以开车的年龄,可以方便地买到燃料电池汽车,而且在社区附近就可以加氢。关于燃料电池汽车的产业化期限,衣宝廉也颇有信心地认为,可以用5年的时间解决电池的寿命问题,再用5年的时间解决电池成本问题。

“我认为,出现第二代氢源燃料电池示范车的高峰,应该是在2010年前后。”衣宝廉对自己正带的研究生讲,“你们毕业后的工作好不好找,就看2010年这个节点,如果到时候燃料电池寿命能达到设计要求,说明燃料电池汽车可以实现工业化,届时你们就能找到很好的工作、得到较高的薪酬。”

衣宝廉和布什的推断基本相同,只不过布什的描述更为形象化,科学家的描述更有逻辑性和严谨性罢了。

工程中试放大由谁买单?

“我们大连化物所得到了中科院知识创新工程的支持,前些年基础研究攒下的后劲很足,技术储备雄厚。今年,国内大汽车集团想介入燃料电池发动机的研发,他们经过多方的认真评估,最后燃料电池的研发还是选定大连化物所。这也说明,中科院实施的知识创新工程起了很大作用。”衣宝廉说。

“但应用基础研究只是一方面。我们所虽然取得的成果很多、发表的文章也很多,但是成果一时还不能拿到真正的汽车上应用,就是不能实现工程放大。基础研究与工程中试放大这两张皮的脱节问题该怎么解决?”张华民像是在自问自答。

谈到车用燃料电池的工程中试放大,衣宝廉显得格外忧虑:“工程放大对车用燃料电池的研究非常重要,不进行工程放大、不把我们开发的技术放到真正的汽车上应用,永远不知道我们以后生产出来的车用燃料电池,在汽车开到路上时会出现什么问题。”

张华民介绍,刚刚在大连投入示范运行的两辆观光旅游车,是大连市政府拨款200万元,大连化物所用多年积累的“863”技术设计开发的。其实就是希望通过示范车,检测考验燃料电池技术存在的问题,并通过长时间的运行来发现新问题,以便研究人员在今后的研究中可以对此进行改善,最终推动车用燃料电池技术的发展。

然而,像大连市政府这样富有远见的支持可遇而不可求。张华民说:工程放大始终是制约我国车用燃料电池技术发展的一个瓶颈。目前,政府部门投入的科研经费,主要是用以支持燃料电池的基础研究,那么,工业放大的大笔经费该去哪里找?

“虽然国内很多汽车集团对燃料电池很感兴趣,但是投入工程放大至少需要几千万元,一旦失败,几千万元就一去无返地打了水漂,对企业来说风险实在太大,一般都不敢轻易投入。我虽然同时身兼大连新源动力董事长,但公司的总共股本也就6000多万元,新源动力不是不想冒着风险上项目,但它不是几十万、几百万元的小打小闹,若要投几千万元就显得力不从心,我也说服不了公司各家股东拿这么多的钱来投。”衣宝廉院士苦笑。大连化物所是新源动力股份有限公司的主要股东,衣宝廉是新源动力名义上的“老板”,又是大连化物所实际在编的人员,面临如此棘手的两难选择,他无计可施也情有可原。

“以前发展燃料电池的投资者主要是政府,而今公司已成为发展燃料电池、尤其是燃料电池电动车的投资主体。世界上所有的大汽车公司与石油公司,均已介入燃料电池车的开发。”衣宝廉在他两年前编写出版的《燃料电池》一书中,曾经援引了下面这样一组权威数据:“短短几年时间,投入约80亿美元,研制成功的燃料电池汽车达到41种,其中轿车/旅行车24种、城市间巴士9种、轻载卡车3种。2003年美国又宣布了一个投资25亿美元的发展燃料电池汽车的计划(Freedom Car),其中国家拨款15亿美元,三大汽车公司投资10亿美元。”

燃料电池的工程中试放大究竟该由谁买单?该到哪里去寻找大笔资金的投入支持?这是车用燃料电池技术从“观赏”变成“实用”的关键所在,它成了目前大连化物所科研人员非常“头大”的问题。诚如衣宝廉院士所说,燃料电池汽车从研制开发,直至最终实现产业化和商业化,是一场需要厚积薄发的长跑,无论是体力,还是毅力和耐力,都对运动员是个严峻考验。

能不能实行政府和企业的AA制,找出一个最合理而且最公平的“买单”办法?

为了今后不仅仅是“观光”

美丽的大连有她的多张名片,比如,大连的美女骑警,大连的星海广场等,现在,大连又有了她的一张新名片。据大连市的一份《燃料电池游览车示范项目实施方案及进展报告》介绍,“中科院大连市新能源示范基地将作为大连市的又一亮丽的名片,进一步提升大连市着眼未来发展及和谐洁净的城市品位。”

大连市已经驶向星海广场的燃料电池示范车,就是大连市新能源示范基地示范内容之一。

由中科院大连化物所和大连新源动力公司共同主持,除了已经完成的燃料电池示范车项目,亦即在星海广场运行的观光游览车,今后还将包括某些公交线路,向大连市各界和前来大连旅游的人士展示不依赖于以石油能源为燃料,而是以氢源为替代燃料、以燃料电池为发动机的未来新能源利用新模式。

不久前,由大连市发改委主持申报成功的国家燃料电池及氢源技术国家工程中心,其建设方案已经得到了国家发改委的认可,正式启动并进入建设阶段。工程中心的重要建设内容之一,就是建立中国燃料电池技术转化和示范的基地。同时由于还决定,在七贤岭高新技术园区内建设大连化物所国家工程中心产业园区、大连市新能源示范基地将建设在该园区。

据知情者介绍,中国科学院、英国BP公司、中国石化公司已表示将参加大连新能源示范基地的建设,大连市政府已对该建设项目进行相关协调和组织推动,国家科技部也将给予相关的经费支持。

大连星海广场上运行的燃料电池观光示范车,作为大连市燃料电池示范车项目内容之一,展示的是相对比较简单的技术。比如为了提高燃料电池的效率和寿命,采用了燃料电池和蓄电池混合,也就是电—电的混合,而不是内燃机和电池的混合,这样车在刚启动的时候,蓄电池可以“帮一下忙”。

星海广场的观光车,燃料电池输出功率只有5kW,储氢容器为碳纤维增强金属瓶。该车在2006年4月至10月运行,也就是说,它在大连市最好的旅游观光季节展示,每天只有5小时,计划运行两年。“反正就是那么两辆观光车,燃料用完了加加氢就可以,燃料电池可以更换。”衣宝廉院士说。

观光车上配有VCD(车载电视),虽然那只是雕虫小技,但也可以从中看出设计者的良苦用心,观光乘车的时候可以随车播放光盘介绍燃料电池技术,“因为新技术的普及首先要让老百姓都理解”。

或许应该为大连市在星海广场的这张名片上,叠加了“新能源示范基地”这张新名片而喝彩。但我们在为大连市如此举动喝彩的同时,也多少为我国燃料电池汽车未来的产业化进程担忧。

其实,我国拥有燃料电池示范车的城市,大连既不是唯一的一个,更不是最早的一个。据估算,北京市现在最起码就有3台要迎接奥运的示范车,在联合国环境署(UNDP)经费支持下,由清华大学做整体负责单位。北京市预计今年投入使用的公交汽车将达到200辆,这种“零污染”的燃料电池公交汽车上,前端车头的上方,液晶大字赫然显示着“科技示范线”。武汉市也有以武汉理工大学为主研制的示范车。上海市有5台“超越”轿车投入示范,同济大学做整体负责单位。

燃料电池发动机的研制,现在国内的科研主力有中科院大连化物所、上海神力公司,而大连化物所派生出来的新源动力公司,也可算做是三足鼎立其间的一家。新源动力公司主要为上海的“超越”轿车提供发动机,大连化物所则主要为北京城市客车提供发动机。

按国家科技部的要求,参与燃料电池汽车“863”重大专项计划的科研攻关,每个重要的元部件都有两个以上的单位参加竞争。目前,我国主要为轿车提供燃料电池的,是新源动力公司和上海神力公司;主要为城市客车提供燃料电池的,则是大连化物所和上海神力公司。

纵观中国燃料电池的产业化进程,可谓一路跌跌撞撞、步履蹒跚。直至今天,尽管我们的燃料电池汽车还只能是为了“观光”,而不能由寻常百姓真正驾驶着开上通衢长街,但我们依然无畏无惧,继续奋然前行。

当然,即使走到“观光”这一步,中国燃料电池汽车技术已属不易;但它的下一步,它从“样品”和“展品”变成真正的规模产品,仍是清晰可见的一路坎坷。

正像衣宝廉院士所表示的,如果不能经受这场考验,“行百里,半九十”,只能半途而废;如果没有这样的心理准备,一旦前功尽弃,只能追悔莫及。

篇2:中国燃料电池车发展现状简介

在环境污染严重的当下,治理汽车尾气早已经是一个浪尖上的讨论话题,治理尾气的各地政府也是出台了各式各样的治理政策,可以控制一些汽车尾气的问题,但是还是不能治理根本问题,治理尾气必须要用专业的技术让车子恢复为原样,这样子做不仅可以治理好尾气的问题还会让车子的寿命延长。

当然现如今为了环保寻找新能源也是一个重要的问题,一下就是氢燃料电池车的一些介绍。

其实氢燃料电池车的工作原理就是:将氢气送到燃料电池的阳极板(负极),经过催化剂(铂)的作用,氢原子中的一个电子被分离出来,失去电子的氢离子(质子)穿过质子交换膜,到达燃料电池阴极板(正极),而电子是不能通过质子交换膜的,这个电子,只能经外部电路,到达燃料电池阴极板,从而在外电路中产生电流。电子到达阴极板后,与氧原子和氢离子重新结合为水。

由于供应给阴极板的氧,可以从空气中获得,因此只要不断地给阳极板供应氢,给阴极板供应空气,并及时把水(蒸气)带走,就可以不断地提供电能。燃料电池发出的电,经逆变器、控制器等装置,给电动机供电,再经传动系统、驱动桥等带动车轮转动,就可使车辆在路上行驶。与传统汽车相比,燃料电池车能量转化效率高达60~80%,为内燃机的2~3倍。燃料电池的燃料是氢和氧,生成物是清洁的水,它本身工作不产生一氧化碳和二氧化碳,也没有硫和微粒排出。因此,氢燃料电池汽车是真正意义上的零排放、零污染的车,氢燃料是完美的汽车能源!

氢燃料电池车的优势毋庸置疑,劣势也是显而易见。随着科技的进步,曾经困扰氢燃料电池发展的诸如安全性、氢燃料的贮存技术等问题已经逐步攻克并不断完善,然而成本问题依然是阻碍氢燃料电池车发展的最大瓶颈。氢燃料电池的成本是普通汽油机的100倍,这个价格是市场所难以承受的。

据悉,这批氢燃料电池车,最大输出功率高达60千瓦,燃料消耗仅为每百公里1.2公斤氢气,大约相当于4升93号汽油。

英国政府将大力发展氢燃料电池汽车,计划在2030年之前使英国氢燃料电池车保有量达到160万辆,并在2050年之前使其市场占有率达到30%-50%。政府将从2015年起实现氢燃料电池汽车本土化生产,并自行研发相关技术,另外还将建设氢燃料补给站。

篇3:中国燃料电池车发展现状简介

1 FCV的发展现状

1.1 国外发展情况

近年来,FCV正受到各大经济体的重视。在美国,FCV曾被美国总统布什作为“氢经济”论的“法宝”而大肆宣传。2008年,福特公司宣布发展清洁动力技术,以氢FC为最终目标。在日本,经济产业省已经对FCV的发展规定了时间表,其目标是到2020年日本的FCV达到200万辆,到2030年,FCV全面在日本普及,并斥巨资开发以天然气为原料的液体合成燃料技术、车用电池以及氢FC技术。在欧洲,欧盟也早在2008年夏天就斥资10亿用于FC和氢能源的研发,欧盟此举旨在把FC和氢能源技术发展成为高新技术,在世界新能源领域处于世界领先地位。

目前,许多国外的汽车公司已经推出了自己的FCV。图1为奔驰汽车公司的奔驰B级燃料电池车,可以在-25℃的情况下轻松启动,在短时间内迅速达到80℃的理想工作温度。

韩国现代汽车公司也相继推出了几款燃料电池汽车,其中具有代表性的是第二代(Tucson FCEV)和第三代(Tucson ix FCEV)燃料电池汽车。图2为韩国现代ix35氢燃料电池车,图3所示为该公司的第二代燃料电池公交车。

图4为美国通用汽车公司2001年推出的氢动三号汽车(Hydrogen3),在2010年上海世博会期间进行了将近百辆的示范运行。

1.2 国内发展情况

我国的燃料电池研究始于1958年,原电子工业部天津电源研究所最早开展了燃料电池的研究。70年代在航天事业的推动下,中国燃料电池的研究曾呈现出第一次高潮[2]。“九五”和“十五”期间,国家都把FCV及相关技术研究列入科技计划,国家863计划和973计划都设立了许多与此相关的科研课题。“十五”国家重大科技专项之一的“电动汽车专项”将FCV列为重要内容。“十一五”国家继续支持“节能与新能源汽车”,包括FCV的研究。

在燃料电池领域我国虽然起步较晚,但充分发挥后发优势,与先进水平的差距正在缩小,并且相继推出了一些燃料电池车型。2003年我国第一辆燃料电池动力样车—超越一号亮相上海国际工业博览会。随后,同济大学继超越一号后又研制出超越二号、超越三号,如图5所示。超越二号参加了国际必比登清洁汽车挑战赛,经测试,超越二号在污染排放、CO2排放、噪声、蛇行和燃料经济性方面达到A级水平。超越三号2006年也参加了该挑战赛,取得了不俗的成绩。上海汽车把超越系列汽车的燃料电池动力系统搭载在荣威轿车上,产生了上海牌氢燃料电池汽车,如图6所示。超越系列燃料电池车的主要技术参数如表1所示。

近年来,国家进行了若干次FCV的试运行。奥运会期间,3辆氢燃料电池大客车为奥运会服务。清华大学的邓学等[3]对其运行数据进行了相关研究,研究发现氢燃料电池大客车具有经济性高、能量转换效率高等优点[3]。2010年世博会期间,进行了千辆级的新能源车示范运行,其中196辆FCV,包括90辆燃料电池轿车,6辆燃料电池客车和100辆燃料电池观光车。2009年,科技部、财政部、发改委、工业和信息化部共同启动了“十城千辆”工程,目标是通过政府补贴,用3年左右的时间,每年发展10个城市,每个城市推出1000辆新能源汽车开展示范运行,南通市为示范城市之一,笔者通过跟车试验,亲身感受了几种新能源车的不同特点。

2 VFC目前存在的问题

目前,国际上最著名的燃料电池公司要数加拿大的巴拉德(Ballard)公司,该公司的产品主要应用于备用电源、分布式发电、物料搬运(叉车等)、公交车等,巴拉德公司生产的应用于公交车的有型燃料电池。国内燃料电池生产厂家主要有上海神力科技有限公司、北京飞驰绿能电源技术有限责任公司、上海燃料电池汽车动力系统有限公司等。

虽然经过多年的发展,但VFC仍然处于起步阶段,还存在着一些有待解决的问题。

2.1 VFC启停衰减问题

燃料电池作为FCV的动力来源,使用燃料电池直接驱动电动机,不同于传统的内燃发动机,当汽车需要立刻启动或加速时,唯一的办法就是增大燃料极和空气极的流量以提高电池的输出功率。由于FCV主要用于市区交通,运行的速度不高,而且需要频繁的变速,因此用燃料电池来直接驱动电动机,频繁的启动或者改变燃料极和空气极的流量对燃料电池的性能是一种很大的伤害,对其寿命有很大的影响。目前,车用燃料电池主要是质子交换膜燃料电池(PEMFC),PEMFC的频繁启停导致性能衰减的问题,已成为其耐久性研究的一个热点,如何减小启停中电池的衰减也是亟待解决的问题。对启停过程催化剂等关键材料的腐蚀机理的了解是基础,而对于车载PEMFC发动机来说,设计合理的启停程序或者合理的保护装置才是减少启停过程燃料电池衰减的根本措施[4,5]。

2.2 燃料电池组散热

燃料电池是FCV的核心,而燃料电池中质子交换膜是核心部件,其性能的好坏直接影响到电池的性能和寿命。与蓄电池不同,燃料电池内部的化学反应具有不可逆性,大约50%左右的能量耗散掉了,这一部分能量聚集在电池内部使其温度升高[6]。高温会对质子交换膜造成破坏,从而缩短燃料电池的使用寿命。不同于内燃机,燃料电池一般热量辐射出去少,使燃料电池冷却变得很困难。

同济大学的许思传等[6]对FCV散热系统进行了设计,上海燃料电池汽车动力系统有限公司的周奕等[7]也对FCV散热系统进行了研究。主要从三个方面:增大进气风速。采用两个800W的风扇,较好地解决了散热问题,但是附属设备的功耗增加了;(2)增大散热面积。采用了散热器分开布置的方式,有效地解决单块大散热器不易布置的问题,但是同样也面临着布置这些散热器所面临的空间不足以及进气口处理的问题;(3)改变散热器的位置。将冷凝器置于散热器之后,有效地降低散热器气侧的温度,有利于电堆的散热[5]。

2.3 VFC的防冰冻问题

燃料电池不能在零度以下正常起动是阻碍FCV商业化的主要障碍之一。由于燃料电池内部有水,且多用水循环方式冷却,当外部气温低于零度时,停止工作的燃料电池变冷,内部的水便结成冰,导致气道受阻,启动变慢,且水结冰后体积变大,可能产生足以破坏燃料电池内部部件的应力。

詹志刚等[8]对PEMFC冷启动及性能衰减进行了实验研究,实验表明多次冰点以下启动后,电池性能明显衰减且不可活化恢复;催化层表面出现龟裂,并有凹坑。电池性能不可逆劣化和电压的衰减均因水在电池内部发生冻结,导致了结构上的损伤。由于燃料电池内部的水主要在阴极生成,因此对阴极的扩散层产生了严重的影响。重复的结冰和启动,导致催化剂颗粒严重脱落,催化面积大为减小,催化剂的催化能力严重丧失,极大地影响了燃料电池的性能[8]。

2.4 大气污染对燃料电池性能的影响

目前大多数燃料电池使用贵金属Pt作为催化剂,工作温度较低,对燃料(氢气)和氧化剂中存在的杂质气体比较敏感,会严重影响到燃料电池的工作性能。此外,作为刚刚起步的FCV,目前必须与传统内燃机汽车一起运行,传统汽车排放的尾气势必将加重这种不利影响。大气中的主要污染性气体有氮氧化合物NOX和CO。

杨代军、马建新等[8]通过建立燃料电池测试平台对NOX和CO对质子交换膜燃料电池(PEMFC)性能的影响进行了研究,实验结果表明,当通入NOX后,电压在短时间内由0.68V迅速下降到0.35V。此外还进行了NOX对单体电池性能影响可逆性实验,停止通入NOX后电压可以基本恢复,表明NOX对单体电池的影响具有可逆性。在研究NOX对电池阻抗影响时发现,NOX导致了电池阻抗的变大,当用纯净空气吹走NOX后,阻抗基本得到了恢复。在研究CO通入阴极对电池性能的影响时发现电池的性能没有明显下降,表现出了良好的耐受性,这与阳极在CO浓度为10-5(体积分数)时就出现性能大幅降低截然不同,这主要是因为Pt同时也是O2和CO反应的良好催化剂,CO没有吸附在Pt表面造成催化剂中毒[9]。

2.5 车用燃料电池的控制系统

燃料电池作为FCV的核心,频繁启停将造成燃料电池性能衰减,输出功率频繁变化也会对燃料电池的性能造成很大破坏,因此设计减小这种不利影响的燃料电池控制系统是必要的。目前,蓄电池是使用最多的FCV辅助电源,合理高效的燃料电池/蓄电池能量管理将决定整车的性能。

陕西理工学院李志峰[10]采用功率跟随模式,对燃料电池/蓄电池混合动力电动汽车能量控制策略进行了基于ADVI-SOR软件的仿真研究,结果表明功率跟随模式控制策略能使蓄电池和燃料电池始终处于一个最佳工作状态,并可以延长其使用寿命[11]。清华大学何彬、卢兰光等[11]对燃料电池混合动力汽车能量控制策略进行了研究,提出了3种动力系统能量控制策略:恒压控制、离线能量分配控制、在线能量分配控制,并对这3种策略进行了仿真,结果表明离线分配的控制效果优于恒压控制,更接近于在线分配控制,但存在一定的震荡,在线分配控制保证SOC在最佳工作区域。此外,在CBD14循环工况下仿真实验了有无再生制动的燃油经济性,结果显示带有制动反馈的再生能量回馈总量约占燃料电池发动机输出能量的20%左右,极大地提高了整车的燃油经济性[11]。

2.6 振动对VFC的影响

VFC工作环境与普通燃料电池的不同之处在于振动。燃料电池电堆是由单电池通过连接组成,振动会对单电池产生不良影响,缩短使用寿命。

同济大学的许思传、周定贤等[12]对金属流场板燃料电池进行了100h振动可靠性试验,通过对单电池电压的分析,发现该金属流场板燃料电池单电压一致性下降[12]。

华南理工大学的于学华[13]采用移频减振原理对燃料电池发动机反应堆悬置刚度和阻尼进行了优化设计,避开路面不平度引起的1.2Hz到1.8Hz的低频激振,以及由前桥引起的12Hz到14Hz的激振,设计方法可以达到对燃料电池发动机反应堆进行隔振的设计要求[13]。

2.7 燃料储备

燃料电池的燃料主要有氢气、甲醇等,其中氢气的存储最为困难[14,15,16],这里主要说明氢燃料电池的燃料储存问题。

2.7.1 高压气态存储

普通高压气态储氢是目前应用最广泛储氢方式,简便易行而且成本较低,充放氢迅速,且在常温下就可进行[17]。目前,由于钢瓶材料的限制,储氢压力通常不高于20MPa,因此钢瓶的质量储氢密度仅为1%左右。

FCV作为交通工具,要具有长途续航能力,还要经受各种路况,因此高压气态存储有待进一步发展,应着重从两个方面着手:第一,寻找高强度的钢瓶合金材料,提高钢瓶单位质量的储氢量;第二,提高高压氢气存储的安全性。

2.7.2 金属氢化物储氢

金属氢化物储氢是刚发展起来的储氢技术,目前应用正在逐步增多,其原理是把氢气以金属氢化物形式储存在合金中。目前,常用的储氢合金和纯金属主要有Mg、FeTi、MgNi等,其中以Mg的质量储氢密度最高,达到了7.65%;其次是MgNi,达到了3.6%。通过比较发现,通过金属氢化物储氢可以得到相对于高压气态储氢较高的质量储氢密度,而且也相对安全一些。但是储氢合金的储氢条件较为苛刻,放氢需较高的温度,吸放氢动力学性能差,储氢量相对较低,但合金类储氢材料较易大规模生产,成本较低[13],因此综合考虑,金属氢化物储氢的应用前景很广[18]。

3 VFC的发展展望

未来VFC的发展将主要集中在以下几个方面:

(1)新型燃料电池催化剂的研究

目前燃料电池所用的催化剂为金属Pt,为稀有金属,导致燃料电池成本居高不下。同时,全球Pt产量有限,若FCV大量生产,将是一个问题。因此,研究开发新型催化剂以替代金属Pt是现在及将来燃料电池发展所面临的重要课题。

(2)水循环及热管理系统

燃料电池的工作性能对温度的变化比较敏感,目前多使用循环水来控制燃料电池温度,车用燃料电池的工况变化较频繁,相应的温度也起伏不定,所以冷却系统必须保证燃料电池工作在最佳温度区,因此,设计良好的水循环冷却系统是发展FCV必须克服的问题,以及寒冷地区电池结冰问题。

(3)提高燃料电池寿命

首先,改进车身结构,特别是减震系统,以减轻电池振动;其次,采用合理的动力混合方式,扬长避短;同时,研究新的控制方式,以改善频繁变化的运行状况对电池性能和寿命的影响[19]。

4 结语

FCV作为现代科技的产物,目前还存在一些有待解决的问题。技术方面,虽然在不断进步,但是还远没有传统内燃机汽车完善,有待技术突破;在市场方面,FCV在中国刚起步不久,了解的人相对较少,而且成本很高,目前市场相对较小。

当前FCV虽然还面临着一些问题和挑战,但作为新生事物,FCV有着巨大的优越性,如无污染物排放、无振动、无声行驶等,是传统内燃机汽车所不具备的,这些都是FC赋予汽车的,而且目前FCV在许多方面正慢慢赶上传统汽车。相信随着科技的进步,国家的扶持,许多技术瓶颈都将得到解决,FCV技术将会越来越完善,更多的人将会了解并接受它,前景也会更加广阔。

摘要:燃料电池汽车作为一种新能源汽车,经过多年的发展,各个方面均取得了显著的进展。通过对燃料电池、燃料电池汽车发展现状的综述,总结了车用燃料电池(Vehicle Fuel Cell,VFC)的发展现状,以及目前VFC发展过程中所遇到的问题,简要概括了这些问题的研究进展,并对燃料电池汽车未来的发展做出展望。

篇4:丰田首款燃料电池车将至

相较于传统汽车及纯电动车,Mirai 最鲜明的特点在于使用了液态氢作为动力源,液态氢被储存在位于车身后半部的高压储氢罐中。充满储氢罐大约需要 3 - 5 分钟。相比传统内燃机,做功效率不仅明显提升,还不会排放CO2、氮氧化合物等有害气体。加氢站缺乏是 Mirai 销售的主要挑战。不过丰田预计到2017年Mirai在美国的销量有望达到3000辆。

博世:2025年前燃料电池可实现商业化

随着汽车制造商对高燃油效率和低污染排放的追求,燃料电池应运而生。博世高管表示,燃料电池将于2025年前实现商业化。

博世集团汽车部门董事Wolf-Henning Scheider称,燃料电池优点不容小觑,它不仅省去了很多加油时间,而且提供的续航里程是普通发动机的5倍,并可代替其他零排放普通电池驱动技术。随着燃料电池价格的下降,将会被大量运用到汽车行业,有望在2025年前走向商业化。但目前为止,受制于其开发成本较高,且缺少加油设施,燃料电池还未得到普遍应用。Scheider表示,到2025年,燃料电池汽车价格仍会是普通电池驱动汽车的两倍,但随着越来越普遍的应用,会成为消费者的可行选择。

戴姆勒丰田抛售特斯拉股权

近期有消息称,在继戴姆勒公司宣布出清其所持有的美国纯电动车公司特斯拉汽车股份后没多久。全球销量第一的汽车公司丰田也做出了类似的决定,出售其手里的部分特斯拉股份。而就在10个月前,戴姆勒还发表公开声明,未来三年无意出售其所持特斯拉股份。

特斯拉的股价在9月达到历史最高点后,开始经历持续的大幅下滑。这被人认为是戴姆勒和丰田同时出售股份的原因之一。“单纯从投资角度看,两家公司投资获益都达数十倍,套现很正常。”一位汽车证券分析人士称。事实上,奔驰、丰田在抛售特斯拉之后,会加大对未来需求更大的中低端电动车领域的投入。

福特犹豫是否继续在南非投资

在非洲快速发展的经济中,南非的汽车产业贡献了约6%的份额。但过去一年里,该国的汽车产业直接或间接地受到了罢工的冲击。

福特南非地区一名高管近日透露,公司在南非的产能由于遭到多次罢工而屡遭停顿,导致公司对于是否在该地区继续投资有所犹豫。今年南非22万金属业工人举行了为期四周的罢工,直至9月份汽车制造商在当地的工厂才恢复生产,而去年汽车行业工人的罢工则对整个汽车产业造成了20亿美元的损失。不免让人心有余悸,福特南非业务总裁Jeff Nemeth 表示,过多的劳工问题已经让公司无法明确自己产能的多少,这会影响公司对于投资的决定。

米其林在印度设立研发中心

米其林近日宣布将在印度设立研发中心,主要开发供应亚洲市场的卡车轮胎,目前已经开始在当地“招兵买马”。新研发中心将位于新德里附近的古尔冈市(Gurgaon),这将是米其林首次在发展中国家设立研发中心。

篇5:中国燃料电池车发展现状简介

justinzhao(金币+1): thanks~ 2011-08-19 11:41:50概述随着世界汽车工业的不断发展壮大,汽车工业在世界经济发展中的地位越来越突出,汽车工业已成为现代经济支柱产业之概述

随着世界汽车工业的不断发展壮大,汽车工业在世界经济发展中的地位越来越突出,汽车工业已成为现代经济支柱产业之一,并对世界经济的发展和社会的进步产生巨大的作用和深远的影响。

燃料电池发电是继水力、火力和核能发电等之后的新一代发电技术。它是一种不经过燃烧直接以电化学反应方式将燃料和氧化剂的化学能转变为电能的高效连续发电装置。因这种装置的基本原理是原电池反应而不涉及到燃烧,因此其能量转换效率不受“卡诺循环”的限制,理论效率可达90% ,实际使用效率则是普通内燃机的2 ~3 倍。另外,它还具有燃料多样性、噪音低、对环境污染小、可靠性与维修性好等优点。燃料电池作为新一代汽车动力源,已被世界各大工业国视为战略产品。

氢被称为“21世纪的能源”,是今后世界、也是我国解决面临的能源危机的一条重要途径。科学家和社会学家预言,下一次工业革命将从氢能源开始,现在全世界的科学家都在积极寻求一种既清洁又无污染的能源,氢是科学家们看好的最理想的燃料。随着以氢为主要燃料的燃料电池技术和产品不断发展,并逐步进入推广和应用阶段。世界各主要国家都已认识到氢燃料电池技术潜在的巨大市场,纷纷斥巨资进行技术开发,扩大应用领域,氢燃料电池技术将给人类社会的建设和发展带来积极影响。

中国对发展燃料电池汽车产业高度重视,已出台了一系列计划和政策。科技部已将燃料电池汽车列入“十五”期间的“863”关键高科技攻关项目之一。研发燃料电池汽车,用高新技术改造传统汽车工业,实现我国汽车工业的跨越发展,目前已面临着极佳的机遇。国内外研究现状

2.1 国外发展状况

20世纪90年代以来,燃料电池技术在全球的开发活动异常活跃。以日本、美国和欧盟为代表的主要国家和地区,特别是丰田、宝马、通用、本田、大众等主要汽车厂商根据本国和公司的实际情况,先后采取了不同的当前,世界20多个国家的1 000多家公司和机构正投入巨资加紧进行燃料电池技术和产品的研究与商业化工作。截至2005年12月,已有14500多个燃料电池系统安装在世界各地,分布于不同的应用领域。图1 为《Fuel Cell Today》网络杂志2005年底对全球燃料电池安装数量所做的一个调查结果。图2为2005年不同技术类型的燃料电池安装数量比例饼图。

日本在混合动力汽车方面技术最为先进;美国将新能源汽车“ title=”新能源汽车“>新能源汽车” title=“新能源汽车”>新能源汽车“ title=”新能源汽车“>新能源汽车” title=“新能源汽车”>新能源汽车研发重点放在氢能和燃料电池汽车,同时大力推动生物燃料汽车的产业化。美国加州已颁布的汽车排放法规要求在2003年加州出售的所有汽车中,零排放车的数量必须占到10%;欧洲在混合动力、纯电动汽车、氢能和燃料电池汽车方面都有设计,在产业化领域也大力推广生物燃料汽车;巴西在生物燃料汽车应用方面处于世界领先水平,是目前最大的乙醇汽油和生物柴油汽车应用国家之一;挪威和加拿大积极发展氢能源,提出了建设“氢高速公路”计划,并已经取得了重要进展。

按现在的发展速度看,燃料电池电动汽车批量生产阶段越来越近,本世纪可提前实现燃料电池汽车商业化。预计到2010 年,燃料电池在价格上将具备与内燃机竞争的能力。届时美国市场上以燃料电池为动力的机动车将占美国汽车市场4%的份额,日本和西欧燃料电池汽车将分别占市场份额的15%和17%。到2020 年,燃料电池汽车将占世界汽车市场的25 %。

2.2 国内发展状况

我国新能源汽车总体上起步较晚,与世界先进水平存在较大差距,但在部分领域也处于较为先进的水平。目前我国在混合动力、氢能和燃料电池汽车方面远远落后于世界先进水平,没有在关键技术研发领域取得重要突破。在纯电动汽车和二甲醚汽车方面,我国已经成功研发一系列轿车和客车产品,并进行了示范运行和产业化发展尝试,步入了国际领先行列。

我国在产业政策制定方面起步也较晚,从2001年起,为维护我国能源安全,改善大气环境,提高加入WTO后我国汽车工业的竞争力,经过多方论证和广泛征求意见,中国科技部在“十五”国家863计划中启动了国家、地方和企业配套资金合计约16亿元人民币的电动汽车重大科技专项。尽管从目前来看中国产业政策的绩效尚难以评估,但是与美国、欧盟和日本等发达国家的产业政策相比较,我国新能源汽车产业政策仍存在很大的改进空间。新能源汽车技术

随着石油资源逐渐短缺,扭转目前以石油为主的能源利用格局,实现能源多样化成为未来汽车工业发展的趋势。世界各国政府已清醒地认识到这一点,纷纷拨款用于技术开发,并制定了相应的产业计划。各大汽车公司和相关企业、科研机构都加大了研发投入,加紧研究开发,并纷纷推出了一些具有先进技术的代表车型,其中涉及燃料电池电动汽车混合动力电动汽车以及其他生物能源汽车。尤其是自2004年年初,原油价格的一路狂飙使成品油价格随之上涨,很多汽车行业专家纷纷表示,高油价正在为更环保、更省油的新能源汽车带来一个千载难逢的发展契机,世界汽车工业有望从此加速摆脱对石油的依赖和对环境造成的严重污染,从而进入一个清洁能源时代。

3.1 燃料电池汽车

燃料电池是一种直接将储存在燃料和氧化剂中的化学能高效(50% ~80%)、环境友好地转化为电能的发电装置。燃料电池具有其他能量发生装置不可比拟的优越性:能量转换效率高;高可靠性;良好的环境效益。

燃料电池汽车所使用的燃料包括氢、甲醇、汽油和柴油。通用汽车公司已研制成功使用液氢燃料电池产生动力的零排放概念车“氢动一号”,该车加速快、操作灵活,从0 ~100 km 加速仅16 秒,最高时速可达140 km,续驰里程400 km。空气产品公司、普拉克斯公司作为领先的液氢供应商,其供氢站已经可为氢燃料电池汽车供应24 ~34 Mpa的液氢。由于氢燃料电池具有零排放等其他燃料不具备的优点,目前研究的重点主要是氢燃料电池。

与传统内燃机汽车和混合动力汽车相比,燃料电池汽车具有无污染、“零排放”、高能量效率、低噪音、良好的动力及操控系统等优点。

3.2 混合动力汽车

经过10多年的发展,混合动力系统已从原来发动机与电机离散结构向发动机电机和变速箱一体化结构发展,即集成化混合动力总成系统。混合动力汽车是传统内燃机汽车与电动汽车相结合的产物,它继承了电动汽车低排放的优点,又发挥了石油燃料高的比能量和比功率的优点,显著改善了传统内燃机汽车的排放和燃油经济性,增加了电动汽车的续驶里程,在由内燃机汽车向电动汽车的转变过程中扮演着重要的角色。

电池是混合动力汽车的关键部件之一。目前HEV电池的主流产品是镍氢电池,主要的生产厂商是日本三洋和松下公司,美国的生产厂商Eobasys,Johnson Control SAFT等公司也先后加入到镍氢电池的研发和销售。镍氢电池具有高能量、高功率、长寿命、较好的高低温性能、比较容易进行串并联组合等特点,目前大部分商业化的HEV基本都是采用镍氢电池。锂电池目前尚处于研究改进和使用阶段,其主要优势在于具有较高的比能量,可以使电池做得更小、更轻;具有较好的充放电效率和低的自放电率,可以提高电池的能量效率,具有较大的潜在降价空间。

3.3 其他能源汽车

使用醇类作为能源的汽车主要是乙醇汽车,乙醇汽车使用的燃料是乙醇汽油。乙醇汽油是一种由粮食及各种植物纤维加工而成的燃料乙醇和普通汽油按一定比例混配的替代能源。乙醇汽油可有效地改善油品的性能和质量,降低一氧化碳、碳氢化合物、氮氧化物等主要污染物的排放,而且它对机动车的行驶性能也没有影响。

戴姆勒克莱斯勒公司推出的NECAR 5 汽车堪称是燃料电池技术的里程碑。这种燃料电池动力汽车在美国已完成了4831 km行车试验。NECAR 5是戴姆勒-克莱斯勒公司开发的第5代燃料电池汽车,由Ballard 燃料电池驱动系统带动,该系统包括车载甲醇转化器,转化器从液体甲醇抽取氢气驱动燃料电池。在穿越美国的行车试验中,汽车每行驶48311 km,用克莱斯勒分配器配给的甲醇补加一次燃料。

生物柴油是指利用植物油和动物脂肪等可再生的资源与甲醇的进行酷交换而形成的长链脂肪酸甲脂混合物,是一种可以部分替代� 油柴油的新型液体燃料。目前使用的“清洁柴油”是生物柴油与普通(石油)柴油不同比例的混合燃料。生物柴油作为汽车燃料具有可再生性、环境友好性和优良的可替代性等突出优势。汽车新能源发展战略

4.1 国内外新能源汽车产业政策

从技术上来看,新能源汽车中许多类型已经成熟,完全可以进行大规模生产。但新能源汽车产业化的最大难题通常是成本,由于传统汽车经过长期发展,具有显著的规模经济和相关产业链支持,而新能源汽车在其发展初期面临着规模较小、上下游产业链不完整等因素,导致新能源汽车的成本通常都显著高于传统汽车。

美国于1975年出台《能源政策和节能法令》;1990年美国通过了《空气清洁法案》;1992年美国制定了《美国国家能源政策法案》;2005年美国国会对《美国国家能源政策法案》进行了修订;2007年美国国会相继通过了两项重要法案,即《2007能源促进和投资法案》和《2007 可再生燃料、消费者保护和能源效率法案》。除法律文件外,美国还制定了各种法规和标准来促进法律的执行。

日本经济产业省和资源能源厅于2006年5 月制定了“新国家能源战略”。该战略提出的主要目标之一是“到2030年,将目前近50%的石油依赖度进一步降低到40% ”,具体要实现能源效率比现在提高30%,将运输部门的石油依赖度降低到80%等目标。

欧盟从1991年起开始调整能源政策,强调节约能源和使用可再生能源,先后于1993 年和1998年出台能源计划,1995 年发表了《欧盟能源政策绿皮书》。1997年公布了《欧盟未来能源:可再生能源白皮书》。2001年,欧盟出台“发展可再生能源指令”。欧盟委员会于2007 年1 月公布了“新欧洲能源政策”。

中国在新能源汽车的研究开发和应用方面,早在“八五”期间就组织实施了国家电动汽车关键技术攻关项目,“九五”期间又进行了示范运营尝试。1999年4月正式启动国家清洁汽车行动项目,重点开展燃油汽车清洁化,燃气汽车关键技术攻关及产业化,并确定了12个清洁汽车示范城市。

2007年3月,国家发改委公布《新能源汽车生产准入管理规则》,该规则对新能源汽车作出概念界定:所谓新能源汽车是指混合动力电动汽车、纯电动汽车、燃料电池电动汽车和其他新能源汽车。

2007年12月18日,国家发改委发布《产业结构调整指导目录》,新能源汽车正式进入发改委的鼓励产业目录。

2008年1月,科技部与国家发改委研究制定了《可再生能源与新能源国际科技合作计划》,其指导思想是:在吸引国外先进技术向中国转移的同时推动中国的先进技术走出去,加强与发展中国家的科技合作;制定可再生能源与新能源国际交流与合作技术指南,参与国际可再生能源与新能源技术标准规范的制定;促进可再生能源与新能源技术的引进、消化、吸收和再创新,与国外联合建立先进技术应用示范项目等。

4.2 汽车新能源发展战略

按照国家863节能与新能源汽车重大项目和科技部新能源汽车产业化的相关规划,未来

我国新能源汽车发展的重点是先进内燃机和混合动力汽车、纯电动汽车和燃气与燃料电池汽车。目前天然气汽车、生物燃料汽车和纯电动汽车已部分进入产业化领域,下一步的技术研发将围绕混合动力汽车、纯电动汽车和燃料电池汽车展开,其中混合动力汽车和燃料电池汽车则是重中之重。按照规划,混合动力汽车将是短期和中期新能源汽车发展的主导力量,燃料电池汽车则是长期发展的重点。

我国新能源汽车技术的发展状况与国际水平相比,存在一定的优势和劣势。目前我国在二甲醚汽车技术方面处于世界领先地位,纯电动汽车也达到了世界先进水平,不过在太阳能、风能、核能等发电技术上我国还存在一定的差距。天然气汽车、生物燃料汽车与世界先进水平相比存在一定差距,但差距很小。油电混合动力的技术水平相对落后,但目前正被迅速缩小,随着国家863计划的实施和企业投入的增加,我国在油电混合动力汽车技术方面正迅速接近世界先进水平。插电式混合动力、氢燃料电池和氢动力汽车技术方面与世界先进水平差距明显,目前尚未在关键技术上取得重要突破。

从我国的发电结构来看,纯电动汽车所需要的电能在短期内仍然主要由煤炭、水电转化而来,二者之和所占的比重超过90%,在成本上煤炭、水电相比其他发电方式仍然具有较为明显的成本优势,因此短期内我国纯电动汽车所需要的能源主要仍由煤电和水电来提供,核电可以作为煤电和水电的补充。

由于生物质能源的缺乏,我国在生物燃料方面应当积极拓展多元化的非粮食原料生物燃料,发展的区域也主要集中在自然生物质能源相对丰富的省市,如云南、广西等。通过煤炭制取二甲醚在技术上已经相对成熟,可以成为替代燃料的补充,但应当注意控制制取过程中的污染问题。

从短期来看,液化天然气可成为短期发展目标。因为液化天然气有助于解决汽车尾气的严重污染问题,并且有助于解决目前的石油紧张问题。我国的天然气储量较石油丰富,而且天然气的探明储量在不断增加。此外,使用液化天然气不受天然气管网限制,可充分利用世界天然气资源,这对于我国的能源安全有利;但是,天然气资源是不可再生资源,长期过量开发与使用将会导致与石油资源一样的命运。

从中期来看,混合动力和纯电动将成为主要的新能源汽车技术。插电式混合动力在改进型混合动力的基础上。主要使用电动模式,与纯电动汽车一样需要清洁的电能。

从长期来看,氢能源汽车开发,涉及许多技术领域。发展氢经济对确保中国能源安全、实现真正可持续发展的交通体系也有着至关重要的作用。

中国汽车行业不必像发达国家那样经历石油燃料时代发展的全过程,而正处在大力发展未来能源的黄金时机,并将在推动全球氢经济发展的进程中占据特殊地位。

在电能获得方面,由于这一阶段利用清洁一次能源如核能、太阳能、风能和潮汐能等发电的技术将会逐步成熟,因此能源发展的中心仍然是大规模推广利用核能、太阳能、风能和潮汐能等清洁一次能源来发电。

从我国的实际情况来看,政府对国内能源厂商和汽车厂商具有较高的影响力和控制力,在政府主导下发展多种主体共同参与的新能源汽车产业化发展战略联盟能够有效降低各方面临的市场风险,对新能源汽车产业化发展将起到非常重要的作用。结论

篇6:中国燃料电池车发展现状简介

2013年1月28日, 德国戴姆勒汽车股份有限公司、美国福特汽车公司和雷诺-日产联盟签订了三方协议, 决定共同对燃料电池技术进行相关研究, 在未来联合开发一款通用燃料电池系统, 以提高燃料电池汽车的产量, 加速推广零排放技术, 并达到规模经济的效果而降低造价。预计第一款面向大众的燃料电池新车将在2017年问世, 价格完全具有市场竞争力。

三家公司的这次携手合作并不仅仅只是在技术层面加大投资力度, 还联名向政府和相关的工业部门递交了提案, 要求建设更多的加氢站和基础设施。目前日产已经是戴姆勒的合作伙伴, 因为戴姆勒奔驰旗下的“梅赛德斯-奔驰B级”与日产旗下英菲尼迪豪华车的未来紧凑车型同平台。

此前, 戴姆勒奔驰在上一代“梅赛德斯-奔驰B级”的基础上推出了B-Class F-Cell氢燃料电池汽车, 并在2010年安排70辆试验车型, 以通过出租给公司或私人的方式在美国进行测试 (见图1) 。经过两年的用户反馈和改进, 奔驰原本计划于2014年开始批量生产氢燃料电池汽车, 但是面对市场状况的变化和加氢站数量过少的情况, 奔驰不得不重新考虑氢燃料电池汽车计划。奔驰的母公司戴姆勒所拥有的以氢燃料作为动力的汽车技术是该领域最为先进的, 戴姆勒的氢燃料推进系统已经做好了投入批量生产的准备, 然而公司认为目前还无法以具有竞争力的价格销售奔驰B-Class F-CELL氢燃料电池汽车, 因此决定将该车的发布时间推迟到2017年以后。

有业内人士乐观地展望, 戴姆勒、福特和日产三方愿意拿出相同的研发资金, 合作开发和共同享用未来更廉价的燃料电池堆和燃料电池系统, 并冠以各自的品牌来推广燃料电池电动汽车, 将有助于确定该技术的全球标准规范, 为发展基础设施提供解决方案。这是燃料电池技术在市场推广方面迈出的重要一步, 有望在2017年前推出“全球首款负担得起的面向大众市场的电动汽车”。

不久前, 日本丰田汽车公司和德国宝马汽车公司也表示将一起合作开发燃料电池系统。合作内容涵盖了联合开发燃料电池堆、轻量化技术、氢气罐和电动马达汽车等四个领域, 此外, 他们也会致力于新的锂空气电池技术的开发, 确立大大提高电动汽车电池能量密度的目标。

由于这三家公司都具备了开发燃料电池技术的先进水平, 所以难以判断谁有优势谁稍微落后。其中最有可能出现的问题是燃料电池硬件的价格是否合理, 是否能够承受日常的使用。戴姆勒汽车公司董事会成员、集团负责奔驰研发的负责人托马斯·韦伯表示。戴姆勒与其他同行们都相信, 氢能源汽车最有望实现无排放驾驶的目标。他指出:“这次三方的合作将实现在燃料电池车领域的一次技术飞跃。”通用董事长兼首席执行官丹·阿克森1月28日表示, 公司在燃料电池领域比戴姆勒和丰田取得了更大的进步。但该公司目前还在观望阶段。

优势动力强劲无污染零排放

目前, 戴姆勒奔驰汽车公司正对其多代车型进行F-CELL燃料电池汽车的测试, 以收集实际使用的数据。

特别值得一提的是, 2011年1月29日, 戴姆勒在热烈庆祝梅赛德斯-奔驰品牌汽车诞生125周年的时候, 作为全球庆典重要组成部分的B级F-CELL燃料电池车型的环球之旅也隆重举行。3辆零排放的梅赛德斯-奔驰B级F-CELL燃料电池汽车从南欧出发途经法国、西班牙抵达葡萄牙, 然后取道北美, 穿越美国和加拿大。在横跨澳洲大陆后, 到达亚洲, 驶过哈萨克斯坦和俄罗斯, 抵达北欧, 然后返回到汽车诞生地斯图加特。这是一场经受了复杂气候与路况考验的长途旅行, 3辆B级F-CELL燃料电池汽车用125天的时间途经14个国家, 行程总计3万多公里 (见图2) 。由于无法在普通的加油站补充燃料, 因此提供后援的是一支浩浩荡荡的车队, 由十几辆车组成, 其中包括大型氢气储运车和加氢车等。

通过这次环球之旅, 向世人全面展示了奔驰燃料电池技术杰出的领先优势及其可行性, 同时也将氢能源的供给问题提上日程。“只有当社会的新能源供给网络能够充分满足大众需求的时候, 这种零排放的技术才能够真正被大规模应用。全社会都应该共同参与到新能源网络的开发与建设中来。”托马斯·韦伯博士强调, “我们正在为未来的移动交通解决方案而不懈努力, B级F-CELL零排放汽车就是我们的成果, 它不仅续航时间长, 而且燃料添加时间很多, 能够满足城市及远程交通需要。在此次的环球之旅中, 我们已经充分地向世界展示这一点。”

无论在外观还是内饰, 奔驰B-Class F-CELL氢燃料电池汽车都沿袭了B级运动旅行车的设计特点, 一如既往地保持了豪华与舒适感。动力方面则搭载氢燃料电池驱动系统, 只需加注氢燃料, 通过车内装置便能迅速转化成电能, 加满氢燃料的过程仅需3分钟。设计师巧妙地把汽车的氢燃料罐和燃料电池设计成独特的夹层结构, 从而大大节省车内空间。奔驰B-Class F-CELL氢燃料电池汽车在起步加速后, 强劲的动力高达100千瓦 (136马力) , 能够轻松产生290牛·米的最大扭矩, 足可与2.0升汽油发动机的动力相媲美, 使驾乘者顿时激情澎湃。与此同时, 奔驰B-Class F-CELL氢燃料电池汽车紧凑的氢燃料电池组件拥有非凡的效能, 不但每次的续航里程高达400公里, 而且在新欧洲行驶循环 (NEDC) 测试中, 每百公里仅消耗相当等值于3.3升柴油的耗电量。尤其需要称道的是, 氢燃料电池能够产生充足电力, 而且惟一的排放物是水 (见图3) 。

在车身的底部, 安装有3个巨大的储氢罐, 每个储氢罐可储存约4公斤的气态燃料。另外在后备箱底板下部还装有一个锂离子电池组, 和氢燃料一起组成驱动车辆的双重动力。当外界温度足以仅靠电池能量起动车辆时, 车上的智能驾驶管理系统会根据动力需求决定是否需要燃料电池介入工作以提供更充沛的电力。在车辆的行驶过程中, 能量管理系统能够确保燃料电池系统始终处于最优化的运转状态。锂离子电池能够协助解决不同驾驶情况下的电量需求, 如果车辆以较低的速度行驶, 将靠锂离子电池来驱动;倘若遇上电池电量不足的情况, 系统会马上自动切换至燃料电池, 以拓展车辆的续航里程。在车辆用正常速度行驶时, 大都以氢动力为主。如果此时需要更多的动力, 只需要深踩油门, 锂离子电池和氢燃料将同时作用, 来保证更好的加速能力。当驾驶者制动或松开油门踏板时, 车载电机可把动能转变为电能, 并将电能存储在电池中, 以备之后使用, 起到能量回收的作用。

瓶颈市场难以承受的高成本

汽车是人们生活中必不可少的交通工具, 而汽车排放的尾气又是造成环境污染日益严重的重要原因。为此, 寻找一种代用燃料势在必行。经过几十年的精心研究, 科学家发现用氢燃料电池作汽车动力不会产生污染环境的有害成份, 是名副其实的“绿色燃料”汽车。专家认为, 车载燃料电池堆中的氢燃料和空气中的氧气发生电化学反应, 释放电流为车辆提供动力, 生成产物只有水蒸气和热量, 不会对环境构成污染, 可以把燃料电池车视为电池纯电动车的补充。

氢燃料电池能储存能量, 用化学元素氢制造, 它的基本原理是属于电解水的逆反应。氢燃料电池汽车工作时, 将氢气送到燃料电池的阳极板 (负极) , 经过催化剂 (铂) 的作用, 氢原子中的一个电子被分离出来, 失去电子的氢离子 (质子) 穿过质子交换膜, 到达燃料电池阴极板 (正极) , 而电子是不能通过质子交换膜的, 这个电子只能经外部电路, 到达燃料电池阴极板, 从而在外电路中产生电流。电子到达阴极板后, 与氧原子和氢离子重新结合成为水。由于供应给阴极板的氧可以从空气中获得, 因此只要不断地给阳极板供应氢, 给阴极板供应空气, 并及时把水 (蒸汽) 带走, 就可以不断地提供电能。燃料电池发出的电经过逆变器和控制器等装置给电动机供电, 再经传动系统和驱动桥等带动车轮转动, 就可使车辆在路上行驶。

研究发现, 与传统汽车相比, 燃料电池车能量转化效率高达60~80%, 为内燃机的2~3倍。燃料电池的燃料是氢和氧, 生成物是清洁的水, 它本身在工作时不产生一氧化碳和二氧化碳, 也没有硫和微粒排出。因此, 氢燃料电池汽车是真正意义上的零排放无污染的汽车, 氢燃料是完美的汽车能源。

氢燃料电池车的优势毋庸置疑, 然而它也存在显而易见的劣势。氢燃料的安全性和贮存技术等问题曾经一度困扰氢燃料电池的发展, 现在随着科技的进步已经逐步攻克并不断完善。目前, 阻碍氢燃料电池车发展的最大瓶颈依然是成本问题。氢燃料电池的成本是普通汽油机的100倍, 市场难以承受这个价格。

上一篇:热力公司客服工作总结下一篇:测量学考试要点