燃料电池的发电应用

2024-04-20

燃料电池的发电应用(通用6篇)

篇1:燃料电池的发电应用

新型材料及其应用论文--《燃料电池发电技术》

燃料电池发电技术

摘要:概述了燃料电池的原理和分类,以及他们的反应原理及技术和燃料电池发电技术做了初步介绍。

关键词:燃料电池,发电

引言:随着社会经济的高速发展,人们对能源的依赖越来越严重,而生存环境的持续恶化又催促人们不断寻求清洁能源。燃料电池由于其环保性和高效性被誉为继火力发电、水力发电、核电之后的第四代发电技术,越来越多的国家和地区投入更多的资金对其进行研究并使其产业化。

一:燃料电池简介

燃料电池(Fuel cell),是一种使用燃料进行化学反应产生电力的装置,最早于1839年由英国的Grove所发明。最常见是以氢氧为燃料的质子交换膜燃料电池,由于燃料价格便宜,加上对人体无化学危险、对环境无害,发电后产生纯水和热,20世纪60年代应用在美国军方,后于1965年应用于美国双子星座5号飞船。现在也有一些笔记型电脑开始研究使用燃料电池。但由于产生的电量太小,且无法瞬间提供大量电能,只能用于平稳供电上。

燃料电池其原理:它是一种电化学装置,其组成与一般电池相同。其单体电池是由正负两个电极(负极即燃料电极和正极即氧化剂电极)以及电解质组成。不同的是一般电池的活性物质贮存在电池内部,因此,限制了电池容量。而燃料电池的正、负极本身不包含活性物质,只是个催化转换元件。因此燃料电池是名符其实的把化学能转化为电能的能量转换机器。电池工作时,燃料和氧化剂由外部供给,进行反应。原则上只要反应物不断输入,反应产物不断排除,燃料电池就能连续地发电。这里以氢-氧燃料电池为例来说明燃料电池

氢-氧燃料电池反应原理 这个反映是电觧水的逆过程。电极应为: 负极:H2 +2OH-→2H2O +2e-

正极:1/2O2 +H2O+ 2e-→2OH-

电池反应:H2 +1/2O2==H2O

图1 燃料电池工作原理示意图 燃料电池的类型:

碱性燃料电池(AFC)——采用氢氧化钾溶液作为电解液。

质子交换膜燃料电池(PEMFC)——采用极薄的塑料薄膜作为其电解质。

磷酸燃料电池(PAFC)——采用200℃高温下的磷酸作为其电解质。

熔融碳酸燃料电池(MCFC)

固态氧燃料电池(SOFC)——采用固态电解质

二:燃料电池发电系统

燃料电池是一种将储存在燃料和氧化剂中的化学能,直接转化为电能的装置。当源源不断地从外部向燃料电池供给燃料和氧化剂时,它可以连续发电。

燃料电池发电是在一定条件下使H2、天然气和煤气(主要是H2)与氧化剂(空气中的O2)发生化学反应,将化学能直接转换为电能和热能的过程。与常规电池的不同之处在于:只要有燃料和氧化剂供给,就会有持续不断的电力输出。与常规的火力发电不同,它不受卡诺循环(由两个绝热过程和两个等温过程构成的循环过程)的限制,能量转换效率高。燃料电池除可发电外,还可作为电动汽车的电源。在对众多的蓄电池以及一次电源的研究以及应 新型材料及其应用论文--《燃料电池发电技术》

用中发现:质子交换膜燃料电池(PEMFC)作为一种不经过燃烧直接以电化学反应连续地把燃料和氧化剂中的化学能直接转换成电能的发电装置,具有能量转换效率高(一般都在40-50%,而内燃机仅为18%-24%)、无污染、启动快、电池寿命长、比功率、比能量高等优点。

1.磷酸燃料电池(PAFC)发电技术

磷酸型燃料电池由多节单电池按压滤机方式组装以构成电池组。

碱性燃料电池在载人航天飞行中的成功应用,证明了按电化学方式直接将化学能转化为电能的燃料电池的高效与可靠性,为提高能源的利用效率,人们希望将这种高效发电方式用于地面发电。

以磷酸为电解质的磷酸型氢氧燃料电池首先取得突破。至今,其技术获得了高度发展,已进行了规模为11000kW~4500kW的电站试验,定型产品PC25(200kW)已投放市场,有数百台这种电站在世界各地运行,运行试验证明,这种燃料电池分散电站的运行高度可靠,可作为不间断电源应用,其热电效率达40%,热电联产时其燃料的利用率达60% ~70%。

图2 PAFC的反应原理

目前氢的贮存与运输均有不少技术问题需待解决,各国正在积极进行攻关研究一旦这一系列的技术问题得到解决,燃料电池就可利用由太阳能,核能等发出的电来电解水所制备出的氢作为燃料。

在以矿物燃料为原始燃料时,则需经化学转化的过程,例如煤的气化,天然气或汽油的蒸气转化等,通过这些方法将矿物燃料先转化为富氢气体,才可以送入电池作为燃料电池的燃料。

磷酸燃料电池的输出为直流电,而大部分用户的电器均使用交流电,因此,需要把燃料电池输出的直流电经逆变器转换成交流电后再提供给用户使用。磷酸燃料电池的内阻较常规化学电源如铅酸蓄电池大,所以,当输出电流变化时它的工作电压变化幅度大,为解决这一问题,常在燃料电池的输出和逆变器之间加一个振荡变流器(chopper),它的功能是升压或降,以确保供给用户电力的工作电压维持恒定。

燃料电池应是一个能够自动运行的发电厂,因此,对于磷酸燃料电池来说,其氧化剂的供应,电池废热的排出,反应生成水的回收等均需进行控制与管理,再加上还需对电力输出逆变进行控制与管理等,所有这些必须齐备才能构成一个完整的燃料电池系统。

新型材料及其应用论文--《燃料电池发电技术》

图3 磷酸燃料电池系统方框图 2.质子交换膜燃料电池(PEMFC)发电技术

质子交换膜燃料电池(PEMFC)由若干单电池串联而成,单电池由表面涂有催化剂的多孔阳极

多孔阴极和置于二者之间的固体聚合物电解质构成。其工作原理如图4所示,当分别向阳极和阴极供给氢气与氧气时,进入多孔阳极的氢原子在催化剂作用下被离化为氢离子和电子,氢离子经由电解质转移到阴极,电子经外电路负载流向阴极,氢离子与阴极的氧原子及电子结合成水分子,因此 PEMFC的电化学反应为:

图4 PEMFC的反应原理

(1)原料来源广泛,通过对石油,天燃气,煤炭还有沼气,甲醇,水植物等加工取得,来之不尽,取之不竭。

(2)无污染,因没有燃烧过程,不排放有害气体,它的排出物是氢氧结合的纯水。(3)无燥音,其发电过程是电化学反应过程,没有机械运动,所以没有噪音。(4)能源转换效率高,因其工作温度低,能耗少,能源转换效率理论上可高达。

欲使PEMFC依负荷的变化,长时间稳定的向负载提供电能,必须给电池组配置以下4个功能单元,即燃料及氧化剂贮存与供给单元,电池湿度,温度调节单元,功率变换单元及系统控制单元等,这样,方能构成一个实用化的,完整的PEMFC发电系统。如图5

图5 质子交换膜燃料电池发电系统示意图

新型材料及其应用论文--《燃料电池发电技术》

3.熔融碳酸盐燃料电池(MCFC)发电技术

熔融碳酸盐燃料电池(MCFC)以碱金属(Li﹑Na﹑K)的熔融碳酸盐为电解质,富氢燃料天然气甲烷煤气等转化而成为燃料,氧气空气加CO2为氧化剂,工作温度约为650℃,余热利用价值高,点催化剂以镍为主,无需使用贵金属,发电效率高。MCFC的反应原理如图

图6 MCFC的反应原理

MCFC单电池是由阴极、电解质、电解质隔膜和阳极组成,若组成电池堆,则还需要双极板、集流器、气泡屏等组件,其中,隔膜是MCFC的核心部件,必须强度高、耐高温熔盐腐蚀、浸入熔盐电解质后能够阻挡气体通过,并且有良好的离子导电性能(MCFC的导电离子是CO32-).通过对多种材料的筛选和多年的研究,目前已普遍采用偏铝酸锂来制备MCFC隔膜。

美国从1976年开始开发MCFC,主要的开商有能源研究所(Energy Research Corporation,ERC)和MC Power公司,ERC在1991至1994年间先后完成了25 kW、70 kW、125 kW电池组的试验,并于1996年建成了世界上功率最大的2MW MCFC电站,直接燃用脱硫后的天然气。2000年,ERC设计的单电池堆出力达到250 kW并进入商业化。2005年,兆瓦级的MCFC进入商业化。日本从1981年开始研究MCFC,并于1987年研究成功10 kW MCFC发电设备,1997年1MW MCFC电站在日本川越火电厂投运。日立公司2000年开发出1 MW MCFC发电装置。东芝公司开发出低成本的10 kW MCFC发电装置。此外,荷兰、德国、意大利、韩国等国家也于20世纪90年代建成相关的试验电站。我国于1991年由原电力工业部哈尔滨电站成套设备研究所研制出由7个MCFC单电池组成的电池组,上海交通大学和大连化学物理研究所都于2001年完成了1 kwMCFC电站的试验。

MCFC试验电站的建成和运行为MCFC商业化提供了丰富的经验,各国的科学家正在研究改进MCFC的关键材料和技术应用。

MCFC工作温度高,余热利用价值高,可以与煤气化联合循环结合组成高效的洁净煤发电技术。

4.固体氧化物燃料电池

同体氧化物燃料电池(SOFC)以固态氧化钇、氧化锆为电解质,天然气、气化煤气、碳氢化合物为燃料,氧气为氧化剂。固态氧化钇、氧化锆电解质在高温下有很强的离子传导功能,能够传导02~,电解质将电池分隔为燃料极(阳极)和空气极(阴极)。氧分子在空气极得到电子,被还原成02~,然后通过电解质传输到阳极,在阳极与氢气(或一氧化碳)发生反应。生成水(或二氧化碳)和电子。在迄今为止人类所发明的能源转化方式中,SOFC的转换效率是最高的,其反应原理如图

新型材料及其应用论文--《燃料电池发电技术》

图7 SOFC的反应原理

从原理与结构上讲,固体氧化物燃料电池是一种理想的燃料电池,它不但具有其他燃料电池高效,环境友好的优点,而且还具有以下突出优点

固体氧化物燃料电池是全固体结构,无使用液体电解质带来的腐蚀和电解液流失问题,可望实现长寿命运行,固体氧化物燃料电池在800~1000 下工作,不但电催化剂无需采用贵金属,而且还可直接采用天然气,煤气和碳氢化合物作燃料,简化了电池系统,固体氧化物燃料电池排出的高质量余热可与燃气,蒸汽轮机等构成联合循环发电系统,会大大提高总发电效率。

图8 100kw SOFC系统示意图

固体氧化物燃料电池技术的难点也源于它的高工作温度,电池的关键部件阳极隔膜,阴极和联结材料等在电池的工作条件下必须具备化学与热的相容性,即在电池工作条件下,电 新型材料及其应用论文--《燃料电池发电技术》

池构成材料间不但不能发生化学反应,而且其热膨胀系数也应相互匹配。

固体氧化物燃料电池最适宜的用途是与煤气化和燃气,蒸汽轮机构成联合循环发电系统,建造中心电站或分散式电站,这样既能提高能源利用率,又可消除对环境的污染。

三:燃料电池发电的应用前景

目前,美国、加拿大、日本、韩国以及欧洲的很多国家都把燃料电池发电技术提高到事关“国家能源安全”的战略高度,投入大量资金予以资助和研发。我国是能源消耗大国,以煤和石油为主,能源利用率低,污染严重;同时,近年来我国由于自然灾害或人为因素导致的大面积停电事故,给社会和经济造成巨大损失。如果在电网中有许多分布式电源在供电,则供电的可靠性和供电质量将会大大改善。分布式电源作为我国大电网的有效补充,如果能够得到较快的发展,电网抵御各种灾害的能力将会有很大提高。随着国民经济的发展,备用电源需求日益增大,如移动通信机站、军用移动指挥系统、野外医疗中心、固定或移动办公设施等的备用电源,需要配备技术性和经济性好的备用电源,而燃料电池中的PEMFC刚好能实现这个功能。从燃料电池发展的研究现状来看,我国在燃料电池发电方面的技术与发达国家如美国、加拿大、日本等相距甚远。我国要发展燃料电池技术,需要引进、消化及吸收国外先进技术,加快完成技术革新。

四:结束语

燃料电池作为高效、清洁、友好的新能源技术,已经得到越来越多国家的重视,掌握清洁高效的发电技术对国家能源和安全具有重要的战略意义,而燃料电池正是高效环保的发电技术之一。随着我国西气东送、天然气管网的不断完善,对电网可靠性和稳定性要求的不断提高,以及对环保要求的不断提高,燃料电池会起到越来越重要的作用。

参考文献:

祁宝森 《新型材料及其应用》 哈尔滨工业大学出版社 2007 颖颖 曹广益 朱新坚 《燃料电池一有前途的分布式发电》·电网技术·2005 许诗森 程健 《燃料电池发电系统》.中国电力出版社.2005 衣宝廉 《燃料电池——原理、技术、应用》.化学工业出版社,2003 宗强

《燃料电池》.北京:化学工业出版社.2005 丁常胜 苗红雁 《新型高效清洁能源—燃料电池》.陕西科技大学学报.2004 刘建国 孙公权 《燃料电池概述》.物理学与新能源材料专题.2004 沈德兴

《燃料电池发电》.节能.1999

篇2:燃料电池的发电应用

作者:辽宁电力科学研究院孔宪文桂敏言(辽宁省电力有限公司冯玉全)

【摘要】本文概述了燃料电池的工作特点和原理,介绍了发电系统的组成、国内外的研究现状,对我国应用燃料电池发电的资源条件进行了评估,展望了这一技术在电力系统的应用前景、将对电力系统产生的重要影响,它将使传统的电力系统产生重大的变革,它会使电力系统更加安全、经济。最后提出了发展燃料电池发电的具体建议。

1.引言

能源是经济发展的基础,没有能源工业的发展就没有现代文明。人类为了更有效地利用能源一直在进行着不懈的努力。历史上利用能源的方式有过多次革命性的变革,从原始的蒸汽机到汽轮机、高压汽轮机、内燃机、燃气轮机,每一次能源利用方式的变革都极大地推进了现代文明的发展。

随着现代文明的发展,人们逐渐认识到传统的能源利用方式有两大弊病。一是储存于燃料中的化学能必需首先转变成热能后才能被转变成机械能或电能,受卡诺循环及现代材料的限制,在机端所获得的效率只有33~35%,一半以上的能量白白地损失掉了;二是传统的能源利用方式给今天人类的生活环境造成了巨量的废水、废气、废渣、废热和噪声的污染。对于发电行业来说,虽然采用的技术在不断地升级,如开发出了超高压、超临界、超超临界机组,开发出了流化床燃烧和整体气化联合循环发电技术,但这种努力的结果是:机组规模巨大、超高压远距离输电、投资上升,到用户的综合能源效率仍然只有35%左右,大规模的污染仍然没有得到根本解决。多年来人们一直在努力寻找既有较高的能源利用效率又不污染环境的能源利用方式。这就是燃料电池发电技术。

1839年英国的Grove发明了燃料电池,并用这种以铂黑为电极催化剂的简单的氢氧燃料电池点亮了伦敦讲演厅的照明灯。1889年Mood和Langer首先采用了燃料电池这一名称,并获得200mA/m2电流密度。由于发电机和电极过程动力学的研究未能跟上,燃料电池的研究直到20世纪50年代才有了实质性的进展,英国剑桥大学的Bacon用高压氢氧制成了具有实用功率水平的燃料电池。60年代,这种电池成功地应用于阿波罗(Appollo)登月飞船。从60年代开始,氢氧燃料电池广泛应用于宇航领域,同时,兆瓦级的磷酸燃料电池也研制成功。从80年代开始,各种小功率电池在宇航、军事、交通等各个领域中得到应用。

燃料电池是一种将储存在燃料和氧化剂中的化学能,直接转化为电能的装置。当源源不断地从外部向燃料电池供给燃料和氧化剂时,它可以连续发电。依据电解质的不同,燃料电池分为碱性燃料电池(AFC)、磷酸型燃料电池(PAFC)、熔融碳酸盐燃料电池(MCFC)、固体氧化物燃料电池(SOFC)及质子交换膜燃料电池(PEMFC)等。燃料电池不受卡诺循环限制,能量转换效率高,洁净、无污染、噪声低,模块结构、积木性强、比功率高,既可以集中供电,也适合分散供电。

大型电站,火力发电由于机组的规模足够大才能获得令人满意的效率,但装有巨型机组的发电厂又受各种条件的限制不能贴进用户,因此只好集中发电由电网输送给用户。但是机组大了其发电的灵活性又不能适应户户的需要,电网随用户的用电负荷变化有时呈现为高峰,有时则呈现为低谷。为了适应用电负荷的变化只好备用一部分机组或修建抽水蓄能电站来应急,这在总体上都是以牺牲电网的效益为代价的。传统的火力发电站的燃烧能量大约有近70%要消耗在锅炉和汽轮发电机这些庞大的设备上,燃烧时还会排放大量的有害物质。而使用燃料电池发电,是将燃料的化学能直接转换为电能,不需要进行燃烧,没有转动部件,理论上能量转换率为100%,装置无论大小实际发电效率可达40%~60%,可以实现直接进入企业、饭店、宾馆、家庭实现热电联产联用,没有输电输热损失,综合能源效率可达80%,装置为集木式结构,容量可小到只为手机供电、大到和目前的火力发电厂相比,非常灵活。

燃料电池被称为是继水力、火力、核能之后第四代发电装置和替代内燃机的动力装置。国际能源界预测,燃料电池是21世纪最有吸引力的发电方法之一。我国人均能源资源贫乏,在目前电网由主要缺少电量转变为主要缺少系统备用容量、调峰能力、电网建设滞后和传统的发电方式污染严重的情况下,研究和开发微型化燃料电池发电具有重要意义,这种发电方式与传统的大型机组、大电网相结合将给我国带来巨大的经济效益。

2.燃料电池的特点与原理

由于燃料电池能将燃料的化学能直接转化为电能,因此,它没有像通常的火力发电机那样通过锅炉、汽轮机、发电机的能量形态变化,可以避免中间的转换的损失,达到很高的发电效率。同时还有以下一些特点:

l不管是满负荷还是部分负荷均能保持高发电效率;

不管装置规模大小均能保持高发电效率;

具有很强的过负载能力;

通过与燃料供给装置组合的可以适用的燃料广泛;

发电出力由电池堆的出力和组数决定,机组的容量的自由度大;

电池本体的负荷响应性好,用于电网调峰优于其他发电方式;

用天然气和煤气等为燃料时,NOX及SOX等排出量少,环境相容性优。

如此由燃料电池构成的发电系统对电力工业具有极大的吸引力。

燃料电池按其工作温度是不同,把碱性燃料电池(AFC,工作温度为100℃)、固体高分子型质子膜燃料电池(PEMFC,也称为质子膜燃料电池,工作温度为100℃以内)和磷酸型燃料电池(PAFC,工作温度为200℃)称为低温燃料电池;把熔融碳酸盐型燃料电池(MCFC,工作温度为650℃)和固体氧化型燃料电池(SOFC,工作温度为1000℃)称为高温燃料电池,并且高温燃料电池又被称为面向高质量排气而进行联合开发的燃料电池。另一种分类是按其开发早晚顺序进行的,把PAFC称为第一代燃料电池,把MCFC称为第二代燃料电池,把SOFC称为第三代燃料电池。这些电池均需用可燃气体作为其发电用的燃料。

燃料电池其原理是一种电化学装置,其组成与一般电池相同。其单体电池是由正负两个电极(负极即燃料电极和正极即氧化剂电极)以及电解质组成。不同的是一般电池的活性物质贮存在电池内部,因此,限制了电池容量。而燃料电池的正、负极本身不包含活性物质,只是个催化转换元件。因此燃料电池是名符其实的把化学能转化为电能的能量转换机器。电池工作时,燃料和氧化剂由外部供给,进行反应。原则上只要反应物不断输入,反应产物不断排除,燃料电池就能连续地发电。这里以氢-氧燃料电池为例来说明燃料电池的基本工作原理。

氢-氧燃料电池反应原理

这个反映是电觧水的逆过程。电极应为:

负极:H2+2OH-→2H2O+2e-

正极:1/2O2+H2O+2e-→2OH-

电池反应:H2+1/2O2==H2O

另外,只有燃料电池本体还不能工作,必须有一套相应的辅助系统,包括反应剂供给系统、排热系统、排水系统、电性能控制系统及安全装置等。

燃料电池通常由形成离子导电体的电解质板和其两侧配置的燃料极(阳极)和空气极(阴极)、及两侧气体流路构成,气体流路的作用是使燃料气体和空气(氧化剂气体)能在流路中通过。

在实用的燃料电池中因工作的电解质不同,经过电解质与反应相关的离子种类也不同。PAFC和PEMFC反应中与氢离子(H+)相关,发生的反应为:

燃料极:H2=2H++2e-(1)

空气极:2H++1/2O2+2e-=H2O(2)

全体:H2+1/2O2=H2O(3)

氢氧燃料电池组成和反应循环图

在燃料极中,供给的燃料气体中的H2分解成H+和e-,H+移动到电解质中与空气极侧供给的O2发生反应。e-经由外部的负荷回路,再反回到空气极侧,参与空气极侧的反应。一系例的反应促成了e-不间断地经由外部回路,因而就构成了发电。并且从上式中的反应式(3)可以看出,由H2和O2生成的H2O,除此以外没有其他的反应,H2所具有的化学能转变成了电能。但实际上,伴随着电极的反应存在一定的电阻,会引起了部分热能产生,由此减少了转换成电能的比例。

引起这些反应的一组电池称为组件,产生的电压通常低于一伏。因此,为了获得大的出力需采用组件多层迭加的办法获得高电压堆。组件间的电气连接以及燃料气体和空气之间的分离,采用了称之为隔板的、上下两面中备有气体流路的部件,PAFC和PEMFC的隔板均由碳材料组成。堆的出力由总的电压和电流的乘积决定,电流与电池中的反应面积成比。

单电极组装示意图

PAFC的电解质为浓磷酸水溶液,而PEMFC电解质为质子导电性聚合物系的膜。电极均采用碳的多孔体,为了促进反应,以Pt作为触媒,燃料气体中的CO将造成中毒,降低电极性能。为此,在PAFC和PEMFC应用中必须限制燃料气体中含有的CO量,特别是对于低温工作的PEMFC更应严格地加以限制。

磷酸型燃料电池基本组成和反应原理

磷酸燃料电池的基本组成和反应原理是:燃料气体或城市煤气添加水蒸气后送到改质器,把燃料转化成H2、CO和水蒸气的混合物,CO和水进一步在移位反应器中经触媒剂转化成H2和CO2。经过如此处理后的燃料气体进入燃料堆的负极(燃料极),同时将氧输送到燃料堆的正极(空气极)进行化学反应,借助触媒剂的作用迅速产生电能和热能。

相对PAFC和PEMFC,高温型燃料电池MCFC和SOFC则不要触媒,以CO为主要成份的煤气化气体可以直接作为燃料应用,而且还具有易于利用其高质量排气构成联合循环发电等特点。

MCFC主构成部件。含有电极反应相关的电解质(通常是为Li与K混合的碳酸盐)和上下与其相接的2块电极板(燃料极与空气极),以及两电极各自外侧流通燃料气体和氧化剂气体的气室、电极夹等,电解质在MCFC约600~700℃的工作温度下呈现熔融状态的液体,形成了离子导电体。电极为镍系的多孔质体,气室的形成采用抗蚀金属。

MCFC工作原理。空气极的O2(空气)和CO2与电相结合,生成CO23-(碳酸离子),电解质将CO23-移到燃料极侧,与作为燃料供给的H+相结合,放出e-,同时生成H2O和CO2。化学反应式如下:

燃料极:H2+CO23-=H2O+2e-+CO2(4)

空气极:CO2+1/2O2+2e-=CO23-(5)

全体:H2+1/2O2=H2O(6)

在这一反应中,e-同在PAFC中的情况一样,它从燃料极被放出,通过外部的回路反回到空气极,由e-在外部回路中不间断的流动实现了燃料电池发电。另外,MCFC的最大特点是,必须要有有助于反应的CO23-离子,因此,供给的氧化剂气体中必须含有碳酸气体。并且,在电池内部充填触媒,从而将作为天然气主成份的CH4在电池内部改质,在电池内部直接生成H2的方法也已开发出来了。而在燃料是煤气的情况下,其主成份CO和H2O反应生成H2,因此,可以等价地将CO作为燃料来利用。为了获得更大的出力,隔板通常采用Ni和不锈钢来制作。

SOFC是以陶瓷材料为主构成的,电解质通常采用ZrO2(氧化锆),它构成了O2-的导电体Y2O3(氧化钇)作为稳定化的YSZ(稳定化氧化锆)而采用。电极中燃料极采用Ni与YSZ复合多孔体构成金属陶瓷,空气极采用LaMnO3(氧化镧锰)。隔板采用LaCrO3(氧化镧铬)。为了避免因电池的形状不同,电解质之间热膨胀差造成裂纹产生等,开发了在较低温度下工作的SOFC。电池形状除了有同其他燃料电池一样的平板型外,还有开发出了为避免应力集中的圆筒型。SOFC的反应式如下:

燃料极:H2+O2-=H2O+2e-(7)

空气极:1/2O2+2e-=O2-(8)

全体:H2+1/2O2=H2O(9)

燃料极,H2经电解质而移动,与O2-反应生成H2O和e-。空气极由O2和e-生成O2-。全体同其他燃料电池一样由H2和O2生成H2O。在SOFC中,因其属于高温工作型,因此,在无其他触媒作用的情况下即可直接在内部将天然气主成份CH4改质成H2加以利用,并且煤气的主要成份CO可以直接作为燃料利用。

表1燃料电池的分类

类型

磷酸型燃料电池(PAFC)

熔融碳酸盐型燃料电池(MCFC)

固体氧化物型燃料电池(SOFC)

质子交换膜燃料电池(PEMFC)

燃料

煤气、天然气、甲醇等

煤气、天然气、甲醇等

煤气、天然气、甲醇等

纯H2、天然气

电解质

磷酸水溶液

KliCO3溶盐

ZrO2-Y2O3(YSZ)

离子(Na离子)

电极

阳极

多孔质石墨(Pt催化剂)

多孔质镍(不要Pt催化剂)

Ni-ZrO2金属陶瓷(不要Pt催化剂)

多孔质石墨或Ni(Pt催化剂)

阴极

含Pt催化剂+多孔质石墨+Tefion

多孔NiO(掺锂)

LaXSr1-XMn(Co)O3

多孔质石墨或Ni(Pt催化剂)

工作温度

~200℃

~650℃

800~1000℃

~100℃

近20多年来,燃料电池经历了碱性、磷酸、熔融碳酸盐和固体氧化物等几种类型的发展阶段,燃料电池的研究和应用正以极快的速度在发展。AFC已在宇航领域广泛应用,PEMFC已广泛作为交通动力和小型电源装置来应用,PAFC作为中型电源应用进入了商业化阶段,MCFC也已完成工业试验阶段,起步较晚的作为发电最有应用前景的SOFC已有几十千瓦的装置完成了数千小时的工作考核,相信随着研究的深入还会有新的燃料电池出现。

美日等国已相继建立了一些磷酸燃料电池电厂、熔融碳酸盐燃料电池电厂、质子交换膜燃料电池电厂作为示范。日本已开发了数种燃料电池发电装置供公共电力部门使用,其中磷酸燃料电池(PAFC)已达到“电站”阶段。已建成兆瓦级燃料电池示范电站进行试验,已就其效率、可运行性和寿命进行了评估,期望应用于城市能源中心或热电联供系统。日本同时建造的小型燃料电池发电装置,已广泛应用于医院、饭店、宾馆等。

3.燃料电池发电系统

3.1.利用天然气的发电系统

MCFC需要供给的燃料气体是H2,它可由天然气中的CH4改质生成,其反应在改质器中进行。改质器出口的温度为600℃,符合MCFC的工作温度,可以原样直接输送到燃料极侧。

另一方面,空气极侧需要的O2通过空气压缩机供给。另一个反应因素CO2,空气极侧反应等量地再利用发电时燃料极产生的CO2。除了有CO2外,燃料极排出气体还含有未反应的可燃成份,一起输送到改质器的燃烧器侧,天然气改质所必需的热量就由该燃烧热供给。这种情况下,排出的燃料气体会含有过多的H2O,将影响发热量,为此通常是先将排出燃料气体冷却,将水份滤去后再输送到改质器的燃烧侧。从改质器燃烧侧出来的气体与来自压缩机的空气相混合后供给空气极侧。

实际的电池因内部存在电阻会发热,故通过在空气极侧中流过的大量氧化气体(阴极气体,即含有O2、CO2的气体)来除去其发生的热。通常是按600℃供给的气体在700℃下排出,这一指标可通过在空气极侧进行流量调整来控制,为此采用阴极气体的再循环,即,空气极侧供给的气体为以改质器燃烧排气与部分空气极侧排出气体的混合体,为了保持电池入口和出口的温度为最佳温度,可将再循环流量与外部供给的空气流量一起调整。

来自空气极侧的排气为高温,送入最终的膨胀式透平,进行动力回收,作为空气压缩动力而应用。剩余的动力,由发电机发电回收,从而可以提高整套系统的效率。另外,天然气改质所必需的H2O(水蒸汽)可从排出的燃料气体中回收的H2O来供给。

这种系统的效率可达55~60%。在整套出力中MCFC发电量份额占90%。绝大部分的发电量是由MCFC生产的。如果考虑到排气形成的动力回收和若干的附加发电,广义上也可以称为联合发电。

在使用PAFC的情况下,若以煤炭为燃料发电时就不容易了,采用天然气时,其构成类似于MCFC机组,基本上是由电池本体发电。原因是PAFC排出气体温度较低,与其进行附加发电不如作为热电联产电源。

SOFC能和较高温度的排气体构成附加发电系统,由于SOFC不需要CO2的再循环等,结构简单,其发电效率可以达到50~60%。

3.2利用煤炭的发电系统

以MCFC为例进行介绍。煤炭需经煤气化装置生成作为MCFC可用燃料的CO及H2,并在进入MCFC前除去其中含有的杂质(微量的杂质就会构成对MCFC的恶劣影响),这种供给MCFC精制煤气,其压力通常高于MCFC的工作压力,在进入MCFC供气前先经膨胀式涡轮机回收其动力。涡轮机出口气体,经与部分来自燃料极(阳极)排出的高温气体(约700℃)相混合,调整为对电池的适宜温度(约600℃)。该阳极气体的再循环是,将排出的燃料气体中所含的未反应的燃料成分返回入口加以再利用,借以达到提高燃料的利用率。向空气极侧供给O2和CO2是通过空气压缩机输出的空气和排出燃料气体相混合来完成的。但是,碳酸气是采用触媒燃烧器将未燃的H2及CO变换成H2O和CO2后供给的。

实际的燃料电池,内部电阻会发热,将通过在空气极侧流过的大量的氧化剂气体(阴极气体,即含有O2和CO2的气体)而除去。通常通过调整空气极侧的流量,把以600℃供给的气体在700℃排出。为此采用了阴极气体再循环,使空气极侧的排气形成约700℃的高温。因此,在这个循环回路中设置了热交换器,将气体温度冷却到600℃,形成电池入口适宜的温度,与来自触媒燃烧器的供给气体相混合。空气极侧的出入口温度,取决于再循环和来自压缩机的供给空气流量和再循环回路中的热交换量。

排热回收系统(末级循环),是由利用空气极侧排气的膨胀式涡轮机和利用蒸汽的汽轮机发电来构成。膨胀式涡轮机与压缩机的相组合,其剩余动力用于发电。蒸汽是由来自其下流的热回收和煤气化装置以及阴极气体再循环回路中的蒸汽发生器之间的组合产生,形成汽水循环。

这种机组的发电效率,因煤气化方式和煤气精制方式等的不同而有若干差异。利用煤系统SOFC其构成是复杂的。但若用管道气就简单多了,主要的是采用煤炭气化系统造成的,其效率为45~55%。

4.我国燃料电池的发展状况

我国的燃料电池研究始于1958年,原电子工业部天津电源研究所最早开展了MCFC的研究。70年代在航天事业的推动下,中国燃料电池的研究曾呈现出第一次高潮。其间中国科学院大连化学物理研究所研制成功的两种类型的碱性石棉膜型氢氧燃料电池系统(千瓦级AFC)均通过了例行的航天环境模拟试验。1990年中国科学院长春应用化学研究所承担了中科院PEMFC的`研究任务,1993年开始进行直接甲醇质子交换膜燃料电池(DMFC)的研究。电力工业部哈尔滨电站成套设备研究所于1991年研制出由7个单电池组成的MCFC原理性电池。“八五”期间,中科院大连化学物理研究所、上海硅酸盐研究所、化工冶金研究所、清华大学等国内十几个单位进行了与SOFC的有关研究。到90年代中期,由于国家科技部与中科院将燃料电池技术列入“九五”科技攻关计划的推动,中国进入了燃料电池研究的第二个高潮。质子交换膜燃料电池被列为重点,以大连化学物理研究所为牵头单位,在中国全面开展了质子交换膜燃料电池的电池材料与电池系统的研究,并组装了多台百瓦、1kW-2kW、5kW和25kW电池组与电池系统。5kW电池组包括内增湿部分其重量比功率为100W/kg,体积比功率为300W/L。

我国科学工作者在燃料电池基础研究和单项技术方面取得了不少进展,积累了一定经验。但是,由于多年来在燃料电池研究方面投入资金数量很少,就燃料电池技术的总体水平来看,与发达国家尚有较大差距。我国有关部门和专家对燃料电池十分重视,和两次在香山科学会议上对我国燃料电池技术的发展进行了专题讨论,强调了自主研究与开发燃料电池系统的重要性和必要性。近几年我国加强了在PEMFC方面的研究力度。

大连化学物理研究所与中科院电工研究所已完成30kW车用用燃料电池的全部试验工作。北京富原公司也宣布,将提供40kW的中巴燃料电池,并接受订货。科技部副部长徐冠华一年前在EVS16届大会上宣布,中国将在20装出首台燃料电池电动车。我国燃料电池的研究工作已表明:1.中国的质子交换膜燃料电池已经达到可以装车的技术水平;2.大连化学物理研究所的质子交换膜燃料电池是具有我国自主知识产权的高技术成果;3.在燃料电池研究方面我国可以与世界发达国家进行竞争,而且在市场份额方面,我国可以并且有能力占有一定比例。

但是我国在PAFC、MCFC、SOFC的研究方面还有较大的差距,目前仍处于研制阶段。

此前参与燃料电池研究的有关概况如下:

4.1.PEMFC的研究状况

我国最早开展PEMFC研制工作的是长春应用化学研究所,该所于1990年在中科院扶持下开始研究PEMFC,工作主要集中在催化剂、电极的制备工艺和甲醇外重整器的研制,已制造出100WPEMFC样机。1994年又率先开展直接甲醇质子交换膜燃料电池的研究工作。该所与美国CaseWesternReserve大学和俄罗斯氢能与等离子体研究所等建立了长期协作关系。

中国科学院大连化学物理所于1993年开展了PEMFC的研究,在电极工艺和电池结构方面做了许多工作,现已研制成工作面积为140cm2的单体电池,其输出功率达0.35W/cm2。

清华大学核能技术设计院1993年开展了PEMFC的研究,研制的单体电池在0.7V时输出电流密度为100mA/cm2,改进石棉集流板的加工工艺,并提出列管式PEMFC的设计,该单位已与德国Karlsrube研究中心建立了一定的协作关系。

天津大学于1994年在国家自然科学基金会资助下开展了PEMFC的研究,主要研究催化剂和电极的制备工艺。

复旦大学在90年代初开始研制直接甲醇PEMFC,主要研究聚苯并咪唑膜的制备和电极制备工艺。

厦门大学近年来与香港大学和美国的CaseWesternReserve大学合作开展了直接甲醇PEMFC的研究。

1994年,上海大学与北京石油大学合作研究PEMFC(“八五”攻关项目),主要研究催化剂、电极、电极膜集合体的制备工艺。

北京理工大学于1995年在兵器工业部资助下开始了PEMFC的研究,目前单体电池的电流密度为150mA/cm2。

中国科学院工程热物理研究所于1994年开始研究PEMFC,主营使用计算传热和计算流体力学方法对各种供气、增湿、排热和排水方案进行比较,提出改进的传热和传质方案。

天津电源研究所开始PEMFC的研究,拟从国外引进1.5kW的电池,在解析吸收国外先进技术的基础上开展研究。

华南理工大学于19初在广东省佛山基金资助下开展了PEMFC的研究,与国家科委电动车示范区建设相配合作了一定的研究工作。其天然气催化转化制一氧化碳和氢气的技术现已申请国家发明专利。

中科院电工研究所最近开展了电动车用PEMFC系统工程和运行模式研究,拟与有色金属研究院合作研究PEMFC/光伏电池(制氢)互补发电系统和从国外引进PEMFC装置。

1995年北京富原公司与加拿大新能源公司合作进行PEMFC的研制与开发,5kW的PEMFC样机现已研制成功并开始接受订货。

4.2.MCFC的研究简况

国内开展MCFC研究的单位不太多。哈尔滨电源成套设备研究所在80年代后期曾研究过MCFC,90年代初停止了这方面的研究工作。

1993年中国科学院大连化学物理研究所在中国科学院的资助下开始了MCFC的研究,自制LiAlO2微粉,用冷滚压法和带铸法制备出MCFC用的隔膜,组装了单体电池,其性能已达到国际80年代初的水平。

90年代初,中国科学院长春应用化学研究所也开始了MCFC的研究,在LiAlO2微粉的制备方法研究和利用金属间化合物作MCFC的阳极材料等方面取得了很大进展。

北京科技大学于90年代初在国家自然科学基金会的资助下开展了MCFC的研究,主要研究电极材料与电解质的相互作用,提出了用金属间化合物作电极材料以降低它的溶解。

中国科学院上海冶金研究所近年来也开始了MCFC的研究,主要着重于研究氧化镍阴极与熔融盐的相互作用。

1995年上海交通大学与长庆油田合作开始了MCFC的研究,目标是共同开发5kW~10kW的MCFC。

中国科学院电工研究所在“八五”期间,考察了国外MCFC示范电站的系统工程,调查了电站的运行情况,现已开展了MCFC电站系统工程关键技术的研究与开发。

4.3.SOFC的研究简况

最早开展SOFC研究的是中国科学院上海硅酸盐研究所他们在1971年就开展了SOFC的研究,主要侧重于SOFC电极材料和电解质材料的研究。80年代在国家自然科学基金会的资助下又开始了SOFC的研究,系统研究了流延法制备氧化锆膜材料、阴极和阳极材料、单体SOFC结构等,已初步掌握了湿化学法制备稳定的氧化锆纳米粉和致密陶瓷的技术。

吉林大学于1989年在吉林省青年科学基金资助下开始对SOFC的电解质、阳极和阴极材料等进行研究,组装成单体电池,通过了吉林省科委的鉴定。1995年获吉林省计委和国家计委450万元人民币的资助,先后研究了电极、电解质、密封和联结材料等,单体电池开路电压达1.18V,电流密度400mA/cm2,4个单体电池串联的电池组能使收音机和录音机正常工作。

1991年中国科学院化工冶金研究所在中国科学院资助下开展了SOFC的研究,从研制材料着手,制成了管式和平板式的单体电池,功率密度达0.09W/cm2~0.12W/cm2,电流密度为150mA/cm2~180mA/cm2,工作电压为0.60V~0.65V。1994年该所从俄罗斯科学院乌拉尔分院电化学研究所引进了20W~30W块状叠层式SOFC电池组,电池寿命达1200h。他们在分析俄罗斯叠层式结构、美国Westinghouse的管式结构和德国Siemens板式结构的基础上,设计了六面体式新型结构,该结构吸收了管式不密封的优点,电池间组合采用金属毡柔性联结,并可用常规陶瓷制备工艺制作。

中国科学技术大学于1982年开始从事固体电解质和混合导体的研究,于1992年在国家自然科学基金会和“863”计划的资助下开始了中温SOFC的研究。一种是用纳米氧化锆作电解质的SOFC,工作温度约为450℃。另一种是用新型的质子导体作电解质的SOFC,已获得接近理论电动势的开路电压和200mA/cm2的电流密度。此外,他们正在研究基于多孔陶瓷支撑体的新一代SOFC。

清华大学在90年代初开展了SOFC的研究,他们利用缓冲溶液法及低温合成环境调和性新工艺成功地合成了固体电解质、空气电极、燃料电极和中间联结电极材料的超细粉,并开展了平板型SOFC成型和烧结技术的研究,取得了良好效果。

华南理工大学于1992年在国家自然科学基金会、广东省自然科学基金、汕头大学李嘉诚科研基金、广东佛山基金共一百多万元的资助下开始了SOFC的研究,组装的管状单体电池,用甲烷直接作燃料,最大输出功率为4mW/cm2,电流密度为17mA/cm2,连续运转140h,电池性能无明显衰减。

中国科学院山西煤炭化学研究所在1994年开始SOFC研究,用超细氧化锆粉在1100℃下烧结制成稳定和致密的氧化锆电解质。该所从80年代初开始煤气化热解的研究,以提供燃料电池的气源。煤的灰熔聚气化过程已进入工业性试验阶段,正在镇江市建立工业示范装置。该所还开展了使煤气化热解的煤气在高温下脱硫除尘和甲醇脱氢生产合成气的研究,合成气中CO和H2的比例为1∶2,已有成套装置出售。

中国科学院大连化学物理所于1994年开展了SOFC的研究工作,在电极和电解质材料的研究上取得了可喜的进展。

篇3:燃料电池的发电应用

燃料电池是一种将储存在燃料和氧化剂中的化学能直接转化为电能的装置。当燃料和氧化剂源源不断地向燃料电池供给时,它就可以连续发电。燃料电池不受卡诺循环限制,能量转换效率高,洁净、无污染、噪声低,模块结构、积木性强、比功率高,既可以集中供电,也适合分散供电[1]。

质子交换膜燃料电池(PEFC,Polymer Electrolyte Fuel Cell)输出电压低,要想利用这种新型清洁能源需要DC/DC升压和DC/AC逆变电路。同时要考虑以下几点:

(1) 为了保证燃料电池和负载安全使用,系统输出与输入必须隔离。

(2) 系统开始发电时,需设计相应的起动电路使燃料电池开始化学反应。

(3) 输出效率较高,减小运行成本。

(4) 系统设计小型化,便于家庭安装。

文献[2,3]分析了利用正激变换器、推挽变换器、半桥变换器以及全桥变换器拓扑的优缺点。文献[4,5]对不同的前端DC/DC变换器拓扑进行了仿真与实验研究,文献[6,7,8]针对燃料电池动态性能差,设计研究能量可以双向传递的变换器拓扑。

本文针对家庭应急电源系统,介绍了一种利用燃料电池发电的逆变器拓扑及其控制方法,并通过设计制作了一套5kW燃料电池独立发电实验装置,经实际系统测试,逆变器输出交流220V电压正弦度良好、安全可靠,验证了系统方案的可行性。

2 主电路控制原理

燃料电池逆变器主拓扑结构主要分4个部分(图1 所示):推挽起动电路、DC/DC升压电路、Buck充电电路、DC/AC逆变电路。

2.1 推挽起动电路

燃料电池独立发电逆变器与其他新能源(如太阳能发电,风力发电)不同,燃料电池正常工作首先需燃料(氢气、空气)进入燃料电池,使燃料在催化剂的作用下开始化学反应,当燃料电池输出端逐渐建立电压后方可发电运行。因此,逆变器将24V蓄电池经推挽起动电路将电压泵升到310V给变频器供电,变频器驱动风机送入燃料,燃料电池化学反应开始。图1中V10、V11开关管、推挽变压器T2组成推挽起动电路。推挽起动电路主要波形如图2所示,V10、V11为驱动信号,Vpri变压器初级电压,Vsec变压器次级电压,电感电压VL,电感电流iL。由电感能量守恒可得,

12(VbatΝsΝp-Vdc)DΤs=12Vdc(1-D)Τs(1)

因此,

D=VdcΝpVbatΝs(2)

其中:Vbat为蓄电池电压;Np为推挽变压器初级绕组匝数;Ns为推挽变压器次级绕组匝数;Vdc为直流母线电压;D为占空比;Ts为开关管周期。

2.2 DC/DC升压电路

前端DC/DC升压电路将燃料电池输出的不平稳的50V低压直流电变换成370V稳定的高压直流电,如图1所示,由开关管V1~V4及高频变压器T1构成主功率升压电路。对于隔离型高升压比变换器而言,正激变换器、推挽变换器、半桥变换器以及全桥变换器都可以作为拓扑的预选方案。比较这四种变换器,正激变换器存在占空比限制和磁饱和复位的问题;推挽变压器两个初级绕组很难做到完全一致,实际电路中同样存在变压器的磁复位等问题。因此,正激变换器和推挽变换器不适合作为大功率应用的场合。全桥变换器虽然在器件使用的数量上是半桥变换器的两倍,但是器件的电流和变压器匝比却是半桥变换器的一半。可见,在同等功率条件下,全桥变换器是对器件要求最低的一种拓扑。

图3所示为DC/DC变换器主要波形,由电感能量守恒可得,

(VfcΝsΝp-12Vdc)DΤs=12Vdc(1-D)Τs(3)

因此,

D=VdcΝp2VfcΝs(4)

其中:Vfc为燃料电池电压;Np为变压器初级绕组匝数;Ns为变压器次级绕组匝数;Vdc为直流母线电压;D为占空比;Ts为开关管周期。

根据式(4)当燃料电池输入45~80V时,调整直流母线稳压至370V,占空比范围在0.24~0.45之间。

2.3 DC/AC逆变电路

DC/AC逆变电路由V5~V8构成,最后通过低通滤波器L4、C4滤除高频谐波,输出失真率低的正弦波。DC/AC逆变采用单极性调制[9,10]。与双极性调制不同,这种调制方法在输出同样幅值基波电压时,调制频率为载波频率的两倍,而且谐波幅值低于双极性调制,使输出端滤波器设计更加容易。如图4所示为单极性调制法,两调制波相位相差180°,正弦调制波与三角载波比较生成驱动信号。驱动信号和其互补信号分别驱动同桥臂的上、下开关管。经上述调制后,高频逆变器输出如图5所示高频脉宽电压Vab,经低通滤波器滤波,就可输出220V正弦交流电。

为了获得动态响应快、输出稳定的交流正弦波,系统采用PI闭环控制,控制框图如图5所示,该闭环系统有效值外环采用PI调节器进行控制,瞬时值内环采用比例调节控制,前者可以保证输出电压的无静差,从而获得很好的稳态电压精度;后者保证对输出负载突变的瞬态响应,快速性好。瞬时值环是比例调节属于有静差调节,但由于它是内环调节,并不会影响到输出电压的稳态精度。因此,该系统的控制方式简单有效。

2.4 Buck充电电路

系统通过蓄电池起动后,需要及时地给蓄电池充电以备下一次使用。V9、VD13、VD14、L5组成Buck充电电路。充电流程图如图6所示,蓄电池采用恒压限流方式充电。充电时,蓄电池电压在28.2V~28.8V之间,充电电流不超过容值的四分之一,当电流小于容量的千分之六时,认为电池充满。此时只需以涓流充电弥补电池的自放电损失。

因此,系统检测充电电流和蓄电池电压,若电流或者蓄电池电压超过允许最大值,减小充电电流;否则就以蓄电池允许充电的最大值给蓄电池充电。 这样既保护了蓄电池,又能够在最短的时间内给蓄电池充电。实现了效率与安全的统一。

3 逆变器控制保护设置

PEFC燃料电池是由单体电池串联而成,单体开路电压在1.15V左右,加负载后,下降到0.6V,当燃料电池以一定功率工作时,过低的电压会使燃料电池输出电流过大,以致损坏燃料电池结构,减少其使用寿命,所以燃料电池输出需设置欠压和输入过流保护电路;为了有效地保护直流母线,还设置燃料电池输入过压保护、前端DC/DC变换器输出过压保护以及DC/DC控制板开关电源的故障保护、蓄电池欠压保护、蓄电池过压保护、充电过流保护等等。表1所示为系统所需的所有保护。

4 实验结果

本逆变器使用5kW质子交换膜燃料电池,燃料电池输入直流电压45V~90V,起动电源使用2节12V/10Ah蓄电池串联,逆变器负载带500W燃料供给风机、3kW灯泡、6个燃料电池冷却风扇以及外围辅助电路。经现场测试(如图10),图7为交流220V输出电压电流波形,上面为输出电压波形,下面为输出电流波形,交流输出电压波形正弦度好,通过AGILENT 54624A示波器测试THD小于4%,燃料电池逆变器系统稳定;图8为燃料电池输入与逆变器效率曲线,逆变器交流输出1.5kW时,效率为92%,交流输出3kW时,效率为84%,系统效率较高。图9为输出功率与输出电压关系曲线。输出电压特性较硬。

5 小结

本文针对普通家庭用燃料电池应急电源系统,满足家用电器以及其他一些特殊急需供电装置在无电条件下对电力的需要,介绍了一种燃料电池发电的逆变器的拓扑结构及其控制方法,设计并制作了一套使用5kW PEFC燃料电池独立发电实验装置,最后经实际系统测试,逆变器输出交流220V电压正弦度良好、安全可靠,本设计控制、保护完整,通过实际系统性能测试,验证了该设计的合理性以及系统方案的可行性。

篇4:会发电的燃料电池

这套电池技术方案与传统意义上的电池有很大不同,具体表现在工作原理和衍生产品方面。它基于一种含铑元素的特殊分子络合物,这种络合物会以分子的形式嵌入阳极材料,因为阳极的支持材料为碳粉,这使得分子络合物能够均匀分布。然后阳极吸收自由电荷,将它们转移到阴极重新释放,在这一过程当中,电流就生成了。相比过去以“蓄电”为核心的传统电池工作原理,新的燃料电池事实上是靠自己发电来产生电能,同时因为用的是阳极上的分子络合物作催化剂的关系,这一燃料电池技术在发电的同时,还能够顺便产生一些优质的化工产品,让能源得到更全面的利用,实现全无浪费的资源循环。

那么这种有机金属燃料电池具体能够生成哪些化工产品呢?据苏黎世联邦理工学院的汉斯乔格·格鲁茨曼彻教授介绍,电池在发电当中,原料当中的1,2,丙二醇能被转化成多种乳酸,乳酸则可以用来制造生物降解高分子材料,而过去要制造乳酸,就会产生大量处理成本极高的硫酸钙,既不环保也很费钱。同时这一电池方案还会减少制作催化剂时对稀土和贵重金属的需求,更加环保和高效地为其他方面的生产服务。另外,技术人员还希望能够将这种电池的体积缩小,比如放在心脏起搏器里,这样病患也少了很多麻烦。

篇5:燃料电池的发电应用

以高温燃料电池组成的联合循环发电系统,可使发电效率达到60%-75%(LHV),这一目标将在左右实现。预计到年,发电效率可超过72%。煤气化燃料电池联合循环(IGFC)的发电效率可达到62%以上。以燃料电池组成的热电联产机组的总热效率可达到85%以上。燃料电池本体的发电效率基本不随容量的变化而变化,这使得燃料电池既可用作小容量分散电源,又可用于集中发电应用范围广泛。

2.2 燃料电池发电可有效地降低火力发电的污染物和温室气体排放量

燃料电池发电中几乎没有燃烧过程,NOx排放量很小,一般可达到(O.139一 0.236)kg/MW·h以下,远低于天然气联合循环的NOx排放量(1kg/MW·h一3kg/MW.h)。由于燃料进入燃料电池之前必须经过严格的净化处理,碳氢化合物也必须重整成氢气和CO, 因此,尾气中S02、碳氢化合物和固态粒子等污染物排量也污染物的含量非常低。与常规燃煤发电机组相比,C02的排放量可减少40%一60%.在目前CO2分离和隔绝技术尚不成熟的状况下,通过提高能源转换效率减少CO2排放是必然的选择。

2. 3 采用燃料电池发电可提高供电的灵活性和可靠性

燃料电池具有高效率、低污染、低噪声、模块化结构、体积小、可靠性高等突出特点,是理想的分布式电源。与目前一些可做为分布式电源的内燃机相比,燃料电池的发电效率更高、污染更低。在250KW-lOMW的功率范围内,具有与目前数百兆瓦中心电站相当甚至更高的发电效率。作为备用电源的柴油发电

机由于污染和噪声大不宜在未来的城市中应用。低温燃料电池不仅发电效率高,而且启动快、变负荷能力强,是很好的备用电源。现代社会对供电的可靠性和环境的兼容性要求越来越高,高效、低污染的分布式电源系统日益受到重视。近年来美国、加拿大、台湾相继发生因自然灾害或人为因素造成的大面积停电,许多重要用户长期不能恢复供电,给社会和经济造成了巨大的损失。北约轰炸南联盟,使电力系统严重受损。这些由不可抗力引起的电网破坏无不使人引发出一个重要的思考:提高我国电力系统供电的可靠性和供电质量,虽然主要依靠电网的改造和技术革新,但如果在电网中有许多分布式电源在运转,供电的可靠性将会大大提高。

对于象军事基地、指挥中心、医院、数据处理和通讯中心、商业大楼、娱乐中心、政府要害部门、制药和化学材料工业、精密制造工业等部门,对电力供应的可靠性和质量要求很高。目前采用的备用电源效率低、污染严重、电压波动大。而采用燃料电池作为分布式电源向这些部门提供电力,会使供电的可靠性和电力质量大大提高。他们将是燃料电池发电技术的第一批用户。

对于边远地区,负荷小且分散,若建设完善的电网,不仅投资大,线损大,且电网末端地区电力质量不稳定。对于这些区域若辅助燃料电池发电的分布式电源,更能有效地解决这些地区的电力供应问题。燃料电池的重量比功率和体积比功率均比常规的小型发电装置大,因此,它也是理想的移动电源,适合于各种建设工地、野外作业和临时急用。

2.4 发展燃料电池发电技术是提高国家能源和电力安全的战略需要

美国已将燃料电池发电列为国家安全关键技术之一。美、日之所以能在燃料电池技术方面处于世界领先地位,与国家从战略高度予以组织、资助和推动密不可分。在目前复杂的国际环境下,高技术的垄断日趋严重,掌握清洁高效发电的高新技术对未来国家的能源和电力安全具有重要的战略意义,而燃料电池发电技术,正是这种高效清洁的高新发电技术之一。燃料电池突出的优点,以及发达国家竟相投入巨资研究开发的行动,足以说明燃料电池发电技术在21世纪会起到越来越重要的作用。

2.5 发展燃料电池发电技术是国电公司“加强技术创新,发展高科技,形成高新技术产业”的需要

燃料电池发电技术是电力工业中的高新技术,己受到普遍重视。美国燃料电池发电技术的研究开发主要由美国能源部组织实施,其中一个重要的目的就是形成新的高技术产业,为美国的经济注入新的活力。日本的东京电力公司、关西电力公司及其它公用事业单位是日本燃料电池开发及商业化的主要承担者和推动者,其目的也是为电力公司注入新的经济增长点以获得巨大的经济效益和社会效益。

国家电力公司处在完成“两型”、“两化”、“进入世界500强”的历史时刻,恰逢党中央国务院号召全国各行业“加强技术创新,发展高科技,实现产业化”的有利时机,在国家电力公司内不失时机地进行燃料电池发电技术的研究开发是非常必要的。采取引进、消化、吸收和再创新的技术路线,以高起点,在尽可能短的时间内初步形成自主产权的燃料电池发电关键技术,不仅可以使我国在燃料电池发电技术领域与国外的差距大大缩小,而且,对国家电力公司进行发电系统的结构调整、技术创新、形成高新技术产业、实现跨越式发、提高国际竞争能力都具有非常重要的意义。

2.6 燃料电池发电技术在我国有广阔的发展前景

未来二十年,随着我国“西气东送”,全国天然气管网的不断完善及液化天然气(LNG)的广泛应用,燃用天然气的燃料电池发电将会有很大市场。煤层气也是燃料电池的理想燃料。我国丰富的煤层气资源也将是燃料电池发电的巨大潜在能源之一。燃料电池可与常规 燃气一蒸汽联合循环结合,形成更高效率的发电方式。与煤气化联合循环(IGCC)结合,形成数百兆瓦级的大型、高效、低污染的中心发电站,比IGCC效率更高,污染更小。

燃料电池可与水电、风电和太阳能发电等结合,在高出力时,利用电解水制氢,低出力时用燃料电池发电,达到既储能,又高效发电的目的。采取气化或厌氧处理的方法将生物质变为燃料气,通过燃料电池发电,提高能源转换效率,并降低污染物排放量。对一些经济欠发达但有丰富的沼气资源的地区,利用燃料电池发电技术有可能更有有效地解决这些地区的电力供应问题。

2.7 与国外有较大的差距

篇6:发电厂燃料管理应用研究

摘 要:当前,由于电力化设备的普及应用,我国的电力需求不断在扩增,我国的火力发电厂建设进入高峰期,发电厂当前阶段面临的三大主要问题是安全生产、节能降耗以及降低污染排放,占据发电成本的50%~70%左右的燃料成本,如何降低其消耗成本以及提升其管理效率对于提升发电厂效率至关重要,该文就针对发电厂的燃料管理应用作详细的研究。

关键词:发电厂 燃料管理 应用研究 核心思想

中图分类号:TM621 文献标识码:A 文章编号:1674-098X(2015)12(c)-0180-02

发电厂的燃料成本占据七成的发电成本,是发电厂成本支出的重要部分,提高发电厂燃料管理效率,对于降低发电厂成本有着至关重要的作用,发电厂在日常运营过程中,针对燃料管理采取市场化的运作机制,保证燃料管理成本的最低化,降低燃料的进库成本,提升燃料的科学利用率,减少燃料成本的资金占用周期,从而达到降低发电成本,提升发电企业利益的目标。燃料管理的核心思想

近年来,虽然该发电厂行业发展建设进入高峰期,火力发电厂的业务运营管理也已完全进入市场化运行模式,然而,发电厂的燃料管理环节仍然是发电厂的短板,还没有实现全面,系统化的集成管理模式。在燃料信息管理过程中仍然是人工统计,工作效率低下,数据的可信度低,造成人力资源使用浪费,更为严重的是,这种管理方法下,燃料库存较为频繁出现亏吨以及亏卡现象,给发电厂带来严重的企业损失,因此,发电厂的燃料管理必须进行彻底性的革新,提升管理的信息化程度,运用现代物联网思维,提升燃料管理的效率。

燃料管理的核心思想应当本着“实用,可靠,高效,准确”的思想,准确性和实用性有机结合,大范围采取信息化的管理模式,合理运用计算机管理技术,促进燃料管理水平低的提升,此外,由于燃料管理涉及部门多,涉及业务范围较大,过程繁杂,通过组建有效的信息网络管理系统,可以最大程度的整合各资源,实现信息互动共享,通过网路组建,地磅,实验值,检测室各部门之间可以进行即时的信息共享,便于更好的进行燃料规划管理,实现即时管理指令传达,形成集成化的燃料管理体制。燃料管理应当实现的主要业务功能

通过建立集成化,信息化的燃料综合管理体系,规范燃料入库、出库行为准则,可以极大程度上减少原料管理漏洞,避免燃料的亏吨,亏卡情况的出现,同时也能一定程度上减少人员工作负担,提升燃料的管理效率,为降低电厂的生产成本打下坚实的基础。燃料管理当下应当实现的主要业务功能主要有以下几点。

2.1 燃料规范化的合同制管理

燃料供应是一个长期性的需求,因此,电厂在燃料来源上应当和相应的煤场签订规范化的燃料供应合同,根据发电厂的实时动态需求合理的进购燃料,与相关单位签订稳定的供燃合同,在保证燃料供应稳定的同时,减少燃料供应的成本,同时,通过系统化的燃料供应登记体系,实现从燃料采购到燃料消耗过程中全数字化的管理,保证燃料供应能够及时准确的反馈到发电厂运营管理人员。

2.2 燃料调运管理

燃料的日常调运,转场也归属燃煤管理内容之一,燃煤调运过程中,对于燃煤调运数量,燃煤调运时间,燃煤调运目标库场等各项与调运有关内容都需要准确的记录在册,并传入燃料管理综合信息库,以便查询,同时应当能满足燃料调运计划可以被及时的终止,延时,增量等要求。

2.3 燃料质量管理

燃料的质量管理包括燃料进库质量管理以及燃料保存质量管理,在进库质量管理中,要保证进购燃煤质量达到发电厂各项指标要求,将燃煤进购质量指标信息传达给相关燃煤质量负责部门,同时在库燃煤质量要由相关部门做检测,对质量等级指标信息记录,保证能够随时按需调配。

2.4 经营管理

发电厂对燃料的管理过程中会出现各种协议纠纷、以及管理问题,相关燃料管理部门应当能够恰当的应对这种管理问题,准确的进行燃料量,费用评估,进行相关的索赔工作,具体的内容包括燃料具体数量核算、进购费用评估、运输费用以及相关附加费用审计、燃煤使用量核计、核算不符合处理等。

2.5 燃煤场管理

实现对燃料场统计管理。包括收煤登记、耗煤登记、盘煤登记。[1]

2.6 统计分析

实现对发电厂具体的燃料情况进行准确的计量分析,并以此为基础提供详细的图标。包括:发电耗煤供应情况、使用以及余量数目、进库煤质验收质量报表、进库煤质详细计价目录表、库内没量盈亏分析表、具体燃料价格表目、以及详细的日用量、月用量表等。提升发电厂燃料管理应用能力的具体措施

良好的发电厂燃料管理体系是发电厂领导合理制定相关指令决策的重要依据,决策者可以根据该电厂的现有燃料情况以及结合数据分析适时的对未来发电厂的下阶段市场行情判断进行准确的预测。活力发电厂燃料管理系统主要包括入厂验收监管系统、入厂燃料化验及煤场管理三部分。[2]通过对这三大组织部分的有效整合管理,可以提升发电厂的燃料管理水平,提升发电厂的发电成本优势,保证发电厂平稳运行。

3.1 严格把控燃料入厂验收环节

燃料入厂验收环节是发电厂燃料管理的第一步,在燃料入厂过程中,计重、质量检测、采制等哥哥过程必须严格把控。相关的计重设备应当在限定时间内对入库的燃料进行校检,并准确的将数据实时传输到相关数据系统中去,同时,记录燃料运载车辆信息以及详细的供应商渠道;采样过程中,实施机械化采样操作,全网络系统化监督,确保在采样过程中出现违规行为能够及时报警。计重,采制、化验各个过程确保有视频监控,提升燃料入库自动化程度,减少认为操作对煤炭入库过程中的操作,确保得到的煤炭质量报告的准确性,筛选高质量的燃料供应商,建立高质量、长期的供货关系。

3.2 加强燃料管理,降低发电成本

传统燃料管理模式过于封闭,市场化程度不高,各职能部分各自为战,与外界的燃料市场没有构建有效的交流机制,对于市场的前景规划欠缺,战略意识不弱,一定程度上造成燃料成本高昂,发电成本居高不下。现代高质量的燃料管理应模式应当提升燃料管理各部门之间的协调能力,燃料入库管理部门,燃料质检部门,燃料运输部门,燃料财务部门,各部门协调工作,相关信息共享,形成完善的燃料管理体系。对燃料储存、耗用及供应进行局部优化后,再进行相互之间的协调,以储存约束为系统管理核心,使系统协调简便可行。[3]其次,在燃料进购渠道上,应当加大市场化程度,实行市场动态采购机制,降低燃料采购成本。同时,发电厂的前景战略规划应当纳入燃料管理相关信息,保证发电厂整体性,提升燃料管理战略规划质量。

3.3 健全管理机制,提升人员的专业水准

要完善燃料管理体系,减少燃料管理过程中的疏漏,保证燃料管理的严密、规范性。对于燃料存储、流通的各个过程实行系统化管理,同时,对于相关岗位人员,要进行相应的专业知识水平培训工作,使员工具有专业化的操作能力,在员工考核管理方面,要实行平等量化的考核机制,提升员工的就业积极性。在员工的相关思想教育方面,要着重培养员工的廉政、敬职观念,防范员工出现思想腐败的行为,做出有损电厂利益的个人举动,提升员工的综合技能以及思想水平,确保电厂能够稳定、高效率运转。结语

燃料管理作为发电厂的核心部门,燃料管理应当以保证发电厂的稳定正常运转为核心,保证发电的燃料需求。当前,应当提升信息技术在燃料管理中的应用水平,提升燃料管理的自动化程度,在有限的基础上降低燃料成本,提升发电厂成本优势,增加企业利益。

参考文献

上一篇:食品安全解决方法下一篇:复发性腮腺炎是怎么回事