中考几何证明压轴题

2022-09-11

第一篇:中考几何证明压轴题

中考数学复习 几何证明压轴题

中考数学专题

几何证明压轴题

1、如图,在梯形ABCD中,AB∥CD,∠BCD=90°,且AB=1,BC=2,tan∠ADC=2.

(1)

求证:DC=BC;

(2)

E是梯形内一点,F是梯形外一点,且∠EDC=∠FBC,DE=BF,试判断△ECF的形状,并证明你的结论;

(3)

在(2)的条件下,当BE:CE=1:2,∠BEC=135°时,求sin∠BFE的值.

[解析]

(1)过A作DC的垂线AM交DC于M,

则AM=BC=2.

又tan∠ADC=2,所以.即DC=BC.

(2)等腰三角形.

证明:因为.

所以,△DEC≌△BFC

所以,.

所以,

即△ECF是等腰直角三角形.

(3)设,则,所以.

因为,又,所以.

所以

所以.

2、已知:如图,在□ABCD

中,E、F分别为边AB、CD的中点,BD是对角线,AG∥DB交CB的延长线于G.

(1)求证:△ADE≌△CBF;

(2)若四边形

BEDF是菱形,则四边形AGBD是什么特殊四边形?并证明你的结论.

[解析]

(1)∵四边形ABCD是平行四边形,

∴∠1=∠C,AD=CB,AB=CD

.

∵点E

、F分别是AB、CD的中点,

∴AE=AB

,CF=CD

.

∴AE=CF

∴△ADE≌△CBF

.

(2)当四边形BEDF是菱形时,

四边形

AGBD是矩形.

∵四边形ABCD是平行四边形,

∴AD∥BC

.

∵AG∥BD

∴四边形

AGBD

是平行四边形.

∵四边形

BEDF

是菱形,

∴DE=BE

.

∵AE=BE

∴AE=BE=DE

.

∴∠1=∠2,∠3=∠4.

∵∠1+∠2+∠3+∠4=180°,

∴2∠2+2∠3=180°.

∴∠2+∠3=90°.

即∠ADB=90°.

∴四边形AGBD是矩形

3、如图13-1,一等腰直角三角尺GEF的两条直角边与正方形ABCD的两条边分别重合在一起.现正方形ABCD保持不动,将三角尺GEF绕斜边EF的中点O(点O也是BD中点)按顺时针方向旋转.

(1)如图13-2,当EF与AB相交于点M,GF与BD相交于点N时,通过观察或测量BM,FN的长度,猜想BM,FN满足的数量关系,并证明你的猜想;

(2)若三角尺GEF旋转到如图13-3所示的位置时,线段FE的延长线与AB的延长线相交于点M,线段BD的延长线与GF的延长线相交于点N,此时,(1)中的猜想还成立吗?若成立,请证明;若不成立,请说明理由.

图13-2

E

A

B

D

G

F

O

M

N

C

图13-3

A

B

D

G

E

F

O

M

N

C

图13-1

A(

G

)

B(

E

)

C

O

D(

F

)

[解析](1)BM=FN.

证明:∵△GEF是等腰直角三角形,四边形ABCD是正方形,

∠ABD

=∠F

=45°,OB

=

OF.

又∵∠BOM=∠FON,

△OBM≌△OFN

.

BM=FN.

(2)

BM=FN仍然成立.

(3)

证明:∵△GEF是等腰直角三角形,四边形ABCD是正方形,

∴∠DBA=∠GFE=45°,OB=OF.

∴∠MBO=∠NFO=135°.

又∵∠MOB=∠NOF,

△OBM≌△OFN

.

BM=FN.

4、如图,已知⊙O的直径AB垂直于弦CD于E,连结AD、BD、OC、OD,且OD=5。

(1)若,求CD的长;

(2)若

∠ADO:∠EDO=4:1,求扇形OAC(阴影部分)的面积(结果保留)。

[解析]

(1)因为AB是⊙O的直径,OD=5

所以∠ADB=90°,AB=10

在Rt△ABD中,

又,所以,所以

因为∠ADB=90°,AB⊥CD

所以

所以

所以

所以

(2)因为AB是⊙O的直径,AB⊥CD

所以

所以∠BAD=∠CDB,∠AOC=∠AOD

因为AO=DO,所以∠BAD=∠ADO

所以∠CDB=∠ADO

设∠ADO=4x,则∠CDB=4x

由∠ADO:∠EDO=4:1,则∠EDO=x

因为∠ADO+∠EDO+∠EDB=90°

所以

所以x=10°

所以∠AOD=180°-(∠OAD+∠ADO)=100°

所以∠AOC=∠AOD=100°

5、如图,已知:C是以AB为直径的半圆O上一点,CH⊥AB于点H,直线AC与过B点的切线相交于点D,E为CH中点,连接AE并延长交BD于点F,直线CF交直线AB于点G.

(1)求证:点F是BD中点;

(2)求证:CG是⊙O的切线;

(3)若FB=FE=2,求⊙O的半径.

[解析]

(1)证明:∵CH⊥AB,DB⊥AB,∴△AEH∽AFB,△ACE∽△ADF

∴,∵HE=EC,∴BF=FD

(2)方法一:连接CB、OC,

∵AB是直径,∴∠ACB=90°∵F是BD中点,

∴∠BCF=∠CBF=90°-∠CBA=∠CAB=∠ACO

∴∠OCF=90°,∴CG是⊙O的切线---------6′

方法二:可证明△OCF≌△OBF(参照方法一标准得分)

(3)解:由FC=FB=FE得:∠FCE=∠FEC

可证得:FA=FG,且AB=BG

由切割线定理得:(2+FG)2=BG×AG=2BG2

在Rt△BGF中,由勾股定理得:BG2=FG2-BF2

由、得:FG2-4FG-12=0

解之得:FG1=6,FG2=-2(舍去)

∴AB=BG=

∴⊙O半径为2

6、如图,已知O为原点,点A的坐标为(4,3),

⊙A的半径为2.过A作直线平行于轴,点P在直线上运动.

(1)当点P在⊙O上时,请你直接写出它的坐标;

(2)设点P的横坐标为12,试判断直线OP与⊙A的位置关系,并说明理由.

[解析]

解:

1点P的坐标是(2,3)或(6,3)

2作AC⊥OP,C为垂足.

∵∠ACP=∠OBP=,∠1=∠1

∴△ACP∽△OBP

在中,,又AP=12-4=8,

∴AC=≈1.94

∵1.94<2

∴OP与⊙A相交.

7、如图,延长⊙O的半径OA到B,使OA=AB,

C

A

B

D

O

E

DE是圆的一条切线,E是切点,过点B作DE的垂线,

垂足为点C.

求证:∠ACB=∠OAC.

[解析]

证明:连结OE、AE,并过点A作AF⊥DE于点F,

(3分)

∵DE是圆的一条切线,E是切点,

∴OE⊥DC,

又∵BC⊥DE,

∴OE∥AF∥BC.

∴∠1=∠ACB,∠2=∠3.

∵OA=OE,

∴∠4=∠3.

∴∠4=∠2.

又∵点A是OB的中点,

∴点F是EC的中点.

∴AE=AC.

∴∠1=∠2.

∴∠4=∠2=∠1.

即∠ACB=∠OAC.

8、如图1,一架长4米的梯子AB斜靠在与地面OM垂直的墙壁ON上,梯子与地面的倾斜角α为.

1求AO与BO的长;

2若梯子顶端A沿NO下滑,同时底端B沿OM向右滑行.

①如图2,设A点下滑到C点,B点向右滑行到D点,并且AC:BD=2:3,试计算梯子顶端A沿NO下滑多少米;

②如图3,当A点下滑到A’点,B点向右滑行到B’点时,梯子AB的中点P也随之运动到P’点.若∠POP’=

,试求AA’的长.

[解析]

1中,∠O=,∠α=

∴,∠OAB=,又AB=4米,

∴米.

米.

--------------

(3分)

2设在中,

根据勾股定理:

-------------

(5分)

∵  ∴

-------------

(7分)

AC=2x=

即梯子顶端A沿NO下滑了米.

----

(8分)

3∵点P和点分别是的斜边AB与的斜边的中点

∴,

-------------

(9分)

∴-------

(10分)

-----------------------

(11分)

∴-----

(12分)

∴米.

--------

(13分)

9.(重庆,10分)如图,在平面直角坐标系内,已知点A(0,6)、点B(8,0),动点P从点A开始在线段AO上以每秒1个单位长度的速度向点O移动,同时动点Q从点B开始在线段BA上以每秒2个单位长度的速度向点A移动,设点P、Q移动的时间为t秒.

(1)

求直线AB的解析式;(2)

当t为何值时,△APQ与△AOB相似?

(3)

当t为何值时,△APQ的面积为个平方单位?

解:(1)设直线AB的解析式为y=kx+b

由题意,得

解得

所以,直线AB的解析式为y=-x+6.

(2)由AO=6,

BO=8

得AB=10

所以AP=t

,AQ=10-2t

当∠APQ=∠AOB时,△APQ∽△AOB.

所以 =

解得 t=(秒)

当∠AQP=∠AOB时,△AQP∽△AOB.

所以 =

解得 t=(秒)

(3)过点Q作QE垂直AO于点E.

在Rt△AOB中,Sin∠BAO==

在Rt△AEQ中,QE=AQ·Sin∠BAO=(10-2t)·=8

-t所以,S△APQ=AP·QE=t·(8-t)

=-+4t=

解得t=2(秒)或t=3(秒).

(注:过点P作PE垂直AB于点E也可,并相应给分)

点拨:此题的关键是随着动点P的运动,△APQ的形状也在发生着变化,所以应分情况:①∠APQ=∠AOB=90○②∠APQ=∠ABO.这样,就得到了两个时间限制.同时第(3)问也可以过P作

PE⊥AB.

10.(南充,10分)如图2-5-7,矩形ABCD中,AB=8,BC=6,对角线AC上有一个动点P(不包括点A和点C).设AP=x,四边形PBCD的面积为y.

(1)写出y与x的函数关系,并确定自变量x的范围.

(2)有人提出一个判断:“关于动点P,⊿PBC面积与⊿PAD面积之和为常数”.请你说明此判断是否正确,并说明理由.

解:(1)过动点P作PE⊥BC于点E.

在Rt⊿ABC中,AC=10,

PC=AC-AP=10-x.

∵ PE⊥BC,AB⊥BC,∴⊿PEC∽⊿ABC.

故 ,即

∴⊿PBC面积=

又⊿PCD面积=⊿PBC面积=

即 y,x的取值范围是0

(2)这个判断是正确的.

理由:

由(1)可得,⊿PAD面积=

⊿PBC面积与⊿PAD面积之和=24.

点拨:由矩形的两边长6,8.可得它的对角线是10,这样PC=10-x,而面积y是一个不规则的四边形,所以可以把它看成规则的两个三角形:△PBC、△PCD.这样问题就非常容易解决了.

第二篇:【压轴题 精讲特训】挑战2014数学中考压轴题:几何证明及通过几何计算进行说理(含2013试题,含详解)

几何证明及通过几何计算进行说理问题

例12013年上海市黄浦区中考模拟第24题

已知二次函数y=-x2+bx+c的图像经过点P(0, 1)与Q(2, -3).

(1)求此二次函数的解析式;

(2)若点A是第一象限内该二次函数图像上一点,过点A作x轴的平行线交二次函数图像于点B,分别过点B、A作x轴的垂线,垂足分别为C、D,且所得四边形ABCD恰为正方形.

①求正方形的ABCD的面积; ②联结PA、PD,PD交AB于点E,求证:△PAD∽△PEA.

动感体验 请打开几何画板文件名“13黄浦24”,拖动点A在第一象限内的抛物线上运动,可以体验到,∠PAE与∠PDA总保持相等,△PAD与△PEA保持相似.

请打开超级画板文件名“13黄浦24”,拖动点A在第一象限内的抛物线上运动,可以体验到,∠PAE与∠PDA总保持相等,△PAD与△PEA保持相似.

思路点拨

1.数形结合,用抛物线的解析式表示点A的坐标,用点A的坐标表示AD、AB的长,当四边形ABCD是正方形时,AD=AB.

2.通过计算∠PAE与∠DPO的正切值,得到∠PAE=∠DPO=∠PDA,从而证明△PAD∽△PEA.

满分解答

(1)将点P(0, 1)、Q(2, -3)分别代入y=-x2+bx+c,得

c1,b0,解得 c1.42b13.

所以该二次函数的解析式为y=-x2+1.

(2)①如图1,设点A的坐标为(x, -x2+1),当四边形ABCD恰为正方形时,AD=AB.

此时yA=2xA. 解方程-x2+1=2x

,得x1所以点A

1.

因此正方形ABCD

的面积等于1)]212

②设OP与AB交于点F

,那么PFOPOF11)31)2.

PF所以tanPAE1.

AF又因为tanPDAtanDPO

OD

1, OP

所以∠PAE=∠PDA.

又因为∠P公用,所以△PAD∽△PEA.

图1图

2考点伸展

事实上,对于矩形ABCD,总有结论△PAD∽△PEA.证明如下:

如图2,设点A的坐标为(x, -x2+1),那么PF=OP-OF=1-(-x2+1)=x2.

PFx2

所以tanPAEx.

AFx

又因为tanPDAtanDPO

OD

x, OP

所以∠PAE=∠PDA.因此△PAD∽△PEA.

例22013年江西省中考第24题

某数学活动小组在作三角形的拓展图形,研究其性质时,经历了如下过程: (1)操作发现:

在等腰△ABC中,AB=AC,分别以AB、AC为斜边,向△ABC的外侧作等腰直角三角形,如图1所示,其中DF⊥AB于点F,EG⊥AC于点G,M是BC的中点,连结MD和ME,则下列结论正确的是__________(填序号即可).

①AF=AG=

AB;②MD=ME;③整个图形是轴对称图形;④MD⊥ME.

2(2)数学思考:

在任意△ABC中,分别以AB、AC为斜边,向△ABC的外侧作等腰直角三角形,如图2所示,M是BC的中点,连结MD和ME,则MD与ME有怎样的数量关系?请给出证明过程;

(3)类比探究:

在任意△ABC中,仍分别以AB、AC为斜边,向△ABC的内侧作等腰直角三角形,如图3所示,M是BC的中点,连结MD和ME,试判断△MDE的形状.答:_________.

1动感体验

请打开几何画板文件名“13江西24”,拖动点A可以改变△ABC的形状,可以体验到,△DFM≌△MGE保持不变,∠DME=∠DFA=∠EGA保持不变.

请打开超级画板文件名“13江西24”,拖动点A可以改变△ABC的形状,可以体验到,△DFM≌△MGE保持不变,∠DME=∠DFA=∠EGA保持不变.

思路点拨

1.本题图形中的线条错综复杂,怎样寻找数量关系和位置关系?最好的建议是按照题意把图形规范、准确地重新画一遍.

2.三个中点M、F、G的作用重大,既能产生中位线,又是直角三角形斜边上的中线. 3.两组中位线构成了平行四边形,由此相等的角都标注出来,还能组合出那些相等的角?

满分解答

(1)填写序号①②③④.

(2)如图4,作DF⊥AB,EG⊥AC,垂足分别为F、G.

因为DF、EG分别是等腰直角三角形ABD和等腰直角三角形ACE斜边上的高, 所以F、G分别是AB、AC的中点.

又已知M是BC的中点,所以MF、MG是△ABC的中位线.

所以MF

1

1AC,MGAB,MF//AC,MG//AB. 2

2所以∠BFM=∠BAC,∠MGC=∠BAC.

所以∠BFM=∠MGC.所以∠DFM=∠MGE.

因为DF、EG分别是直角三角形ABD和直角三角形ACE斜边上的中线,所以EG

11

AC,DFAB. 22

所以MF=EG,DF=NG.

所以△DFM≌△MGE.所以DM=ME.

(3)△MDE是等腰直角三角形.

图4图5

考点伸展

第(2)题和第(3)题证明△DFM≌△MGE的思路是相同的,不同的是证明∠DFM=∠MGE的过程有一些不同.

如图4,如图5,∠BFM=∠BAC=∠MGC.

如图4,∠DFM=90°+∠BFM,∠MGE=90°+∠MGC,所以∠DFM=∠MGE. 如图5,∠DFM=90°-∠BFM,∠MGE=90°-∠MGC,所以∠DFM=∠MGE.

第三篇:初二数学平行四边形压轴:几何证明题

1.在四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点,顺次连接EF、FG、GH、HE.

C (1)请判断四边形EFGH的形状,并给予证明; D (2)试探究当满足什么条件时,使四边形EFGH是菱形,并说明理由。

F

B

2.如图,在直角三角形ABC中,∠ACB=90°,AC=BC=10,将△ABC绕点B沿顺时针方向旋转90°得到△A1BC1.

(1)线段A1C1的长度是,∠CBA1的度数是.

(2)连接CC1,求证:四边形CBA1C1是平行四边形. A1 C

3. 如图,矩形ABCD中,点P是线段AD上一动点,O为BD的中点, PO的延长线交BC于Q.(1)求证:OP=OQ;

(2)若AD=8厘米,AB=6厘米,P从点A出发,以1厘米/秒的速度向D运动(不与D重合).设点P运动时间为t秒,请用t表示PD的长;并求t为何值时,四边形PBQD是菱形. P D

4.已知:如图,在□ABCD中,AE是BC边上的高,将△ABE沿BC方向平移,使点E与点C重合,得△GFC. ⑴求证:BEDG;

⑵若∠B60,当AB与BC满足什么数量关系时,四边形ABFG是菱形?证明你的结论.

E

F

5. 如图,在四边形ABCD中,AD∥BC,E为CD的中点,连结AE、BE,BE⊥AE,延长AE交BC的延长线于点F.

求证:(1)FC=AD; D (2)AB=BC+AD.

E

F C

6.如图,在△ABC中,AB=AC,D是BC的中点,连结AD,在AD的延长线上取一点E,连结BE,CE.

(1)求证:△ABE≌△ACE

(2)当AE与AD满足什么数量关系时,四边形ABEC是菱形?并说明理由. B

A

D B C

7.如图,在平行四边形ABCD中,点E是边AD的中点,BE的延长线与CD的延长线交于点F.F (1)求证:△ABE≌△DFE

(2)连结BD、AF,判断四边形ABDF的形状,并说明理由. ED

B C

8. 如图,已知点D在△ABC的BC边上,DE∥AC交AB于E,DF∥AB交AC于F.

(1)求证:AE=DF;

(2)若AD平分∠BAC,试判断四边形AEDF的形状,并说明理由.

F

B

D

9. 如图,在平行四边形中,点E,F是对角线BD上两点,且BFDE.

(1)写出图中每一对你认为全等的三角形;

(2)选择(1)中的任意一对全等三角形进行证明.

10.在梯形ABCD中,AD∥BC,AB=DC,过点D作DE⊥BC,垂足为点E,并延长DE至点F,使EF=DE.连接BF、CF、AC.(1)求证:四边形ABFC是平行四边形;

(2)若DEBECE,求证:四边形ABFC是矩形.

D

B

11.如图,△ABC中,AB=AC,AD、AE分别是∠BAC和∠BAC的外角平分线,BE⊥AE. B (1)求证:DA⊥AE

(2)试判断AB与DE是否相等?并说明理由。

E

C

12.如图,在△ABC中,AB=AC,点D是BC上一动点(不与B、C重合),作DE∥AC交AB于点E,DF∥AB交AC于点F.(1)当点D在BC上运动时,∠EDF的大小(变大、变小、不变)

(2)当AB=10时,四边形EDF的周长是多少? A (3)点D在BC上移动的过程中,AB、DE与DF总存在什么数量关系?请说明.EF

B C

2A

13.如图,四边形ABCD中,AB∥CD,AC平分∠BAD,CE∥AD交AB于E.

(1)求证:四边形AECD是菱形;

(2)若点E是AB的中点,试判断△ABC的形状,并什么理由.

D

B

14.如图,在平行四边形ABCD中,E为BC的中点,连结AE并延长交DC的延长线于点F.

(1)求证:AB=CF D

(2)当BC与AF满足什么数量关系时,四边形ABFC是矩形?并说明.

C

B F

15.如图,在正方形ABCD中,G是CD上一点,延长BC到E,使CE=CG,连结BG并延长交DE于点F.

(1)求证:△BCG≌△DCE

(2)将△DEC绕点D顺时针旋转90°得到△DMA,判断四边形MBGD是什么特殊四边形?并说明理由.

16.将平行四边形纸片ABCD如图方式折叠,使点C与点A重合,点D落到D’处,折痕为EF.

(1)求证:△ABE≌△AD’F D’ (2)连结CF,判断四边形AECF是什么特殊四边形,说明理由.

D

B

17.如图,在△ABC中,AB=AC,AD⊥BC,垂足为点D,AN是△ABC外角∠CAM的平分线,CE⊥AN,垂足为E.

(1)求证:四边形ADCE是矩形;

(2)当△ABC满足什么条件时,四边形ADCE是正方形?说明理由.

A

18.四边形ABCD、DEFG都是正方形,连结AE、CG.

(1)求证:AE=CG; B (2)猜想AE与CG的位置关系,并证明.F

BC

19.如图,在四边形ABFC中,∠ACB=90°,BC的垂直平分线EF交BC于点D,交AB于点E,且CF=AE.(1)试探究四边形BECF是什么特殊四边形,并说明理由;

(2)当∠A的大小满足什么条件时,四边形BECF是正方形?请回答并证明你的结论. F D

C20.如图,在□ABCD中,AB⊥AC,AB=1,BC=5,对角线AC、BD相交于点O,将直线AC绕点O顺时针旋转,分别交BC、AD于点E、F.

(1)证明:当旋转角为90°时,四边形ABEF是平行四边形;

(2)试探究在旋转过程中,线段AF与EC有怎样的数量关系,并证明;

(3)在旋转过程中,四边形BEDF可能是菱形吗?如果不能,请说明理由;如果能,说明理由并求出此时AC绕点O顺时针旋转的度数. F D

21.如图,B、C、E是同一直线上的三个点,四边形ABCD与四边形CEFG都是正方形,连结BG、DE.(1)猜想BG与DE之间的大小关系,并证明你的结论;

(2)在图中是否存在通过旋转能够互相重合的两个三角形?若存在,请指出,并说明旋转过程;若不存在,请说明理由. A

B 22.如图,矩形ABCD中,O是AC与BD的交点,过点O的直线EF与AB、CD

F

(1)求证:△BOC≌△DOF; (2)当EF与AC满足什么关系时,四边形AECF是菱形?并说明. D

C

23.如图,△ABC是等边三角形,D、E分别在边BC、AC上,且CD=CE,连结DE并延长至点F,使EF=AE,连结AF、BE和

F CF.(1)请在图中找出一对全等三角形,并加以证明;

(2)判断四边形ABDF的形状,并说明理由.

B

24. 如图,△ABC是等边三角形,点D是线段BC上的动点(点D不与B、C重合), △ADE是以AD为边的等边三角形,过E作BC的平行线,分别交AB、AC于点F、G,连结BE. A (1)求证:△AEB≌△ADC;

(2)四边形BCGE是怎样的四边形?说明理由.

第四篇:中考几何证明题

一、证明两线段相等

1、真题再现

18.如图3,在梯形ABCD中,AD∥BC,EA⊥AD,M是AE上一点,

2.如图,在△ABC中,点P是边AC上的一个动点,过点P作直线MN∥BC,设MN交

∠BCA的平分线于点E,交∠BCA的外角平分线于点F. (1)求证:PE=PF;

(2)*当点P在边AC上运动时,四边形BCFE可能是菱形吗?说明理由;

AP

3(3)*若在AC边上存在点P,使四边形AECF是正方形,且.求此时∠A

BC

2的大小.

C

二、证明两角相等、三角形相似及全等

1、真题再现

∠BAE∠MCE,∠MBE45.

(1)求证:BEME. (2)若AB7,求MC的长.

B

N

E

321、(8分)如图11,一张矩形纸片ABCD,其中AD=8cm,AB=6cm,先沿对角线BD折叠,点C落在点C′的位置,BC′交AD于点G. (1)求证:AG=C′G;

(2)如图12,再折叠一次,使点D与点A重合,的折痕EN,EN角AD于M,求EM的长.2、类题演练

1、如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD、等边△ABE.已知∠BAC=30º,EF⊥AB,垂足为F,连结DF. E (1)试说明AC=EF;

(2)求证:四边形ADFE是平行四边形.

22、(9分)AB是⊙O的直径,点E是半圆上一动点(点E与点A、B都不重合),

点C是BE延长线上的一点,且CD⊥AB,垂足为D,CD与AE交于点H,点H与点A不重合。

(1)(5分)求证:△AHD∽△CBD

(2)(4分)连HB,若CD=AB=2,求HD+HO的值。

A

O D

B

E 20.如图9,四边形ABCD是正方形,BE⊥BF,BE=BF,EF与BC交于点G。 (1)求证:△ABE≌△CBF;(4分)

(2)若∠ABE=50º,求∠EGC的大小。(4分)

C

B

图9

第20题图

如图8,△AOB和△COD均为等腰直角三角形,∠AOB=∠COD=90º,D在AB上. (1)求证:△AOC≌△BOD;(4分) (2)若AD=1,BD=2,求CD的长.(3分)

O

图8

2、类题演练

1、(肇庆2010) (8分)如图,已知∠ACB=90°,AC=BC,BE⊥CE于E,AD⊥CE于D,

CE与AB相交于F. (1)求证:△CEB≌△ADC; E (2)若AD=9cm,DE=6cm,求BE及EF的长.

AC

BC、CD、DA上的

2、(佛山2010)已知,在平行四边形ABCD中,EFGH分别是AB、

点,且AE=CG,BF=DH,求证:AEH≌CGF

B F

C

3、(茂名2010)如图,已知OA⊥OB,OA=4,OB=3,以AB为边作矩形C ABCD,使

AD=a,过点D作DE垂直OA的延长线交于点E. (1)证明:△OAB∽△EDA; BD (2)当a为何值时,△OAB≌△EDA?*请说明理由,并求此时点 C到OE的距离. O A E

1三、证明两直线平行

1、真题再现

(2006年)22.(10分)如图10-1,在平面直角坐标系xoy中,点M在x轴的正半轴上, ⊙M交x轴于 A、B两点,交y轴于C、D两点,且C为AE的中点,AE交y轴于G点,若点A的坐标为(-2,0),AE8 (1)(3分)求点C的坐标.(2)(3分)连结MG、BC,求证:MG∥BC

图10-

12、类题演练

1、(湛江2010) (10分)如图,在□ABCD中,点E、F是对角线BD上的两点,且BE=DF.

D

求证:(1)△ABE≌△CDF;(2)AE∥CF.C

四、证明两直线互相垂直

1、真题再现

18.(7分)如图7,在梯形ABCD中,AD∥BC, ABDCAD,

ADC120.

(1)(3分)求证:BDDC

B

C

BD (2)(4分)若AB4,求梯形ABCD的面积

图7

O A

E 图

22、类题演练

1.已知:如图,在△ABC中,D是AB边上一点,⊙O过D、B、C三点,DOC2ACD90.

(1)求证:直线AC是⊙O的切线;

(2)如果ACB75,⊙O的半径为2,求BD的长.

2、如图,以△ABC的一边AB为直径作⊙O,⊙O与BC边的交点D恰好为BC的中点.过点D作⊙O的切线交AC边于点E.(1)求证:DE⊥AC;

(2)若∠ABC=30°,求tan∠BCO的值.(第2题图) 3.(2011年深圳二模) 如图所示,矩形ABCD中,点E在CB的延长线上,使CE=AC,连结AE,点F是AE的中点,连结BF、DF,求证:BF⊥

DF

CD于F,若⊙O的半径为R求证:AE·AF=2 R

2、类题演练

1.在△ABC中,AC=BC,∠ACB=90°,D、E是直线AB上两点.∠DCE=45° (1)当CE⊥AB时,点D与点A重合,显然DE=AD+BE(不必证明) (2)如图,当点D不与点A重合时,求证:DE=AD+BE

(3)当点D在BA的延长线上时,(2)中的结论是否成立?画出图形,说明理由.

2.(本小题满分10分)

如图,已知△ABC,∠ACB=90º,AC=BC,点E、F在AB上,∠ECF=45º,(1)求证:△ACF∽△BEC(5分)

(2)设△ABC的面积为S,求证:AF·BE=2S(3)

3.(2)如图,AB为⊙O的直径,BC切⊙O于B,AC交⊙O于D.①求证:AB=AD·AC. A ②当点D运动到半圆AB什么位置时,△ABC为等腰直角三角形,为什么?

五、证明比例式或等积式

1、真题再现

1.已知⊙O的直径AB、CD互相垂直,弦AE交

第3题图

B

第3(2)题图

C

4、(本小题满分9分)

如图,AB为⊙O的直径,劣弧BCBE,BD∥CE,连接AE并延长交BD于D.

求证:(1)BD是⊙O的切线;

2、类题演练

1、如图5,在等腰梯形ABCD中,AD∥BC.

求证:∠A+∠C=180°

·AD. (2)ABAC

B

第4题图



5. 如图所示,⊙O中,弦AC、BD交于E,BD2AB。

2ABAE·AC;(1)求证:

2、如图,在Rt△ABC中,C90°点E在斜边AB上,

以AE为直径的⊙O与BC相切于点D. (1)求证:AD平分BAC. (2)若AC3,AE4.①求AD的值;②求图中阴影部分的面积.

3、如图,AB是⊙O的直径,点C在BA的延长线上,直

线CD与⊙O相切于点D,弦DF⊥AB于点E,线段CD10,连接BD.(1)求证:CDE2B;

(2)若BD:AB2,求⊙O的半径及DF的长.

七、证明线段的和、差、倍、分

1、真题再现

22、(9分)AB是⊙O的直径,点E是半圆上一动点(点E与点A、B都不重合),

点C是BE延长线上的一点,且CD⊥AB,垂足为D,CD与AE交于点H,点H与

(2)延长EB到F,使EF=CF,试判断CF与⊙O的位置关系,并说明理由。

六、证明角的和、差、倍、分

1、真题再现

21.(本题8分)如图10,AB是⊙O的直径,AB=10, DC切⊙O于点C,AD⊥DC,垂足为D,AD交⊙O于点E。 (1)求证:AC平分∠BAD;(4分)

3(2)若sin∠BEC=,求DC的长。(4分)

第3题图

点A不重合。

(1)(5分)求证:△AHD∽△CBD

(2)(4分)连HB,若CD=AB=2,求HD+HO的值。

图10

C

2、类题演练

1.(1)如图1,已知矩形ABCD中,点E是BC上的一动点,过点E作EF⊥BD于点

F,EG⊥AC于点G,CH⊥BD于点H,试证明CH=EF+EG;

1D

G

3(2) 若点E在BC的延长线上,如图2,过点E作EF⊥BD于点F,EG⊥AC的延长线于点G,CH⊥BD于点H, 则EF、EG、CH三者之间具有怎样的数量关系,直接写出你的猜想;

(3) 如图3,BD是正方形ABCD的对角线,L在BD上,且BL=BC, 连结CL,点E是

CL上任一点, EF⊥BD于点F,EG⊥BC于点G,猜想EF、EG、BD之间具有怎样的数量关系,直接写出你的猜想;(4) 观察图

1、图

2、图3的特性,请你根据这一特性构造一个图形,使它仍然

具有EF、EG、CH这样的线段,并满足(1)或(2)的结论,写出相关题设的条件和结论. 2. 设点E是平行四边形ABCD的边AB的中点,F是BC边上一点,线段DE和AF相交于点P,点Q在线段DE上,且AQ∥PC. (1)证明:PC=2AQ.

(2)当点F为BC的中点时,试比较△PFC和梯形APCQ

面积的大小关系,并对你的结论加以证明.

八、其他

1、真题再现

如图5,在梯形ABCD中,AB∥DC, DB平分∠ADC,过点A作AE∥BD,交CD的

延长线于点E,且∠C=2∠E. AB(1)求证:梯形ABCD是等腰梯形.

(2)若∠BDC=30°,AD=5,求CD的长. D DC

2、类题演练 图

51.(肇庆2010)如图,四边形ABCD是平行四边形,AC、BD交于点O,∠1=∠2.

(1)求证:四边形ABCD是矩形;

(2)若∠BOC=120°,AB=4cm,求四边形ABCDDC

2..如图(2),AB是⊙O的直径,D是圆上一点,AD=DC,连结AC,过点D作弦AC的平行线MN.

(1)求证:MN是⊙O的切线; (2)已知AB10,AD6,求弦BC的长.图(2)

3.如图,四边形ABCD是平行四边形,以AB为直径的⊙O经过点D,E是⊙O上

.一点,且AED45°

(1)试判断CD与⊙O的位置关系,并说明理由;

(2)若⊙O的半径为3cm,AE5cm,求ADE的正弦值.

(第3题)

第五篇:中考数学几何证明题

中考数学几何证明题在▱ABCD中,∠BAD的平分线交直线BC于点E,交直线DC于点F.(1)在图1中证明CE=CF;

(2)若∠ABC=90°,G是EF的中点(如图2),直接写出∠BDG的度数;

第一个问我会,求第二个问。。需要过程,快呀!!

连接GC、BG

∵四边形ABCD为平行四边形,∠ABC=90°

∴四边形ABCD为矩形

∵AF平分∠BAD

∴∠DAF=∠BAF=45°

∵∠DCB=90°,DF∥AB

∴∠DFA=45°,∠ECF=90°

∴△ECF为等腰Rt△

∵G为EF中点

∴EG=CG=FG

∵△ABE为等腰Rt△,AB=DC

∴BE=DC

∵∠CEF=∠GCF=45°→∠BEG=∠DCG=135°

∴△BEG≌△DCG

∴BG=DG

∵CG⊥EF→∠DGC+∠DGB=90°

又∵∠DGC=∠BGE

∴∠BGE+∠DGB=90°

∴△DGB为等腰Rt△

∴∠BDG=45°

分析已知、求证与图形,探索证明的思路。

对于证明题,有三种思考方式:

(1)正向思维。对于一般简单的题目,我们正向思考,轻而易举可以做出,这里就不详细讲述了。

(2)逆向思维。顾名思义,就是从相反的方向思考问题。运用逆向思维解题,能使学生从不同角度,不同方向思考问题,探索解题方法,从而拓宽学生的解题思路。这种方法是推荐学生一定要掌握的。在初中数学中,逆向思维是非常重要的思维方式,在证明题中体现的更加明显,数学这门学科知识点很少,关键是怎样运用,对于初中几何证明题,最好用的方法就是用逆向思维法。如果你已经上初三了,几何学的不好,做题没有思路,那你一定要注意了:从现在开始,总结做题方法。同学们认真读完一道题的题干后,不知道从何入手,建议你从结论出发。例如:可以有这样的思考过程:要证明某两条边相等,那么结合图形可以看出,只要证出某两个三角形相等即可;要证三角形全等,结合所给的条件,看还缺少什么条件需要证明,证明这个条件又需要怎样做辅助线,这样思考下去……这样我们就找到了解题的思路,然后把过程正着写出来就可以了。这是非常好用的方法,同学们一定要试一试。

(3)正逆结合。对于从结论很难分析出思路的题目,同学们可以结合结论和已知条件认真的分析,初中数学中,一般所给的已知条件都是解题过程中要用到的,所以可以从已知条件中寻找思路,比如给我们三角形某边中点,我们就要想到是否要连出中位线,或者是否要用到中点倍长法。给我们梯形,我们就要想到是否要做高,或平移腰,或平移对角线,或补形等等。正逆结合,战无不胜。

上一篇:在教育工作会议讲话下一篇:中考动员大会主持词