己内酰胺工艺流程图

2022-08-16

第一篇:己内酰胺工艺流程图

世界单线最大己内酰胺装置开车

8月4日10时58分,福建天辰耀隆新材料有限公司年产20万吨己内酰胺装置一次开车成功,装置运行平稳,产品己内酰胺达到优等品质量标准。此前,天辰耀隆903装置于8月1日一次性开车成功,顺利产出合格的硫酸铵。至此,世界单线产能最大的己内酰胺项目生产线全线投产。

经过取样化验,从外观、50% 水溶液色度、结晶点、高锰酸钾吸收值、290nm 吸光度、酸碱度、铁含量、环己酮肟含量等各项指标对己内酰胺产品进行分析,产品纯度远超过国内装置产品纯度,达到世界一流产品品质。

该项目采用目前国内外先进的己内酰胺生产工艺技术,属于绿色、环保安全的工艺技术,并且在提高产品质量、节省投资保护环境、节能等方面进行了设计创新。

福建天辰耀隆新材料有限公司成立于2012年5月,是由中国天辰工程有限公司和福州耀隆化工集团公司出资组建的国有合资企业,双方出资比例各为60%、40%。公司坐落在福建省福清市江阴工业集中区,以己内酰胺项目为核心业务,工程分两期开发建设。一期投资约45亿元,建设规模为年产20万吨己内酰胺、30万吨双氧水、30万吨硫酸、32万吨硫酸铵、5.6万吨环己烷,项目达产后预计实现年产值45亿元。该项目建成将进一步在海峡西岸打造国际级新型化工材料产业基地,对江阴工业集中区建成海西化工新材料产业园、实现千亿产业园区的目标起到促进作用。

(来源:中国化工报作者:王灏)

第二篇:面包工艺流程图

面包成份:面包粉100%、酵母1%白糖 把面团分割成每块4000克,经16%、5%、盐0.8%和面机搅拌12分钟左右压面机压24-28遍即可奶油

压面 配制 搅拌成型

导热油烤箱

时间:150-200分钟, 温度:上火210℃,下火

相对温度:28-32℃ 200℃,烘烤时间:12分

相对湿度85%。钟左右。

醒发 烘烤 检验 封口包装

入 库 ★ ★

注:标有“★”的为关键质量控制点。

盐城市翠珊屋食品有限公司面包生产工艺流程图 建湖县上冈饮料食品厂面包生产工艺流程图

第三篇:新型干法水泥生产的一般工艺流程水泥厂工艺流程图

水泥厂工艺流程图

一、

水泥生产原燃料及配料

生产硅酸盐水泥的主要原料为石灰原料和粘土质原料,有时还要根据燃料品质和水泥品种,掺加校正原料以补充某些成分的不足,还可以利用工业废渣作为水泥的原料或混合材料进行生产。

1、

石灰石原料

石灰质原料是指以碳酸钙为主要成分的石灰石、泥灰岩、白垩和贝壳等。石灰石是水泥生产的主要原料,每生产一吨熟料大约需要1.3吨石灰石,生料中80%以上是石灰石。

2、

黏土质原料

黏土质原料主要提供水泥熟料中的 、 、及少量的 。天然黏土质原料有黄土、黏土、页岩、粉砂岩及河泥等。其中黄土和黏土用得最多。此外,还有粉煤灰、煤矸石等工业废渣。黏土质为细分散的沉积岩,由不同矿物组成,如高岭土、蒙脱石、水云母及其它水化铝硅酸盐。

3、

校正原料

当石灰质原料和黏土质原料配合所得生料成分不能满足配料方案要求时(有的 含量不足,有的 和 含量不足)必须根据所缺少的组分,掺加相应的校正原料

(1)

硅质校正原料 含 80%以上

(2)

铝质校正原料 含 30%以上

(3)

铁质校正原料 含 50%以上

二、

硅酸盐水泥熟料的矿物组成

硅酸盐水泥熟料的矿物主要由硅酸三钙( )、硅酸二钙( )、铝酸三钙( )和铁铝酸四钙( )组成。

三、

工艺流程

1、

破碎及预均化

(1)破碎 水泥生产过程中,大部分原料要进行破碎,如石灰石、黏土、铁矿石及煤等。石灰石是生产水泥用量最大的原料,开采后的粒度较大,硬度较高,因此石灰石是生产水泥用量最大的原料,开采后的粒度较大,硬度较高,因此石灰石的破碎在水泥厂的物料破碎中占有比较重要的地位。

破碎过程要比粉磨过程经济而方便,合理选用破碎设备和和粉磨设备非常重要。在物料进入粉磨设备之前,尽可能将大块物料破碎至细小、均匀的粒度,以减轻粉磨设备的负荷,提高黂机的产量。物料破碎后,可减少在运输和贮存过程中不同粒度物料的分离现象,有得于制得成分均匀的生料,提高配料的准确性。

(2)原料预均化 预均化技术就是在原料的存、取过程中,运用科学的堆取料技术,实现原料的初步均化,使原料堆场同时具备贮存与均化的功能。

原料预均化的基本原理就是在物料堆放时,由堆料机把进来的原料连续地按一定的方式堆成尽可能多的相互平行、上下重叠和相同厚度的料层。取料时,在垂直于料层的方向,尽可能同时切取所有料层,依次切取,直到取完,即“平铺直取”。

意义:

(1)均化原料成分,减少质量波动,以利于生产质量更高的熟料,并稳定烧成系统的生产。

(2)扩大矿山资源的利用,提高开采效率,最大限度扩大矿山的覆盖物和夹层,在矿山开采的过程中不出或少出废石。

(3)可以放宽矿山开采的质量和控要求,降低矿山的开采成本。

(4)对黏湿物料适应性强。

(5)为工厂提供长期稳定的原料,也可以在堆场内对不同组分的原料进行配料,使其成为预配料堆场,为稳定生产和提高设备运转率创造条件。

(6)自动化程度高。

2、生料制备

水泥生产过程中,每生产1吨硅酸盐水泥至少要粉磨3吨物料(包括各种原料、燃料、熟料、混合料、石膏),据统计,干法水泥生产线粉磨作业需要消耗的动力约占全厂动力的60%以上,其中生料粉磨占30%以上,煤磨占约3%,水泥粉磨约占40%。因此,合理选择粉磨设备和工艺流程,优化工艺参数,正确操作,控制作业制度,对保证产品质量、降低能耗具有重大意义。

工作原理:

电动机通过减速装置带动磨盘转动,物料通过锁风喂料装置经下料溜子落到磨盘中央,在离心力的作用下被甩向磨盘边缘交受到磨辊的辗压粉磨,粉碎后的物料从磨盘的边缘溢出,被来自喷嘴高速向上的热气流带起烘干,根据气流速度的不同,部分物料被气流带到高效选粉机内,粗粉经分离后返回到磨盘上,重新粉磨;细粉则随气流出磨,在系统收尘装置中收集下来,即为产品。没有被热气流带起的粗颗粒物料,溢出磨盘后被外循环的斗式提升机喂入选粉机,粗颗粒落回磨盘,再次挤压粉磨。

3、生料均化

新型干法水泥生产过程中,稳定入窖生料成分是稳定熟料烧成热工制度的前提,生料均化系统起着稳定入窖生料成分的最后一道把关作用。

均化原理:

采用空气搅拌,重力作用,产生“漏斗效应”,使生料粉在向下卸落时,尽量切割多层料面,充分混合。利用不同的流化空气,使库内平行料面发生大小不同的流化膨胀作用,有的区域卸料,有的区域流化,从而使库内料面产生倾斜,进行径向混合均化。

4、预热分解

把生料的预热和部分分解由预热器来完成,代替回转窑部分功能,达到缩短回窑长度,同时使窑内以堆积状态进行气料换热过程,移到预热器内在悬浮状态下进行,使生料能够同窑内排出的炽热气体充分混合,增大了气料接触面积,传热速度快,热交换效率高,达到提高窑系统生产效率、降低熟料烧成热耗的目的。

工作原理:

预热器的主要功能是充分利用回转窑和分解炉排出的废气余热加热生料,使生料预热及部分碳酸盐分解。为了最大限度提高气固间的换热效率,实现整个煅烧系统的优质、高产、低消耗,必需具备气固分散均匀、换热迅速和高效分离三个功能。

(1)物料分散

换热80%在入口管道内进行的。喂入预热器管道中的生料,在与高速上升气流的冲击下,物料折转向上随气流运动,同时被分散。

(2)气固分离

当气流携带料粉进入旋风筒后,被迫在旋风筒筒体与内筒(排气管)之间的环状空间内做旋转流动,并且一边旋转一边向下运动,由筒体到锥体,一直可以延伸到锥体的端部,然后转而向上旋转上升,由排气管排出。

(3)预分解

预分解技术的出现是水泥煅烧工艺的一次技术飞跃。它是在预热器和回转窑之间增设分解炉和利用窑尾上升烟道,设燃料喷入装置,使燃料燃烧的放热过程与生料的碳酸盐分解的吸热过程,在分解炉内以悬浮态或流化态下迅速进行,使入窑生料的分解率提高到90%以上。将原来在回转窑内进行的碳酸盐分解任务,移到分解炉内进行;燃料大部分从分解炉内加入,少部分由窑头加入,减轻了窑内煅烧带的热负荷,延长了衬料寿命,有利于生产大型化;由于燃料与生料混合均匀,燃料燃烧热及时传递给物料,使燃烧、换热及碳酸盐分解过程得到优化。因而具有优质、高效、低耗等一系列优良性能及特点。

4、水泥熟料的烧成

生料在旋风预热器中完成预热和预分解后,下一道工序是进入回转窑中进行熟料的烧成。

在回转窑中碳酸盐进一步的迅速分解并发生一系列的固相反应,生成水泥熟料中的 、 、 等矿物。随着物料温度升高近 时, 、 、 等矿物会变成液相,溶解于液相中的 和 进行反应生成大量 (熟料)。熟料烧成后,温度开始降低。最后由水泥熟料冷却机将回转窑卸出的高温熟料冷却到下游输送、贮存库和水泥磨所能承受的温度,同时回收高温熟料的显热,提高系统的热效率和熟料质量。

5、水泥粉磨

水泥粉磨是水泥制造的最后工序,也是耗电最多的工序。其主要功能在于将水泥熟料(及胶凝剂、性能调节材料等)粉磨至适宜的粒度(以细度、比表面积等表示),形成一定的颗粒级配,增大其水化面积,加速水化速度,满足水泥浆体凝结、硬化要求。

6、水泥包装

水泥出厂有袋装和散装两种发运方式。

以上为新型干法水泥生产的一般工艺流程。

第四篇:腐植酸复混肥的生产工艺与技术及工艺流程图

腐植酸复混肥的生产工艺与技术

随着腐植酸机理研究的不断深化, 我国腐植酸肥料的研制开发及其在农业上的应用有了新的进展。现从腐植酸复混肥的性能、作用、机理、生产工艺特点及农田效果等方面进行探讨与分析, 以推动腐植酸复混肥料在农业上的迅速推广应用。 1 腐植酸的性能

腐植酸是一种化学结构相当复杂的胶体无定型高分子有机化合物, 它是由几个相似的结构单元所形成的大分子复合体, 每个单元又以芳香族聚合物为核, 在核的外面带有羧基、酚羟基、羰基、甲氧基等活性基团。这些活性基团使腐植酸具有酸性、亲水性、较强的离子交换能力和吸附能力, 能与 K + 、Na+ 、Ca2+ 、 M g2+ 、Fe3+ 、Al3+ 和 NH4 + 形成腐植酸盐, 并能与某些金属离子生成络合物或螯合物。腐植酸由很多极小的球形微粒积聚而成, 内表面大, 其阳离子交换量比矿质胶体大 10~20 倍。

腐植酸可与碱成盐, 其 1 价盐如 NH4 + 、Na+ 、K + 盐为水溶性, 2 价盐如 Ca2+ 、Mg 2+ 盐和 3 价盐如 Fe3+ 、Al3+ 盐均不溶于水。

腐植酸具有胶体性质, 在水溶液中呈现出疏松的结构, 加入电解质后会破坏腐植酸胶体溶液的稳定性, 使其凝聚成絮状沉淀。腐植酸的热稳定性差, 在高温下很容易脱羧基、酚羟基而发生裂解, 以致失去原有的活性。

腐植酸具有良好的生理活性, 其分子中所含的多酚基结构参与了植物体内的氧化还原过程, 有活化生物体内多种酶的活性, 促进细胞分裂, 加速作物生长点分化及增强根系发育, 刺激作物生长的作用。它还能抑制土壤中脲酶和硝化菌的活性, 增强作物对养分的吸收, 提高化肥利用率。

腐植酸存在于泥炭、褐煤和风化煤中, 其总含量一般为 30% ~50% 。目前统称的腐植酸由胡敏酸( 黑腐酸和棕腐酸) 和富里酸组成, 富里酸又称黄腐酸, 含量少。由于原生植物、地质年代所经历的变化和环境不同, 其腐植酸含量、成分、结构有很大差异, 直接影响到腐植酸产品的质量和应用效果。一般来讲, 活性基团的含量越高, 调剂肥料中养分释放和供给能力越强。

腐植酸在农业上的应用, 则表现出具有 5 大作用, 即: 改良土壤; 增强化肥效能; 刺激作物生长; 改善作物品质; 增强作物抗逆能力。

我国蕴藏着上千亿吨的腐植酸资源, 为发展腐植酸复混肥提供了可靠的物质基础。

2 腐植酸对氮肥分解的抑制机理 2·1腐植酸的脲酶抑制和硝化抑制机理

多元复混肥, 其氮源多采用尿素为原料。

( 1) 酰胺水解作用

尿素进入土壤后, 在土壤脲酶作用下, 很快发生水解而生成氨。水解后的氨, 一方面与土壤中的水发生水合反应而形成 NH4 + , 使其存在于土壤中供作物吸收利用; 另一方面可进入大气而损失。其化学反应过程为:

山西农大陆欣等人研究结果表明, 腐植酸对土壤脲酶活性具有抑制作用, 可维持在 100 天左右。腐植酸在作物生长前期能很好地抑制尿素的水解, 极大减少氮素的挥发及淋溶损失; 在作物生长中、后期, 随着腐植酸的消耗, 又能够逐渐减弱其抑制作用, 以适应作物发育旺盛时期对氮素的大量需求。

( 2) 硝化作用与反硝化作用

尿素施入土壤后经水解和水合作用生成的NH4 +,在土壤亚硝化细菌的作用下,被氧化成NO2-,又在销化细菌的作用下,被进一步氧化成NO3-。其化学反应式为:

NO3-是作物可吸收利用的氮, 但是, NO3-易于移动, 可被淋溶而进入地下水, 污染水质。NO3-在嫌气条件下, 经反硝化作用被还原成N2 O与N2, 形成气态损失, 造成大气污染。其途径主要为: NO3-—NO2-—NO—N2O—N2。反硝化作用主要是一种氮素损失过程, 而且其气态中间产物均可产生一定程度的大气污染。

山西煤化所成绍鑫等人研究结果表明, 腐植酸对硝化细菌活性有抑制作用。经试验研究, 在尿素中添加 2% ~20% 的腐植酸物质, 在土壤中保持 35 天内,总抑制率达 69. 3% 。62 天后含腐植酸的尿素比普通尿素在土壤中多保留 42% ~50% 的氮。 2·2 腐植酸的氨稳定机理

腐植酸具有很大的内表面积和较强的吸附能力。当尿素被水解成 NH3和NH3经水合成NH4+时, 很快被腐植酸吸附, 并与其发生氨化反应生成较稳定的腐植酸铵盐, 一方面减少了氨的挥发损失, 一方面为作物吸收提供了NH4+源, 故腐植酸具有氨稳定的作用。其化学反应式为:

式中R-COOH 代表含有 1 个羧基的腐植酸( HA) , 以下同。

3 腐植酸在复混肥生产中的化学反应 3·1腐植酸与氮肥的反应

( 1) 与碳酸氢铵或氨水的反应

腐植酸不溶于水, 经与碳酸氢铵或氨水氨化后,可生成溶于水的腐植酸铵, 该反应在常温下即可缓慢发生。它易被作物吸收利用, 而且可减少碳酸氢铵或氨水分解造成的氨挥发损失。

( 2) 与尿素的反应

该反应生成的水溶性腐植酸尿素复合物是一种长效缓释肥料。经试验研究得知, 腐植酸与尿素在物料干燥和常温下不发生化学反应。当物料含有水分时, 随着温度的升高, 化学反应缓慢发生; 当温度达100℃以上时, 反应加快, 并随着水分增加而反应增快。该化学反应的结果, 使尿素与腐植酸的混合物料性状由干散变成了湿润, 甚至成稠糊状。 3·2 腐植酸与磷肥的反应

( 1) 与过磷酸钙或重钙中游离酸的反应

式中 Me代表Ca、Mg离子。该反应使水溶性磷被固定,变成枸溶性磷酸盐(MeHPO4)。

(2)与磷酸盐的反应

这些反应表明, 腐植酸对土壤中潜在的磷源有着活化作用, 能使难溶性磷转化成可被作物吸收的有效磷。 3·3 腐植酸与钾肥的反应 与氯化钾或硫酸钾的反应

腐植酸钾为胶体化合物, 在土壤中不易随水流失, 而氯化钾、硫酸钾在土壤中则易随水流失。 3·4 腐植酸与微肥的反应 如与锌肥的反应

4 腐植酸复混肥生产的工艺技术 4·1 工艺流程( 见图 1)

将已粉碎成< 1 mm 颗粒的各种单体肥料和已粉碎成< 0. 25 mm 的腐植酸原料, 按配方要求经计量, 进入混合机中混合搅拌均匀后, 送入造粒机中造粒, 当颗粒达到要求后送入回转干燥机中, 通热烟气 ( 300℃左右) 进行并流干燥, 干燥后约 70℃左右的粒肥进入回转冷却机中, 抽冷风( 常温) 进行逆流通风冷却到 35℃以下, 经筛分机筛分, 合格颗粒经扑粉防结块处理后, 经计量包装即为成品。 4·2 工艺技术要点

( 1) 选择质量高的腐植酸原料煤腐植酸是植物死亡后的残体在微生物作用与化学作用( 腐殖化) 下, 最终形成的一种比较稳定的大分子天然物质, 详见表 1 和表 2。

各种煤中的腐植酸含量相差很大,总腐植酸含量,低者为20%~30%,高者竟达60%~70%。表1摘录的部分腐植酸含量居中。从表1可以看出,其灰分含量以泥炭为多,褐煤、风化煤较少,腐植酸含量相差不大; 但其容重以泥炭为小, 风化煤为大, 褐煤居中。风化煤有弱粘结性, 泥炭、褐煤几乎无粘结性。

从表 2 可看出, 羧基含量从泥炭 HA 到褐煤 HA 再到风化煤 HA , 依次增大; 而酚羟基泥炭为多, 褐煤、风化煤为少。上述3 种不同煤炭 HA , 由于其原始植物和腐殖化程度不同, 活性基团组成差异很大, 特别是风化煤 HA 是烟煤长期风化生成的 HA , 其含氧活性基团( 羧基) 明显增加。故在制造腐植酸复混肥时, 多采用褐煤或风化煤为原料。

由于各地的腐植酸原料煤的质量不同, 要选择那些腐植酸含量较高( 40% 以上) , 含水量较低( 20% 以下) , 粒度较细( < 0. 25 m m) 的品种为宜。腐植酸含量低, 农用效果差。腐植酸原料煤含水高, 成粒难度大,增加制造成本。如果条件允许, 还应尽量选用那些含羧基和酚羟基较高的品种, 以期制得农用效果最佳的腐植酸复混肥。

( 2) 搞好原材料的预处理 ①对所用的无机原料都必须粉碎到1 mm以下。腐植酸原料煤因其粘结性能差, 要求粒径在 0. 25 mm 以下。

②腐植酸要进行氨化处理

因腐植酸不溶于水, 褐煤、风化煤应采取碳酸氢铵或硫酸铵进行氨化预处理, 使其生成水溶性腐植酸铵后再与其它无机肥料混配。

③过磷酸钙或重钙要进行氨化等预处理。

氨化预处理方式有: 加入碳酸氢铵或硫酸铵的氨化法; 亦可采用一定比例的钙镁磷肥的方法, 切不可使用石灰( CaCO3 或 Ca (OH)2 ) , 因为石灰是碱性物质, 容易造成局部pH值过高, 而影响磷的有效性。

m( 过磷酸钙) : m ( 碳酸氢铵) = 10∶1 为宜, 产品中水溶性P2O5 不会降低。

( 3) 控制好系统的水平衡要保证系统的正常运转, 在控制系统水平衡时,要注意解决好如下几个问题。

①尿素与过磷酸钙或重钙的配合质量比应控制在 2. 5∶1 以下为宜, 若尿素加入比例过大, 则易导致物料的液相量大于烘干时的脱水量, 而发生干燥机结疤现象。

②尽量控制混合后的物料水分在 8% 以下, 这样则有利于造粒机的正常加水( 或尿素水溶液) 和造粒操作的稳定运行。

③干燥温度不宜太高, 一般控制物料干燥温度在 80℃左右为宜, 应采取低温( 烟气温度≤300℃) 大风量, 以减少氮的损失和有效磷的退化损失。

( 4) 改善造粒操作条件 在生产腐植酸复混肥时, 由于添加褐煤或风化煤其粘结性能差, 而且在烘干机前段造粒区, 不存在 2次造粒, 为了得到较高的成球率, 必须采取提高物料的粘结性等措施来改善造粒操作条件。主要有: ①采取热水或加热部分尿素水溶液造粒。

②采用 2 台造粒机串联法造粒, 先将部分尿素水溶液喷入1#造粒机进行造粒, 成球后自动卸入2#造粒机继续造粒, 提高造粒效果。 ③在配料中加入少量硫酸铵使其生成粘结性较强的复盐,即过磷酸钙或重钙与硫酸铵生成磷酸铵和溶解度较小的硫酸钙以及硫酸铵与硫酸钙的复盐(铵石膏),游离水转化为结晶水,其化学反应式:

④采用热返料造粒。如果腐植酸原料煤粘结性过低,亦可实行2次筛分措施,增加烘干后的筛分,将筛上>5mm的颗粒粉粹后与筛下<1mm的颗粒,以热返料送入的造粒机造粒。

(5)严格控制返料比

腐植酸复混肥的造粒是基于液相理论为基础的颗粒成长原理,也是附聚造粒的理论。为了提高成粒率,要配备有一定数量的小颗粒物料为芯核。为此,采用适宜的返料比是提高造粒的最有效手段。褐煤或风化煤, 其粘结性差难于造粒, 故需要较高的返料比。具体指标要根据实验而定, 并按腐植酸配入比例不同而有所不同。腐植酸原料加入量越高,则需要的返料比越大。一般情况下, 团粒法其返料比在( 2~2. 5) ∶1。 4.3 腐植酸复混肥产品质量(见表3)

5腐植酸复混肥的农业应用效果

腐植酸复混肥料也称作增效肥、长效肥、有机无机复合肥, 是一种很有发展前途的好肥料。 5·1 提高化肥利用率, 增加肥效

由于腐植酸具有脲酶抑制、硝化抑制和氨稳定的作用, 从而提高氮素的利用率。

腐植酸能与土壤中的 Fe3+ 、Al3+ 、Ca2+、M g2+等金属离子结合形成较稳定的络合物, 抑制了这些离子与磷肥中磷酸根的结合, 减少了有效磷固定。它能与不溶性磷化物形成一种磷酸 腐植酸复合体, 并使不溶性磷酸盐活化, 从而提高磷的利用率。

腐植酸能与钾肥和其它微量元素发生络合或螯合反应, 使其生成具有胶体性能的腐植酸钾或腐植酸微量元素盐类, 有利于作物根系的吸收, 并减少其随水而发生的流失, 提高其利用率。

经实验研究得知, 腐植酸复混肥的肥效比等养分的化肥可提高 10~20 个百分点。 5·2 改善农产品的品质, 提高优级品率

对玉米、水稻、小麦等粮食作物可提高其蛋白质、淀粉含量; 对大豆、花生等可提高其含油量;对棉花可提高其纤维强度; 对烟草作物可提高一级品率; 尤其对薯类作物可促进薯块膨大和蛋白质、糖分含量显著提高;对果菜作物,可增加其糖分、Vc含量和提高其着色度、口感及一级口率。 5·3 提高作物产量, 增加经济收入

经大量农业试验结果表明: 粮食作物, 如玉米、水稻、小麦增产 9. 5% ~14. 5% ; 薯类作物, 如甘蔗、甜菜、马铃薯增产 15. 4% ~37. 6% ; 油料作物, 如油菜、花生增产 9. 4% ~25. 0% ; 蔬菜作物, 如黄瓜、西红柿增产 10. 6% ~24. 5% ; 果树作物, 如苹果、梨、桃增产 8. 2% ~14. 6% ; 经济作物, 如甘蔗、棉花增产 11. 5%~26. 0% 。比等养分的一般复混肥, 可使作物再增产3~9 个百分点。

第五篇:化工生产工艺流程图

化工生产工艺流程图、单位制

在化学工程问题中,常常碰到一些很复杂的生产过程。例如氨碱法制纯碱,从饱和食盐水氨化、碳酸化开始,经过过滤、煅烧、洗涤,滤液经蒸氨解吸、循环使用等一系列过程。当描述这样一个复杂过程时,必须用简便的方法来组织给定的技术资料,列出已知和未知的条件,最好的方法是将该过程描绘一成个流程图。化学工业中使用的流程图,一般有表示产品流向的工艺流程图和工厂建设中实际使用的施工流程图。后者根据施工的要求,尚可细分为配管图、仪表自控图、电工配线图、公用工程流程图等。

工艺流程(又称生产流程或工业流程)图,是指从原料开始到最终产品所经过的生产步骤,把各步骤所用的设备,按其几何形状以一定的比例画出,设备之间按其相对位置及其相互关系衔接起来,象这样一种表示整个生产过程全貌的图就称为生产工艺流程图,简称生产流程。

生产工艺流程反映出工厂或车间的实际情况,即把设计的各个主要设备以及同时计算出的物料平衡、热量平衡一起写在流程图上。但在教科书中的生产流程则多为原则的示意流程。生产工艺示意流程,它只是定性的描绘出由原料变化为成品所经过的化工过程及设备的主要路线,其设备只按大致的几何形状画出,甚至用方框图表示也可,设备之间的相对位置也不要求准确。用方框图进行各种衡算,既简单、显目,也很方便。如本章前几节就多次用过。

工艺流程图中所表示的主要设备包括反应器、塔器、热交换器、加热炉、过滤机、离心分离机、干燥器、压缩机、泵等单元操作使用的全部与罐类。这些设备的几何形状,在化学工业界已被公认为标准的主要设备符号,将在以后的课程中逐步介绍。

工艺流程图的实例,可参见课本p280图9-25。

关于单位制,本课程一律采用国际单位制,即SI制。在本书中出现其它单位制的时候,将给出其与SI制的换算关系。在例题或习题中如果碰到,则应将其换算成SI制。否则,因单位制不统一而造成计算的结果与准确值相差甚远。

上一篇:经理实习期工作总结下一篇:教练员岗前安全培训