己内酰胺工艺简介

2022-07-05

第一篇:己内酰胺工艺简介

世界单线最大己内酰胺装置开车

8月4日10时58分,福建天辰耀隆新材料有限公司年产20万吨己内酰胺装置一次开车成功,装置运行平稳,产品己内酰胺达到优等品质量标准。此前,天辰耀隆903装置于8月1日一次性开车成功,顺利产出合格的硫酸铵。至此,世界单线产能最大的己内酰胺项目生产线全线投产。

经过取样化验,从外观、50% 水溶液色度、结晶点、高锰酸钾吸收值、290nm 吸光度、酸碱度、铁含量、环己酮肟含量等各项指标对己内酰胺产品进行分析,产品纯度远超过国内装置产品纯度,达到世界一流产品品质。

该项目采用目前国内外先进的己内酰胺生产工艺技术,属于绿色、环保安全的工艺技术,并且在提高产品质量、节省投资保护环境、节能等方面进行了设计创新。

福建天辰耀隆新材料有限公司成立于2012年5月,是由中国天辰工程有限公司和福州耀隆化工集团公司出资组建的国有合资企业,双方出资比例各为60%、40%。公司坐落在福建省福清市江阴工业集中区,以己内酰胺项目为核心业务,工程分两期开发建设。一期投资约45亿元,建设规模为年产20万吨己内酰胺、30万吨双氧水、30万吨硫酸、32万吨硫酸铵、5.6万吨环己烷,项目达产后预计实现年产值45亿元。该项目建成将进一步在海峡西岸打造国际级新型化工材料产业基地,对江阴工业集中区建成海西化工新材料产业园、实现千亿产业园区的目标起到促进作用。

(来源:中国化工报作者:王灏)

第二篇:主要炼油工艺简介

常压蒸馏和减压蒸馏

常压蒸馏和减压蒸馏习惯上合称常减压蒸馏,常减压蒸馏基本属物理过程。原料油在蒸馏塔里按蒸发能力分成沸点范围不同的油品(称为馏分),这些油有的经调 合、加添加剂后以产品形式出厂,相当大的部分是后续加工装置的原料,因此,常减压蒸馏又被称为原油的一次加工。包括三个工序:原油的脱盐、脱水 ;常压蒸馏;减压蒸馏。

原油的脱盐、脱水

又称预处理。从油田送往炼油厂的原油往往含盐(主要是氯化物)、带水(溶于油或呈乳化状态),可导致设备的腐蚀,在设备内壁结垢和影响成品油的组成,需 在加工前脱除。常用的办法是加破乳剂和水,使油中的水集聚,并从油中分出,而盐份溶于水中,再加以高压电场配合,使形成的较大水滴顺利除去。

催化裂化

催化裂化是在热裂化工艺上发展起来的。是提高原油加工深度,生产优质汽油、柴油最重要的工艺操作。原料范主要是原油蒸馏或其他炼油装置的350 ~ 540℃馏分的重质油,催化裂化工艺由三部分组成:原料油催化裂化、催化剂再生、产物分离。催化裂化所得的产物经分馏后可得到气体、汽油、柴油和重质馏分油。 有部分油返

回反应器继续加工称为回炼油。催化裂化操作条件的改变或原料波动,可使产品组成波动。

催化重整

催化重整(简称重整)是在催化剂和氢气存在下,将常压蒸馏所得的轻汽油转化成含芳烃较高的重整汽油的过程。如果以

80~180℃馏分为原料,产品为高辛烷值汽油;如果以60~165℃馏分为原料油,产品主要是苯、甲苯、二甲苯等芳烃, 重整过程副产氢气,可作为炼油厂加氢操作的氢源。重整的反应条件是:反应温度为490~525℃,反应压力为1~2兆帕。重整的工艺过程可分为原料预处理和重整两部分。

加氢裂化

是在高压、氢气存在下进行,需要催化剂,把重质原料转化成汽油、煤油、柴油和润滑油。加氢裂化由于有氢存在,原料转化的焦炭少,可除去有害的含硫、氮、氧的化合物,操作灵活,可按产品需求调整。产品收率较高,而且质量好。

延迟焦化

它是在较长反应时间下,使原料深度裂化,以生产固体石油焦炭为主要目的,同时获得气体和液体产物。延迟焦化用的原料主要是高沸点的渣油。延迟焦化的主要操作条件是:原料加热后温度约

500℃, 焦炭塔在稍许正压下操作。改变原料和操作条件可以调整汽油、柴油、裂化原料油、焦炭的比例。

炼厂气加工

原油一次加工和二次加工的各生产装置都有气体产出,总称为炼厂气,就组成而言,主要有氢、甲烷、由2个碳原子组成的乙烷和乙烯、由3个碳原子组成的丙烷和丙烯、由4个碳原子组成的丁烷和丁烯等。它们的主要用途是作为生产汽油的原料和石油化工原料以及生产氢气和氨。发展炼油厂气加工的前提是要对炼厂气先分离后利用。炼厂气经分离作化工原料的比重增加,如分出较纯的乙烯可作乙苯; 分出较纯的丙烯可作聚丙烯等。

第三篇:污水处理工艺简介

氧化沟系列

氧化沟(又名氧化渠或循环曝气池)是一种改良的活性污泥法,其曝气系统呈封闭的沟渠形,污水和活性污泥混合液在其中循环流动。由于其出水水质好、运行稳定、管理方便等技术特点,已经在国内外广泛的应用于生活污水和工业污水的治理。

一、氧化沟的特征

目前氧化沟种类多,但不论哪种氧化沟,一般来说都具有以下特征:

(1) 池体狭长(可达数十米甚至上百米),池深度较浅,一般在2.5-4.5米,宽深比为2:1,也有深度达7米的。

(2) 氧化沟曝气混合设备多采用表面曝气机、曝气转刷或转盘、射流曝气器、导管式曝气器和提升管式曝气机等,近年来配合使用的还有水下推动器。

(3) 氧化沟呈完全混合、推流式。沟内的混合液呈推流式快速流动(0.4-0.5m/s),由于流速高,原废水很快就与沟内混合液相混合,因此氧化沟又是完全混合的。

(4) BOD负荷低,类似于活性污泥法的延时曝气法,处理出水水质良好。

(5) 对水温、水质和水量的变动有较强的适应性。 (6) 污泥产率低,剩余污泥产量少。

(7) 污泥龄长,可达15-30d,为传统活性污泥法的3-6倍;世代时间很长的细菌如硝化细菌能在反应器内得以生存,从而使氧化沟具有脱氮的功能。

氧化沟存在问题

(1) 污泥膨胀问题:当废水中的碳水化合物较多,N、P含量不平衡,pH值偏低,氧化沟中污泥负荷过高,溶解氧浓度不足,排泥不畅等易引发丝状菌性污泥膨胀;非丝状菌性污泥膨胀主要发生在废水水温较低而污泥负荷较高时。

(2) 泡沫问题:由于进水中带有大量油脂,处理系统不能完全有效地将其除去,部分油脂富集于污泥中,经转刷充氧搅拌,产生大量泡沫;泥龄偏长,污泥老化,也易产生泡沫。

(3) 污泥上浮问题:当废水中含油量过大,整个系统泥质变轻,在操作过程中不能很好控制其在二沉池的停留时间,易造成缺氧,产生腐化污泥上浮;当曝气时间过长,在池中发生高度硝化作用,使硝酸盐浓度高,在二沉池易发生反硝化作用,产生氮气,使污泥上浮;另外,废水中含油量过大,污泥可能挟油上浮。

(4) 流速不均及污泥沉积问题:上下层流速不一,下层流动过慢导致污泥沉积。影响构体容积。

二、氧化沟处理原理

氧化沟的工艺中污水直接与回流污泥一起进入氧化沟系统。表面曝气机使混合液中DO的浓度增加到大约2~3mg/L。在这种充分掺氧的条件下,微生物得到足够的溶解氧来去除BOD;同时,氨也被氧化成硝酸盐和亚硝酸盐,此时,混合液处于有氧状态。在曝气机下游,水流由曝气区的湍流状态变成之后的平流状态,水流维持在最小流速,保证活性污泥处于悬浮状态(平均流速>0.3m/s)。微生物的氧化过程消耗了水中溶解氧,直到DO值降为零,混合液呈缺氧状态。经过缺氧区的反硝化作用,混合液进入有氧区,完成一次循环。该系统中,BOD降解是一个连续过程,硝化作用和反硝化作用发生在同一池中。由于结构的限制,这种氧化沟虽然可以有效的去处BOD,但除磷脱氮的能力有限。

影响氧化沟除磷的主要因素

影响氧化沟除磷的因素主要是污泥龄、硝酸盐浓度及基质浓度。据资料显示,当总污泥龄为8-10d时活性污泥中的最大磷含量为其干污泥量的4%,为异养菌体质量的11%,但当污泥龄超过15d时污泥中最大含磷量明显下降,反而达不到最大除磷效果。因此,一味延长污泥龄(例如20d、25d、30d)是没有必要的,宜在8-15d范围内选用。同时,高硝酸盐浓度和低基质浓度不利于除磷过程。

影响氧化沟脱氮的主要因素

影响氧化沟脱氮的主要因素是DO、硝酸盐浓度及碳源浓度。据资料显示,氧化沟内存在溶解氧浓度梯度即好氧区DO达到3-3.5mg/L,缺氧区DO达到0-0.5mg/L是发生硝化反应及反硝化反应的前提条件。同时,充足的碳源及较高的C/N比有利于脱氮的完成。

三、氧化沟的种类

到目前为止,氧化沟已发展成为多种形式,使用较为广泛的主要有:Carrousel(卡鲁塞尔)氧化沟、交替式氧化沟、一体化氧化沟和Orbal(奥贝尔)氧化沟等。

1、奥贝尔氧化沟

奥贝尔氧化沟一般由三个同心椭圆型沟道组成,污水由外沟道进入,与回流污泥混合后,由外沟道进入中间沟道再进入内沟道,在各沟道循环达数百次,最后经中心岛的可调堰门流出,进入二次沉淀池。

特点:

(1)该工艺具有较好的脱氮功能,在外沟道形成的交替的好氧和大区域的缺氧环境,能较高程度的发生“同时硝化反硝化”。

(2)具有推流式和完全混合式两种流态的特点。具有较强的抗冲击负荷能力。多沟道串联,有利于难降解有机物的去除,减少污泥膨胀的发生。

(3)采用曝气转碟曝气,有较高的充氧能力和动力效率。 (4)适用于中小规模的污水处理厂。

2、卡鲁赛尔氧化沟

年,DVH公司综合了常规污水处理系统和氧化沟的优点,发明了第一代Carrousel氧化沟系统。实践证明,Carrousel氧化沟技术是二级污水处理技术中一种最可靠的技术之一。

由上图可见,Carrousel氧化沟使用定向控制的曝气和搅动装置,向混合液传递水平速度,从而使被搅动的混合液在氧化沟闭合渠道内循环流动。因此氧化沟具有特殊的水力学流态,既有完全混合式反应器的特点,又有推流式反应器的特点,沟内存在明显的溶解氧浓度梯度。氧化沟断面为矩形或梯形,平面形状多为椭圆形,沟内水深一般为2.5~4.5m,宽深比为2:1,亦有水深达7m的,沟中水流平均速度为0.3m/s。氧化沟曝气混合设备有表面曝气机、曝气转刷或转盘、射流曝气器、导管式曝气器和提升管式曝气机等,近年来配合使用的还有水下推动器。

卡鲁赛尔氧化沟的主要优点

与常见的污水处理系统相比,该工艺主要有以下几个方面的优点:

(1)在处理某些工业废水时尚需要预处理,但在处理城市污水时不需要预沉淀。

(2)污泥稳定,不需要消化池可直接干化。 (3)工艺极为稳定可靠。 (4)工艺控制极其简单。

(5)系统性能显示,BOD降解率达95%-98%,COD降解率达90%-95%,同时具有较高的脱氮除磷功能。

(6)卡鲁赛尔氧化沟系统不再使用卧式转刷曝气机而采用立式低速搅拌机,使沟式可增加到5m甚至8m,从而使曝气池的占地面积大大减少。

(7)卡鲁赛尔氧化沟从“田径跑道式”向“同心圆”式转化,池壁共用,降低了占地面积和工程造价。

第四篇:各种护栏生产工艺简介

护栏网采用低碳钢丝、铝镁合金丝编织焊接而成。主要用于对桥梁两侧的保护、防护等作用,本产品所采用的桃型柱、双圈、波浪、双边护栏网等系列的专业产品,具有网身轻巧、造型新颖、美观、耐用的特点。网片经高效浸塑,特别适合于桥梁防抛网,十年防锈拆装方便,重复使用性好,可根据需要对围网重新布局环保产品,最终可回收利用。

用途:用于公路、铁路、飞机场、工业园区、农业开发区、示范工程隔离防护网使用。

产品特点:具有防腐、防老化、抗晒、耐候等特点。

通常桥梁护栏网采用的防腐形式有电镀、热镀、喷塑、浸塑。

三角折弯护栏网材料:低碳钢丝、电镀锌铁丝、热镀锌铁丝。

纺织及特点:编织焊接而成。

用途:用于公路、铁路、工厂、住宅小区、港口码头、花园、饲养、畜牧等的护栏防护。

产品特点:防腐、防老化、抗晒等特点。防腐形式有电镀、热镀、喷塑、浸塑。

钢板护栏网材质:低碳钢薄板、铝板、不锈钢板、铝镁合金板、铜板、镍板。

编织种类及特点:冲压而成;分为小钢板网、钢板网和不锈钢网,坚固耐用、外形美观大方。

用途:广泛用于公路、铁路、民用建筑、水利等建设;各种机械、电器、窗户的防护及水产养殖等。

勾花护栏网材质:优质低碳钢丝、不锈钢丝、铝合金丝、PVC丝。

编织及特点:钩编而成,网孔均匀、网面平整、美观大方、网幅宽,丝径粗,不易腐蚀寿命长,编织简洁、美观实用。

用途:该产品用处广泛,饲养鸡、鸭、鹅、兔及动物园围栏。机械设备的防护,高速公路护栏,体育场所围网,马路绿化带防护网。该丝网在制作成箱子壮的容器后,用乱石等填满网箱,可用于保护和支持海堤、山坡、路桥、水库及其他土木工程。是防洪上好材料。还可用于工艺品制造,机械设备的输送网。

铁路护栏网材料:低碳钢丝、电镀锌铁丝、热镀锌铁丝编织:编织焊接而成。

用途:主要用于高速公路和、铁路、桥梁两侧的防护带;机场、港口、码头的安全防护;市政建设中的公园、草坪、动物园、池湖、道路、及住宅区的隔离与防护。

产品特点:防腐、防老化、抗晒等特点。

防腐形式:电镀、热镀、喷塑、浸塑。

草原护栏网是草原上使的一种护栏产品,它通常采用国产高强度镀锌钢丝,经纬钢丝环扣式自动拧编而成。一般直径为2.5mm的D级锌层的硬钢丝。一般在订购时本产品时,计算方法如下:网重kg=丝直径x丝直径x0.00617x使用丝长度(m)

草原护栏网具有网面平整、网眼均匀、韧性大、强度高、结构新颖、坚固精密、不并拢、防滑、抗压、抗震、耐腐等特点。

1、防护用网,小区,高速公路、铁路、机场、港口、市政建设、养殖等;

2、建筑网,用于建楼、筑路等;其特点坚固耐用,不生锈,美观大方,防腐形式有电镀、热镀、喷塑、浸塑等。

三角折弯护栏网三角折弯护栏网行业中又被称为:德瑞克斯围栏,护栏网的网片采用Q235低碳钢冷拔丝经热镀锌、瞬间焊接钢丝镀锌面高附着处理、静电喷塑等生产工艺进行生产,产品保质10年防腐。网片采用无边框焊接方式,方便运输和安装,地形适应性强,与立柱连接位随地面起伏可上下调整;由于三角折弯护栏网的网片安装了横向四道折弯加强筋,使网面强度显著增加。目前广泛用于铁路封闭生活区围栏场区围网开发区作为隔离栅使用。

由于三角折弯护栏网的网片采用独特战斧式设计,使产品整体线条更流畅。立柱的凹槽式设计,立柱和网片之间无需任何连接件,成为无法拆卸的整体更安全。立柱有底盘式、底座式、悬挂式等多种款式,满足您不同场地安装。可在立柱顶端安装刺丝和刺圈增加防护场地的安全。

华东五金网业制造有限公司,是一家具有从盘元、拔丝、焊接剪裁折弯成型到喷、浸塑成品安装、生产、服务能力较大规模的专业化金属网栏、隔离栅生产厂家。我公司具有现代化的生产设备和先进的生产技术,并在原有的基础上开发,研制出多种款式的金属护栏网,产品的多样化即美观大方又有极好的立体效应,自动化表面浸塑,更使产品具有了耐腐蚀、抗老化 、耐酸碱、不腿色、表面平整、光亮、手感好的特点,进而使产品达到完美的境界。主要产品有:护栏网,公路护栏网,高速公路护栏网,机场护栏网,铁路护栏网,监狱护栏网,体育场护栏网,桥梁护栏网,小区护栏网,养殖护栏网,草原护栏网,场地护栏网,刺绳护栏网,勾花护栏网,铁艺护栏网,热镀锌护栏,欧式护栏网,双边护栏网 双圈护栏网,三角折弯护栏网,桃型柱护栏网,框架护栏网,波浪护栏网,六角网护栏网。安平县华东五金网业有限公司诚挚的希望与国内外新老客户在互惠互利、友好合作的基础上,建立良好的贸易关系,欢迎各单位来人来函到我企业指导工作,共创美好未来! 本厂目前着力发展工程用护栏,并且承揽工程设计和在中国境内的护栏工程安装施工。

联系方式:贾蒙蒙(销售经理)

电话:15131892123

网站地址:

邮箱地址;sales1@hd-hulanwang.com

第五篇:合成氨工艺简介

合成氨工艺控制方案总结

一 合成氨工艺简介

中小型氮肥厂是以煤为主要原料,采用固定层间歇气化法制造合成氨原料气。从原料气的制备、净化到氨的合成,经过造气、脱硫、变换、碳化、压缩、精炼、合成等工段。工艺流程简图如下所示:

该装置主要的控制回路有:(1)洗涤塔液位;

(2)洗涤气流量; (3)合成塔触媒温度; (4)中置锅炉液位; (5)中置锅炉压力; (6)冷凝塔液位; (7)分离器液位; (8)蒸发器液位。

其中触媒温度控制可采用全系数法自适应控制,其他回路采用PID控制。

二 主要控制方案

(一)造气工段控制

工艺简介:

固定床间歇气化法生产水煤气过程是以无烟煤为原料,周期循环操作,在每一循环时间里具体分为五个阶段;(1)吹风阶段约37s;(2)上吹阶段约39s;(3)下吹阶段约56s;(4)二上吹阶段约12s;(5)吹净阶段约6s. l、 吹风阶段

此阶段是为了提高炉温为制气作准备的。这一阶段时间的长短决定炉温的高低,

时间过长,炉温过高;时间过短,炉温偏低并且都影响发气量,炉温主要由这一阶段控制。 般工艺要求此阶段的操作时间约为整个循环周期的18%左右。

2、上吹加氮制气阶段

在此阶段是将水蒸汽和空气同时加入。空气的加入增加了气体中的氮气含量,是调节 H2/N2的主要手段。但是为了保证造气炉的安全该段时间最多不超过整个循环周期的26%。

3、上吹制气阶段

该阶段与上吹加氯制气总时间为整个循环的32%,随着上吹制气的进行下部炉温逐渐下降,为了保证炉况和提高发气量,在此阶段蒸汽的流量最好能得以控制。

4、下吹制气阶段

为了充分地利用炉顶部高温、提高发气量,下吹制气也是很重要的一个阶段。这段时间 约占整个循环的40%左右。

5、二次上吹阶段

为了确保生产安全,造气炉再度进行吹风升温之前,须把下吹制气时留在炉底及下部管 道中的半水煤气吹净以防不测,故进行第二次上映。这段时间约占7%左右。

6、吹净阶段

这段时间主要是回收上行煤气管线及设备内的半水煤气。约占整个循环的3%。该阶段是由吹风管路送风,该段时间的长短直接影响H2/N2.

该控制系统是一个较复杂的时变、间歇、非线性、大滞后控制系统。故将该系统设计为串级控制。

造气炉的工作方式分为开车、停车、正常造气、升温和制惰等五种方式。每台造气炉需要控制15个电磁阀,为了防止多台炉同时进入吹风阶段而引起争风抢汽观象,各台炉之间必须进行吹风排队顺序控制。

控制方案:

1、造气工段H2/N2控制方案

造气工段是通过加减氮操作来进行氢氮比控制的,而加减氮操作又是通过调节上下吹加氮时间和吹风回收时间来实现的,因此,该控制系统最终得到的控制量要转化为上下吹加氮时间或吹风回收时间。本系统的氢氮比控制采用调节吹风回收时间来实现。

在合成氨生产过程中,影响氢氮比的主要干扰来源是造气、脱硫两个环节,这部分仅有较小的滞后,所以对脱硫制氢采用PID闭环控制和较高的采样频率,这是控制的内环。然后将造气脱硫与变换、脱碳、精炼及合成组成一个广义外环,采用预测控制进行控制,这是控制的外环。可选作控制量的参数有:脱硫氢、变换氢、补充氢和循环氢,这四个氢值之间的波动有一个时间差,脱硫氢到变换氢大约有5min,变换氢到补充氢大约有15min,再由补充氢到循环氢又有20min,而且补充氢与循环氢之间存在积分关系,补充氢中氢氮比的微小变化就会造成循环氢中氢的增加与减小,即稳定的补充氢并不能保证循环氢的稳定。而循环氢是生产过程最终阶段的信号,所以采用循环氢作为主调节参数,并选择脱硫氢作为副调参数,以克服循环氢巨大的滞后。

2、H2/N2调节方法

采用改变加氮空气量的方法调节H2/N2,在上吹和下吹阶段设置用/否加氮软手动开关决定是否启用加氮空气,同时采用上/下加氮调节阀来改变加氮空气量,其次可以通过调整 吹净时间的方法来调整H2/N2,同时还采用打吹净软开关确定在吹风阶段是否提前关闭烟囱阀,以辅助调节H2/N2.

(三) CO变换工段控制

工艺简介:工艺流程图如下:

中温变换护的正常操作应该是将各段催化剂的温度控制在适宜的范围内,以充分发挥催化剂的活性。同时用最低的蒸汽消耗实现最高的CO变换率。影响中变炉催化剂床层温度变化的因素很多,如蒸汽的加入量、蒸汽的温度、进入催化剂前反应气体的温度、反应气体的组成以及生产负荷等。

该工段主要的控制系统主要有:中变炉入口温度定值控制,入中变护蒸汽流量定值控制,入中变沪中段蒸汽流量定值控制,中变炉下段温度控制等。 (1)中变炉人口温度定值控制系统

该系统是通过控制中变炉的入口温度来稳定上段催化剂的温度。选中变炉人口气体的温度作为被控变量,操作变量为中温换热器的半水煤气副线流量。

其主要干扰因素有:半水煤气流量,半水煤气温度,蒸汽流量,蒸汽温度,变换气温度等。

在这个系统中,中变炉人口温度是根据生产要求由人工设定,当受到干扰使该温度偏离没定值时,通过改变中温换热器副线流量来维持其入口温度的稳定。

(2) 入炉蒸汽流量定值控制

控制流程图如下:

被控变量和操作变量均为与煤气混合的蒸汽流量。其主要干扰因素是蒸汽的温度和蒸汽管网的压力。求由人工设定,通过改变蒸汽流量调节阀的开度来维持蒸汽流量的稳定。当生产负荷变动或其它干扰因索引起中变炉上段催化剂温度发生变化而需要改变入炉的蒸汽量时,只能通过人工调整系统的设定值来实现,可见该系统不能自动跟踪生产负荷,亦不能按照上段催化剂温度的变化来自动控制所需的蒸汽量。

(3)

中变炉中段蒸汽流量定值控制

(六)氨合成工段控制

在合成氨生产中,合成塔人塔气体的氢气与氮气的比例是工艺上一个极为重要的控制指标。氢氯比合格率对于全厂生产系统的稳定、提高产量和降低原料及能源消耗起着重要作用,氢氮比的过高或过低,都会直接影响合成效率,导致合成系统超压放空,使合成氨产量减少,消耗增加。但合成氨氢氮比对象是一个纯滞后和容积滞后大,无自衡能力和时变的工艺过程,所以氢氮比控制是氨合成工段的主要控制对象。

方案一:

采用变比控制方案,对负荷变化和加氮空气量进行预测控制其工作框图如下:

原料气中各有效成分分析合成总的含H2量作为主物料信号,乘上一个比值系数K,就作为空气调节阀的输入信号,驱动调节阀以得到所需要的与总含H2成比例的N2量。如果由于某种因素使H2/N2比值偏离给定值,就通过调节器GC输出信号修正比值系数K,使H2/N2比回到给定值上来。对于空气流量的干扰,设置一个副环,构成串级控制,对空气的测量,采用压力和温度的补偿。

方案2 预测加PID控制方案

上述方案由两个回路组成:内回路是由造气到脱磕和可调控制器组成的线性反馈回 路;外回路由变换到精炼和通推参数估计器及校正器组成。

方案3 预测+PID串级控制方案

氢氮比通过改变二段炉的空气量来调节,针对被控对象的特点,本文采用多步MAC 预测控制算法、PID算法及前馈调节相结合的控制规律构成氢氮比前馈中级控制系统。系统结构方块图如下所示:

由于负荷(原料气流量)变化是系统可测不可控的干扰,为此,采用前馈调节系统,以便及时克服负荷波动的干扰。 由于空气流量波动大,必须采用闭环控制,空气流量调节回路采用YS-80单回路调节器实现。

由于系统滞后时间长,为了能及时克服转化、变化工段的干扰,引入变换氢副调回路,此回路纯滞后时间短,可采用PID调节;主被控对象氢氮比系统纯滞后时间长,惯性大,干扰多,因此主控器采用MAC预测控制

(八)精馏塔控制方案

工艺简介:

合成氨厂氨精馏塔是氨回收单元,以水为溶剂,吸收氨合成回路的放空气和液氨贮槽放空气中的氨,然后利用外部供热使氨水溶液解吸,水作为吸收剂循环使用。其工艺流程图如下:

由于本精馏工段受多种干扰因素如进料量、进料温度、冷凝器冷却水温度、环境温度变化等的影响,而且难以直接测量产品浓度作为被调参数,故选用间接参数温度、压力作为被调参数。

控制方案: 1.压力控制

针对压力设置了一套压力分程调节系统,由PRC-10001检测塔内压力,分别控制塔顶排出的情气量和塔顶冷却器的回水量。其调节过程为:

当PRC-10001测量值增加时,其输出值若在100%~50%内,则情气阀PV—10001A全关(F.C),

冷却水阀PV-10001B(F.0)逐渐开大,直至全开,

以充分冷凝气体中的氨;若输出值小于50%,则PV—10001B全 开,PV—1000lA逐渐开大,从而使塔内压力降低,反之亦然。以此达到塔内压力恒定。

2、温度控制

由于成品氨的质量与温度有直接关系,液氨流量直接影响着温度,为保证精馏塔温度, 设置一套以惰馏塔温度TICAH—10004和液氨流量FIC—10006组成的串级系统。其中流星为副参数,克服影响氨水流量波动的各种扰动因素;以温度为主参数,保证精馏塔温度,其工艺控制流程图如下:

首先,手动调整F—10006输出值,使得T—10004满足工艺要求。然后,调整T—10004的给定值等于测量值,调整F—10006的设定值等于测量值。在此过程中,要保证T—10004输出值等于F—10006,设定值。随后将由手动投入自动,等稳定后投入串级。系统稳定后将T—10004由手动投入自动。

至此,完成了串级调节系统的投运。

在投运过程中,一定要注意T—10004输出值等于F—10006设定值,投运之前,主、副回路均应置于手动状态。

上一篇:加拿大大学奖学金下一篇:纪律作风整治方案