立体几何中的解题技巧

2023-01-17

第一篇:立体几何中的解题技巧

立体几何解题技巧

立体几何解答题的设计,注意了求解方法既可用向量方法处理,又可以用传统的几何方法解决,并且一般来说,向量方法比用传统方法解决较为简单。由于立体几何解答题属于常规题、中档题,因而,立体几何的复习应紧扣教材,熟练掌握课本中的每一个概念、每一个定理的种种用途,突破画图、读图、识图、用图的道道难关,同时要注意总结证明垂直、平行的常用方法和技巧,掌握角、距离、面积、体积等的转化和计算方法,在做题的过程中进行反思,在反思中总结、提炼,不断提升空间想象能力及分析问题和解决问题的能力。

1.平行、垂直位置关系的论证的策略:

(1)由已知想性质,由求证想判定,即分析法与综合法相结合寻找证题思路。

(2)利用题设条件的性质适当添加辅助线(或面)是解题的常用方法之一。

(3)三垂线定理及其逆定理在高考题中使用的频率最高,在证明线线垂直时应优先考虑。

2.空间角的计算方法与技巧:

主要步骤:一作、二证、三算;若用向量,那就是一证、二算。

(1)两条异面直线所成的角①平移法:②补形法:③向量法:

(2)直线和平面所成的角

①作出直线和平面所成的角,关键是作垂线,找射影转化到同一三角形中计算,或用向量计算。

②用公式计算.(3)二面角

①平面角的作法:(i)定义法;(ii)三垂线定理及其逆定理法;(iii)垂面法。

②平面角的计算法:

(i)找到平面角,然后在三角形中计算(解三角形)或用向量计算;(ii)射影面积法 ;(iii)向量夹角公式.

3. 空间距离的计算方法与技巧:

(1)求点到直线的距离:经常应用三垂线定理作出点到直线的垂线,然后在相关的三角形中求解,也可以借助于面积相等求出点到直线的距离。

(2)求两条异面直线间距离:一般先找出其公垂线,然后求其公垂线段的长。在不能直接作出公垂线的情况下,可转化为线面距离求解(这种情况高考不做要求)。

(3)求点到平面的距离:一般找出(或作出)过此点与已知平面垂直的平面,利用面面垂直的性质过该点作出平面的垂线,进而计算;也可以利用“三棱锥体积法”直接求距离;有时直接利用已知点求距离比较困难时,我们可以把点到平面的距离转化为直线到平面的距离,从而“转移”到另一点上去求“点到平面的距离”。求直线与平面的距离及平面与平面的距离一般均转化为点到平面的距离来求解。

4. 熟记一些常用的小结论,诸如:正四面体的体积公式是 ;面积射影公式;“立平斜关系式”;最小角定理。弄清楚棱锥的顶点在底面的射影为底面的内心、外心、垂心的条件,这可能是快速解答某些问题的前提。

5.平面图形的翻折、立体图形的展开等一类问题,要注意翻折前、展开前后有关几何元素的“不变性”与“不变量”。

6.与球有关的题型,只能应用“老方法”,求出球的半径即可。

立体几何解题技巧

由于立体几何解答题属于常规题、中档题,因而,立体几何的复习应紧扣教材,熟练掌握课本中的每一个概念、每一个定理的种种用途,突破画图、读图、识图、用图的道道难关,同时要注意总结证明垂直、平行的常用方法和技巧,掌握距离、面积、体积等的转化和计算方法,在做题的过程中进行反思,在反思中总结、提炼,不断提升空间想象能力及分析问题和解决问题的能力。

1.平行、垂直位置关系的论证的策略:

(1)由已知想性质,由求证想判定,即分析法与综合法相结合寻找证题思路。

(2)利用题设条件的性质适当添加辅助线(或面)是解题的常用方法之一。

(3)三垂线定理及其逆定理在高考题中使用的频率最高,在证明线线垂直时应优先考虑。

2. 空间距离的计算方法与技巧:

(1)求点到直线的距离:经常应用三垂线定理作出点到直线的垂线,然后在相关的三角形中求解,也可以借助于面积相等求出点到直线的距离。

(2)求两条异面直线间距离:一般先找出其公垂线,然后求其公垂线段的长。在不能直接作出公垂线的情况下,可转化为线面距离求解(这种情况高考不做要求)。

(3)求点到平面的距离:一般找出(或作出)过此点与已知平面垂直的平面,利用面面垂直的性质过该点作出平面的垂线,进而计算;也可以利用“三棱锥体积法”直接求距离;有时直接利用已知点求距离比较困难时,我们可以把点到平面的距离转化为直线到平面的距离,从而“转移”到另一点上去求“点到平面的距离”。求直线与平面的距离及平面与平面的距离一般均转化为点到平面的距离来求解。

3。三视图问题

(1)熟悉常见几何体的三视图,如锥体、柱体、台体、球体的三视图。

(2)组合体的分解。由规则几何体截出一部分的几何体的分析。

4. 熟记一些常用的小结论,诸如:正四面体的体积公式是______;面积射影公式_____。弄清楚棱锥的顶点在底面的射影为底面的内心、外心、垂心的条件,这可能是快速解答某些问题的前提。

5.平面图形的翻折、立体图形的展开等一类问题,要注意翻折前、展开前后有关几何元素的“不变性”与“不变量”。

6.与球有关的题型,只能应用“老方法”,求出球的半径即可。

7.立体几何读题:

(1)弄清楚图形是什么几何体,规则的、不规则的、组合体等。

(2)弄清楚几何体结构特征。面面、线面、线线之间有哪些关系(平行、垂直、相等)。

(3)重点留意有哪些面面垂直、线面垂直,线线平行、线面平行等。

8、解题程序划分为四个过程:①弄清问题。也就是明白“求证题”的已知是什么?条件是什么?未知是什么?结论是什么?也就是我们常说的审题。②拟定计划。找出已知与未知的直接或者间接的联系。在弄清题意的基础上,从中捕捉有用的信息,并及时提取记忆网络中的有关信息,再将两组信息资源作出合乎逻辑的有效组合,从而构思出一个成功的计划。即是我们常说的思考。③执行计划。以简明、准确、有序的数学语言和数学符号将解题思路表述出来,同时验证解答的合理性。即我们所说的解答。④回顾。对所得的结论进行验证,对解题方法进行总结

第二篇:高一数学立体几何解题技巧口诀

高一数学解题技巧口诀

《立体几何》

点线面三位一体,柱锥台球为代表。距离都从点出发,角度皆为线线成。

垂直平行是重点,证明须弄清概念。线线线面和面面、三对之间循环现。

方程思想整体求,化归意识动割补。计算之前须证明,画好移出的图形。

立体几何辅助线,常用垂线和平面。射影概念很重要,对于解题最关键。

异面直线二面角,体积射影公式活。公理性质三垂线,解决问题一大片。 《平面解析几何》

有向线段直线圆,椭圆双曲抛物线,参数方程极坐标,数形结合称典范。

笛卡尔的观点对,点和有序实数对,两者—一来对应,开创几何新途径。

两种思想相辉映,化归思想打前阵;都说待定系数法,实为方程组思想。

三种类型集大成,画出曲线求方程,给了方程作曲线,曲线位置关系判。

四件工具是法宝,坐标思想参数好;平面几何不能丢,旋转变换复数求。

解析几何是几何,得意忘形学不活。图形直观数入微,数学本是数形学。 《集合与函数》

内容子交并补集,还有幂指对函数。性质奇偶与增减,观察图象最明显。复合函数式出现,性质乘法法则辨,若要详细证明它,还须将那定义抓。指数与对数函数,两者互为反函数。底数非1的正数,1两边增减变故。函数定义域好求。分母不能等于0,偶次方根须非负,零和负数无对数;正切函数角不直,余切函数角不平;其余函数实数集,多种情况求交集。两个互为反函数,单调性质都相同;图象互为轴对称,Y=X是对称轴;求解非常有规律,反解换元定义域;反函数的定义域,原来函数的值域。幂函数性质易记,指数化既约分数;函数性质看指数,奇母奇子奇函数,奇母偶子偶函数,偶母非奇偶函数;图象第一象限内,函数增减看正负。

第三篇:浅谈几何证明题的解题方法与技巧

作者:容茂和完成时间:2011年12月

【内容摘要】:针对学生解决几何证明题比较困难的情况,给学生分析研究几何证明题的解题方法与技巧,提高学生学习几何的兴趣,增强解决问题的信心。

【关键词】: 方法与技巧 ;注重基础 ; 善于归类 ;突破难关

在初中阶段,学生学习数学都会遇到两大难题:一是代数中的列方程解应用题;二是几何中的证明题。下面,笔者结合多年的教学经验和方法谈谈几何证明题的解题方法与技巧。

一、注重基础,善于归类。知识要靠平时的积累,只有当量变发生到一定程度才能产生质变。因此,在平时的学习中,特别是从七年级开始学习几何这门课时,就要做到每学习一个几何概念、定理、推论等都要分清它们的用途,并进行归类,为以后的学习打下基础。例如:在人教版七年级上册第四章《图形认识初步》中,在学习“线段的中点”、“角的平分线”、“等角的补角相等”、“等角的余角相等”等概念和性质时,就要分清:“线段的中点”可以用于证明两条线段相等;“角的平分线”、“等角的补角相等”及“等角的余角相等”等概念和性质都可以用来证明两个角相等。随着学习的不断深入,需要学习掌握的定理、性质就会更多。因此,学生必须做到边学习边归类,三年下来,整个初中阶段就会形成一个环环紧扣、条理清晰的几何知识系统。

二、明确几何证明题的类型。在知识的归类中,我们可以逐渐发现上述所学习的定理、性质、推论等的用途基本上都不外乎用来证明:两条线段相等、两个角相等、两条线段(或直线)平行、两个三角形全等(或相似),或者一个图形是某些特殊的图形(如平行四边形、菱形、矩形、正方形、等腰三角形、等边三角形、等腰梯形

等)。比较常见的是前面的四种证明题类型。因此,学生在碰到相应类型的证明题时,头脑中就要有相应的定理、性质、推论的出现,而对于用哪一个或几个定理去解决问题,取决于证明题的需要。

三、确定证明的切入点。几何证明题的证明方法主要有三个方面。第一,从“已知”入手,通过推理论证,得出“求证”;第二,从“求证”入手,通过分析,不断寻求“证据”的支撑,一直追溯回

1到“已知”;第三,从“已知”及“求证”两方面入手,通过分析找到中间“桥梁”,使之成为清晰的思维过程。

四、要善于挖掘及利用题目图形中的隐藏条件。有的证明题中的已知条件有限,仅从已知条件出发未必能够找出正确的证明方法,但如果善于观察及利用图形中的隐藏条件,则可能很容易证明。例如

“对顶角相等”、“三角形的一个外角等于与它不相邻的两个内角的和”、“在同一个圆中,同一段弧所对的圆周角相等”等等就不需要在题目及图形中说明或指出,但它们也属于已知条件。

除了要掌握几何证明题的常用方法外,还要知道一些类型题的解题技巧。下面以证明“两条线段相等”这一类型为例,说明它的解题技巧。

(一)要证明相等的两条线段在同一条直线或线段上。

这种题型的证明方法都是从“求证”问题入手,通过分析,寻求

“证据”回到“已知”条件。具体的证明方法是通过线段的加或减得到,例如:人教版九年级上册第88页第8题,如图1,两个圆都是以

O为圆心,求证:AC=BD。分析:要求证相等的两条线段AC与BD

都在同一条线段AB上,而AB是大圆的弦交小圆于C、D两点;而题目中可用的条件不多,B

因此可以结合圆、弦考虑作辅助线:过圆心O作

线段OEAB于E,则构成垂径定理,于是有AE=BE,CE=DE,AECE=AC,BEDE=BD,所以AC=BD。图

1(二)要证明相等的两条线段在同一个三角形内。

这种题型的主要证明方法是考虑用“等角对等边”定理展开证

明。例如:如图2,在△ABC中,AE是△ABC的外角∠DAC的平分线,且AE∥BC,求证:AB=AC。

分析:如果要证明AB=AC 证明:∵AE平分∠DAC∴∠DAE=∠EACE∵AE∥BC∴∠DAE=∠B,∠EAC=∠C

∴∠B=∠C∴△ABC是等腰三角形BC

图2∴AB=AC

(三)要证明相等的两条线段分别在两个三角形内。

这种题型的主要证明方法是考虑根据“三角形全等”的定理展开

证明。在证明前,首先要把这两条线段分在两个三角形内,再去考虑证明这两个三角形全等。例如,人教版八年级下册第121页第8题,如图3,四边形ABCD是等腰梯形,点E、F在BC上,且BE=FC,连接DE,AF,求证:DE=AF。

分析:因为要证明线段DE、AF相等,显然DE、AF不在同一个三角形内,也不在同一直线或线段上,所以要考虑用“三角形全等”的

中,定理去进行证明,AF在△ABF中,DE在△DCEAD 因此可能性围绕证明△ABF≌△DCE,然

后结合已知条件“等腰梯形”有

AB=DC,∠B=∠C,这时已有“一边一角”,但还有一个条件“BE=FC”未BEFC 用,于是有BE+EF=FC+EF,即BF=CE,于是构图3成“SAS”,因此△ABF≌△DCE。这题主要从

“已知”及“求证”两方面入手,通过分析找到中间“桥梁”:△ABF≌△DCE。

如果遇到一些证明题比较棘手,利用上述三种方法都不能证明

时,可以考虑用线段的“转移”,即把“求证”中的其中一条线段使之与图中的另一条线段相等,于是就使得“求证”中的另一条线段与这条线段或在同一条直线(或线段)上,或在同一个三角形内,或在两个三角形中,再用上述三种方法的其中一种去进行证明。这种证明方法属于借助中间“桥梁”(当然可能还有其它方法可证,这要由题目的已知条件和图形去确定解题方法)。

例如,如图4,在△ABC中,AF是BC边上的中线,D是AF上的一

点, BD的延长线交AC于点E,且∠BDF=∠CAF。求证:BD=AC。

分析:在图4中所要求证的两条线段虽然可以分在两个三角形

(BD在△ABD或△BDE,AC在△ACF或△ABC)中,但它们显然不全

等,这时可以考虑通过作辅助线,使“AC”与BD在同一个三角形中,再用定理“等角对等边”去进行证明。辅助线作法:延长AF到G,使FG=AF,连接BG,如图5。这时△ACF≌△GBF(SAS),于是可得BG=AC以及∠G=∠CAF,而已知∠BDF=∠CAF,所以∠BDF=∠G,故BD=BG,从而得到BD=AC。这个过程相当于把AC转移到一条和它相等的线段BG

上,使之在同一个三角形中,这就是线段的“转移”,这也是证明题中的一种常用技巧。

A

E

BFC

4A

E

BFC

G

5当然题目及题型是千变万化、错综复杂的,“求证”起来有难有易。但求解任何一道题目时,学生都需要有信心、耐心,相信自己一定能够解决问题。无论怎样难以“求证”的题目都离不开书本的基础知识。因此只有立足于书本知识,夯实基础,才能以不变应万变。在平时的学习训练中还要善于开拓思维,灵活变通,从不同的角度去思考问题,做到一题多解,这样才能突破几何证明题这一难关。

第四篇:几何证明题解题口诀

(作者:河南省唐河县刘军义)

几何做题很容易,证明过程写详细。 数学原理巧运用,前后贯通有条理! 题目信息不放过,必与结果有联系。 学科符号用恰当,统一规范又适宜: 因为所以单点对,大小符号尖相抵; 图形符号缩字同,角线名称字母替。 证理恰切书规范,美观整洁又得体! 解释:

1、题目信息:指题目中给的证明条件。

2、结果:指要证明的内容。

3、因为所以单点对:指“∵”和“∴”竖写时情况。

4、尖相抵:指“>”和“<”横写时的情况。

5、图形符号缩字同:指“□”“◇”“△”等代替图形名称时占一个汉字的位置。

——作于2014年8月17日

第五篇:初中数学:常用几何题的原理及解题思路

几何证明题入门难,证明题难做,已经成为许多同学的共识…今天小瑞老师和同学们分享的是几何证明题思路及常用的原理,希望对大家有帮助!

证明题的思路

很多几何证明题的思路往往是填加辅助线,分析已知、求证与图形,探索证明。

对于证明题,有三种思考方式:

1.正向思维。对于一般简单的题目,我们正向思考,轻而易举可以做出,这里就不详细讲述了。

2.逆向思维。顾名思义,就是从相反的方向思考问题。在初中数学中,逆向思维是非常重要的思维方式,在证明题中体现的更加明显。

同学们认真读完一道题的题干后,不知道从何入手,建议你从结论出发。

例如: 可以有这样的思考过程:要证明某两条边相等,那么结合图形可以看出,只要证出某两个三角形相等即可;要证三角形全等,结合所给的条件,看还缺少什么条件需要证明,证明这个条件又需要怎样做辅助线,这样思考下去…

这样我们就找到了解题的思路,然后把过程正着写出来就可以了。

3.正逆结合。对于从结论很难分析出思路的题目,可以结合结论和已知条件认真的分析。

初中数学中,一般所给的已知条件都是解题过程中要用到的,所以可以从已知条件中寻找思路,比如给我们三角形某边中点,我们就要想到是否要连出中位线,或者是否要用到中点倍长法。

给我们梯形,我们就要想到是否要做高,或平移腰,或平移对角线,或补形等等。正逆结合,战无不胜。

证明题要用到哪些原理

要掌握初中数学几何证明题技巧,熟练运用和记忆如下原理是关键…

下面归类一下,多做练习,熟能生巧,遇到几何证明题能想到采用哪一类型原理来解决问题… 证明两线段相等

1.两全等三角形中对应边相等。

2.同一三角形中等角对等边。

3.等腰三角形顶角的平分线或底边的高平分底边。

4.平行四边形的对边或对角线被交点分成的两段相等。

5.直角三角形斜边的中点到三顶点距离相等。

6.线段垂直平分线上任意一点到线段两段距离相等。

7.角平分线上任一点到角的两边距离相等。

8.过三角形一边的中点且平行于第三边的直线分第二边所成的线段相等。

9.同圆(或等圆)中等弧所对的弦或与圆心等距的两弦或等圆心角、圆周角所对的弦相等。 10.圆外一点引圆的两条切线的切线长相等或圆内垂直于直径的弦被直径分成的两段相等。

11.两前项(或两后项)相等的比例式中的两后项(或两前项)相等。

12.两圆的内(外)公切线的长相等。

13.等于同一线段的两条线段相等。

证明两个角相等

1.两全等三角形的对应角相等。

2.同一三角形中等边对等角。

3.等腰三角形中,底边上的中线(或高)平分顶角。

4.两条平行线的同位角、内错角或平行四边形的对角相等。

5.同角(或等角)的余角(或补角)相等。 6.同圆(或圆)中,等弦(或弧)所对的圆心角相等,圆周角相等,弦切角等于它所夹的弧对的圆周角。

7.圆外一点引圆的两条切线,圆心和这一点的连线平分两条切线的夹角。

8.相似三角形的对应角相等。

9.圆的内接四边形的外角等于内对角。

10.等于同一角的两个角相等。

证明两条直线互相垂直

1.等腰三角形的顶角平分线或底边的中线垂直于底边。

2.三角形中一边的中线若等于这边一半,则这一边所对的角是直角。

3.在一个三角形中,若有两个角互余,则第三个角是直角。

4.邻补角的平分线互相垂直。

5.一条直线垂直于平行线中的一条,则必垂直于另一条。 6.两条直线相交成直角则两直线垂直。

7.利用到一线段两端的距离相等的点在线段的垂直平分线上。

8.利用勾股定理的逆定理。

9.利用菱形的对角线互相垂直。

10.在圆中平分弦(或弧)的直径垂直于弦。

11.利用半圆上的圆周角是直角。

证明两直线平行

1.垂直于同一直线的各直线平行。

2.同位角相等,内错角相等或同旁内角互补的两直线平行。

3.平行四边形的对边平行。

4.三角形的中位线平行于第三边。 5.梯形的中位线平行于两底。

6.平行于同一直线的两直线平行。

7.一条直线截三角形的两边(或延长线)所得的线段对应成比例,则这条直线平行于第三边。

证明线段的和差倍分

1.作两条线段的和,证明与第三条线段相等。

2.在第三条线段上截取一段等于第一条线段,证明余下部分等于第二条线段。

3.延长短线段为其二倍,再证明它与较长的线段相等。

4.取长线段的中点,再证其一半等于短线段。

5.利用一些定理(三角形的中位线、含30度的直角三角形、直角三角形斜边上的中线、三角形的重心、相似三角形的性质等)。

证明角的和差倍分 1.与证明线段的和、差、倍、分思路相同。

2.利用角平分线的定义。

3.三角形的一个外角等于和它不相邻的两个内角的和。

证明线段不等

1.同一三角形中,大角对大边。

2.垂线段最短。

3.三角形两边之和大于第三边,两边之差小于第三边。

4.在两个三角形中有两边分别相等而夹角不等,则夹角大的第三边大。

5.同圆或等圆中,弧大弦大,弦心距小。

6.全量大于它的任何一部分。

证明两角的不等 1.同一三角形中,大边对大角。

2.三角形的外角大于和它不相邻的任一内角。

3.在两个三角形中有两边分别相等,第三边不等,第三边大的,两边的夹角也大。

4.同圆或等圆中,弧大则圆周角、圆心角大。

5.全量大于它的任何一部分。

证明比例式或等积式

1.利用相似三角形对应线段成比例。

2.利用内外角平分线定理。

3.平行线截线段成比例。

4.直角三角形中的比例中项定理即射影定理。

5.与圆有关的比例定理---相交弦定理、切割线定理及其推论。 6.利用比利式或等积式化得。

证明四点共圆

1.对角互补的四边形的顶点共圆。

2.外角等于内对角的四边形内接于圆。

3.同底边等顶角的三角形的顶点共圆(顶角在底边的同侧)。

4.同斜边的直角三角形的顶点共圆。

5.到顶点距离相等的各点共圆。

上一篇:理想信念坚定敢于担当下一篇:劳务分包合同备案流程