梁裂缝加固施工方案

2022-08-19

方案具有明确的格式和内容规范,要求其具有很强的实践性和可操作性,避免抽象和假大空的内容,那么具体如何制定方案呢?下面是小编为大家整理的《梁裂缝加固施工方案》仅供参考,希望能够帮助到大家。

第一篇:梁裂缝加固施工方案

楼板裂缝修复及碳纤维加固施工方案

前言:

现浇板底裂缝,为了防止板内钢筋锈蚀,须对出现裂缝的板进行裂缝灌浆处理,拟对已产生裂缝部位进行碳纤维加固。

一、工程概况

工程名称:西安高新创汇社区F区

工程地点: 西安市锦业二路与上林苑一路交汇处

二、编制依据

1、《混凝土结构加固的设计规范》GB50367-2007。

2、相关厂家的配套产品说明。

3、国家省、市有关法规。

三、主要材料:

灌浆树脂、封缝胶 、碳纤维布。

1、裂缝灌浆工作原理介绍:

原理方法是利用机械的高压动力(高压灌注机),将环氧树脂胶灌浆材料注入混凝土裂缝中,当树脂胶到混凝土裂缝固化、膨胀、固结,这样固结的树脂胶体填充混凝土所有裂缝,以达到裂缝修补效果。

2、施工步骤:

搭设施工脚手架——观测裂缝——基层处理——确定注入口———安装注射点——配灌浆树脂——安设灌浆器——灌浆——拆除灌浆器——清洗灌浆器——基层复原。

3、施工机具:

① 强力吹风机(清理裂缝);② 600ml量杯(配树脂胶);③ 4cm宽开刀、小刮板(配封缝胶);④SL-500高压灌注机;⑤ 酒精、棉丝(清洗灌浆器);⑥ 手提打磨机(打磨封缝胶清理基层)。

4、注意事项:

① 施工前必须将抹灰层剔除干净,露出结构面; ② 施工时一定要保证裂缝干燥,切忌用水冲刷裂缝; ③ 注入口尽量设置在裂缝较宽,开口较通畅的位置; ④ 如使用底压灌浆封口胶要现配现用,每次配量不宜过多; ⑤ 仰面注胶施工时必须佩戴防护镜;

⑥ 灌浆结束后用酒精浸泡并清洗灌浆器,以便下次使用,切不可用其他稀料清洗。

四、碳纤维加固

1加固建议

本工程中出现的裂缝处于楼板位置,初步鉴定裂缝是由冬季施工时,混凝土在低温条件下凝结时间延缓,从结构安全角度考虑,对未贯通的裂缝,以及贯通的裂缝在灌浆结束后须在楼板裂缝部粘贴碳纤维布进行加固,在裂缝分布范围200mm宽度沿受力方向贴碳纤维布一层,沿裂缝方向碳纤维布边缘贴100mm宽碳纤维压条一道;对已贯通的裂缝,在下部裂缝分布范围200mm宽度沿受力方向贴碳纤维布一层,进行加固。 2碳纤维布加固介绍 《混凝土结构加固设计规范》代替,其编号为GB 50367-2006. 使用碳纤维加固技术是采用配套粘结树脂将碳纤维布粘贴于混凝土表面,形成一个新的复合体使增强贴片与原有钢筋混凝土共同受力。增大结构的抗拉或抗剪能力,提高强度。抗裂性和结构的延性,和抗震加固的作用。

3碳纤维加固施工工艺简介

1、施工顺序:

混凝土基底处理——涂底层底胶——找平胶找平——贴碳纤维片——养护

2、施工方法: (1)、混凝土基底处理

1.1将楼板底部表面的障碍物清除。

1.2检查外露钢筋是否锈蚀,如有锈蚀,进行必要处理。对经过剔凿、清理和露筋的构件残缺部分,进行修补、复原。

1.3被粘贴混凝土表面应打磨平整,除表面浮层、油污等杂质,直至露出结构新面,转角处粘贴要进行倒角处理,并打磨成圆弧状,圆弧半径不小于20mm,将混凝土表面内丙酮擦拭一遍,保持混凝土表面干燥。

(2)、涂底层底胶:

2.1、把底胶的主剂和固化剂按规定比例称量准确后放入容器内,用搅拌器合均匀。一次调和量应以在可使用时间内用完为准。 2.

2、在底胶中严禁添加溶剂。含有溶剂的毛刷或用溶剂弄湿了的滚筒不得使用。

2.3、用滚筒刷均匀地涂抹底胶。

2.4、指触干燥时间因气温不同,一般在3小时到1天之间变化。 2.

5、底胶固化后,在表面上有凸起部分时,要用砂纸磨光。 (3)、找平胶找平:

3.1、底胶涂刷后,混凝土表面不平处用找平胶找平。 (4)、贴碳纤维片

4.1、确认粘贴表面干燥。气温50C以下,相对湿度RH>85%时,如无有效措时不得施工。

4.2、防止碳纤维受损,碳纤维片在运输、储存、裁切和粘贴过程中,严禁受到弯折。因此,贴片前应用钢直尺与壁纸刀按规定尺寸切断碳纤维片,每段长度一般以不超过6m为宜。要使用更长的片材时,除精心防止弯折外,对脱泡(即赶出气泡)、渗浸过程必须加位谨慎操作。为防止片材在保管过程中损坏,片材的裁切数量应按当天的用量为准。 4.

3、碳纤维向接头必须搭接15cm以上,该部位应多涂粘结树脂,碳纤维横向不需要搭接。

4.4、粘接树脂的主剂和固化剂应按规定的比例称量准确,装入容器,用搅拌器搅拌均匀。一次调和量应以在可使用用完为准。 4.

5、贴片前用滚筒刷均匀地涂抹粘结树脂,称为下涂。下涂的涂量标准如下。

200g/m2的碳纤维片,400-500g/m2 300g/m2在碳纤维布,500-600 g/m2 4.6、贴片时,在碳纤维片和树脂之间尽量不要有空气。可用罗拉(专用工具)沿着纤维方向在碳纤维片上滚压多次,使树脂浸入碳纤维中。 4.

7、碳纤维片施工30分钟后,用滚筒刷均匀涂抹粘结树脂,称为上涂。上涂涂量标准如下:

200g/m2在碳纤维片,200-100 g/m2 300g/m2在碳纤维布,300-200 g/m2 4.8、进行空鼓检查,并进行处理。

4.9、须粘2层以上碳纤维布时,重复4.5-4.8步骤,并遵守4.3的规定。 (5)、养护

5.1粘贴碳纤维片后,需自然养护24小进达到初期固化,应保证固化期间不受干扰。

5.2、在每道工序以后树脂固化之前,宜用塑料薄膜等遮挡以防止风沙或雨水侵袭。

5.3、当树脂固化期间存在气温降低到50C以下的可能时,可采用低温固化树脂,或采取有效的升温措施。

5.4、碳纤维片粘贴后,要达到设计强度,需自然养护,在此期间应防止贴片受到硬性冲击。

第二篇:雅居乐小学工程地梁加固土石方挖方施工方案

一、编制依据

1、雅居乐小学工程施工图

2、工程现场实际情况

二、工程概况

工程名称:重庆雅居乐国际花园小学工程

工程地址:重庆市南岸区大石路

建设单位:上海静安城投重庆置业有限公司

监理单位:重庆市中泰工程监理有限公司

小学设计单位:重庆市设计院

施工单位:重庆建工第三建设有限责任公司

小学工程为民用多层公共建筑,建筑层数为地上四层,层高3.6米,建筑总高为16.2米,建筑面积为9521.73平方米。

三、工程场地情况

1、本工程结构工程早已施工完成,场地受限无法使用大型挖机进行施工作业。

2、经试挖发现地梁附近存在大量的大块孤石(详附图)。

四、工程挖方施工

放开挖线。现场需挖方部位存在大量的松散片石及大块孤石,人工开挖施工难度大,施工工期长;施工图要求,地梁单边加固的宽度为150㎜,所有地梁底部增加高度均为200㎜,且新旧混凝土交接位置需凿毛。根据现场实际情况及施工图要求在保证安全施工的前提下确定:单边开挖放线宽度为1800 ㎜,约为放坡,底部开挖宽度为1500;地梁挖方深度为旧地梁底竖直下降1200㎜。因场地的限制,采用PC60小型履带式挖机进场施工作业。因场内还有大量片石及大块孤石,小型挖机施工速度缓慢,我司决定加班夜间施工来保证施工进度,确保尽早进入下道工序的施工。

编制单位:重庆建工第三建设有限责任公司2011.10.10

第三篇:楼板、梁裂缝维修方案

混凝土裂缝处理技术方案

一、 特点

1、配方独特的高分子树脂修补材料粘度极低、能深入到仅0.02mm宽裂缝末梢,实现完美修复。

2、树脂胶不含任何发挥性稀释剂,不会因此产生固化收缩。

3、对于由于结构承载力不足引起的裂缝,考虑到裂缝对原混凝土造成结构刚度降低,在裂缝灌注完毕后,对构件采用碳纤维或复合纤维进行补强处理。

4、操作简便、安全高效、高空作业时间大大减少,安全性提高。

5、可带水作业,对潮湿渗水的裂缝有专用修补材料,甚至能完成对水下构件的修复。

6、彻底恢复构件强度,树脂胶本身及其与混凝土结合面的强度均高于混凝土本体,能完全恢复受损构件的承载力,树脂胶的固化是一个突变的过程,因此修复效果不受振动、冲击的干扰,在桥梁结构上使用时不影响正常通车。

二、 适用范围

可广泛用于混凝土裂缝修补加固、饰面空鼓充填、止水堵漏等情况。适用的裂缝宽度范围为0.05~3mm,根据结构物的类别可分为几种:

1. 混凝土外墙、内墙、屋架、梁柱、楼板、屋面板等裂缝的修补加固。 2.水泥砂浆墙地面、瓷砖、石材等空鼓部位的充填。

3. 混凝上构筑物:如筒仓、预制构件、设备基础、水池、水坝、桥梁、隧道、混凝土路面、管道等裂缝修补、止水堵漏。

三、 工艺原理

利用低压注入原理,依靠自动压力灌浆器的弹簧压力和毛细管原理,将配套的AB系列灌浆树脂自动注入混凝土微细裂缝或空鼓孔洞部位中,使之充填完全并粘接牢固,从而达到恢复混凝土整体工作能力和提高耐久性等目的。

四、工艺流程及操作要点

1、工艺流程如下: 裂缝调查→基层处理→封闭裂缝,安设底座→配料→注浆→拆除灌浆器→拆除底座,恢复基层原状→效果检查。

2、操作要点 ① 裂缝调查

a.观察裂缝状况及分布情况,调查结构物概况。裂缝开裂原因、发展情况。

b.确定并标注裂缝宽度,核实混凝土厚度,检查有无漏水、泛白情况。用10 倍的裂缝放大镜对裂缝宽度进行测量并标注在裂缝上方,如有贯穿裂缝要注明。 ②基层处理

在沿裂缝两侧2-5cm的距离内进行清理工作。清除表面的灰尘、油污、松动物等。缝中如被泥土堵塞,可用小型工业吸尘器吸出。注意缝中不得进水。 ③ 确定注入口

根据裂缝的宽度,设置注入口即底座之间的距离,注入口位置尽量设置在裂缝较宽、开口较通畅的部位,底座之间的距离建议如表16设置: 表16 裂缝宽度与注入口间距的关系 裂缝宽度(mm) 0.1-0.3 0.3-0.5 0.5-1 1-3 底座间距(cm) 10-20 20-30 30-40 40

④ 封闭裂缝和固定底座

将MS-402封缝胶的两组分MS-402J(胶料)与MS-402F(粉料)按1:1-1.5配制成封缝胶,调匀后,沿裂缝表面涂刮,封闭裂缝,留出注入口,将底座骑缝粘在预留的位置上,整个底座要用封缝胶包严,固化后(固化时间为3小时左右)周边可能有裂口,必须反复用封缝胶补上。

⑤ 试漏

先将所有的注入口即底座用堵头堵上,留出一个注入口用注胶器压气,在封闭的裂缝上涂肥皂水进行试漏,有经验者可免。 ⑥ 灌胶 将MS-401灌缝胶的主剂与固化剂按4:1的质量比混合均匀,用注胶器吸取混合好的灌缝胶,插入底座,利用弹簧的力量推进活塞把胶液压入裂缝,当相邻的底座流出胶液时,就可以拔出注胶器,堵上堵头,将注胶器移到相邻的底座上重复注胶,直至裂缝被全部注满。 ⑦清理表面

一般注胶后1天左右,灌缝胶固化后,就可以铲除底座和封缝材料,并将表面清理干净。

五、 材料

1、 “昆仑”MS-401灌缝胶的技术参数见表17。 表17 “昆仑”MS-401灌缝胶的技术参数 品名

项目 MS-401A MS-401B 主剂 固化剂

外观 无色透明液体 棕色透明液体 混合物外观 浅黄色透明液体

混合比 主剂:固化剂=4:1(质量比) 可操作时间 50分钟左右(25℃,500g) 指触干燥时间 小于12小时(25℃) 施工温度 10-30(℃) 密度 1.08(g/cm3) 可灌缝宽度 >0.1mm 初始粘度 ≤100mPa.s(25℃) 压缩强度 70.63MPa 弯曲强度 93.97MPa 拉伸强度 21.19MPa 正拉粘结强度 3.58MPa (混凝土内部破坏)

2、 封缝材料为“昆仑”MS-402封缝胶。两组分MS-402J(胶料)与MS-402F(粉料)按1:1-1.5配置成封缝胶。

3、 其他辅助材料:容器、铲刀、注胶器、底座、普通胶带、医用橡胶手套、酒精、棉丝、水泥等。

六、 机具设备

1、 灌浆机具

自动压力灌浆器。灌浆器的构造简单轻巧,是一种袖珍试新型工具,长度26cm,自重60g,一次装入树脂量为50g。

2、 辅助工具

刮刀、拌胶板、烧杯、玻璃棒、放大镜、粉笔、手电筒等。

七、 劳动组织及安全

1、 劳动组织。每个施工组3~4 人(见表27)。 表18 劳动组织 序号 项目 人数

1 查找裂缝及基层处理 1人 2 配料及充填灌浆器 1人

3 封闭裂缝安设底座,注浆 1~2 人

2、 安全

① 本产品适用于5℃以上环境,温度低于5℃时必须采取升温措施; ② 混凝土表面有明水时应擦去并使用热风机吹干后再使用本产品;

③ 属可燃性产品,必须注意烟火,保管数量应遵守消防法的有关规定,发生火灾时应使用泡沫或粉末灭火器;

④ 化工产品,勿食用,且对皮肤及呼吸道有刺激性;

⑤ 使用场所应注意通风换气,使用时应佩带防护眼镜、手套,穿紧口工作服,使用产品后应及时洗手; ⑥ 宜贮存于5-40℃干燥阴凉处,保质期自生产之日起未开封为6个月,开封后为1个月。

八、质量要求

1、灌缝胶应符合质量要求,有产品合格证及检验报告,并严格按使用说明书使用。

2、工人应经过培训,施工前先做样板,合格后方可大面积施工。

3、每条裂缝必须留设排气孔或出浆口,否则无法灌实。

4、对于宽度均匀的裂缝采用同一种型号的灌缝胶即可完成,但许多裂缝呈中间宽两头细的状态,在宽度差距较大时,应将灌缝胶配合石英粉、石英砂混合使用,以使不同缺陷的部位都得以饱满合理的充填。

5、封缝工序必须确保质量,要及时封堵漏浆部位,在树脂尚未初凝前继续完成灌浆工作。

6、混凝土裂缝修补后可用压力水或水钻取芯法检测注浆密实程度(钻孔位置应取得设计同意,以免破坏结构)。发现缺陷应及时补救。

7、对于结构承载力不足。处于运动和不稳定扩展状态的裂缝,应考虑加固和补救措施后,方可按本工艺进行修补。

第四篇:梁裂缝分析

混凝土开裂原因分析及解决方法

(2008-11-23 20:01:29) 转载 标签: 分类: 施工技术

混凝土开裂

混凝土因其取材广泛、价格低廉、抗压强度高、可浇筑成各种形状,并且耐火性好、不易风化、养护费用低,成为当今世界建筑结构中使用最广泛的建筑材料。

混凝土最主要的缺点是抗拉能力差、脆性大、容易开裂。大量的工程实践和理论分析表明,几乎所有的混凝土构件均是带裂缝工作的,只是有些裂缝很细,甚至肉眼看不见(<0.05mm),一般对结构的使用无大的危害,可允许其存在;我国现行建筑、铁路、公路、水利等部门设计规范均采用限制构件裂缝宽度的办法来保障混凝土结构的正常使用。

有些裂缝在使用荷载或外界物理、化学因素的作用下,不断产生和扩展,引起混凝土碳化、保护层剥落、钢筋腐蚀,使混凝土的强度和刚度受到削弱,耐久性降低,严重时甚至发生垮塌事故,危害结构的正常使用,必须加以控制。 混凝土开裂可以说是“常发病”和“多发病”,经常困扰着工程技术人员。其实,如果采取一定的设计和施工措施,很多裂缝是可以克服和控制的。

实际上,混凝土裂缝的成因复杂而繁多,甚至多种因素相互影响,但每一条裂缝均有其产生的一种或几种主要原因。本报告对混凝土裂缝的种类和产生的原因作较全面的分析并提出相应的防治措施,供同行、专家参考、探讨。 混凝土裂缝的种类,就其产生的原因,大致可划分如下几种:

一、荷载引起的裂缝

混凝土构件在常规静、动荷载及次应力下产生的裂缝称荷载裂缝,归纳起来主要有直接应力裂缝、次应力裂缝两种。

(一)直接应力裂缝是指外荷载引起的直接应力产生的裂缝。裂缝产生的原因有:

1、设计计算阶段,结构计算时不计算或部分漏算;计算模型不合理;结构受力假设与实际受力不符;荷载少算或漏算;内力与配筋计算错误;结构安全系数不够。结构设计时不考虑施工的可能性;设计断面不足(宁波跨海大桥);钢筋设置偏少或布置错误;结构刚度不足;构造处理不当;设计图纸交代不清等。

2、施工阶段,不加限制地堆放施工机具、材料;不了解预制结构结构受力特点,随意翻身、起吊、运输、安装;不按设计图纸施工,擅自更改结构施工顺序,改变结构受力模式;不对结构做机器振动下的疲劳强度验算等。

3、使用阶段,超出设计载荷的作用于楼地面、墙面;工业厂房超负荷使用;发生大风、大雪、地震、爆炸等。

(二)次应力裂缝是指由外荷载引起的次生应力产生裂缝。

裂缝产生的原因有:

1、在设计外荷载作用下,由于结构物的实际工作状态同常规计算有出入或计算不考虑,从而在某些部位引起次应力导致结构开裂。

例如:两铰拱桥拱脚设计时常采用布置“X”形钢筋、同时削减该处断面尺寸的办法设计铰,理论计算该处不会存在弯矩,但实际该铰仍然能够抗弯,以至出现裂缝而导致钢筋锈蚀。

2、工业建筑中经常需要凿槽、开洞、设置牛腿等,在常规计算中难以用准确的图式进行模拟计算,一般根据经验设置受力钢筋。研究表明,受力构件挖孔后,力流将产生绕射现象,在孔洞附近密集,产生巨大的应力集中。

在长跨预应力连续梁中,经常在跨内根据截面内力需要截断钢束,设置锚头,而在锚固断面附近经常可以看到裂缝。因此,若处理不当,在这些结构的转角处或构件形状突变处、受力钢筋截断处容易出现裂缝。

实际工程中,次应力裂缝是产生荷载裂缝的最常见原因。次应力裂缝多属张拉、劈裂、剪切性质。

次应力裂缝也是由荷载引起,仅是按常规一般不计算,但随着现代计算手段的不断完善,次应力裂缝也是可以做到合理验算的。例如现在对预应力、徐变等产生的二次应力,不少平面杆系有限元程序均可正确计算,但在40年前却比较困难。

在设计上,应注意避免结构突变(或断面突变),当不能回避时,应做局部处理,如转角处做圆角,突变处做成渐变过渡,同时加强构造配筋,转角处增配斜向钢筋,对于较大孔洞有条件时可在周边设置护边角钢。 荷载裂缝特征依荷载不同而异呈现不同的特点。这类裂缝多出现在受拉区、受剪区或振动严重部位。但必须指出,如果受压区出现起皮或有沿受压方向的短裂缝,往往是结构达到承载力极限的标志,是结构破坏的前兆,其原因往往是截面尺寸偏小。

(三)根据结构不同受力方式,产生的裂缝特征如下:

1、 中心受拉:裂缝贯穿构件横截面,间距大体相等,且垂直于受力方向。

采用螺纹钢筋时,裂缝之间出现位于钢筋附近的次裂缝。

2、 中心受压:沿构件出现平行于受力方向的短而密的平行裂缝。

3、受弯:弯矩最大截面附近从受拉区边沿开始出现与受拉方向垂直的裂缝,并逐渐向中和轴方向发展。采用螺纹钢筋时,裂缝间可见较短的次裂缝。当结构配筋较少时,裂缝少而宽,结构可能发生脆性破坏。

4、 大偏心受压:大偏心受压和受拉区配筋较少的小偏心受压构件,类似于受弯构件。

5、 小偏心受压:小偏心受压和受拉区配筋较多的大偏心受压构件,类似于中心受压构件。

6、受剪:当箍筋太密时发生斜压破坏,沿梁端腹部出现大于45°方向的斜裂缝;当箍筋适当时发生剪压破坏,沿梁端中下部出现约45°方向相互平行的斜裂缝。

7、 受扭:构件一侧腹部先出现多条约45°方向斜裂缝,并向相邻面以螺旋方向展开。

8、 受冲切:沿柱头板内四侧发生约45°方向斜面拉裂,形成冲切面。

9、局部受压:在局部受压区出现与压力方向大致平行的多条短裂缝。

二、 温度变化引起的裂缝

混凝土具有热胀冷缩性质,当外部环境或结构内部温度发生变化,混凝土将发生变形,若变形遭到约束,则在结构内将产生应力,当应力超过混凝土抗拉强度时即产生温度裂缝。在某些大跨径梁中,温度应力可以达到甚至超出活载应力。温度裂缝区别其它裂缝最主要特征是将随温度变化而扩张或合拢。引起温度变化主要因素有: 、水化热

出现在施工过程中,大体积混凝土浇筑之后由于水泥水化放热,致使内部温度很高,内外温差太大,致使表面出现裂缝。

施工中应根据实际情况,尽量选择水化热低的水泥品种(矿渣水泥),限制水泥单位用量(使用减水剂),减少骨料入模温度(冰水搅拌),降低内外温差(通过表面保温),并缓慢降温,必要时可采用循环冷却系统(预埋)进行内部散热,或采用薄层连续浇筑以加快散热。

2、蒸汽养护或冬季施工时施工措施不当,混凝土骤冷骤热,内外温度不均,易出现裂缝。

3、年温差

一年中四季温度不断变化,但变化相对缓慢,我国年温差一般以一月和七月月平均温度的作为变化幅度。考虑到混凝土的蠕变特性,年温差内力计算时混凝土弹性模量应考虑折减。

4、日照

屋面、墙面受太阳曝晒后,温度明显高于其它部位,温度梯度呈非线形分布。由于受到自身约束作用,导致局部拉应力较大,出现裂缝。日照和下述骤然降温是导致结构温度裂缝的最常见原因。

5、骤然降温

突降大雨、冷空气侵袭、日落等可导致结构外表面温度突然下降,但因内部温度变化相对较慢而产生温度梯度。日照和骤然降温内力计算时可采用设计规范或参考实际资料进行,混凝土弹性模量不考虑折减。

6、钢制预埋件与钢筋或其它钢制件联结时,若焊接措施不当,铁件附近混凝土容易烧伤开裂。采用电热张拉法张拉预应力构件时,预应力钢材温度可升高至350℃,混凝土构件也容易开裂。

试验研究表明,由火灾等原因引起高温烧伤的混凝土强度随温度的升高而明显降低,钢筋与混凝土的粘结力随之下降,混凝土温度达到300℃后抗拉强度下降50%,抗压强度下降60%,光圆钢筋与混凝土的粘结力下降80%;由于受热,混凝土体内游离水大量蒸发也可产生急剧收缩。

三、 收缩引起的裂缝

在实际工程中,混凝土因收缩所引起的裂缝是最常见的。在混凝土收缩种类中,塑性收缩和干缩是发生混凝土体积变形的主要原因,另外还有自生收缩和碳化收缩。

1、塑性收缩

发生在施工过程中、混凝土浇筑后4~5小时左右,此时水泥水化反应激烈,分子链逐渐形成,出现泌水和水分急剧蒸发,混凝土失水收缩,同时骨料因自重下沉,因此时混凝土尚未硬化,称为塑性收缩。

塑性收缩所产生量级很大,可达1%左右。在骨料下沉过程中若受到钢筋阻挡,便形成沿钢筋方向的裂缝。在构件竖向变截面处如T梁、箱梁腹板与顶底板交接处,因硬化前沉实不均匀将发生表面的顺腹板方向裂缝。

为减小混凝土塑性收缩,施工时应控制水灰比,避免过长时间的搅拌,下料不宜太快,振捣要密实,竖向变截面处宜分层浇筑。

2、干缩

混凝土结硬以后,随着表层水分逐步蒸发,湿度逐步降低,混凝土体积减小,称为干缩(缩水收缩)。因混凝土表层水分损失快,内部损失慢,因此产生表面收缩大、内部收缩小的不均匀收缩,表面收缩变形受到内部混凝土的约束,致使表面混凝土承受拉力,当表面混凝土承受拉力超过其抗拉强度时,便产生收缩裂缝。混凝土硬化后收缩主要就是干缩。如配筋率较大的构件(超过3%),钢筋对混凝土收缩的约束比较明显,混凝土表面容易出现龟裂裂纹。

3、自生收缩

自生收缩是混凝土在硬化过程中,水泥与水发生水化反应,这种收缩与外界湿度无关,且可以是正的(即收缩,如普通硅酸盐水泥混凝土),也可以是负的(即膨胀,如掺膨胀剂的膨胀水泥混凝土)。

4、碳化收缩

大气中的二氧化碳与水泥的水化物发生化学反应引起的收缩变形。碳化收缩只有在湿度50%左右才能发生,且随二氧化碳的浓度的增加而加快。碳化收缩一般不做计算。

混凝土收缩裂缝的特点是大部分属表面裂缝,裂缝宽度较细,且纵横交错,成龟裂状,形状没有任何规律。

但收缩值累积过大,也会造成混凝土的贯通裂缝(断板)。例如:大面积水泥混凝土楼地面,如果不及时切割伸缩缝,必然断板。 研究表明,影响混凝土收缩裂缝的主要因素有:

① 水泥品种、标号及用量

矿渣水泥、快硬水泥、低热水泥混凝土收缩性较高,普通水泥、火山灰水泥、矾土水泥混凝土收缩性较低。另外水泥标号越低、单位体积用量越大、磨细度越大,则混凝土收缩越大,且发生收缩时间越长。例如,为了提高混凝土的强度,施工时经常采用强行增加水泥用量的做法,结果收缩应力明显加大。

② 骨料品种

骨料中石英、石灰岩、白云岩、花岗岩、长石等吸水率较小、收缩性较低;而砂岩、板岩、角闪岩等吸水率较大、收缩性较高。另外骨料粒径大收缩小,含水量大收缩越大。

③水灰比 用水量越大,水灰比越高,混凝土收缩越大。

④外掺剂 外掺剂保水性越好,则混凝土收缩越小。

⑤外掺料 外掺料的细度越高,混凝土收缩越大。外掺料的掺量越大,混凝土收缩越大。一般商品(泵送)混凝土都含有较大掺量(15%~30%)的粉煤灰,混凝土收缩较大,所以采用商品(泵送)混凝土的工程比较容易开裂。 ⑥养护方法

良好的养护可加速混凝土的水化反应,获得较高的混凝土强度。养护时保持湿度越高、气温越低、养护时间越长,则混凝土收缩越小。蒸汽养护方式比自然养护方式混凝土收缩要小。

⑦外界环境

大气中湿度小、空气干燥、温度高、风速大,则混凝土水分蒸发快,混凝土收缩越快。

⑧振捣方式及时间

机械振捣方式比手工捣固方式混凝土收缩性要小。振捣时间应根据机械性能决定,一般以5~15s/次为宜。时间太短,振捣不密实,形成混凝土强度不足或不均匀;时间太长,造成分层,粗骨料沉入底层,细骨料留在上层,强度不均匀,上层易发生收缩裂缝。 对于温度和收缩引起的裂缝,增配构造钢筋可明显提高混凝土的抗裂性,尤其是薄壁结构(壁厚20~60cm)。构造上配筋宜优先采用小直径钢筋(φ8~φ14)、小间距布置(@10~@15cm),全截面构造配筋率不宜低于0.3%,一般可采用0.3%~0.5%。

四、 地基础变形引起的裂缝

由于基础竖向不均匀沉降或水平方向位移,使结构中产生附加应力,超出混凝土结构的抗拉能力,导致结构开裂。基础不均匀沉降的主要原因有:

1、地质勘察精度不够、试验资料不准

在没有充分掌握地质情况就设计、施工,这是造成地基不均匀沉降的主要原因。比如丘陵区或山岭区桥梁,勘察时钻孔间距太远,而地基岩面起伏又大,勘察报告不能充分反映实际地质情况。

2、地基地质差异太大

建造在山区沟谷的建筑物,河沟处的地质与山坡处变化较大,河沟中甚至存在软弱地基,地基土由于不同压缩性引起不均匀沉降。

3、结构荷载差异太大

在地质情况比较一致条件下,各部分基础荷载差异太大时,有可能引起不均匀沉降,例如高层建筑的主楼比周边裙房的荷载要大,中部的沉降就要比周边大。

4、结构基础类型差别大

同一建筑群中,混合使用不同基础如条形基础和桩基础,或同时采用桩基础但桩径或桩长差别大时,也可能引起地基不均匀沉降。

5、分期建造的基础

老建筑物的扩建,新扩建建筑物或基础处理时引起地基土重新固结,均可能对原有建筑物的基础造成较大沉降。

6、地基冻胀

在低于零度的条件下含水率较高的地基土因冰冻膨胀;一旦温度回升,冻土融化,地基下沉。因此地基的冰冻或融化均可造成不均匀沉降。

五、钢筋锈蚀引起的裂缝

由于混凝土质量较差或保护层厚度不足,混凝土保护层受二氧化碳侵蚀炭化至钢筋表面,使钢筋周围混凝土碱度降低,或由于氯化物介入,钢筋周围氯离子含量较高,均可引起钢筋表面氧化膜破坏,钢筋中铁离子与侵入到混凝土中的氧气和水分发生锈蚀反应,其锈蚀物氢氧化铁体积比原来增长约2~4倍,从而对周围混凝土产生膨胀应力,导致保护层混凝土开裂、剥离,沿钢筋纵向产生裂缝,并有锈迹渗到混凝土表面。由于锈蚀,使得钢筋有效断面面积减小,钢筋与混凝土握裹力削弱,结构承载力下降,并将诱发其它形式的裂缝,加剧钢筋锈蚀,导致结构破坏。

要防止钢筋锈蚀,设计时应根据规范要求控制裂缝宽度、采用足够的保护层厚度(当然保护层亦不能太厚,否则构件有效高度减小,受力时将加大裂缝宽度);施工时应控制混凝土的水灰比,加强振捣,保证混凝土的密实性,防止氧气侵入,同时严格控制含氯盐的外加剂用量,沿海地区或其它存在腐蚀性强的空气、地下水地区尤其应慎重。

密实混凝土表面的防腐涂料----也是一种有效手段!

六、 冻胀引起的裂缝 大气气温低于零度时,吸水饱和的混凝土出现冰冻,游离的水转变成冰,体积膨胀9%,因而混凝土产生膨胀应力;同时混凝土凝胶孔中的过冷水在微观结构中迁移和重分布引起渗透压,使混凝土中膨胀力加大,混凝土强度降低,并导致裂缝出现。尤其是混凝土初凝时受冻最严重,成龄后混凝土强度损失可达30%~50%。

温度低于零度和混凝土吸水饱和是发生冻胀破坏的必要条件。当混凝土中骨料空隙多、吸水性强;骨料中含泥土等杂质过多;混凝土水灰比偏大、振捣不密实;养护不力使混凝土早期受冻等,均可能导致混凝土冻胀裂缝。

冬季施工时,采用电气加热法、暖棚法、地下蓄热法、蒸汽加热法养护以及在混凝土拌和水中掺入防冻剂(但氯盐不宜使用),可保证混凝土在低温或负温条件下硬化。

七、施工材料质量引起的裂缝

混凝土主要由水泥、砂、骨料、拌和水、掺合撩及外加剂组成。配置混凝土所采用材料质量不合格,可能导致结构出现裂缝。

1、水泥

(1)、水泥安定性不合格,水泥中游离的氧化钙含量超标。氧化钙在凝结过程中水化很慢,在水泥混凝土凝结后仍然继续起水化作用,可破坏已硬化的水泥石,使混凝土抗拉强度下降。

(2)、水泥出厂时强度不足,水泥受潮或过期,可能使混凝土强度不足,从而导致混凝土开裂。

(3)、当水泥含碱量较高(例如超过0.6%),同时又使用含有碱活性的骨料,可能导致碱骨料反应。

2、砂、石骨料

(1)、砂石的粒径、级配、杂质含量

砂石粒径太小、级配不良、空隙率大,将导致水泥和拌和水用量加大,影响混凝土的强度,使混凝土收缩加大,如果使用超出规定的特细砂,后果更严重。

砂石中云母的含量较高,将削弱水泥与骨料的粘结力,降低混凝土强度。砂石中含泥量高,不仅将造成水泥和拌和水用量加大,而且还降低混凝土强度和抗冻性、抗渗性。

砂石中有机质和轻物质过多,将延缓水泥的硬化过程,降低混凝土强度,特别是早期强度。

砂石中硫化物可与水泥中的铝酸三钙发生化学反应,体积膨胀2.5倍。 (2)、碱骨料反应

碱骨料反应有三种类型: ①、碱硅酸反应

参与这种反应的骨料有流纹岩、安山岩、凝灰岩、蛋白石、黑硅石、燧石、鳞石英、玻璃质火山岩、玉髓及微晶或变质石英等。反应发生于碱与微晶氧化硅之间,其生成物硅胶体遇水膨胀,在混凝土中产生很大的内应力,可导致混凝土突然爆裂。这类反应是碱骨料反应的主要形式。 ②、碱硅酸盐反应

参与这种反应的骨料有粘土质岩石、千枚岩、硬砂岩、粉砂岩等。此类反应的特点是膨胀速度非常缓慢,混凝土从膨胀到开裂,能渗出的凝胶很少。 ③、碱碳酸岩反应 多数碳酸岩石没有碱活性,有特定结构的泥质细粒白云质灰岩和泥质细粒灰质白云岩才具有与碱反应的碱活性,且还须高碱度、一定湿度环境下才能反应膨胀。

碱骨料反应裂缝的形状及分布与钢筋限制有关,当限制力小时,常出现地图状裂缝,并在缝中有白色或透明的浸出物;当限制力强时则出现顺筋裂缝。在工程实践中必须对骨料进行碱活性检验,采用对工程无害的材料,同时使用含碱量低的水泥品种。

3、掺合料

外掺料的细度越高,混凝土收缩越大。外掺料的掺量越大,混凝土收缩越大。一般商品(泵送)混凝土都含有较大掺量(15%~30%)的粉煤灰,混凝土收缩较大,所以采用商品(泵送)混凝土的工程比较容易开裂

4、拌和水及外加剂

拌和水或外加剂中氯化物等杂质含量较高时对钢筋锈蚀有较大影响。采用海水或含碱泉水拌制混凝土,或采用含碱的外加剂,可能对碱骨料反应有影响。

八、施工工艺质量引起的裂缝

在混凝土结构浇筑、构件制作、起模、运输、堆放、拼装及吊装过程中,若施工工艺不合理、施工质量低劣,容易产生纵向的、横向的、斜向的、竖向的、水平的、表面的、深进的和贯穿的各种裂缝,特别是细长薄壁结构更容易出现。裂缝出现的部位和走向、裂缝宽度因产生的原因而异,比较典型常见的有:

1、混凝土保护层过厚,或乱踩已绑扎的上层钢筋,使承受负弯矩的受力筋保护层加厚,导致构件的有效高度减小,形成与受力钢筋垂直方向的裂缝。

2、混凝土振捣不密实、不均匀,出现蜂窝、麻面、空洞,导致钢筋锈蚀或其它荷载裂缝的起源点。

3、混凝土浇筑过快,混凝土流动性较低,在硬化前因混凝土沉实不足,硬化后沉实过大,容易在浇筑数小时后发生裂缝,即塑性收缩裂缝。

4、混凝土搅拌、运输时间过长,使水分蒸发过多,引起混凝土塌落度过低,使得在混凝土体积上出现不规则的收缩裂缝。

5、混凝土初期养护时急剧干燥,使得混凝土与大气接触的表面上出现不规则的收缩裂缝。

6、用泵送混凝土施工时,为保证混凝土的流动性,增加水和水泥用量,或因其它原因加大了水灰比,导致混凝土凝结硬化时收缩量增加,使得混凝土体积上出现不规则裂缝。

7、混凝土分层或分段浇筑时,接头部位处理不好,易在新旧混凝土和施工缝之间出现裂缝。如混凝土分层浇筑时,后浇混凝土因停电、下雨等原因未能在前浇混凝土初凝前浇筑,引起层面之间的水平裂缝;采用分段现浇时,先浇混凝土接触面凿毛、清洗不好,新旧混凝土之间粘结力小,或后浇混凝土养护不到位,导致混凝土收缩而引起裂缝。

8、混凝土早期受冻,使构件表面出现裂纹,或局部剥落,或脱模后出现空鼓现象。

9、施工时模板刚度不足,在浇筑混凝土时,由于侧向压力的作用使得模板变形,产生与模板变形一致的裂缝。

10、施工时拆模过早,混凝土强度不足,使得构件在自重或施工荷载作用下产生裂缝。

11、施工前对支架压实不足或支架刚度不足,浇筑混凝土后支架不均匀下沉,导致混凝土出现裂缝。

12、装配式结构,在构件运输、堆放时,支承垫木不在一条垂直线上,或悬臂过长,或运输过程中剧烈颠撞;吊装时吊点位置不当,T梁等侧向刚度较小的构件,侧向无可靠的加固措施等,均可能产生裂缝。

13、安装顺序不正确,对产生的后果认识不足,导致产生裂缝。如钢筋混凝土连续梁满堂支架现浇施工时,钢筋混凝土墙式护栏若与主梁同时浇筑,拆架后墙式护栏往往产生裂缝;拆架后再浇筑护栏,则裂缝不易出现。

14、施工质量控制差。任意套用混凝土配合比,水、砂石、水泥材料计量不准,结果造成混凝土强度不足和其他性能(和易性、密实度)下降,导致结构开裂。

第五篇:模板加固施工方案

(1)技术性能必须符合相关质量标准(通过收存、检查进场木胶合板出厂合格证和检测报告来检验)。

(2)外观质量检查标准(通过观察检验)

任意部位不得有腐朽、霉斑、鼓泡。不得有板边缺损、起毛。每平方米单板脱胶不大于0001m2。每平方米污染面积不大于0005m2

(3)规格尺寸标准

厚度检测方法:用钢卷尺在距板边20mm处,长短边分别测3点、1点,取8点平均值;各测点与平均值差为偏差。长、宽检测方法:用钢卷尺在距板边100mm处分别测量每张板长、宽各2点,取平均值。对角线差检测方法:用钢卷尺测量两对角线之差。翘曲度检测方法:用钢直尺量对角线长度,并用楔形塞尺(或钢卷尺)量钢直尺与板面间最大弦高,后者与前者的比值为翘曲度。

上一篇:理解文章标题的含义下一篇:了解你的孩子读后感