诺氟沙星合成工艺

2022-07-10

第一篇:诺氟沙星合成工艺

盐酸洛美沙星滴耳液的制备工艺研究分析论文

材料与处方

材料与设备盐酸洛美沙星、甘油、乙醇、依地酸二钠、配液罐(吉林华通制药设备有限公司,型号:PG 2001.1);液体灌装机(上海拓达机电设备有限公司,型号:HHGNX-2);贴标机(上海拓达机电设备有限公司,型号:HH LT);标示扫L(温州华侨包装机械有限公司,型号:M F-380F)。

1. 2处方和处方依据

1. 2. 1处方盐酸洛美沙星15.0 g;甘油1260 g;乙醇1230 g;依地酸二钠5g;纯化水适量(定量至5000 mD,制成1000支((5 m 1/支)。

1.2.2批量10000支或20000支。

1.2.3原料用量折算方法

折干折纯投料量旬=批量(瓶)X原料处方量(g/瓶) (1一干燥失重)X干燥品含量

1.2.4处方依据国家食品药品监督管理局国家药品标准W S1一水一034)一20027.。

2操作过程

2. 1生产前检查各生产工序检查作业场所是否有清场合格证并在有效期内,检查设备容器具是否有“已清洁”状态标志,计量器具是否有“校检合格证”并在有效期内,检查设备状态是否有“完好”及“待运行”状态标志等。

2. 2称量按批生产指令对物料名称、规格、批号、数量等进行双人复核,确认无误后按批处方量准确称量,经操作人及工艺员、质检员复核无误后转至配制工序。

2. 3配制①取少量纯化水加热至40 -45 0C,保温,加入盐酸洛美沙星,超声5m,加入纯化水并搅拌使其全部溶解;②将处方量的依地酸二钠加入到盐酸洛美沙星溶液中,搅拌使之溶解,备用;③将处方量的甘油和乙醇加入配液罐中,搅拌使混合均匀,加入上述备用溶液,再加入纯化水至定容量,搅拌30min;④过滤;取样检验。

2. 4灌封①调整装量,标示装量为每瓶5m1,平均装量小低于标示装量,每瓶装量限度小得低于标示装量的93%;②每小时抽查1次装量,如有异常可随时增加抽查装量次数;③抽查拧盖的严密性。剔除小合格品,将合格品与小合格品分别做好标记,并将合格品转入中转站,小合格品单独存放,及时销毁。

2. 5待包品检验质检员取样送检,检验项目为全项检验。

2. 6包装①包装规格:5m1X1瓶X10盒X 40中包;②确认使用的包装材料与该产品批包装指令相符;③在药品瓶上贴标签,距瓶底边基线2 mm处端正粘贴,小得有皱褶,标签上要求打印批号及有效期至。之后连同1张折好的说明书装入小盒。小盒按照规定打印批号,批号应清晰准确。每10小盒套上收缩膜。收缩膜要平整光洁;④大箱按批包装指令卡印批号,批号应清晰准确日,5〕。将热膜收缩好的中包整齐摆放在大箱中,每箱40中包,并装有装箱单,用胶带封箱,打包呈井字形。

2. 7清场以上各工序在生产结束后按《清场标准管理规程》}M P-PM -0039-00)的要求进行清场,并填写相应记录。

3小结

盐酸洛美沙星为哇诺酮类第3代广谱抗菌药,对大多数细菌有优良的杀菌作用,其在治疗敏感细菌所致的中耳炎、外耳道炎、鼓膜炎感染症时疗效特别显著 , 杀菌力强。在该滴耳液中加入乙醇 , 可以增加药物溶解度及渗透作用 , 帮助药物作用于炎症部位 , 有一定的刺激性。甘油可缓和乙醇对黏膜的刺激性 , 并可延长药物在局部的滞留时间。该滴耳液黏度适宜 , 作用迅速而持久 , 并呈弱酸性 , 具有良好的稳定性和安全性 , 符合滴耳液的全部质量要求。

参 考 文 献

[1]高洪燕 , 张咏 . 盐酸洛美沙星滴耳液制剂的研制 . 中国医药科学 , 2011(14):52-53.

[2] 盛高峰 . 盐酸洛美沙星滴耳液的制备及临床应用 . 济宁医学院学报 , 2010(5):10-12.

[3] 王剑林 . 盐酸洛美沙星滴眼液的制备 . 医药导报 , 2003(3):105-107.

[4]康雁 , 陈晓云 . 复方盐酸洛美沙星喷 ( 滴 ) 液制剂研究 . 中国基层医药 ,2004(4):7-11.

[5]刁敏 , 张国祥 , 郑建华 . 洛美沙星外用制剂研究与临床应用 . 医药导报 ,2003(S1):253-254.

第二篇:聚甲醛合成工艺 2

聚甲醛生产工艺

摘要:本文简要介绍了聚甲醛的性能、应用领域、生产工艺方法以及国内聚甲醛的发展状况。

关键词:聚甲醛;应用;生产工艺

聚甲醛(POM),又名聚缩醛,学名聚氧化亚甲基树脂。POM使用易得的甲醇为原料,采用甲缩醛法合成工艺,具有产品质量好、工艺简单、消耗低等特点。

聚甲醛树脂(POM)是一种综合性能优良、原料来源丰富,成型加工方便,可代替有色金属用作结构和耐磨材料的工程塑料。自从实现工业化生产来,世界聚甲醛消费量逐年递增,加工技术也在不断发展。

1聚甲醛的性能及用途

1.1特性

聚甲醛是分子主链中含有—CH2O—链节的热塑性树脂,是一种高密度、高结晶性的无支链线性聚合物,具有良好的物理机械性能、耐化学品性,使用温度范围较广,可在-40~100℃长期使用。聚甲醛的分子链结构规整性高,分子链由碳氢键组成,聚甲醛的碳氢键比碳碳键短,具有优异的刚性和机械强度。是工程塑料中机械性能最接近金属材料的品种之一,具有密度高,结晶度较高、刚性大、自润滑性能好、耐疲劳、耐摩擦、耐有机溶剂、成型加工简单等突出优点。聚甲醛还具有吸水性小,尺寸稳定,有光泽,由于尼龙在该方面的性质;具有抗拉强度,弯曲强度,耐疲劳性强度均高,即使在低温下,聚甲醛仍有很好的抗蠕变特性、几何稳定性和抗冲击特性,可在低温环境内长期使用。它的耐磨性和自润滑性也比绝大多数工程塑料优越,又有良好的耐油、耐过氧化物性能。

1.2应用

聚甲醛由于其优越的综合性能,广泛应用于工业机械、汽车、电子电器、日用品、管道及配件、精密仪器和建材等领域。其消费结构大约是电子电器行业占45%,汽车制造业为31%,机械工业为10%,其他行业为14%。在电子电器领域,常用于制造电扳手外壳、录像带CD盒、打印机、传真机、电风扇的零件、加热板、洗衣机滑轮等;在汽车领域,常用来制造把手、摇把、曲轴、门窗玻璃升降器、仪表板等零部件;在机械领域,常用于制造各种滑动、转动机械零件,如齿轮、杠杆、滑轮、轴承、链条等;医疗器械

方面,可用于制造心脏起搏器、人工心脏瓣膜、顶椎、假肢等;日用品方面,可用于制造打火机、拉链、扣环、滑雪板、冲浪板、雪橇等;管道及农用喷淋系统领域,可用于制造阀门、喷头、水龙头、水泵壳、接头等;建筑方面,常用于制造窗框、洗簌盆、水箱、水表壳体等。

2生产工艺

工业上生产聚甲醛有气态甲醛法和三聚甲醛法两种方法,国内目前一般采用三聚甲醛方法为主。三聚甲醛法于20世纪50年代由美国杜邦公司研制开发,以三聚甲醛为主或加入少量共聚单体如二氧三环聚合而成,即目前有均聚和共聚两种制法,所得的产品也分别称为均聚甲醛和共聚甲醛。

2.1均聚甲醛

均聚甲醛是杜邦公司1959年发明,由甲醛溶液与异辛醇反应,经过脱水、热裂解得到精制甲醛,然后在催化剂作用下进行液相聚合,聚合后用醋酐酯化封端。均聚甲醛的结晶度高,分子量分布较窄。其产品相对密度约为1.4,熔点为170-185℃,特点是有优异的刚性,拉伸强度高,单位质量的拉伸强度高于锌和黄铜,接近钢材,而且耐磨性能好、耐疲劳强度和蠕变性均好,摩擦系数小,但是热稳定性差、不耐酸碱。目前均聚甲醛约占聚甲醛总产量的20%。

2.2共聚甲醛

共聚甲醛生产工艺以赫斯特·塞拉尼斯公司的技术为代表,其它拥有该工艺技术的公司还有巴斯夫公司、三菱瓦斯化学公司等。宇部兴产公司于1984年开发了在聚合过程中不用溶剂的气相法共聚甲醛工艺,具有独特的技术特点。

赫斯特·塞拉尼斯公司的工艺过程大致如下:将50%的甲醛溶液浓缩至65%,在硫酸存在下合成三聚甲醛溶液,经溶剂萃取和精制(赫斯特·塞拉尼斯公司的溶剂为苯,巴斯夫公司和三菱瓦斯所用溶剂为二氯乙烷)得到聚合级三聚甲醛;然后以聚合级三聚甲醛为聚合单体,以环氧乙烷(或二氧五环)为共聚单体(巴斯夫公司用三氧七环),用双螺杆反应器进行本体连续共聚合,共聚合按其工艺控制可分为高温带压聚合与分段深度聚合,所得共聚物经粉碎,在经连续稳定化和间歇稳定化过程,除掉其中的热不稳定成分,干燥后混合添加剂进行处理造粒,均化后制出颗粒状共聚甲醛产品。

宇部兴产公司的气相法共聚甲醛技术主要由甲醛合成、单体制备、共聚合、稳定化、溶剂回收、成品等几个部分组成。与赫斯特·塞拉尼斯公司的聚合工艺相比,在共聚合以后,两家技术基本相同。所不同的是在共聚合及共聚合以前。宇部兴产公司的工艺路

线大致为:原料甲醇采用空气氧化法值得50%的甲醛,50%甲醛和低相对分子质量聚乙二醇反应,经脱水、热分解,最后经精制的共聚合所要求的精制甲醛气。精制甲醛气与共聚单体三氧八环气态混合后进入双螺杆反应器进行共聚反应,从聚合反应器排出的高温循环聚甲醛粉体经冷却返回聚合反应器进行循环,以控制聚合反应温度,然后用螺旋输送机将聚甲醛粉料定量地送往稳定化装置进行稳定化处理,再经干燥后送成品装置,经后处理得聚甲醛产品。该技术对材质要求不高,设备数相对少,属节能型工艺,且流程简单,容易操作,腐蚀性小,维修方便,原料和产品单耗与赫斯特·塞拉尼斯工艺差别不大。

3国内的生产现状

我国于1962年开始研制聚甲醛,中科院北京化学所、成都工学院、吉林化工研究院等单位较早从事均聚甲醛的研究。但经数十年的发展,技术水平没有重大突破,与外国公司差距较大。国内市场需求主要依赖进口,消费需求仍以较高的速度增长。

参考文献:

[1]牛磊,范娟娟,黄茂辉.聚甲醛生产工艺及国内发展状况的研究[J].化学工程师,2012,(2):47-19

[2]王晓明,徐泽夕,王越峰等.聚甲醛的生产和应用[J].塑料工业,2012,40(3):46-49

[3]庞绍龙,林桂芳.工程塑料聚甲醛的生产及其应用研究[J].化学工程与装备,2010,(3):120-12

2[4]邵永涛,徐泽夕,曹志奎等.我国聚甲醛产业的现状[J].广州化工,2012,40(12):65-68

[5]韩忠明,李靠昆.聚甲醛生产、消费及技术进展[J].化学工业与工程技术,2001,22(3):14-17

[6]刘莉,史志刚,丁乃秀等.聚甲醛的生产及应用[J].塑料制造,2008,(7):94-96

[7]柳传志.共聚甲醛生产工艺的研究[J].当代化工,2011,40(6):653-655

[8]郭莉,于千.我国聚甲醛的生产与应用[J].石油化工应用,2008,27(4):12-15

[9]刘莉,徐开杰.聚甲醛改性研究现状[J].工程塑料应用, 2008, 36(2): 71-75.

[10]黄格省.聚甲醛生产与市场分析[J].化工生产与技术,2000,7(5):26-30

[11]韩元培.我国聚甲醛生产和改性发展现状[J].科技创新导报,2011,8(29):102-103

第三篇:合成氨脱碳工艺

合成氨脱碳工艺简介 合成氨生产工艺简述

合成氨是一个传统的化学工业,诞生于二十世纪初。就世界范围来说,氨是最基本的化工产品之一,其主要用于制造硝酸和化学肥料等。合成氨的生产过程一般包括三个主要步骤:

(l)造气,即制造含有氢和氮的合成氨原料气,也称合成气;

(2)净化,对合成气进行净化处理,以除去其中氢和氮之外的杂质;

(3)压缩和合成,将净化后的氢、氮混合气体压缩到高压,并在催化剂和高温条件下反应合成为氨。其生产工艺流程包括:脱硫、转化、变换、脱碳、甲烷化、氨的合成、吸收制冷及输人氨库和氨吸收八个工序[1]。

在合成氨生产过程中,脱除CO2是一个比较重要的工序之一,其能耗约占氨厂总能耗的10%左右。因此,脱除CO2,工艺的能耗高低,对氨厂总能耗的影响很大,国外一些较为先进的合成氨工艺流程,均选用了低能耗脱碳工艺。我国合成氨工艺能耗较高,脱碳工艺技术也显得比较落后,因此,结合具体情况,推广应用低能耗的脱除CO2工艺,非常有必要。

1.1.4脱碳单元在合成氨工业中的作用

在最终产品为尿素的合成氨中,脱碳单元处于承前启后的关键位置,其作用既是净化合成气,又是回收高纯度的尿素原料CO2。以沪天化1000t/d合成氨装置脱碳单元为例,其需要将低变出口的CO2含量经吸收后降到0.1%以下,以避免甲烷化系统超温并产生增加能耗的的合成惰气,同时将吸收的CO2再生为99%纯度的产品CO2。在此过程中吸收塔压降还应维持在合理范围内以降低合成气压缩机的功耗。系统的扩能改造工程中,脱碳单元将为系统瓶颈,脱碳运行的好坏,直接关系到整个装置的安全稳定与否。脱碳系统的能力将影响合成氨装置的能力,必须同步进行扩能改造。

但是不论用什么原料及方法造气,经变换后的合成气中都含有大量的CO2,原料中烃的分子量越大,合成气中CO2就越多。用天然气(甲烷)为原料的烃类蒸汽转化法所得的CO2量较少,合成气中CO2浓度在15-20%,每吨氨副产CO2约1.0-1.6吨。这些CO2如果不在合成工序之前除净,不仅耗费气体压缩功,空占设备体积,而且对后续工序有害。此外,CO2还是重要的化工原料,如合成尿素就需以CO2为主要原料。因此合成氨生产中把脱除工艺气中CO2的过程称为“脱碳”,在合成氨尿素联产的化肥装置中,它兼有净化气体和回收纯净CO2的两个目的。

1.1.5脱碳方法概述

由变换工序来的低变气进脱碳系统的吸收塔,经物理吸收或者化学吸收法吸收二氧化碳。出塔气中二氧化碳含量要求小于0.1%。为了防止气体夹带出脱碳液,脱碳后的液体进人洗涤塔,用软水洗去液沫后再进入甲烷化换热器。脱碳塔出来的富液经换热器后,减压送至二氧化碳再生塔,用蒸汽加热再沸器,再脱去二氧化碳。由再生塔顶出来的CO2,经空冷器和水冷器,气体温度降至40℃,再经二氧化碳分离器除去冷凝水,送到尿素车间作原料。再生后的脱碳液(贫液),先进溶液空冷器,冷却至65℃左右,由溶液循环泵加压,再经溶液水冷器冷却至40℃后,送入二氧化碳吸收塔循环使用。 1.2净化工序中脱碳方法

在合成氨的整个系统中,脱碳单元将为系统关键主项,脱碳工序运行的好坏,直接关系到整个装置的安全稳定与否。脱碳系统的能力将影响合成氨装置和尿素装置的能力。CO2是一种酸性气体,对合成氨合成气中CO2的脱除,一般采用溶剂吸收的方法。

根据CO2与溶剂结合的方式,脱除CO2的方法有化学吸收法、物理吸收法和物理化学吸收法三大类。

1.2.1化学吸收法

化学吸收法即利用CO2是酸性气体的特点,采用含有化学活性物质的溶液对合成气进行洗涤,CO2与之反应生成介稳化合物或者加合物,然后在减压条件下通过加热使生成物分解并释放CO2,解吸后的溶液循环使用。化学吸收法脱碳工艺中,有两类溶剂占主导地位,即烷链醇胺和碳酸钾。化学吸收法常用于CO2分压较低的原料气处理。 (l)烷链醇胺类的脱碳工艺有:

①-乙醇胺(monoethanolamine,H2NCH2CH2OH,MEA)法;

②甲基二乙醇胺(methyl diethanolamine,CH3N(CH2CH2OH)2,MDEA)法; ③活化MDEA法(即aMDEA工艺)。

(2)碳酸钾溶液作吸收剂的脱碳工艺,即热钾碱脱碳工艺有:

①无毒G-V法;②苯菲尔法;③催化热钾碱(Cata carb)法;④Flexsorb法[2]。 1.2.1.1.1MEA法

MEA法是一种比较老的脱碳方法。吸收过程中,MEA与CO2发生反应生成碳酸化合物,经过加热即可将CO2分解出来。该法的最大优点是可以在一个十分简单的装置中,把合成气中的CO2脱除到可以接受的程度。

但它本身存在两个缺点:(1) CO2能与吸收反应生成的碳酸化合物发生进一步反应生成酸式碳酸盐,该盐较稳定,不易再生;(2) CO2能与MEA发生副反应,生成腐蚀性较强的氨基甲酸醋,容易形成污垢。 1.2.1.2甲基二乙醇胺MDEA MDEA法脱碳过程中,CO2与甲基二乙醇胺(MDEA,一种叔胺)生成的碳酸盐稳定性较差,分解温度低,且无腐蚀性。相对其它工艺,MDEA法有以下优点:(1)能耗和生产费用低;(2)脱碳效率高,净化气中CO2含量可小于100ppm;(3)使用范围广,可用于大、中、小各型合成氨厂;(4)溶剂稳定性好;(5)溶剂无毒、腐蚀性极小;(6)能同时脱硫。由于MDEA具有以上优点,所以不需要毒性防腐剂,设备管道允许采用廉价碳钢材料,不需要钝化过程,耗热低,设备管道不需要伴热盘管,能达到很好的节能效果[3]。

在MDEA溶液中添加少量活化剂即为aMDEA法,活化剂为眯哇、甲基咪哇等,浓度约为2-5%。活性MDEA工艺开发于20世纪60年代末,第一套活化MDEA脱碳工艺装置是1971年在德国BAFS公司氨三厂投入使用在此后的几年里,另有8套装置采用了活化MDEA,这些装置的成功使用,使得aMDEA工艺自1982年后备受欢迎。我国在大型装置中使用MDEA脱碳工艺,乌鲁木齐石化公司化肥厂属于首例[4]。BAFS公司推出的aMDEA脱碳工艺,主要用于对原来MEA工艺的改造,近几年我国一些研究单位正在对这方面进行积极的研究。

1.2.1.3低热耗苯菲尔法

相对上述脱除CO2的吸收剂溶液,碳酸钾溶液更价廉易得,并具有低腐蚀,操作稳定,吸收CO2能力较强等特性。但碳酸钾溶液本身吸收CO2的速度缓慢,需要添加一些活化剂。其中如无毒G-V法工艺就是由意大利Giammaro-Vetrocoke公司所开发,最初使用的活化剂和缓蚀剂为As2O3,但对人体有毒。后来有人用氨基乙酸取代As2O3,消除了毒性,成为无毒G-V法。我国栖霞山化肥厂就采用了这种工艺。由美国联碳公司开发的低热耗苯菲尔法,用二乙醇胺(DEA)作活化剂,V2O5作为腐蚀防护剂。我国于20世纪90年代相继以布朗工艺建了4套装置,即锦西天然气化工厂、建峰化肥厂、四川天华公司化肥厂和乌鲁木齐石化总厂第二化肥厂,规模都是日产氨1000吨。低热耗苯菲尔工艺是由美国联碳公司在传统苯菲尔工艺基础上开发的,采用了节能新技术。国内在20世纪70年代引进的13套大型化肥装置中,有10套采用苯菲尔脱碳工艺。从1985年起,己有7套进行了用低热耗苯菲尔工艺改造。国内新建的以天然气为原料的大型合成氨装置,脱碳系统也多采用低热耗苯菲尔工艺,如锦天化厂、建峰厂、天华公司等。中海石油化学有限公司合成氨装置脱碳系统采用改良型苯菲尔流程[5]。苯菲尔法可在高温下运行,再生热低,添加的V2O5可防腐蚀,但该工艺需对设备进行钒化处理,要求工人的操作水平较高,并且浪费溶剂,能耗大,特别蒸汽用得多,有效气体损失也大,运行成本高等缺点。

1.2.2物理吸收法

物理洗涤是CO2被溶剂吸收时不发生化学反应,溶剂减压后释放CO2 (不必加热),解吸后的溶液循环使用。相对化学吸收法,物理洗涤法的最大优点是能耗低, CO2不与溶剂形成化合物,减压后绝大部分CO2被闪蒸出来,然后采用气提或负压实现溶剂的完全再生。这就使得工艺投资省、能耗低、工艺流程简单。物理吸收法主要有Selxeol法、Elour法、变压吸附法及低温甲醇法等[6]。物理吸收法常用于高CO2分压的原料气处理。 1.2.2.1NHD法

NHD法被认为是目前能耗最低的脱碳工艺之一,该法使用的溶剂为聚乙二醇二甲醚的混合物,其分子式为CH3-O-(CH2-CH2-O)n-CH2,式中n=2-8。NHD是兖矿鲁南化肥厂与南京化学工业集团公司研究院、杭州化工研究所共同开发成功的一种物理吸收硫化氢和二氧化碳等酸性气体的高效溶剂[7]。NHD气体净化技术改造系脱除酸性气体的物理吸收新工艺,适合于合成气、天然气、城市煤气等的脱硫脱碳。NHD具有对设备无腐蚀,对CO

2、H2S等酸性气体的吸收能力强、蒸汽压低,挥发性小、热稳定性和化学稳定性好、不会起泡,无腐蚀性等优点,并且该法在NHD的再生过程中几乎不需要能量,通常利用空分装置富余的低压氮气在气提塔进行脱碳富液的气提再生,其优点是减少利用空气气提带来系统内NHD溶液含水量的富集,省去了空气水冷、气水分离及NHD脱水设备,节约了投资,简化了流程[8]。

1.2.2.2碳酸丙烯酯法(PC)法

碳酸丙烯酯法是碳酸丙烯酯为吸收剂的脱碳方法。其原理是利用在同样压力、温度下,二氧化碳、硫化氢等酸性气体在碳酸丙烯酯中的溶解度比氢、氮气在碳酸丙烯酯中的溶解度大得多来脱除二氧化碳和硫化氢而且二氧化碳在碳酸丙烯酯中溶解度是随压力升高和温度的降低而增加的,CO2等酸性气体在碳丙溶剂中溶解量一般可用亨利定律来表达,因而在较高的压力下,碳酸丙烯酯吸收了变换气中的二氧化碳等酸性气体,在较低的压力下二氧化碳能从碳酸丙烯酯溶液中解吸出来,使碳酸丙烯酯溶液再生,重新恢复吸收二氧化碳等酸性气体的能力。碳酸丙烯酯法具有溶解热低、粘度小、蒸汽压低、无毒、化学性质稳定、无腐蚀、流程操作简单等优点。

该法CO2的回收率较高,能耗较低,但投资费用较高。适用于吸收压力较高、CO2净化度不很高的流程,国内主要是小型厂使用。用碳丙液作为溶剂来脱除合成氨变换气中CO2工艺是一项比较适合我国国情的先进技术,与水洗工艺比较,除具有物理吸收过程显著的节能效果外,在现有的脱碳方法中,由于它能同时脱除二氧化碳、硫化氢及有机硫化物,加上再生无需热能,能耗较低等优势,在国外合成氨和制氢工业上已得到广泛应用。 1.2.2.3变压吸附法

变压吸附气体分离净化技术,简称PSA(Pressure Swing Adsorption)。变压吸附法是近几年才用于合成气净化的,它属于干法,采用固体吸附剂在改变压力的情况下,进行(加压)吸附CO2或(减压)解吸。变压吸附法分离气体混合物的基本原理是利用某一种吸附剂能使混合气体中各组份的吸附容量随着压力变化而产生差异的特性,选择吸附和解吸再生两个过程,组成交替切换的循环工艺,吸附和再生在相同温度下进行。可用此法改造小型氨厂,将低能耗,在大型氨厂使用显得困难[9]。

为了达到连续分离的目的,变压吸附脱碳至少需要两个以上的吸附塔交替操作,其中必须有一个吸附塔处于选择吸附阶段,而其它塔则处于解吸再生阶段的不同步骤。在每次循环

中,每个吸附塔依次经历吸附、多次压力均衡降、逆向放压、抽空、多次压力均衡升、最终升压等工艺步骤。

目前,此种类型的装置在全国合成氨厂已广泛采用。如四川什邡某氮肥厂为天然气富氧造气,变换气脱碳采用我公司近年来开发的节能型变压吸附脱碳新工艺,多塔进料,多次均压,并实现了吸附塔和真空泵的新组合,同时对吸附剂、程控阀门、控制系统、动力设备的配置都做了较大的改进,从而使H

2、N2有效气体回收率大大提高,能耗进一步降低,装置投资也有所减少[10]。 1.2.2.4低温甲醇洗法

低温甲醇洗工艺(Rectisol Process)系由德国林德公司(Linde)和鲁奇公司(Lurgi)开发,是利用甲醇溶剂对各种气体溶解度的显著差别,可同时或分段脱除H2S、CO2和各种有机硫等杂质,具有气体净化度高、选择性好、溶液吸收能力强,操作费用低等特点,是一种技术先进、经济合理的气体净化工艺。自1954年Lurgi公司在南非Sasol建成世界上第一套工业规模的示范性装置以来,目前有100余套装置投入运行,尤其是大型渣油气化和煤气化装置的气体净化均采用低温甲醇洗工艺。

低温甲醇(Rectisol)法具有一次性脱除CO2,溶液便宜易得,能耗低,适用范围广泛等特点。但该法投资很大,我国镇海炼化厂大化肥等四家以重油和煤为原料的合成氨装置使用了低温甲醇法脱除CO2。

1.2.3物理化学吸收法

物理化学吸收法脱除CO2工艺主要有环丁砜(Sulfinol)法和常温甲醇(Amisol)法,物理化学吸收法常用于中等CO2分压的原料气处理。环丁砜法中所使用的溶剂由是环丁矾、二异丙醇胺与水组成,能同时吸收CO2和硫的化合物,且吸收速度快,净化度高,但再生耗热多,目前只有一些中小型厂使用。常温甲醇法是在甲醇中加入了二乙醇胺,当CO2分压升高时,以其在甲醇中溶解的物理吸收为主;当CO2分压较低时,以其与二乙醇胺发生化学反应的化学吸收为主,该法应用范围广,净化率高,但对H2S和CO2的选择性较差,己很少使用。

1.2.4固体吸附

固体吸附是CO2在加压时被吸附在多孔状固体上,减压时吸附的CO2被解吸,亦称变压吸附。

1.3碳酸丙烯酯(PC)法脱碳工艺基本原理

1.3.1PC法脱碳技术国内外现状

PC为环状有机碳酸酯类化合物,分子CH3CHOCO2CH2,该法在国外称Fluor法。PC法是南化集团研究院等单位于20世纪70年代开发的技术,1979年通过化工部鉴定。据初步统计,已有150余家工厂使用PC技术,现有装置160余套,其中大型装置两套,其余为中小型装置。大部分用于氨厂变换气脱碳。总脱碳能力约300万吨合成氨/年,其中配尿素型应用较多,占60%左右,至今该法仍是联碱、尿素、磷铵等合成氨厂使用最广的脱碳方法,其开工装置数为MDEA、NHD法总和的数倍。

1.3.2发展过程

PC技术的应用,主要经历了两个阶段:第一阶段始于70年代末,两个小氮肥厂用PC法代替水洗法脱CO2的工业试验装置获得成功,取得了明显的节能效果和经济效益。加之PC法在工艺上与水洗法相似,改造费用低,很快在一些小氮肥企业中推广应用;第二阶段,20世纪90年代以来,随着小化肥改变碳铵单一产品结构,适应市场需要,采用脱碳增氨转产尿素或联醇等方法,以提高经济效益,增强小化肥的竟争能力。为此,需要增设一套变换气脱碳装置,由于PC技术为典型的物理吸收过程,流程简单,投资少,节能明显,技术易于掌握。因此,很快得到了推广,并扩大了应用范围,技术上也趋于成熟。

1.3.3技术经济

由于碳丙脱碳纯属物理过程,因而它的能耗主要消耗在输送流体所须的电能。碳丙溶剂对CO2等酸性气体的吸收能力较大,一般为同条件下水吸收能力的4倍。因此,代替水洗法脱除变换气中CO2不但满足铜洗要求,而且回收CO2的浓度和回收率也能满足尿素、联碱生产的要求。与水洗法相比可节省电耗150-250KWh/tNH3,可节省操作费10-25元/t NH3。因而应用碳丙脱碳的厂家均可获得明显的节能效果。但这种效果随着工艺配置、设备、操作状况,处理规模和目的的不同而差异较大。碳丙脱碳与几种脱碳方法的能耗比较如表1.1。

表1.1 几种脱碳方法的能耗比较表 方法名称 加压水洗 能耗 2847

苯菲尔法 位阻胺法 改良MEDA法

1884

NHD法 1047-1256

PC法 1256

3558-5442 3349-4187

1.3.4工艺流程

1.3.4.1气体流程

(1)原料气流程

由压缩机三段送来2.3MPa的变换气首先进入水洗塔底部与水洗泵送来的水在塔内逆流接触,洗去变换气中的大部分油污及部分硫化物,并将气体温度降到30℃以下,同时降低变换气中饱和水蒸汽含量。气体自水洗塔塔顶出来进入分离器,自分离器出来的气体进入二氧化碳吸收塔底部,与塔顶喷淋下来的碳酸丙烯酯溶液逆流接触,将二氧化碳脱至工艺指标内。净化气由吸收塔顶部出来进入净化气洗涤塔底部,与自上而下的稀液(或脱盐水)逆流接触,将净化气中夹带的碳酸丙烯酯液滴与蒸气洗涤下来,净化气由塔顶出来后进入净化气分离器,将净化气夹带的碳酸丙烯酯雾沫进一步分离,净化气由分离器顶部出来回压缩机四段入口总管。根据各厂的具体情况和氨加工产品的不同,相匹配的碳丙脱碳条件及要求亦各异。在使用上,有替代加压水洗型、联碱型、配尿素型、联醇型、生产液氨型以及制氢等各类型;在净化效率上,有的对CO2进行粗脱,而大部分厂家,则进行精脱;对脱碳压力,有采用0.4MPa、1.1-1.3Mpa、1.6-1.8Mpa、2.5-2.8Mpa及4.3Mpa等多种类型。 (2)解吸气体回收流程

由闪蒸槽解吸出来的闪蒸气进入闪蒸气洗涤塔,自下而上与自上而下的稀液逆流接触,将闪蒸气夹带的液滴回收下来。闪蒸气自闪蒸气洗涤段出来后进入闪蒸气分离器,将闪蒸气夹带的碳酸丙烯酯液滴进一步分离下来,闪蒸气自分离器顶部出来送碳化,脱除二氧化碳并副产碳酸氢铵后,闪蒸气回压缩机一段入口总管。

由常解塔解吸出来的常解气进入常解-汽提气洗涤塔的常解气洗涤段,与自上而下的稀液逆流接触,将常解气中夹带的碳酸丙烯酯液滴与饱和于常解气中的碳酸丙烯酯蒸气回收下来,常解气自常解气洗涤段出来后进入常解气分离器,将常解气中夹带的碳酸丙烯酯液滴进一步分离,常解气自分离器顶部出来送食品二氧化碳工段。

汽提气由汽提塔出来后进入常解-汽提气洗涤塔的汽提气洗涤段,与自上而下的稀液逆流接触,将汽提气中夹带的碳酸丙烯酯液滴和饱和汽提气中的碳酸丙烯酯蒸气回收下来,经洗涤后汽提气由塔顶放空。 1.3.4.2液体流程

(1)碳酸丙烯酯脱碳流程简述

贫碳酸丙烯酯溶液从二氧化碳吸收塔塔顶喷淋下来,由塔底排出称为富液。富液经自调阀进入溶液泵-涡轮机组的涡轮,减压后进入闪蒸槽,自闪蒸槽出来的碳酸丙烯酯液一部分进入过滤器,大部分不经过过滤器,二者混合过后进入常解-汽提塔的常解段,碳酸丙烯酯液自常解段底部出来经过两液封槽进入汽提塔顶部,与自下而上的空气逆流接触,将碳酸丙烯酯溶液中的二氧化碳进一步汽提出来,经汽提后的碳酸丙烯酯溶液为贫液,贫液由汽提塔出来进入循环槽,再由循环槽进入溶液泵-涡轮机组的溶液泵,由泵加压后经碳酸丙烯酯溶液冷却器降温,进入二氧化碳吸收塔,从而完成了碳酸丙烯酯溶液的整个解吸过程。 (2)稀液流程循环

稀液(或软水)由常解-汽提气洗涤塔的常解段出来,经稀液泵加压后送往净化气洗涤塔上部自上而下。由塔底出来经自调阀进入闪蒸气洗涤塔的上部自上而下,由底部出来经自调阀进入常解-汽提气洗涤塔的汽提气洗涤段自上而下,由底部出来经一U型液封管进入常解气洗涤段继续循环。

1.3.5存在的问题及解决的办法

综合分析PC法脱碳各厂的使用情况,最具代表性的问题有: (1)溶剂损耗高。造成这一问题原因有三个因素: a.PC溶剂蒸汽压高;

b.PC气相回收系统不完善; c.操作管理水平的影响。

(2)净化气中CO2含量容易跑高,吨氨电耗高。净化气中CO2含量高,原因是多方面的如再生效果不好,系统残碳高或冷却不好等等。

目前,碳丙脱碳技术已提高到一个新的阶段,工业应用的或即将应用的最有吸引力的进展有以下几个方面。

1.3.6 PC法脱碳技术发展趋势

1.3.6.1塔器优化

塔器的优化包括塔径、塔填料、塔内件、塔过程控制的技术改造,改造后往往可提高20%-50%或更高的生产能力,改造主要分两部分进行:一是脱碳塔气液分布器和填料的改造,其目的是提高通气量和强化气液接触效率,加大润湿面积。具体办法是设税全截面均匀分布的气体和液体分布器,部分或全部采用规整填料;二是再生塔的改造。由于传统设计中再生塔常解段均为淋降式,当系统硫含量高时,受逆流及淋降板开孔直径的限制,易造成溶液中的单质硫积累结垢,渐渐堵塞淋降板上的开孔,使其失效故往往生产2年后再生效果会明显不如以前。由此可见,必须对这种结构彻底改造。具体办法是将常解段改为筛板或填料塔型,并增设类似塔型的真空解析段。

改造工作除了塔器以外,还进行了系统工艺优化,具体内容有:(1)调整溶剂泵的扬程,串联1台增压泵;(2)气提流程由原正压气提改为负压气提,有利于提高贫度;(3)降低变换气和循环溶剂的温度,以提高碳丙吸收能力;(4)采取碳丙溶剂半过滤或全过滤方法,杜绝系统堵塞隐患;(5)提高变换气脱硫效果;(6)碳丙稀液回收改造[11]。 1.3.6.2复合溶剂法

用两种或两种以上的物理、化学或物理化学溶剂作为复合溶剂净化酸性气体的研究,多年来一直方兴未艾。复合溶剂法的优点从选择性和吸收能力分析,特别是高分压下,选择合适的复合溶剂,优于纯溶剂,显著地提高了溶剂的吸收能力;另一方面明显地降低了能耗。除此以外,复合溶剂为了达到操作特性要求所作的混合过程,还具有其它方面的灵活性,即复合溶剂的组成。而且,复合溶剂可以优化配方用最低的费用达到所须的分离要求(见表1.2)。

表1.2 两种方法的技术经济比较(以吨氨计)

项目 CO2净化度(%) 溶剂损耗(Kg) 电耗(KWh) 操作成本(元)

PC法 0.8 1.5 145 85

复合溶剂法

0.5 0.75 100 60 1.3.6.3低温PC法

实践证明,低温碳丙法具有以下优点:(1)气体净化度高;(2)降低溶剂循环量;(3)降低溶剂损耗。

为了在较低操作压力下获得需要的气体净化度、降低溶剂循环量、节省动力消耗、降低溶剂蒸发损失,吸收操作可在低于常温条件下进行,即低温碳酸丙烯酯脱碳技术。CO2在溶剂中的溶解度可用下式表示:lgx*=lgp+B/T+C+lgζ

式中:

x*——CO2在含水溶剂中的饱和溶解度,摩尔分数;p——气相CO2分压,1.01×105Pa; B、C——常数,B=686.1,C=-4.245;

ζ——溶剂含水量的修正系数,当含水量为2%时,ζ=0.9,lgζ=-0.046; T———吸收温度,K。 1.4工艺设计的意义和目的

随着合成氨工业的飞速发展与国际经济的迅速变化,合成氨工业的经济性急需要提高,来降低成本,抵御风险。就碳酸丙烯酯法脱碳工艺进行深入研究,以达到成本最低化,资源有效化。

因此,在国际经济与国家政策的前提下,将合成氨的风险和利润投入到中间工序脱碳工段,对陷入困境的化工行业是一个很好的出路,对内外交困的合成氨行业来说,可以避免风险,降低成本。此工艺能有效缩短流程,降低能源消耗,减少污染排放,在提高产品附加值的同时也填补了脱碳工艺的国内空白,并且为合成氨领域的进步积累了难得经验。

第四篇:合成氨工艺指标

4.工艺控制指标

(1)脱硫工序

铁锰脱硫出口: S≤5ppm 氧化锌出口硫含量: ≤0.1ppm 加氢量 : 2~5% 进口温度TIC-111: 380±5℃ 氧化锌出口温度: ≤360℃ 进脱硫系统压力: ≤4.1 MPa (2)转化工序

水碳比:

3.2~3.5 一段炉进口压力:≤3.82 MPa 对流段出口烟压:-2000 Pa 炉膛负压:

-100 Pa 工艺空气盘管温度:≤615℃ 原料天然气盘管NO.4:≤400℃

燃料天然气预热盘管:≤200℃ 一段炉阻力: ≤0.35 MPa 二段炉出口温度:

≤997℃ 二段炉出口甲烷:

≤0.5% 脱氧槽液位: 80%以上 中压汽包液位: 1/3~2/3 锅炉给水O2含量: ≤0.007ppm (3)变换工序

高变进口温度: TIC-157 370±5℃高变出口CO: ≤3 % 高变汽包蒸汽压力: ≤2.5 MPa 低变出口温度: ≤228℃ (4)脱碳工序(碳酸钾溶液)

吸收嗒入气温度: 81℃±5℃ 吸收塔进贫液温度:70℃±5℃ 再生气温度: <40℃ 吸收塔压差: <45KPa 一段炉出口甲烷:

≤12.84% 燃料气压力PI-811: ≤0.35 MPa 排烟温度:

≤170℃ 混合气盘管出口温度:≤610℃ 过热蒸汽盘管NO.3: ≤360℃

原料天然气盘管NO.7:≤295℃ 一段炉出口温度: ≤801℃ 二段炉阻力:

≤92 KPa 二段炉水夹套温度:

≤100℃ 中压汽包蒸汽压力:

≤4.2 MPa 脱氧槽压力: ≤20KPa

锅炉给水PH值: 8.8~9.3 二段炉出口甲烷 ≤ 0.5% 高变出口温度: ≤436℃

高变汽包液位: 1/3~2/3 低变进口温度TIC-220 :200±5℃低变出口CO: ≤0.3 % 吸收塔出气温度: 70℃±5℃ 吸收塔进半贫液温度: 112℃±5℃ 再生塔出口贫液温度: 120℃±5℃ 再生塔压差: <20KPa

再生塔出再生气压力: <75KPa 低变废锅蒸汽压力 : 0.40~0.50MPa 吸收塔出二氧化碳含量: ≤0.1% 再生气纯度: ≥98.5 % 汽提塔出口水中电导率: ≤10μs/cm 吸收塔液位: 1/2~2/3 闪蒸槽液位: 1/2~2/3 低水分液位: 1/3~2/3 低变废锅液位: 1/3~2/3 净水分液位: 1/3~2/3 铁离子含量: <100ppm 汽提塔液位: 1/2~2/3 再生塔中部液位: 1/3~2/3 贫液流量: ≤ 96 t / h 总碱度: 25~30% 半贫液再生度: 1.35~1.45 DEA V5+/V4+: ≥0.5 甲烷化工序

甲烷化进口温度: 310℃±5℃ 甲水分出口温度: <40℃ 甲水分液位: ≤10 %

再生塔上部液位: ≥30 % 再生塔下部液位: 1/2~2/3 半贫液流量: ≤ 778 t / h 贫液再生度: 1.15~1.25 : 2~3% 总矾: 0.7~1.0%(以KVO3) 甲烷化床层温度: ≤350℃ 甲烷化出口CO+CO2:≤10ppm (5)

第五篇:合成氨工艺流程

尽管氨合成工艺流程各异,但合成基本原理相同,故有许多相同之处。

由于氨合成率不高,大量氢气、氨气未反应,需循环使用,故氨合成是带循环的系统。

氨合成的平衡氨含量取决于反应温度、压力、氢氨比及惰性气体含量,当这些条件一定时,平衡氨含量就是一个定值,不论进口气体中有无氨存在,出口气体中氨含量总是一定值。因此反应后的气体必须冷凝以分离所含的氨,使循环回合成塔入口的混合气体中氨含量尽量少,以提高氨净值。

当循环系统惰性气体积累达到一定浓度值时,会降低合成率和平衡氨含量。因此,应定期或连续排放定量的循环气,使惰性气体含量保持在要求的范围内。

氨合成系统是在高压下进行的,必须用压缩机加压。管道、设备及合成塔床层压力降以及氨冷凝等阻力的原因,使循环气与合成塔进口气间产生压力差,需采用循环压缩机弥补压力降的损失。

此外,还有反应气体的预热和反应后气体热能的回收等。

工艺流程是上述步骤的合理组合,下图是氨合成的原则工艺流程。合理确定循环机、新鲜气体的补入及惰性气体排放位置以及氨分离的冷凝级数、冷热交换器的安排和热能回收方式,是流程组织与设计的关键。

上一篇:农技推广队伍建设下一篇:能力社会与执政党