合成体范文

2022-05-15

第一篇:合成体范文

合成氨

节能型合成氨工艺与技术

10化工05班 吴林强 1001110526

1、合成氨工艺概述

合成氨生产与国民经济密切相关,其产品氨是制造化肥和其它许多化工产品的原料。合成氨生产过程因所采用的原料和净化、合成方法的不同形成了不同的工艺流程,能量消耗也有差别。就合成氨典型流程而言,一般分为以下三种: (1)以煤为原料的中小型合成氨流程,如碳化工艺流程、三催化剂净化流程。特点是生产能力较低,吨氨能耗较高。

(2)以天然气为原料的大型合成氨流程,采用蒸汽转化、热法净化生产方法。特点是生产能力大,设备效率和能量利用率高,吨氨能耗小。

(3)以重油(或煤)为原料的大型合成氨流程,采用部分氧化、冷法净化生产方法。特点是生产能力大,吨氨能耗较小。

选用什么方法合成氨,应根据原料、工艺要求和技术经济比较,力求经济合理和操作可靠。合成氨生产是耗能大户。吨氨生产成本中能源费用占70%以上,因而能耗是衡量合成氨技术水平和经济效益的重要标志之一。合成氨生产中所用原料和燃料有一次能源——煤、石油、天然气等;二次能源——电、蒸汽、热水等。吨氨能耗的降低体现合成氨技术的进步,如何合理、高效利用能源,作好节能降耗工作,对合成氨生产具有重要意义。

2、节能型合成氨工艺 2. 1 凯洛格(Kellogg)工艺

美国凯洛格公司设计的第一套低能耗大型合成氨装置于1983年建成投产,吨氨能耗为29. 31GJ。20世纪90年代后,该公司与英国石油公司(BP)合作开发的更先进的合成氨工艺——KAAP和KRES组合技术,将吨氨能耗降到25. 96~27. 21GJ,这是对合成氨工艺的重大突破。

KAAP技术采用低温低压下高活性的氨合成Fe系催化剂。KRES技术为自热式转化技术,设备由换热式一段转化炉和绝热式二段转化炉组成,从二段炉出来的热转化气通过换热向一段炉提供所需全部热量,使能耗大为降低。 2. 2 布朗( Braun)工艺

美国布朗公司的节能措施主要是减少燃料天然气用量,即减少一段转化炉负荷(出口CH4含量从原10%提高至30%左右),增大二段转化炉负荷并在此加入过量空气(产生大量反应热,提供残余CH4转化所需热量),从而使一段炉温降低,燃料天然气用量减少。同时,采用深冷净化脱除过量的氮,并用燃气透平驱动空气压缩机,吨氨能耗为28. 4GJ。我国对引进的布朗装置的一段转化炉采用了低水碳比节能技术,氨合成采用了三塔三废热锅炉回路流程,利用余热产生高压蒸汽,进一步降低了能耗。 2. 3 ICI工艺

英国ICI公司的AM -V流程,除了采用布朗工艺的一些节能措施外,最主要的特点是开发、应用了在低温低压下活性好的氨合成Fe -Co催化剂。1988年, ICI公司又开发了流程简化、规模缩小的LCA工艺,建成2套日产450t氨的装置,吨氨能耗为29. 31GJ,证明了中型合成氨装置也可达到与大型合成氨装置相当的节能水平。 2. 4 KPK工艺

KPK工艺是KRES /PURIFIER /KAAP的简称,该工艺包含了Kellogg、Braun先进技术,主要有用换热式转化器替代传统的一段转化炉,采用钌系催化剂和深冷净化技术等,是新型的合成氨节能工艺。

3、合成氨节能技术

20世纪70 -90年代,我国陆续引进了31套大型合成氨装置。对于日产1000t合成氨厂而言,其转化工序能耗占第一位,蒸汽动力系统能耗占第二位,合成工序能耗占第三位。国外开发的各种节能新工艺中,许多节能技术成果用于我国现有合成氨厂的挖潜改造同样有效,现按工序分述如下: 3. 1 转化工序

(1)调整

一、二段转化炉负荷,使一段炉温降低,燃料天然气用量减少,降耗明显。 (2)采用蓄热式或热管式换热器加热助燃空气,使烟道气排放温度从250e降至120e,可回收热量1. 17GJ /t。

(3)采用低水碳比操作,使H2O /C(摩尔比)从315降至2. 5,H2O /C每降低0. 1可节能0. 12GJ /t。

(4)设置天然气蒸汽饱和器,用水冷激预热后的天然气自产水蒸汽,减少了外供蒸汽。 (5)采用新型转化器——管式换热转化炉进行一段转化,取消传统的外部加热式一段转化炉,热能消耗下降。

(6)提高转化压力至4. 5MPa,每1t可以节能01191GJ。 3. 2 变换工序

(1)采用低温高活性、适应低汽气比反应的新型催化剂替代传统催化剂,变换炉温降低,从而降低蒸汽用量。

(2)采用水冷列管式变换炉,并通过饱和热水器回收变换反应热。 (3)中小型合成氨厂,可采用饱和热水塔流程回收部分水蒸汽。 3. 3 脱碳工序

(1)采用先进的物理吸收法,如我国开发的NHD法(类似于Allied公司的聚乙二醇二甲醚法),脱碳能耗降低。

(2)采用改良的化学吸收法,如低能耗本-菲尔法,再生能耗可降低60%。

(3)采用活化MDEA法,能耗比低能耗本-菲尔法还低,仅为(3.2 -4.25)x104kJ /kmolCO2。 3. 4 精炼工序

(1)采用深冷分离法,在低于-100e条件下除去惰气并调整氢氮比,使合成回路不需放空。此法与前述二段转化炉加入过量空气的节能措施相配套,亦可脱除过量的氮。

(2)采用分子筛变压吸附代替甲烷化,脱除微量CO、CO

2、CH

4、Ar,简化了净化流程。甲烷排放气可用作一段转化炉燃料,提高热利用率。 3. 5 压缩工序

(1)压缩机与循环机分开,避免压缩机内部从循环段向高压段因气体泄漏造成动力损失。

(2)提高蒸汽透平效率,在运行操作中维持蒸汽参数的最佳化。 (3)采用分子筛干燥入塔氢氮气,以节约压缩机动力。

(4)采用燃气透平驱动空气压缩机,可使燃料天然气能耗降低2. 093GJ /t。 3. 6 合成工序

(1)采用新型节能合成塔,如径向、轴径向、卧式或冷激式塔,氨净值高,热能利用充分,并且压降小,可有效降低压缩机的功耗。 (2)采用低温低压高活性Fe -Co系催化剂,操作压力可降到8~10MPa,明显减少了压缩机功耗。

(3)采用中空纤维膜分离装置,回收合成尾气中的H2。 (4)二级氨冷出口气氨送冰机回收冷量。

(5)利用氨合成反应热副产高压蒸汽(凯洛格、布朗、ICI工艺共同的特点)。 3. 7 联合节能

(1)合成氨与合成尿素装置的联合合成尿素的原料氨全部来自氨合成系统,冷冻 系统的负荷降低,动力消耗亦减少;同时将尿素与合成氨装置的蒸汽系统联合/捆绑0,实现节能降耗。

(2)合成氨与合成甲醇装置的联合用天然气制甲醇会出现过量的氢,将其输入合成氨系统,在二段转化炉中用过量空气补充氮。另外,氨-甲醇联合装置可将合成氨系统多余的CO2供给合成甲醇系统进行组分调节,从而减少甲醇装置的排放气量。

4 我国合成氨工业展望

跨入21世纪,我国合成氨年产量已超过3000万吨,从生产能力到总产量都位居世界第一。其中,以天然气为原料的30多家大型合成氨装置,因其产量高、能耗低成为我国合成氨生产的主力军。通过对引进技术的消化吸收和知识创新,我国已掌握了具有世界先进水平的合成氨工艺与技术,同时也促进了中小型合成氨厂的技术进步。根据我国国情,目前还不能用大型厂取代所有的小型厂,在相当一段时期,仍然是大、中、小厂并存的状况。所以对中、小型厂还需很好地加以利用和进行技术改造,尤其对以煤为原料的中、小型厂,节煤节电是节能关键。在过去的近10年间,已有400多家中、小型厂采用蒸汽自给节能技术,吨氨能耗有降至44. 25GJ的,平均下降了约12%,节能效果显著。

近年来,合成氨净化双甲工艺升级为醇烃化新工艺,已在国内近30家化肥企业推广应用。将双甲工艺中的甲烷化部分革新为烃化反应,即为醇烃化工艺,除联产甲醇外,还生产车用燃油。该新工艺可减少原料气中24%的H2耗量及80%的放空气量,还可省去甲醇化后的净醇工艺,为合成氨工业开创了节能降耗的新途径。

展望21世纪,合成氨节能技术将会得到更广泛、科学地开发和应用,我国合成氨工业将可持续、更快速地向前发展。

第二篇:多肽合成方法

多肽合成中肽键形成的基本原理

一个肽键的形成(生成一个二肽),从表面上看是一个简单的化学过程,它指两个氨基酸组分通过肽键(酰胺键)连接,同时脱去水。

在温和反应条件下,肽键的形成是通过活化一个氨基酸(A)的羧基部分,第二个氨基酸(B)则亲核进攻活化的羧基部分而形成二肽(A-B)。如果羧基组分(A)的氨基未保护,肽键的形成则不可控制,可能开有成线性肽和环肽等副产物,与目标化合物A-B混在一起。所以,在多肽合成过程中,对不参与肽键形成的所有官能团必须以暂时可逆的方式加以保护。

因此,多肽合成-即每一个肽键的形成,包括三个步聚:

第一步,需要制备部分保护的氨基酸,氨基酸的两性离子结构不再存在; 第二步,为形成肽键的两步反应,N-保护氨基酸的羧基必须先活化为活性中间体,随后形成肽键。这一耦合反应既可作为一步反应进行,也可作为两个连续的反应进行。

第三步,对保护基进行选择性脱除或全脱除。尽管全部脱除要等到肽链全部组装完成后才能进行,但为了继??? 续肽合成,选择性脱除保护基也是必需的。

由于10个氨基酸(Ser、Thr、Tyr、Asp、Glu、Lys、Arg、His、Sec和Cys)含有需要选择性保护的侧链官能团,使肽合成变得更加复杂。因为对选择性的要求不同,所以必须区分临时性和半永久性保护基。临时性保护基用于下一步要反应氨基酸的氨基或羧基官能团的暂时保护,在不干扰已经形成的肽键或氨基酸侧链的半永久性保护基才脱除,有时也在合成过程中脱除。

在理想状态下,羧基组分的活化和随后的肽键形成(耦合反应)应为快速反应,没有消旋或副产物形成,并应用等摩尔反应物以获得高产率。但遗憾的是,还没有一种能满足这些要求的化学耦合方法相比,适用于实际合成的方法很少。

在肽合成过程中,参与多种反应的官能团常常与一个手性中心相连(甘氨酸是唯一的例外),存在发生的消旋的潜在危险。

多肽合成循环的最后一步,保护基要全部脱除。除了在二肽的合成中需要全脱保护以外,选择性脱除保护基对于肽链延长具有非常重要的意义。合成策略要深思熟虑地规划,依战略选择,可以选择性脱除Nα-氨基保护基或羧基保护基。“战略”一词这里是指单个氨基酸的缩合反应顺序。一般来说,在逐步合成和片段缩合之间 是有区别的。在溶液中进行肽合成(也指“常规合成”),对困难序列,多数情况下,用肽链逐步延长法只能合成较短的片段。要合成更长的肽时,目标分子必须分割成合适的片段,并确定在片段缩合过程中,它们能使能C端差向异构化程度最小。在单个片段逐步组装完成后,再连接产生目标化合物。肽合成战术包括选择最恰当的保护基组合和最佳的片段偶联方法。

最初的固相多肽合成(SPPS)只是肽和蛋白质逐步合成法的一种变化,其概念是将增长的肽链连接到一个不溶性的聚合物载体上,由Robert Bruce Merrifield在1963年首次报道。今天,为纪念他1984年获得诺贝尔奖而称之为Merrifield。在聚合物载体上,也可以进行片段缩合反应。

多肽合成方法之酰基叠氮物法

早在1902年,Theodor Curtius就将酰基叠氮物法引入到肽化学中,因此它是最古老的缩合方法之一。在碱性水溶液中,除了与酰基叠氨缩合的游离氨基酸和肽以外,氨基酸酯可用于有机溶剂中。与其他许多缩合方法不同的是,它不需要增加辅助碱或另一等当量的氨基组分来捕获腙酸。

长期以来,一直认为叠氮物法是唯一不发生消旋的缩合方法,随着可选择性裂解的氨基酸保护基引入,该方法经历了一次大规模的复兴。该方法的起始原料分别是晶体状的氨基酸酰肼或肽酰肼64,通过肼解相应的酯很容易得到。在-10℃的盐酸中,用等当量的亚硝酸钠使酰肼发生亚硝化而转化为叠氮化物65,依次洗涤、干燥,然后与相应的氨基组分反应。有些叠氮化物可用冰水稀释而沉淀出来。 二苯磷酰基叠氮化物(DPPA)也可以用于酰基叠氮化物的合成。Honzl-Rudinger方法采用亚硝酸叔丁作为亚硝化试剂,并且使叠氮缩合反应可在有机溶剂中进行。因酰基叠氮化物的热不稳定性,缩合反应需在低温下进行。当温度较高时,Curtius重排,即酰基叠氮转化为异氰酸酯的反应成为一个主要的副反应,最终导致生成副产物脲。由于反应温度低(如4℃)而导致反应速率相当慢,使得肽缩合反应通常需要几天才能完全。

对于较长的N端保护的肽链,酯基的肼解一般比较困难,因此,使用正交的N保护肼衍生物是一种选择。在肼基的选择性脱除后,按倒接(backing-off)策略组合的肽片段可以用于叠氮缩合。

如前所述,虽然叠氮法一直被认为是消旋化倾向最小的缩合方法,但在反应中,过量的碱会诱发相当大的消旋。因此,在缩合反应期间要避免与碱接触,例如,氨基组分的铵盐应采用N,N-二异丙胺或N-烷基吗啉代替三乙胺来中和。

虽然有上述局限性,但该方法仍很重要,尤其对于片段缩合而言,因为该方法具有较低的异构化倾向,适用于羟基未保护丝氨酸或苏氨酸组分,同时,Nˊ保护的本行酰肼还具有多种用途。

多肽合成方法之酸酐法

在多肽合成中,最初考虑应用酸酐要追溯到1881年Theodor Curtius对苯甲酰基氨基乙酸合成的早期研究。从氨基乙酸银与苯甲酰氯的反应中,除获得苯甲酰氨基乙酸外,还得到了BZ-Glyn-OH(n=2-6)。早期曾认为,当用苯甲酰氯处理时,N-苯甲酰基氨基酸或N-苯甲酰基肽与苯甲酸形成了活性中间体不对称酸酐。 大约在70年后,Theodor Wieland利用这些发现将混合酸酐法用于现代多肽合成。目前,除该方法外,对称酸酐以及由氨基酸的羧基和氨基甲酸在分子内形成的N-羧基内酸酐(NCA,Leuchs anhydrides)也用肽缩合。最后应该提到,不对称酸酐常常参与生化反应中的酰化反应。

多肽合成方法之混合酸酐法

有机羧酸和无机酸皆可用于混合酸酐的形成。然而,仅有几个得到了广泛的实际应用,多数情况下,采用氯甲酸烷基酯。过去频繁使用的氯甲酸乙酯,目前主要被氯甲酸异丁酯所替代。

由羧基组分和氯甲酸酯起始形成的混合酸酐,其氨解反应的区域选择性依赖依赖于两个互相竞争的羰基的亲电性和(或)空间位阻。在由N保护的氨基酸羧酸盐(羧基组分)和氯甲酸烷基酯(活化组分,例如源于氯甲酸烷基酯)形成混合酸酐时,亲核试剂胺主要进攻氨基酸组分的羧基,形成预期的肽衍生物,并且释放出游离酸形式的活性成分。当应用氯甲酸烷基酯(R1=异丁基、乙基等)时,游离的单烷基碳酸不稳定,立即分解为二氧化碳和相应的醇。然而,对于亲核进攻的区域选择性,也有一些相反的报道,产物为氨基甲酸酯和原来的N保护氨基酸组分。 为了形成混合酸酐,将N保护的氨基酸或肽分别溶于二氯甲烷、四氢呋喃、二氧六环、乙腈、乙酸乙酯或DMF中,用等当量的三级碱(N-甲基哌啶、N-甲基吗啉、N-乙基吗啉等)处理。然后,在-15℃--5℃,剧烈搅拌的同时加入氯甲酸烷基酯以形成不对称酸酐(活化)。经短时间活化后,加入亲核性氨基酸组分。如果作为铵盐使用(需要更多的碱),必须避免碱的过量使用。如果严格按照以上的反应条件,混合酸酐法很容易进行,是最有效的缩合方法之一。

Benoiton和他的同事对混合酸酐的稳定性,减少副产物氨基甲酸酯和消旋等方面进行了深入研究,由此进一步了解了反应机理,并提高了该方法的缩合效率,目前该方法已获得广泛应用。通过研究过量氨基甲酸酯产生的原因,尤其是在异亮氨酰基和缬氨酰基的情况下,发现以二氯甲烷为溶剂和N-甲基哌啶作为三及碱能防止这一主要副反应。混合酸酐对水解有较高稳定性,因此,可以用水洗涤有机相来纯化混合酸酐。从氯甲酸烷基酯制得的混合酸酐的稳定性依赖于使用的烷基。由Boc-、Z-和 Fmoc-的保护氨基酸和氯甲酸异丙酯制得的混合酸酐能够被分离纯化,比从氯甲酸乙酯或氯甲酸异丁酯获得的混合酸酐更稳定。当没有合适的亲核试剂时,混合酸酐在有机溶剂中的分解起始于环化,生成2-烷氧基-5(4H)-恶唑酮,同时释放出二氧化碳和醇R2-OH,副产物为对称酸酐和酯。

在混合酸酐缩合法的实际应用中,有以下几方面需要注意:虽然含水的DMF对于混合酸酐的形成和随后的缩合反应是一个好的溶剂,但是,正如在Z-Gly-Xaa-OH(Xaa=Ala,Leu,Val,Phe)与H-Val-OEt的反应中所遇到的,它促进消旋的程度比使用四氢呋喃或卤化试剂为溶剂时要高得多。氯甲酸异丙酯优氯甲酸乙酯或异丁酯。有趣的是,在DMF或N-甲基吡咯烷酮中,氯甲酸乙酯活化比氯甲酸异丁酯活化引起的消旋更少。尽管如此,从氯甲酸乙酯制取的混合酸酐,以三乙胺作为三级碱在目前几乎没有实用价值。最初,分别在Nα-甲基磺酰基、Nα-三苯甲基、Nα-三氟乙酰基保护的氨基酸活化中观察到混合酸酐法的副反应。

有时特戊酸(2,2-二甲基丙酸)被推荐作为活化基,用于混合酸酐的合成,对于Nα-酰基保护的天冬酰胺尤其如此。类似地,这种不对称酸酐由Nα-酰基氨基酸和特戊酰氯制得,并且与氨基亲核试剂反应的产率高。特戊酸叔丁基的强+I效应降低了它的羰基的亲电性,同时还因为空间位阻的影响,使亲核试剂在活化的氨基酸上发生预期的区域选择性进攻。从机理上考虑,这里也要提到酰基磷翁盐作为活性中间体在肽缩合中的应用。

多肽合成方法之对称酸酐法

Nα-酰基氨基酸的对称酸酐是用于肽键形成的高活性中间体。与混合酸酐法相反,它与胺亲核试剂的反应没有模棱两可的区域选择性。但肽缩合产率最高,为50%(以羧基组分计)。

虽然由对称酸酐氨解形成的游离Nα-酰基氨基酸可以和目标肽一起,通过饱和碳酸氢钠溶液萃取回收,但在最初,这种方法的实用价值极低。对称酸酐可以用Nα-保护氨基酸与光气,或方便的碳二亚胺反应制得。两当量的Nα-保护氨基酸与-当量的碳二亚胺反应有利于对称酸酐的形成,对称酸酐可以分离出来,也可不经纯化而直接用于后面的缩合反应。基于Nα-烷氧羰基氨基酸的对称酸酐对水解稳定,可采用类似上述纯化混合酸酐的方法进行纯化。

由于Boc-保护氨基酸的商品化和合理的价格,在肽链的逐步延长中,使用对称酸酐法日益受到重视。虽然可以买到晶状的对称酸酐,但原位制备仍然是一种不错的选择。

多肽合成方法-N-羧基内酸酐法

Hermann Leuchs在1906看发现,在N-羧基内酸酐(NCA)中,氨基酸的羧基活化和酰基保护同时发生。因此,在德国文献中,又称之为Leuchs-酸酐。原则上,该类衍生物应具备理想的前提条件以应用于多肽合成。

第一个N-羧基内酸酐(1,3-氧氮杂环戊烷-2,5-二酮)是从N-(乙氧羰基)氨基酸酰氯消除氯乙烷而得到的。制备该类衍生物的一个好方法是游离氨基酸与光气反应,相应的氨基甲酰氨为中间体。然而,痕量的水就能使N-羧基内酸酐发生聚合,因为最初形成的氨基甲酸自动脱去羧基得到游离胺,此游离胺是发生进一步开环反应的亲核试剂。因此,NCA方法在肽合成中的应用一直受到限制,直到1966年才探索出正确的反应条件,可以在水性介质中用N-羧基内酸进行有条件的肽合成。在低温和pH值为10.2的条件下,N-羧基内酸酐能迅速酰化氨基酸和肽。在pH值增加到10.2时,同时加入下一种N-羧基内酸酐,开始下一轮缩合。为减少中间体肽氨基甲酸酯和氨基组分间的羧酸酯的交换,必须剧烈搅拌反应混合物。精确控制pH值是另一个前提条件(氨基酸要求在pH值为10.2-10.5,肽要求在pH值为10.2),因为当pH值大于10.5时,产生副产物乙内酰脲。 N-羧基内酸酐的硫类似物即N-硫代羧基内酸酐(N-thiocarboxy anhydrides,NTA)也可以用于肽合成,因为硫代氨基甲酸酯具有较高的稳定性。酰化反应可以在pH值低到9-9.5时进行,因而可以防止可能的水解转化为乙内酰脲。NCA/NTA方法尤其适用于不需要分离反应中间体的片段缩合。三官能团氨基酸(除赖氨酸和半胱氨酸)不需要侧链保护。采用该方法已组合了核糖核酸酶S-蛋白的几个片段,之后采用叠氮物法可得到完整的S-蛋白。 最近,NCA方法再一次引起极大的关注,归功于已制备出氨基甲酸酯保护的N-羧基内酸酐(urethane-protected N-carboxy anhydrides,UNCA),并用于肽合成。在非质子溶剂中和三级碱存在的条件下,利用合适的试剂,可以将NCA的环上氮原子酰化,引入Boc、 Z或 Fmoc基团,得到相应的UNCA68(Y=Boc,Z, Fmoc)。从大多数氨基酸可获得UNCA晶体,并在无水条件下稳定存在。UNCA对亲核试剂表现出高反应活性,在常用于肽固相和液相合成的大多数无水溶剂(除醇以外)中,高速形成所需肽键。二氧化碳是唯一的副产物,并且没有发生寡聚或聚合的危险,因为在缩合反应后,增长中的肽链氨基端仍然被氨基甲酸乙酯保护着。 最近又报道了N-三苯甲基和N-苯基勿甲基保护的NCA。

多肽合成方法之碳二亚胺法

碳二亚胺类化合物可用于氨基和羧基的缩合。在该类化合物中N,Nˊ-二环己基碳二亚胺(DCC)相对便宜,而且可溶于肽合成常用的溶剂。在肽键形成期间,碳二亚胺转变为相应的脲衍生物,N,Nˊ-二环己基脲可以从反应液中沉淀出来。显然,碳二亚胺活化后的活性中间体氨解和水解速率不同,使肽合成能在含水介质进行。经几个课题组的大量研究,确立了以碳二亚胺为缩合剂的肽缩合反应机理,羧酸根离子加成到质子化的碳二亚胺,形成高活性的O-酰基脲;虽然还没有分离出这个中间体,但通过非常类似的稳定化合物推断了它的存在。O-酰基脲与氨基组分反应,产生被保护的肽和脲衍生物。或者,与质子化形式处于处于平衡状态的O-酰基异脲,被第二个羧酸酯亲核进攻,产生对称的氨基酸酐和N,Nˊ-二取代脲。前者与氨基酸反应得到肽衍生物和游离氨基酸。在碱催化下,使用DCC的副反应使酰基从异脲氧原子向氮原子转移,产生N-酰基脲71,它不再发生进一步的氨解。不仅过量的碱可催化O-N的酰基转移,而且碱性的氨基组分或碳二亚胺也可催化该副反应。

另外,极性溶剂有利于这一反应途径。

第三篇:合成技改情况汇报

1、合成技改部分设备已在年前招标,这周刚把厂家返回资料反馈给十一院相关人员。

2、合成设备两套系统分开运行方案已编制完成

3、合成设备两套系统分开运行方案正在抓紧绘制施工图纸。

4、合成精密过滤器、离心泵拟定第十三批招标,尚未有相关招标信息。

5、合成硅粉库以及合成新建淋洗池的相关土建工程图纸去年已到,需土建部相关人员进行审核,并招标

6、硅粉干燥器仍未出招标书,正在和设备厂家和十一院联系中。

技改办 合成技术 吴海涛

2011/6/15

第四篇:合成氨论文

论文写作与指导

姓 名: 学 号: 专业班级: 指导老师:

合成氨合成工艺的现状

The present status of synthetic ammonia process

Wang

西北民族大学化工学院,甘肃兰州 730124 Northwest university for nationalities institute of chemical, lanzhou, gansu ,730124 摘要:合成氨是重要的化工原料, 在国民经济中占有重要地位,本文在文献调研的基础上综述了合成氨设备、催化剂、合成氨工艺三方面的现状和未来发展趋势。在设备方面,通过对冷管型合成塔和绝热型合成塔新技术的综述和两种设备的对比,阐述了国内外合成氨设备的不同之处,及国内外合成氨设备的优劣,提出了国内合成氨设备的发展建议。合成氨工艺方面,通过转化、变换、脱碳、合成四方面综合阐述了目前合成氨工艺技术的现状和发展趋势,介绍了近年来国内外合成氨工艺的新技术和工艺流程方面的新进展。

关键词:合成氨;新工艺;合成塔

Abstract:Ammonia is one of the most important chemical production,It has an important station in national economy. This article has summarized the ammonia synthesis by ammonia equipment, catalyze, and technology to describe the actuality and the future which based the literature disquisition. For the equipment through the difference of the cold tube compose tower and insulate compose tower, we can know which is better and it can also give some advice of the development for our country equipment.For the technology, through the transform, commutation, decarburization and compose which tell the technology at present and development in future .introduce the new technology and the new development in technology flow.

Key words: ammonia synthesis; new technology; catalyst; reactor 1 、合成氨的历史

过去制氢是在水煤气发生炉中加水蒸汽使其焦炭气化,氮则以空气形式通入,使氢氮维持正确比例。在本法中吹入蒸汽通过灼热焦炭层生成氢。当焦炭因吸热反应被充分冷却时,即停止通蒸汽而改通空气。通空气燃烧将焦炭层温度升高到下一次水煤气循环所需要的温度。水煤气的净化过程是采用变换,水洗和铜洗微量。直到二次大战末,在欧洲和美国均采用此种造气和净化法。

上个世纪三十年代中期,已发展了用烃的催化剂和非催化转化法制氢。而催化转化法完全以法本公司的镍催化剂为基础。是将蒸汽和烃的混合物在730-1000℃下,在一段转化炉中进行转化,催化剂装在外部加热的管内。在二段转化炉中,氮是以空气形式或富氧空气形式一起导入,这时,烃的残余组份同时转化。经还原的一种镍催化剂可在第一段及第二段车钊七炉中使用。蒸汽转化工艺过程适于转化从天然气到轻油范围内的烃类。烃的非催化裂解是在有外壳的反应器内进行,这时烃与氧在不同压力下气化。以后是净化氢和混合物的工艺过程,脱硫只能在裂解后进行。净化了的气体与氮一起混合而导入合成系统[1-5]。

2、合成氨的现状

德国化学家哈伯1909年提出了工业氨合成方法,即“循环法”,这是目前工业普遍采用的,也被称作直接合成法。反应过程中为解决氢气和氮气合成转化率低的问题,将氨产品从合成反应后的气体中分离出来,未反应气和新鲜氢氮气混合重新参与合成反应。合成氨反应式如下:

N2+3H2≈2NH3

目前中国主要是以煤为主,油气并存的局面。

3、合成氨发展前景

原料路线的变化方向。从世界燃料储量来看,煤的储量约为石油、天然气总和的10倍,自从70年代中东石油涨价后,从煤制氨路线重新受到重视,但是因为以天然气为原料的合成氨装置投资低、能耗低、成本低的缘故,到20世纪末,世界大多数合成氨厂仍以气体燃料为主要原料。

节能和降耗。合成氨成本中能源费用占较大比重,合成氨生产的技术改进重点放在采用低能耗工艺、充分回收及合理利用能量上,主要方向是研制性能更好的催化剂、降低氨合成压力、开发新的原料气净化方法、降低燃料消耗、回收和合理利用低位热能等。现在已提出以天然气为原料的节能型合成氨新流程多种,每吨液氨的设计能耗可降低到约29.3GJ。

与其他产品联合生产。合成氨生产中副产大量的二氧化碳,不仅可用于冷冻、饮料、灭火,也是生产尿素、纯碱、碳酸氢铵的原料。如果在合成氨原料气脱除二氧化碳过程中能联合生产这些产品,则可以简化流程、减少能耗、降低成本。中国开发的用氨水脱除二氧化碳直接制碳酸氢铵新工艺,以及中国、意大利等国开发的变换气气提法联合生产尿素工艺,都有明显的优点[6]。

4、氨的性质 4.1氨的物理性质

氨气的主要物理性质见下表

表3-1 氨气的主要物理性质

中文名 分子式 沸点(℃) 熔点(℃) 燃烧性 溶解性 爆炸极限 外观及性状 主要用途

4.2氨的化学性质

NH3遇HCl气体或浓盐酸有白烟产生,可与氯气反应。

(1)氨水(混称氢氧化铵,NH4OH)可腐蚀许多金属,一般若用铁桶装氨水,铁桶应内涂沥青。

(2)氨的催化氧化是放热反应,产物是NO,是工业制硝酸的重要反应,NH3也可以被氧化成N2[7-8]。 氨气 NH3 330.0 10.5 助燃 极易溶于水 15.8%-28%

英文名 相对分子量 饱和蒸气压(kPa)

相对密度 溶解度 危险特性 偶极距

ammonia 17.03 0.13(145.8℃) (水=1)0.82 89.9 g/100 mL

腐蚀性 1.42D

通常情况下是有刺激性气味的无色气体

做制冷剂及制作化肥

5、合成氨的生产工艺及主要方法 5.1原料气的制备

将煤和天然气等原料制成含氢和氮的粗原料气。对于固体原料煤和焦炭,通常采用气化的方法制取合成气;渣油可采用非催化部分氧化的方法获得合成气;对气态烃类和石脑油,工业中利用二段蒸汽转化法制取合成气。

5.2 净化

对粗原料气进行净化处理,除去氢气和氮气以外的杂质,主要包括变换过程、脱硫脱碳过程以及气体精制过程。

5.2.1一氧化碳变换过程

在合成氨生产中,各种方法制取的原料气都含有CO,其体积分数一般为12%~40%。合成氨需要的两种组分是H2和N2,因此需要除去合成气中的CO。变换反应如下:

CO+H2O→H2+CO2

由于CO变换过程是强放热过程,必须分段进行以利于回收反应热,并控制变换段出口残余CO含量。第一步是高温变换,使大部分CO转变为CO2和H2;第二步是低温变换,将CO含量降至0.3%左右。因此,CO变换反应既是制造原料气的继续,又是净化的过程,为后续脱碳过程创造条件。

5.2.2脱硫脱碳过程

各种原料制取的粗原料气,都含有一些硫和碳的氧化物,为了防止合成氨生产过程催化剂的中毒,必须在氨合成工序前加以脱除,以天然气为原料的蒸汽转化法,第一道工序是脱硫,用以保护转化催化剂,以重油和煤为原料的部分氧化法,根据一氧化碳变换是否采用耐硫的催化剂而确定脱硫的位置。工业脱硫方法种类很多,通常是采用物理或化学吸收的方法,常用的有低温甲醇洗法(Rectisol)、聚乙二醇二甲醚法(Selexol)等。

粗原料气经CO变换以后,变换气中除H2外,还有CO

2、CO和CH4等组分,其中以CO2含量最多。CO2既是氨合成催化剂的毒物,又是制造尿素、碳酸氢铵等氮肥的重要原料。因此变换气中CO2的脱除必须兼顾这两方面的要求。

一般采用溶液吸收法脱除CO2。根据吸收剂性能的不同,可分为两大类。一类是物理吸收法,如低温甲醇洗法(Rectisol),聚乙二醇二甲醚法(Selexol),碳酸丙烯酯法。一类是化学吸收法,如热钾碱法,低热耗本菲尔法,活化MDEA法,MEA法等。

5.2.3 气体精制过程

目前在工业生产中,净化方法主要分为深冷分离法和甲烷化法[9]。深冷分离法主要是液氮洗法,是在深度冷冻(-100℃)条件下用液氮吸收分离少量CO,而且也能脱除甲烷和大部分氩,这样可以获得只含有惰性气体100cm3/m3以下的氢氮混合气,深冷净化法通常与空分以及低温甲醇洗结合[10]。甲烷化法是在催化剂存在下使少量CO、CO2与H2反应生成CH4和H2O的一种净化工艺,要求入口原料气中碳的氧化物含量(体积分数)一般应小于0.7%。甲烷化法可以将气体中碳的氧化物(CO+CO2)含量脱除到10cm3/m3以下,但是需要消耗有效成分H2,并且增加了惰性气体CH4的含量。甲烷化反应如下:

CO+3H2→CH4+H2O ΔH=-206.2kJ/mol CO2+4H2→CH4+2H2O ΔH=-165.1kJ/mol 5.3氨的合成

将纯净的氢、氮混合气压缩到高压,在催化剂的作用下合成氨[10]。氨的合成是提供液氨产品的工序,是整个合成氨生产过程的核心部分。氨合成反应在较高压力和催化剂存在的条件下进行,由于反应后气体中氨含量不高,一般只有10%~20%,故采用未反应氢氮气循环的流程。氨合成反应式如下[11]:

N2+3H2→2NH3(g)=-92.4kJ/mol

6、 原料气精制的主要方法

原料气经一氧化碳变换和二氧化碳脱除后,尚含有少量一氧化碳和二氧化碳,在送往氨合成系统前,为使它们总的含量少于10ppm,必须进一步加以脱除。脱除少量一氧化碳和二氧化碳有三种方法;

6.1 铜氨液吸收法

铜氨液吸收法是最早采用的方法,在高压、低温下用铜盐的氨溶液吸收一氧化碳并生成络合物,然后将溶液在减压和加热条件下再生,由于吸收溶液中有游离氨,故可同时将气体中的二氧化碳脱除:

6.2 液氮洗涤法 液氮洗涤法是利用液态氮能溶解一氧化碳、甲烷等的物理性质,在深度冷冻的温度条件下把原料气中残留的少量一氧化碳和甲烷等彻底除去,该法适用于设有空气分离装置的重质油、煤加压部分氧分法制原料气的净化流程,也可用于焦炉气分离制氢的流程。

6.3 甲烷化法

甲烷化法是60年代开发的方法,在镍催化剂存在下使一氧化碳和二氧化碳加氢生成甲烷:

由于甲烷化反应为强放热反应,而镍催化剂不能承受很大的温升,因此,对气体中一氧化碳和二氧化碳含量有限制。该法流程简单,可将原料气中碳的氧化物脱除到10ppm以下,以天然气为原料的新建氨厂,大多采用此法。但甲烷化反应中需消耗氢气,且生成对合成氨无用的惰性组分──甲烷。

7、 Topsoe氨合成塔

为提高合成塔的生产能力, 降低造价,设计出一种称为“ 热壁” 型式的合成塔, 已投入工业应用。该合成塔耐压壳体较薄, 重量较轻, 制造费用较少, 顶盖直径也较小。

(1)投资费用较少

耐压壳体较薄顶盖较小底部结构简单内件设计也很简单。 (2)容易运输和安装

内件重量小, 可以用标准集装箱船运。 (3)流体分布均匀, 床层压降小

催化剂的装填对合成塔能否发挥正常性能很重要。传统的径向流合成塔装填催化剂时都需要振打, 以确保催化剂均匀填满整个床层。这种装填方式较耗时, 且不容易装填好, 易产生很多空穴, 使气体出现偏流, 催化剂利用率低。Topsoe研究出了一种称为“ 毛毛雨式装填法”该法装填迅速,所需时间为振打法的一半, 而装填密度为振打法的102%-104%, 且催化剂密度均匀。该法已在工业生产中取得了良好的效果。 致谢:感受颇深,受益匪浅。在论文的写作过程中,有很多困难,在理论学习阶段,得到孙初锋老师的悉心指导和帮助。借此机会我向孙初锋老师表示衷心的感谢!同时,我也要感谢我的同学给予我的帮助,他们为我撰写论文提供了不少建议和帮助。在此要特别感谢孙老师,他为人随和热情,治学严谨细心。在学习生活中他能像知心朋友一样鼓励你,在论文的写作和措辞等方面他也总会以“专业标准”严格要求你,再次谢谢孙初锋老师!

参考文献

[1 ] 蒋德军. 现代化工,[J ] .2002 ,22 (6) :39 – 48.

[2 ] 蒋德军,合成氨工艺技术的未来发展趋势 [J] 现代化工,2005. [3 ] 刘增胜. 大型氨合成塔的发展动态.化肥工业,1994

[4 ] 梅安华. 小合成氨厂工艺技术与设计手册:下册.化学工业出版社,1995 [5 ] 陈运根. [J].氨合成工艺技术新进展.化肥工业,2002 [6 ] Smil V [J] .Nature,1999,400 ~416.

[7 ] 何林. [J ] . 工业催化,2000,8 (1) : 3~11.

[8 ] 黄传荣,等. [J ] . 化肥工业,1998 ,,25 (2) : 30~32.

[9 ] 朱继承,等. [J ]. 高等化学工程学报, 2000,14(3) : 270~275. [10] Rod T H , Logadottir A,Norskov J K. [J ] .J.Chem.Phy,2000 , 112 (12) : 5343~5347. [11] 黄传荣,等. 一种新型稀土氨合成催化剂制备工艺,[ P] . CN 86107630 , 1990

第五篇:合成氨论文

合成氨反应过程

业:化学工程与技术

号:220092212

名:周诗健

合成氨反应过程

摘要

本文概括介绍了合成氨反应过程,介绍了合成氨催化剂、合成氨工艺、合成氨工艺流程以及合成氨反应发展前景。催化剂由最初的铁基催化剂,发展到现在的钌基催化剂和纳米催化剂的发展过程。目前国内外合成氨的方法比较多,合成工艺流程虽然不同,但是许多基本步骤是具有相同的地方。但想要进一步完善合成氨过程,也需要研究者进一步努力,困难是存在的,但前景是广阔的。

关键词 合成氨 催化剂 发展

一、合成氨催化剂

1、铁基合成氨催化剂

传统的合成氨催化剂于20世纪初由德国BASF公司研制开发出来的[1]。它是由磁铁矿制备的,加入少量不可还原氧化物作为促进剂,特别是K、Ca、Al。磁铁矿作为不可缺少的催化剂前驱体早已被人们所熟知,并予以接受。由于它允许Al3+和Fe3+进行简单的阳离子取代并均匀分布其中,这样磁铁矿还原成金属铁后,铁粒子要么被分散均匀的铝氧化物包覆[2]。要么包含于次晶铁铝酸盐物种中,这两种情况都能使铁避免烧结,因而延长了催化剂的寿命。当Fe2+/Fe3+高于或低于0.5时,其活性都会降低[3],正因为这个原因,人们认为这种催化剂的组成是固定不变的,并且人们并不期望这种催化剂的催化性能再有多大的提高。也正是因为这个原因,另外一种完全不同的低压合成氨催化剂——Ru/C催化剂被开发出来了[4,5]。关于合成氨熔铁催化剂,人们一直都认为R值(即Fe2+/Fe3+)为0.5时其催化活性达到最佳状态,这一经典理论沿袭了80多年,直到刘化章等人找到了性能更佳的新的熔铁催化体系———维氏体Fe1-XO体系[6,7]才突破了这一经典结论,标志着合成氨催化剂进入了一个新的发展时期。

2、钌基催化剂

钌基催化剂的开发成功是合成氨工艺的一个重大进步,它对合成氨工业降低生产成本,降低能耗有着十分重要的现实意义。近年来,以Ba为促进剂,BN为载体的钌催化剂得以成功开发,它具有前所未有的活性和稳定性。BN具有与

石墨相似的结构,在所有的加氢反应中都很稳定,是一种高温电阻绝缘材料。在特定的反应条件下(温度、压力、H2/N2比、氨浓度等)可选择合适的BN表面积、钌负载量、助剂及浓度、颗粒大小与密度,以获得最佳的Ba-Ru/BN催化活性;而且采用类似处理Ba-Ru/MgO催化剂的处理方法来回收Ba-Ru/BN催化剂,这无疑大大降低了使用这种催化剂的成本,为它的工业化应用打下了基础。

3、纳米合成氨催化剂

纳米催化剂的选择性要比普通催化剂平均高5~10倍,活性高2~7倍, 在实验室研究中,人们[8-11]利用各种方法已经研制出了纳米Fe3O

4、纳米Fe2O

3、纳米CuO、纳米NiO、纳米ZnO、纳米MoO3等纳米微粒催化剂,它们是合成氨过程中制气、脱硫、变换、精炼、合成等几道工序需要用到的催化剂。虽然它们具有良好的催化活性,但是大部分还只停留在实验室阶段,离实际应用还有相当一段距离,要想使它们在实际的生产中得以应用,还需要科研工作者付出巨大的努力。

4、其它合成氨催化剂

丹麦哈尔多托普索研究实验室的研究人员[12]研制成功可替代传统铁催化剂的系列产品。研究表明,在工业条件下,三元氮化物如Fe3Mo3N、Co3Mo3N和Ni2Mo3N用作合成氨催化剂时活性高稳定性好。另有研究发现,若在Co3Mo3N催化剂中加入Cs,其活性高于目前所使用的熔铁催化剂。据报道,在相同操作条件下,其活性为传统铁催化剂活性的2倍。

二、制氨工艺

1、传统型蒸汽转化制氨工艺阶段[13]

传统型合成氨工艺以Kellogg工艺为代表,其以两段天然气蒸汽转化为基础,包括如下工艺单元:合成气制备(有机硫转化和ZnO脱硫+两段天然气蒸汽转化)、合成气净化(高温变换和低温变换+湿法脱碳+甲烷化)、氨合成(合成气压缩+氨合成+冷冻分离)。

传统型两段天然气蒸汽转化工艺的主要特点是: ①采用离心式压缩机,用蒸汽轮机驱动,首次实现了工艺过程与动力系统的有机结合。

②副产高压蒸汽,并将回收的氨合成反应热预热锅炉给水。

③用一段转化炉烟道气预热二段空气,提高一段转化压力,将部分转化负荷转移至二段转化。

④采用轴向冷激式氨合成塔和三级氨冷,逐级将气体降温至-23℃,冷冻系统的液氨亦分为三级闪蒸。

在传统型两段蒸汽转化制氨工艺中,Kellogg工艺技术应用最为广泛,约有160套装置,其能耗为37.7~41.8 GJ/t。经过节能改造后平均能耗已经降至35.7 GJ/t左右。

2、节能型制氨工艺阶段[14] (1) 凯洛格(Kellogg)工艺

美国凯洛格公司与英国石油公司(BP)合作开发的更先进的合成氨工艺———KAAP和KRES组合技术,将吨氨能耗降到25. 96~27. 21GJ,这是对合成氨工艺的重大突破。KAAP技术采用低温低压下高活性的氨合成Fe系催化剂。KRES技术为自热式转化技术,设备由换热式一段转化炉和绝热式二段转化炉组成,从二段炉出来的热转化气通过换热向一段炉提供所需全部热量,使能耗大为降低。

(2) 布朗( Braun)工艺

美国布朗公司的节能措施主要是减少燃料天然气用量,即减少一段转化炉负荷(出口CH4含量从原10%提高至30%左右),增大二段转化炉负荷并在此加入过量空气(产生大量反应热,提供残余CH4转化所需热量),从而使一段炉温降低,燃料天然气用量减少。同时,采用深冷净化脱除过量的氮,并用燃气透平驱动空气压缩机,吨氨能耗为28. 4GJ。

我国对引进的布朗装置的一段转化炉采用了低水碳比节能技术,氨合成采用了三塔三废热锅炉回路流程,利用余热产生高压蒸汽,进一步降低了能耗。

(3) ICI工艺

英国ICI公司的AM-V流程,除了采用布朗工艺的一些节能措施外,最主要的特点是开发、应用了在低温低压下活性好的氨合成Fe-Co催化剂。1988年, ICI公司又开发了流程简化、规模缩小的LCA工艺,建成2套日产450t氨的装置,吨氨能耗为29. 31GJ,证明了中型合成氨装置也可达到与大型合成氨装置相当的节能水平。

(4) KPK工艺

KPK工艺是KRES/PURIFIER/KAAP的简称,该工艺包含了Kellogg、Braun先进技术,主要有用换热式转化器替代传统的一段转化炉,采用钌系催化剂和深冷净化技术等,是新型的合成氨节能工艺。

(5) 其它合成氨技术进展

Uhde公司的CAR工艺:CAR工艺可节省35%转化所需的氧气,可节省15%的原料气。该工艺特别适合于生产能力为150~900t/d的合成氨生产装置。

GIAP的联合转化工艺:GIAP联合转化工艺不但可以降低能耗,而且也没有液体和气体的排放。该系统与常规合成氨转化系统相比,投资可节省一半。采用联合转化工艺,氨合成回路压力为8.0MPa,天然气的消耗为吨氨778m,,动力消耗为吨氨408kwh,吨氨外供高压蒸汽0.037t,装置的总能耗可达到吨氨27.7GJ。

三、合成氨的工艺流程[15]

1、原料气制备

将煤和天然气等原料制成含氢和氮的粗原料气。对于固体原料煤和焦炭,通常采用气化的方法制取合成气;渣油可采用非催化部分氧化的方法获得合成气;对气态烃类和石脑油,工业中利用二段蒸汽转化法制取合成气。

2、净化

对粗原料气进行净化处理,除去氢气和氮气以外的杂质,主要包括变换过程、脱硫脱碳过程以及气体精制过程。

①一氧化碳变换过程

在合成氨生产中,各种方法制取的原料气都含有CO,其体积分数一般为12%~40%。合成氨需要的两种组分是H2和N2,因此需要除去合成气中的CO。变换反应如下:

CO+H2O→H2+CO2 -41.2kJ/mol 由于CO变换过程是强放热过程,必须分段进行以利于回收反应热,并控制变换段出口残余CO含量。第一步是高温变换,使大部分CO转变为CO2和H2;

第二步是低温变换,将CO含量降至0.3%左右。因此,CO变换反应既是原料气制造的继续,又是净化的过程,为后续脱碳过程创造条件。

② 脱硫脱碳过程

各种原料制取的粗原料气,都含有一些硫和碳的氧化物,为了防止合成氨生产过程催化剂的中毒,必须在氨合成工序前加以脱除,以天然气为原料的蒸汽转化法,第一道工序是脱硫,用以保护转化催化剂,以重油和煤为原料的部分氧化法,根据一氧化碳变换是否采用耐硫的催化剂而确定脱硫的位置。工业脱硫方法种类很多,通常是采用物理或化学吸收的方法,常用的有低温甲醇洗法(Rectisol)、聚乙二醇二甲醚法(Selexol)等。

粗原料气经CO变换以后,变换气中除H2外,还有CO

2、CO和CH4等组分,其中以CO2含量最多。CO2既是氨合成催化剂的毒物,又是制造尿素、碳酸氢铵等氮肥的重要原料。因此变换气中CO2的脱除必须兼顾这两方面的要求。

一般采用溶液吸收法脱除CO2。根据吸收剂性能的不同,可分为两大类。一类是物理吸收法,如低温甲醇洗法(Rectisol),聚乙二醇二甲醚法(Selexol),碳酸丙烯酯法。一类是化学吸收法,如热钾碱法,低热耗本菲尔法,活化MDEA法,MEA法等。

③ 气体精制过程

经CO变换和CO2脱除后的原料气中尚含有少量残余的CO和CO2。为了防止对氨合成催化剂的毒害,规定CO和CO2总含量不得大于10cm3/m3(体积分数)。因此,原料气在进入合成工序前,必须进行原料气的最终净化,即精制过程。

目前在工业生产中,最终净化方法分为深冷分离法[16]和甲烷化法。深冷分离法主要是液氮洗法,是在深度冷冻(<-100℃)条件下用液氮吸收分离少量CO,而且也能脱除甲烷和大部分氩,这样可以获得只含有惰性气体100cm3/m3以下的氢氮混合气,深冷净化法通常与空分以及低温甲醇洗结合。甲烷化法是在催化剂存在下使少量CO、CO2与H2反应生成CH4和H2O的一种净化工艺,要求入口原料气中碳的氧化物含量(体积分数)一般应小于0.7%。甲烷化法可以将气体中碳的氧化物(CO+CO2)含量脱除到10cm3/m3以下,但是需要消耗有效成分H2,并且增加了惰性气体CH4的含量。甲烷化反应如下:

CO+3H2→CH4+H2O

-206.2kJ/mol

CO2+4H2→CH4+2H2O -165.1kJ/mol

3、氨合成

将纯净的氢、氮混合气压缩到高压,在催化剂的作用下合成氨。氨的合成是提供液氨产品的工序,是整个合成氨生产过程的核心部分。氨合成反应在较高压力和催化剂存在的条件下进行,由于反应后气体中氨含量不高,一般只有10%~20%,故采用未反应氢氮气循环的流程。氨合成反应式如下:

N2+3H2→2NH3(g) -92.4kJ/mol

四、合成氨催化剂的进展

衡量合成氨工业技术水平的标准不是产品氨的产量,而是其能耗的高低。而合成氨催化剂是影响合成氨工业产率和效率的最重要的因素。从1913年的铁催化剂到1994年的A202催化剂,历时80多年,催化剂母体无一例外都是Fe3O4,而其活性从20世纪50年代的A106到20世纪90年代的A202催化剂,历时40多年,仅提高2~3个百分点。新型的钌基合成氨催化剂可在低温、低压下操作,而且寿命很长,可节省大量能耗,必将成为替代铁基催化剂成为21世纪合成氨催化剂的主流。然而,由于钌的稀有和昂贵,必须综合考虑由于钌的价格因素所带来的成本与节省能耗的关系,开发出新一代高效节能型合成氨催化剂。 而纳米催化剂具有普通催化剂不能相比的高催化性,而且价格也不是很昂贵,很适合工业生产,但现阶段纳米催化剂还只能运用于实验室内,并不能够适应于大规模工业生产。因此,需要研究者们进一步努力,能够开发出具有高催化性、廉价的催化剂。

参考文献:

[1] Tamaru K. In: Jennings (Ed.) J R. Catalytic ammonia synthesis[M]. New York: Plenum Press, 1991,1-18. [2] Schloegl R. In: J R.Jennings(Ed.), Catalytic ammonia synthesis[M]. NewYork: Plenum Press,1991,109-132. [3] N. Pernicone, F. Ferrero, I. Rossetti, et al.合成氨工业催化剂的一种新型前躯体-维氏体[J].浙江工业大学学报, 2004,32(2):123-130. [4] Forni L, Molinari D, Rossetti I, Pernicone. Carbon-supported promoted Ru catalyst for ammonia synthesis [J]. Appl Catal, A, 1999,185:269-275. [5] Rossetti I, Pernicone N, Forni L. Promoters effect in Ru/C ammonia synthesis catalyst [J]. Appl Catal A, 2001,208: 271-278. [6] Liu H Zh, Hu Zh N, Li X N, et al. FeO based catalyst forammonia synthesis[J]. J Chem Ind Eng(China),1994,45(4):385-392. [7] Liu H Zh, Li X N. The precursor phase composition of iron catalyst and discovery of FeO based catalyst for ammonia synthesis Sci China(serB),1995,25(1):1-6. [8] 邓祥义,黄翠花.合成氨催化剂中活性组分的纳米化制备[J].化肥设计,2001,39(6):47-48. [9] 王军.NiO在γ-Al2O3及TiO2/γ-Al2O3载体上的表面存在状态[J].无机化学学报,2001,1(17):43-49. [10] 李晓娥.纳米级氧化锌的研究进展[J].现代化工,2000,7(20):23-26. [11] 吴晓林.热分解法制备高纯三氧化钼工艺研究[J].合肥工业大学学报,1998,6(21):123-126. [12] 钱伯章.合成氨催化剂的生产和技术[J].精细石油化工进展,2003,4(11):28-33. [13] 蒋德军.合成氨工艺技术的现状及其发展趋势[J].现代化工,2005,8(8):9-16. [14] 王瑾.节能型合成氨工艺与技术[J].贵州化工,2008,2(1):5-7. [15] 合成氨工艺与节能,上海,华东化工学院出版社,1990.4,第346页。 [16] Low G, Nitrogen, Jan/Feb, Supplement: Revamping Ammonia Plant, 1984.

The process of ammonia synthesis Abstract The principle of ammonia synthesis, catalyst and synthetic methods of ammonia are introduced. The development of catalyst in ammonia synthesis is presented. It starts from the catalyst contains iron. Then, It develops from catalyst contain ruthenium to nano-catalyst nowadays. At present there were many domestic and foreign synthetic methods of ammonia. Many basic steps were same although their synthesis procedures were different. The researchers should make further efforts if they want to improve the synthetic ammonia process. The difficulties exist, but the prospects are bright. Keywords: ammonia, catalyst, development

上一篇:标题区范文下一篇:七里香范文