热工监理工作总结

2022-07-13

时光在流逝,从不停歇,在这时光静走的岁月中,唯有工作留下的成绩,让我们感受到努力拼搏的意义。无论是什么行业的工作,在努力工作的过程中,你可能曾面临众多的困难时刻,那就为自己写一份工作总结吧,勉励自己,吸取经验,成长为更好的自己。以下是小编精心整理的《热工监理工作总结》,供需要的小伙伴们查阅,希望能够帮助到大家。

第一篇:热工监理工作总结

热工专业总结

一、2015年工作亮点

1、配合公司帮扶组完成电气热工专业专项检查工作;

2、组织开展2015年热工系统可靠性专项自查工作;

3、与检修热工人员配合,对热工自动和保护套数进行了重新梳理和统计,并对自动投入品质进行了进一步的调整和优化,自动投入率较上一有一定提高,未发生主辅机保护误动及拒动问题、

4、整理修订完成2015年热工保护定值清册;

5、完成#1机组RB试验及#2机组SOE卡件通道测试工作;

6、完成#2机组AGC控制及自动调整的逻辑调整优化工作;

7、完成废水零排放工程热控安装施工进度及质量的监督工作;

二、管理存在问题及工作中不足

1、专业管理不够系统,没能将监督管理工作深入细化,专业工作的配合与协调需进一步加强;

2、由于专业管理存在跨部门问题,细节性工作很难协调,需加强生技部的管理权威意识;

3、部分长期外委的招标工作如烟气监测系统第三方维保、DCS系统维保等,建议由维护部组织,便于日常管理和沟通协调;

三、整改措施

四、2016年工作思路设想

1、总结业务能力不足,加强相关领域的学习与培训;

2、结合热工专业工作计划做好热工专业相关工作;

3、结合生产过程中存在的问题,制定相应的技术方案并组织实施。

第二篇:09年热工总结

2009年工作总结

一、 2009年主要工作回顾

2009年热工专业在公司的正确领导下,出色完成了全年工作,机组接管一年来,保障了机组安全稳定运行,重点进行了#1机组大修、#2机组小修工作,设备隐患治理稳步推进,现场文明生产达到了新的水平,热工专业人才队伍得到充分锻炼,安全评价、并网安评春检、秋检工作圆满完成。

1、安全生产

一类障碍一次:8月21日22:20,府谷电厂#1炉“锅炉总风量低MFT”保护动作停炉,根据《电力生产事故调查规程》2.3.4.2认定为设备一类障碍。

事故原因是由于定期吹扫工作不到位,取样管接头有轻微泄露,总风量保护动作定值应为25%,调试所设臵成了30%,原因虽然是多方面的,热工专业没有怨天尤人,而是痛定思痛,举一反三,对全厂的保护回路、动作定值进行彻底排查,在9月份的#2机组小修中,对取样管路进行了改造,并强化定期对取样管路吹扫工作,进一步夯实了安全基础。

误操作一次:2009年5月11日上午8:41分,热控检修人员处理“#2炉E磨入口一次风量波动”缺陷,未办理工作票且未向运行人员交待,自行在工程师站将一次风量点进行强制。造成E磨入口热风门自动关闭,致使2E磨煤机风室满煤。

责任异常一次:2009年1月4日10:51分,由于对西北一电子间内接线监护不到位,西北一接线时误碰卡件,造成#2炉

一、二级减温

1 水气动闭锁阀突关。

2、设备治理

热工专业利用自己的力量完成了本专业所有检修工作,在#1机组大修期间完成了以下重大项目: 1)炉水循环泵差压变送器更换

2)根据鲁能补充反措,在锅炉四角最顶部加装量程0-10KPA膜盒压力表4块。

3)低缸喷水调节阀定位器改造 4)定冷水箱增加液计位变送器

5)风机执行机构更换为ROTORK电动执行机构。 6)将六套煤仓料位计移至甲乙皮带中间。

7)PCV阀控制箱改造:原控制回路无法实现就地开关在手动位时DCS远方操作,本次大修通过修改控制回路,实现了此功能。 8)真空泵电机线圈温度增加DCS监视

9)磨辊温度元件引线改造:磨辊温度元件引线没有按厂家施工,不到一周时间,导线磨断,本次大修将导线从密封风管道内穿过,彻底解决了这一遗留缺陷。

10)完成辅机冷却水压力变送器取样管移位工作:原取样点山东一公司施工时取在了回水管路,本次大修将取样点改在了开式水进闭式水装臵截门后。

11)轴封系统温度元件移位:由于原温度元件安装位臵不能真实反映温度值,本次大修将温度元件后移。

12)电泵冷油器增加温度元件:三台电泵工作油、润滑油冷油器出口温度

2 大修前运行人员无法远程监视实际温度,本次大修安装了6支热电阻,并利用原来电缆,完成接线调试。

13)闭式水放水门工作:原安装为气缸门,没有电磁阀箱,无法进行操作。本次大修更换为电动执行机构,并重新敷设电缆。

14)国产电动门增加继电器工作:由于国产电动门停电后,不报故障,运行人员无法判断停电状态,本次大修在电动门内增加中间继电器,监视电源送电状态,并将常开触点并联至故障信号。

15)发电机线圈温度元件检查:厂家进行了内部检查,对元件引出线法兰面进行了密封,并对42支热电偶加电容处理。

16)新增再热器壁温元件:根据运行及机务要求,需测量68屏壁温,新增12支壁温元件进入IDAS前端。

17)增加B层等离子点火系统,在DCS内部进行了等离子系统控制逻辑的组态,并增加卡件,实现了在DCS系统上对B层等离子系统的操作。

#2机组小修项目完成情况:

1)更换了A、B一次风动叶执行机构,A吸风机静叶执行机构 2)C、D磨热风调整执行机构下移 3)发电机断水流量开关回路改造 4)二次风量取样管路改造

3、生产管理

经过一年的设备治理,缺陷数量逐步减少,自10月份技术维护部启动达标治理以来,通过完善现场标识牌,对控制盘台端子箱、门锁治理,强

3 化每天晨检、晚检质量,现场就地设备文明生产水平有了很大提高。 1)定期工作纳入常规:二次风量变送器取样管路吹扫,#5皮带秤定期校验,工业电视镜头擦拭,自动调节保护系统定期试验,配合运行进行大机润滑油压定期联锁试验。

2)班组建设走向正规,各项工作有条不紊展开,各种记录、台帐清册按时填写,班组卫生始终保持,工器具、物品定臵管理,新版检修规程修编完毕。

3)专业队伍建设

热控专业管辖着全厂每一套系统,点多面广,设备质量、安装质量相对较差,年轻职工多,经过#

1、#2大小修,以及多次临修锻炼机会,热控专业正逐步打造成一支作风过硬、能打硬仗的专业队伍。

二、工作中存在的差距和不足及应对解决的措施

1、工作缺乏计划性,工作标准不高,现场设备治理虽下了很大功夫,与公司目标仍有一定差距。

2、班组管理水平有待提高,班容班貌有临时突击现象,技术讲课次数、培训质量需进一步加强。

三、2010年工作总体思路

1、积极开展岗位大练兵活动,全面提高员工检修水平。

2、组织好#2机组大修工作,通过大修,夯实#2机组热控设备安全水平。

四、2010年主要工作计划、目标

1、安全生产方面做到个人没有误操作,专业没有一类障碍事故发生。

2、提高检修消缺质量,确保每月消缺率在98%以上,

五、2010年主要工作措施

1、进一步强化班组管理,细化班组内部经济责任制,加大班组内部奖惩力度。

技术维护部热工专业

2009-12-17 5

第三篇:热工小组检修总结

检修总结

随着各分厂的陆续开车,仪电检修工作已近尾声。在这近20天的工作中,仪电员工积极响应仪电处领导号召,早出晚归,连续奋战,圆满完成了检修任务。结合热电分厂检修工作特总结如下:

根据乙醇公司的停产检修计划,作为乙醇公司的火车头,热电厂完全停产仅24小时,那些必要的仪电设备务必在这24小时得以检修和维护,。面对如此短暂的停产检修时间,热工小组早早做好了与时间赛跑的准备,在停产检修前按照处领导的部署,结合公司停产检修计划和自身的实际情况,制定了详细的停产检修计划,计划具体到每一个需要检修的仪电设备的检修时间、人员安排及相关的安全设施。15日这天,小组成员从早上7点至第二天上午10点连续奋战27小时,相继完成了:去股份电动调节阀拆修、安装、调试;给煤机工作电源改造;热网部分6台电动阀拆线、接线、调试等工作。为第二天热电厂顺利点炉打下了良好的基础。

在检修过程中,继续发扬仪电员工不怕苦、不怕累、敢打硬仗的工作作风,言传身教,以老带新,传承着仪电人一直以来延续的传、帮、带、比、学、赶、超的处室文化,圆满地完成了此次热电检修任务。在检修期间相继完成了:

1)、3#、4#给煤机检查校验;

2)、2#炉各取压口、取压管道疏通维护;

3)、2#炉所有PS调节阀检查、调试;

4)、1#炉、2#炉所有罗托克调节阀9V电池更换、检查、校验;

5)、2#炉一次、二次风机现场仪表检查维护;2#炉3#、4#引风机现场仪表检查维护;

6)、2#炉新更换集汽集箱紧急放空电动阀、循环汽包紧急放水电动阀、2#汽机来汽电动阀接线、调试;

7)、1#、2#除氧器PS调节阀检查、校验,更换1#除氧器进蒸汽ps调节阀伺服放大板;

8)、汽机热网部分电动阀电动装置保养、维护、调试。

9)、停机汽机现场仪表检查、维护;

10)、1#炉、2#炉、汽机部分现场仪表穿管维护;

11)、2#炉密相区6支热电偶更换;

12)、由于3#汽机在开机不久后跳机,检查3#机50

5、20

3、CPC、24V电源、速度传感器、外围线路等,相继更换20

3、24v电源、去505二支速度传感器。

在对现场仪表穿管维护过程,相继发现处理了:2#炉主给水罗托克调节阀380V电源线由于高温烘烤而发生粘连、2#炉流化风PS调节阀信号线由于外力导致破损、2#汽机来汽电动阀行程控制机构由于高温烘烤而导致元件散架等安全隐患。

检修已接近尾声,总结工作同时,又存在以下问题:热电现场仪表设备工作日久,出现老化现象,需逐步更换;在对现场表

维护过程中,一些穿线管软连接部分、管径大的挠性管破损,因无合适材料而无法更换,下一步需想办法解决;对一些关键设备,知识掌握得不够,在以后工作中有待加强。

热工小组

2013-4-28

第四篇:热工基础课程总结

热工基础学习总结

摘要:本文就热工基础这门课程的学习进行了以下三方面的总结。第一:说明这门课程的研究目的和研究方法;第二:简单总结各章节的主要内容和知识框架体系;第三:从个人角度论述一下学习这门课程的心得体会及意见。

关键词:热力学

传热学

循环

正文:自然界蕴藏着丰富的能源,大部分能源是以热能的形式或者转换为热能的形式予以利用。因此,人们从自然界获得的的能源主要是热能。为了更好地直接利用热能,必须研究热量的传递规律。

1 热工基础的研究目的和研究方法

1.1 研究目的

热的利用方式主要有直接利用和间接利用两种。前者如利用热能加热、蒸煮、冶炼、供暖等直接用热量为人们服务。后者如通过个证热机把热能转化为机械能或者其他形式的能量供生产和生活使用。

能量的转换和传递是能量利用中的核心问题,而热工基础正是基于实际应用而用来研究能量传递和转换的科学。

传热学就是研究热量传递过程规律的学科,为了更好地间接利用热能,必须研究热能和其他能量形式间相互转换的规律。工程热力学就是研究热能与机械能间相互转换的规律及方法的学科。由工程热力学和传热学共同构成的热工学理论基础就是主要研究热能在工程上有效利用的规律和方法的学科。

作为一门基于实际应用而产生的学科,其最终还是要回归到实际的应用中,这样一来,就要加强对典型的热工设备的学习和掌握。

1.2研究方法

热力学的研究方法有两种:宏观研究方法和微观研究方法。宏观研究方法是以热力学第一定律和热力学第二定律等基本定律为基础,针对具体问题采用抽象、概括、理想化简化处理的方法,抽出共性,突出本质。建立合适的物理模型通过推理得出可靠和普遍适用的公式,解决热力过程中的实际问题。微观研究方法是从物质的微观基础上,应用统计学方法,将宏观物理量解释为微观量的统计平均值,从而解释热现象的本质。

传热学的研究方法主要有理论分析,数值模拟和实验研究。理论分析是依据基本定律对热传递现象进行分析,建立合适的物理模型和数学模型,用数学分析方法求解;对于难以用理论分析法求解的问题,可采用数值计算和计算机求解;对于复杂的传热学问题无法用上述两种方法求解时,必须采用实验研究方法,实验研究法是传热学最基本的研究方法。

2主要章节内容总结 2.1基本概念(热力学基础知识)

热力系统:根据某种研究目的认为地划定的研究对象。按照热力系统和外界的物质和能量交换情况进行分类。常用的热力系统有开口系统、闭口系统、绝热系统和孤立系统。

工质:实现能量转换的媒介物质。如水蒸气,液态水,空气等都是常用的工质 热力系统某一瞬间呈现的宏观物理状态称为热力学状态。用于描述工质所处状态的宏观物理量称为状态参量。基本状态参量有压力、温度和比体积。

平衡态具有确定的状态参数。准静态过程是实际过程进行的足够缓慢的极限情况。实现准静态过程的条件是推动过程进行的不平衡势差无限小。

可逆过程与准静态过程的差别就在于无耗散损失。一个可逆过程必须同时是准静态过程,但准静态过程不一定可逆。

2.2热力学第一定律

热力学第一定律阐述了能量间相互转换的数量关系。本质是能量在转换过程中守恒,但依赖于物质的形态变化。

热力学第一定律应用于闭口系统的能量方程是:QUW

热力学第一定律应用于稳流系时的能量关系式即为稳流系能量方程。其表达式也有以下几种形式,它们的使用条件也不同: (1)qhwt或QHWt(适用条件:任意工质、任何过程) (2)qh-vdp或QH1Vdp(适用条件:任意工质、可逆过程)(3)qcpT-vdp或QmcpT-1Vdp(适用条件:理想气体、可逆过程)

2.3理想气体的性质与热力性质

理想气体的状态方程的基本形式为PV=nRT 气体常数Rg是随工质而异的常数,工质一定,其值是一个确定的常数,摩尔气体常数是与工质无关的常数。

22二者的关系为:Rg=R/M 理想气体的比热容有真实比热容、平均比热容、平均比热容直线关系式及定值比热容。可根据精度要求选用。

理想气体混合物仍具有理想气体的一切特性,利用理想气体混合物的成分可以求解折合气体常数和折合摩尔质量。

在理想气体的热力过程部分主要讨论了4个典型基本过程,即定容过程、定压过程、定温过程、定熵过程以及具有一般意义的多变过程。前4种过程中总有一个状态参数保持不变;对于多变过程,则过程中所有的状态参数都在变。关于过程方程,应记住基本方程pvnconst,可认为理想气体在可逆过程中都遵循该关系式。多变指数n的取值范围为从0之间的任一实数,所以该过程方程适用于所有的可逆过程。而4种基本热力过程则是所有可逆多变过程中的几个特例,根据过程特点分别为定容过程:n=±∞,定压过程:n=0,定温过程:n=1,定熵过程:n=,所以4种基本热力过程的过程方程不需要死记硬背就可以推出。

用来压缩空气或其他气体的设备称为压气机。活塞式压气机绝热压缩耗功最多,定温压缩最少,多变压缩介于两者之间,所以应尽量减少压缩过程中的多变参数,使压缩过程更接近于定温过程。但实际的活塞式压气机的余隙容积是不可避免的,余隙容积的存在,虽然对理论耗功没有影响,但使容积效率随压力比增大而减少。为了避免单级压缩因增压比大而影响容积效率,常采用多级压缩级间冷却的方法。

2.4热力学第二定律

热力学第二定律典型的说法是克劳修斯的说法和开尔文的说法。虽然两者在表述上不同,但实质是相同的,具有等效性。

热力学第二定律的数学表达式可归纳为以下几种:

(1)卡诺定理

ηt≤ηtc , ε≤εc , ε'≤εc'

(2)克劳修斯积分不等式

δQ∮Tr≤0

(3)由克劳修斯积分不等式推出

(4)熵方程

SδQdS≥Tr= dSf

QTrSgSfSg

(5)孤立系熵增原理

SisoSg≥0

熵是非常重要的状态参数,由可逆过程熵的定义式,得可逆过程熵变的基本计算公式为

SQT

上式可用于任意物质熵变的计算。但针对不同的工质,在结合该种工质热力性质的条件下,所推出的熵变计算公式不同。

2.5实际气体的性质及热力学一般关系式

实际气体由于距液态较近,构成气体的微观粒子间的作用力不容忽略,因而不能作为理想气体处理。

实际气体偏离理想气体的程度,通常采用压缩因子或压缩系数Z表示,Z=pv/RgT,Z是状态函数,Z值与1偏离越远,越表明这时的实际气体与理想气体的偏差越大。Z值的大小取决于气体种类、温度及压力。

目前研究实际气体热力性质的方法有以下两种:

(1)利用实际气体的状态方程,状态方程种类繁多,其中范德瓦尔方程最具代表意义。目前随着状态方程精度的提高,这种方法获得相当精确的结果。但状态方程往往也很复杂,因而难以通过解析法求解。通常可利用状态方程做成图表形式,以供查看。

(2)依据对比态原理,利用压缩因子对理想气体状态方程计算的结果进行修正,这种方法突出的优点在于通用性好,适用于任何气体。由于对比态只是一个近似的原理,因而这种方法计算结果精度不高,但在气体热力性质资料缺乏的情况下,这种方法较为简便,而且一般能够满足工程中的精度要求。

对于简单可压缩系,热力学中的状态参数主要有两个独立变量。依据热力学第

一、第二定律及其参数的特性,导出了适用于任何工质的熵,热力学能和焓的一般关系式。同时提出了亥姆赫兹函数和吉布斯函数,其物理含义分别是:亥姆赫兹函数表示可逆过程外界对系统所做的膨胀功;吉布斯函数表示可逆定温过程中系统对外所做的技术功。

2.6 水蒸气和湿空气

水蒸气由液态水经汽化产生,它离液态较近;湿空气是指含有水蒸气的空气。这两种气体其性质较为复杂,因而不能作为理想气体来处理。

工业和生活中所用的水蒸气通常是在定压条件下对水加热产生的,水蒸气在定压情况下的产生过程表示在P-V图和T-S图,可概括为:一点(临界点)、两线(饱和水线和饱和蒸汽线)、三区(未饱和水区、湿蒸汽区和过热蒸汽区)及五态(未饱和水、饱和水、湿蒸气、干饱和蒸汽和过热蒸汽)。由于水蒸气复杂的热力性质,工程计算中通常采用一种简易方法,即利用水蒸气的热力性质图、表来确定其状态并进行热力过程的功量、热量的计算。

湿空气是一种由氮气、氧气等气体和水蒸气所组成的一种混合气体,其热力性质可通过一系列的概念来描述,如水蒸气的分压力、饱和压力、相对湿度、含湿量、比焓等。工业中存在两种典型的湿空气热力过程分别是冷却去湿过程和加热吸湿过程,有时可能是几种热力过程的结合。湿空气的热力计算通常也采用图表的简易算法,最常用的水蒸气热力性质图是h-d图。

2.7动力装置循环

将热能转换成机械能的设备称为热机。根据循环介质不同热机主要分为两种形式:蒸汽动力装置和气体动力装置。

实际循环都是复杂的不可逆的,为使分析简化,通常将实际循环抽象概括成可逆的理论循环,通过理论循环分析,找出影响循环效率的因素,从而获得提高热效率的有效措施。

郎肯循环是基本的蒸气动力循环,通过理论循环的热力学分析,得出提高循环的热效率主要有两种途径:一是改变循环初参数,即提高蒸气的初压、初温及降低乏汽压力;二是改变循环的方式,即采用回热、再热循环及热电联产。前者在改变参数的同时受到设备投资、运行等各种条件的限制,因此实际中通常两种途径配合采用。

活塞式内燃机循环和燃气轮机是典型的两种气体动力循环,前者根据工质不同可分为煤气机、汽油机和柴油机;根据循环方式不同又可分为混合加热循环、定压加热循环和定容加热循环。

通过柴油机的理论循环分析得出结论,提高循环的压缩比、定容增压比及降低定压预账比均可提高循环的热效率。燃气轮机也是一种以空气和燃气为工质的动力装置,通过理论循环分析可知,循环的热效率取决于循环增压比,而且随循环增压比的增大而提高,与循环增温比无关。

2.8 制冷循环

制冷循环是一种不完全逆向卡诺循环,它通过消耗机械能或外界驱动热源实现了热量从低温物体向高温物体的传递,是一种重要的热力循环。

评价制冷循环的性能指标主要是制冷系数和热力完善度。制冷系数表示循环获得的制冷量与所消耗的代价之比,热力完善度表示实际制冷循环接近于可逆卡诺循环的程度。

蒸气压缩制冷循环依靠相变潜热来制冷,单位质量制冷剂的制冷量较大,因而应用最为广泛。吸收式制冷由于不消耗电能,以热能来驱动,故在电力紧张而余热丰富的场合尤为适用。

热电制冷循环是一种利用温差热电效应的制冷方式,突出优点在于无污染、无噪音,但其效率低,故一般用于小容量小体积的场合。

热泵循环也是逆向循环,其不同于制冷循环之处在于热泵循环的目的在于向高温热源释放能量。由于热泵装置的供暖系数永远大于1,故在节能方面优于其他供热方式。但热泵循环的上限温度为被加热物体的温度,下限温度为环境温度,因而它的应用会受到一定限制。

2.9热量传递的基本方式

在物体内部或相互接触 物体表面之间,由于分子、原子及自由电子等微观粒子的热运动而产生的热量传递现象称为热传导(简称导热)。

热对流是指由于流体的宏观运动时温度不同的流体相对位移而产生的热量传递现象。

由于物体内部微观粒子的热运动(或者说由于物体自身的温度)而使物体向外发射辐射能的现象称为热辐射。

热辐射相对于导热和对流具有以下特点:

(1)热辐射总是伴随着热能与辐射能这两种能量形式之间的相互转化。

(2)热辐射不需要中介,可以在真空中传播。 (3)物体间以热辐射的方式进行的热量传递是双向的。

2.10导热

在某一时刻t,物体内所有各点的温度分布称为温度在t时刻的温度场

在温度场中,温度沿法线方向的温度变化率(偏导数)称为温度梯度。

对于物性参数不随方向变化的各向同性物体,傅里叶定律的数学表达式为

qgratdntn

在直角坐标系中,导热微分方程式的一般表达式为

t2t2t2t2ccy2z2x

它建立了导热过程中物体的温度随时间和空间变化的函数关系。 导热微分方程和单值性条件一起构成了具体导热过程完整的数学描述。

热阻,是根据热量传递规律与电学中欧姆定律的类比得出的,“热流相当于电流,温差相当于电位差,热阻相当于电阻。根据电阻串、并联的原理,应用热阻网络图能够使计算多层物体及复合体的导热问题变得简单。但需要特别注意的是: 热阻网络分析只适用于无内热源、定壁温的一维稳态导热问题,对于其他一维稳态导热、非稳态导热及多维导热问题均不适用。

在非稳态导热问题中,物体内的温度场不仅随空间变化,而且还是时间的函数,求解方法有集总参数法、数值解法、分析解法或诺谟图法等。集总参数法是本章非稳态导热问题的重点,使用时应注意以下几点:

(1) 只有满足Bi≤0.1或BiV≤0.1M条件的非稳态导热问题,才可以用集总参数法求解;

(2)一般情况下,Bi≠BiV(只有无限大平壁相等); (3)如果用Bi作为判别条件,定型尺寸L为从绝热面到对流换热表面的垂直距离(两面换热的无限大平壁:壁厚的一半;单面换热的无限大平壁:整个壁厚;无限长圆柱体和球:半径);

(4)如果用BiV作为判别条件,定型尺寸L=V/A;

exp(BiVFoV)(5)如果用式0计算温度场,注意

BiV和FoV中L=V/A 。

计算从0到时刻通过物体传热表面传递的总热量Qτ 用以下公式

Q0Φd0hAd0hAhA0expcVd

cVhAhA01exphAcV cV01exphAcV2.11对流换热

对流传热的基本概念已经在前面介绍,这里不再重复。 影响对流传热的因素很多而又复杂,归纳起来主要有流体运动发生的原因,流体运动的状态,流体的性质及换热面的形状、位置尺寸等方面。

对流换热系数α集中反映了放热过程中的一切复杂因素,能反应对流换热的程度,但它不能简化对流换热问题的计算。

相似原理是一种能使试验布置及实验数据综合处理的理论,主要有三个核心内容。

一是物理现象相似的性质;凡是彼此相似的现象,它们的同名相似准则必定相等。这解决了实验中测量什么量的问题。 二是相似准则间的关系,物理现象中的物理量不是单个起作用的,而是由其组成的准则起作用,它解决了实验数据如何整理的问题。

三是判断相似的条件:凡同类现象,如单值条件相似,且同名准则相等,则准则必定相似,它解决了实际工程如何模拟实验,实验结果能否应用到实际工程中的问题。

2.12 辐射换热

物体对外界辐射来的热量具有吸收、反射和透射的能力。分别用吸收比、反射比和透射比反映物体相应能力的大小。黑体(α=1)、白体(ρ=1)和透明体(τ=1)都是假想的理想物体。

辐射力E: —单位时间内、单位辐射面积向其上半球空间所发射的全波长的辐射能总量(能流密度) 有效辐射J:单位时间离开单位表面的总辐射能。包括自身辐射的能量和反射辐射能量。

角系数:表面1发出的辐射能中落到表面2上的能量与表面1发出的总辐射能的比值称为表面1对表面2的角系数,记为X1, 2。同理也可定义表面2对表面1的角系数X2, 1。

在两个漫灰表面温度均匀、发射率均匀、反射率均匀、投射辐射也均匀的条件下,角系数为一个纯几何参数,它仅与物体的形状、大小、距离和位置有关。

角系数具有相对性(又称互换性);完整性和分解性。

角系数可利用角系数定义直接判断,也可用积分法、查曲线图、或代数法(利用角系数特性和已知角系数求解)等方式获得,要求重点掌握利用角系数定义直接判断、查曲线图和代数法。

热阻网络图:画辐射换热热阻网络图(热路图)的原则:对于黑体,表面热阻为0,对于灰体,表面热阻>0;任意两表面间辐射换热都有空间热阻。所以两黑体辐射换热热阻网络图只有一个空间热阻;两灰体辐射换热热阻网络图各有一个表面热阻,还有一个空间热阻(如图11.16);一个黑体和一个灰体辐射换热热阻网络图有一个空间热阻,另在灰体表面还有一个表面热阻。

遮热板:在两辐射表面之间放置黑度很小的薄板来遮挡辐射热,称为遮热板。未加遮热板时,两个物体间的辐射热阻为两个表面辐射热阻和一个空间辐射热阻。加了遮热板后,在不考虑遮热板导热热阻的情况下,将增加两个表面辐射热阻和一个空间辐射热阻(遮热板本身的导热热阻忽略不计)。因此总的辐射热阻增加,物体间的辐射传热量减少。这就是遮热板的工作原理。如果遮热板表面的性质与原辐射物体表面的性质相同,则在两块大平行平板间插入n块发射率相同的遮热板(薄金属板)时的辐射传热热流量为无遮热板时辐射传热热流量的1/(n1)。规律:遮热板黑度越小,表面热阻越大,遮热效果越好。

2.13 传热过程与换热器

实现冷热流体间热量交换的设备称为换热器,流体在换热器中所进行的传热过程往往是导热、对流、辐射换热3种方式共同作用的复合传热过程。

处理这类复合传热问题的有效方法是采用热阻分析方法,并从中找出主导换热方式。然后把次要的换热方式归纳到主导传热方式中加以考虑,或者忽略不计。

换热器种类繁多,按其工作原理,可分为混合式、蓄热式及间壁式,其中间壁式应用最为广泛。

换热器的计算方法主要有两种,即对数平均温差法和效能传热单元数法,它们既可以用于换热器的设计计算,也可以用于换热器的校验计算。

考虑到对数平均温差法用于校验时需要复杂的试算过程,相比之下,效能传热单元数法显得更为方便。

3 心得体会

通过对热工基础的学习,并与之前物理学专业课程相比较,发现一些既相通又相异的互相联系的方法和思想,这些方法和思想对于我从理科向工科的观念转变大有裨益。

第一:两者学科构建目的不同。物理学专业课程侧重在对整个物理学科整体框架的理解和构建,讲究的是理论的完整性,细节排布的紧密性,公式定理推导的严密性。是为以后从事与物理相关的工作打基础,面面俱到但不深入。有时为了引出一个定理,要做长篇的冗长的理论推导,环环相扣,缺一不可。因而对我们的数学功底,逻辑思维及性格都有很高的要求。

热工基础侧重于知识在实际工程中的应用,更看重知识整体的宏观性,并不特别在意那些在工程中作用甚微的环节,所以有的时候公式定理的推导给出并不是很连贯,要不就是由某些基础学科的结论直接给出,要不就是由实际的经验给出一些参数,至于其深层的物理原理,则不是热工基础课程要研究的内容。其典型代表就是以Bi数、Fo数、Gr数、j因子、Nu数、Pr数、Re数、St数为代表的相似准则数在传热学中对流传热中的提出和应用。我们在实际的应用中只要知其然,有时未必用知其所以然。

热工基础源于物理学,是其在工程中的综合应用,一门课程包括了力学、热学、统计物理、量子力学等课程内容。而门类界限不是那么清晰,是根据应用需要而展开的。比如在传热学的章节中,既有类似于牛顿力学得出的热传导的傅里叶定律,也有用量子力学等推导得出的热辐射规律。还有牛顿流体概念的提出,更是牛顿力学的相似利用,或者说本质就是牛顿力学,只不过是换上了传热学实用的外衣,焕发了第二春。

至于说质量守恒定律、动量守恒定律和能量守恒定律在解决热传导问题时的应用。更是将自然界放之四海而皆准的守恒律在工程中的完美应用。还有熵、火用、火无这三个典型概念的提出及应用分析,集直观性,精辟性,实用性于一身,其他如技术功、过程功更是如此。都是在理论的基础上大大地增加了其实用性。

第二:两者学科思想不同。整个物理学课程学下来,见证了一部恢宏壮丽的物理学史,每一部分都是那么的紧凑,来不得半点马虎,尤其是理论模型的建立和认识,更是凝聚了无数科学家的智慧和心血,反过来促进了物理学的发展。

热工基础课程是因其在工程中的应用而建立的,重在其用。故而就不如前者那么显得完美,感觉像拼凑在一起的。至于说理论模型更是在实际应用的基础上进行简化,有时未必真实,但是在应用上有与生俱来的优势,正是哲学上抓住主要矛盾,忽略次要矛盾的完美诠释。

根据能量和质量的流动对系统的分类过程中,现实中系统不能简单的归于某种情况(严格的说闭口系、开口系、绝热系、孤立系是不存在的),只是根据实际过程中的弛豫时间,取其主要效果归于某个系统模型,然后用模型检验实际系统,再进行适当修正。再比如热力过程中的可逆过程,循环过程中的卡诺循环等等都是类似的情况。既是在工程应用中误差允许的范围内,对实际问题进行简化,然后进行适当修正。

然而正是根据这些定义中的理想,应用中的趋近模型和过程,制造或改进了各种动力循环装置,在现实中发挥了举足轻重的作用,大大地加速了工业革命的进程,提高了经济社会效益。

第三:两者在计算方面的要求不同。物理学课程重在公式的推导,以加强对整个学科的理解。推导过程中用到的大部分是字母形式的变量,而不是具体数值。简而言之,没有太多的涉及到具体数值的计算。最典型的就是理论力学里面问题的推导,基本上自始至终都是字母,很少涉及具体数值,有的也是为数不多的物理学常数。

而热工基础大部分计算都是以数值的直接带入计算为主,因为实际中的应用太复杂,对我们直接进行数值计算的细心程度要求很高。另外,由于实际应用的复杂,如何在复杂的应用中抓住主要的环节,进行模型的简化和近似,也是计算能力的一部分。 整体而言,热工基础对于我们的计算能力的要求还是很高的。如各种气体在各种条件下的比热容等各种性质参数,都是根据实际测量得出的,而在计算中直接带入。还有各种物质的热力学性质也是没有现成的规律可循,有的只是前人在实验基础上得出的具体近似值。还有一类是以坐标图的形式给出的。一句话,大部分的参数都要带入具体数据,算出最后所要求解的数值才有其在工程上的意义。

第四:两者用到的辅助工具不同。因为物理学课程的基础性,全面性,对我们而言,基本上一支笔一张纸,运用传统的学习方式就能将其掌握。当然还要进行一些实验的操作和学习。

而热工基础就不同了,由于实际应用的复杂,传统的一支笔一张纸已经不能满足了,必须借助计算机等大型计算工具进行模型的建立和计算。另外还要借助一些软件进行必要的模拟和计算。如热传导问题的数值解法,单相对流传热中的相似原理和量纲分析就要借助计算机软件进行建模计算。这样的例子在工程中甚为常见。

归根结底,我们学这些知识最终都要用于实际。所以我们不光要掌握书本上的原理,还要熟悉实际应用中的相关设备。如本课程涉及到的各种动力循环设备,不能只为了学而学,要为了用而学。做一个既有扎实理论基础,又善于动手,熟知各种设备内部构造的全面发展的工程型人才。

【参考文献】

热工基础(电力热力设备运行专业) 唐莉萍

中国电力出版社 2004 热工基础(大机械系列) 于秋红 北京大学出版社 2009 热工学基础(建筑设备类) 余宁

中国建筑工业出版社 2012 传热学 杨世铭 陶文栓

高等教育出版社 2012 工程热力学 沈维道 童钧耕

高等教育出版社 2012

第五篇:热工个人工作总结

个人工作总结

时光茬冉,岁月如梭,转眼间2015年即将过去,我来到中宁发电厂已经工作5年了,通过这几年学习和工作,自身素质得到了很大的提高。在这年终岁首之际,回首2015年工作,虽没有多少可圈可点的成绩,但也从一些工作中得到了许多考验和磨砺,为了弥补不足、发扬成绩、再创佳绩,我先将一年的工作经验总结如下:

一、 工作认真负责,敬业爱岗,以公司理念要求自己,诚信待人,踏实做事,服从领导安排,克服各种困难,始终以积极认真的心态对待工作。特别是#2机组小修和临修期间,班组人员紧缺,我作为技术员,带领班组人员,按规定时间保质保量的完成了小修和临修任务,在此期间,还要协调班组人员建设好每一批7S样板区。

二、 技术上用心钻研,理论上熟记检修规程。首先,在工作中我始终严格要求自己,做好技术员应尽的职责,给班组里面技术欠缺的人员进行技术指导和讲解;其次,协助好班长管理好班内事务,有时班长有事或者休息,临时管理好班组,协调好班组成员做好每一个消缺工作;最后在每年的电力行业QC工作中,自己经常去现场获取一手资料,为QC工作的顺利开展打下坚实的基础。

三、 在设备日常巡检和维护中,加强了#2机组及外围辅网设备的日常巡检和管理制度,并提出了该方面的一些意见和建议。使设备安全稳定的运行;在设备缺陷和技改方面:对一些不合理的热控保护和逻辑提出了合理化的建议,对一些存在安全隐患的设备进行了隔离和排除,在班长和其他同事的的精心努力下得到彻底的解决。今年是公司的培训年,作为技术员,我严格要求自己,不断的提高自己技术能力。同时帮助班组里面技术薄弱的同事,常常给予他们必要的技术指导,使他们的消缺能力逐步提高。在班组建设方面,我做好节能环保与项目技改工作,为创建五型班组贡献自己得一份力量。今年公司在华电国际集团的领导下,积极开展7S工作,经过一年的努力,全厂已经实现7S全覆盖,我们班组在7S创建工作工作中,努力打造好每一批样板区,特别是班组7S和#2机组7S的创建工作,我抓住每一个细节,努力做到最好。同时,在7S工作保持过程中,我做好自己的本职,督促班组其他人员也保持好我们的成果。最后,来提提我的一些不足和该改进的地方。我对有些知识理解的还不是很透彻,以后要多看书,多向懂的人虚心求教,争取把这些知识吃透,对自己负责,更要对厂里负责。还有就是考虑问题的时候考虑的不是那么全面细致,导致在实际操作中会遗漏一些环节,以后要好好改进。还有许多不足的地方,这里我就不一一阐述了。争取在新的一年里努力不断提升自己。

回望过去,展望未来,吸取经验教训,总结技术知识。我将以更高,更严格的标准要求自己,在工作和学习中不断提高自己的业务技能水平,进一步提高自己分析问题解决问题的能力,提高工作效率。

上一篇:人高致病性禽流感下一篇:人大主席先进事迹