天然气开发技术现状

2024-04-13

天然气开发技术现状(共6篇)

篇1:天然气开发技术现状

国内外天然气集输技术现状

摘要:天然气热效率高,环境效益好,发展利用天然气成为当今世界能源发展的潮流。本文重点论述了国内外天然气矿场集输现状,矿场集输管网现状,天然气脱水,脱烃,脱硫技术现状。并认为超音速脱水技术将成为天然气脱水技术的发展趋势。

关键词:国内外

矿场集输 集输管网 脱水 脱烃 脱硫

LNG 技术现状

近年来,随着我国天然气工业的快速发展,引进了许多国外的先进工艺和设备。天然气将是21世纪举足轻重的优质能源。随着天然气勘探、开发、储运和利用技术的进步以及对环境问题的日渐关注,世界各国竞相发展天然气工业已经成为当代进步的大潮流。目前已经知道的可以开采的天然气资源比石油资源丰富。世界天然气探明和未探明的资源量达到了400×1012m3,美国的产气量最大,5556× 108m3,占世界总产量 22.9%;俄罗斯探明的天然气的储量最大,储量为48.14× 1012m3,占世界总储量32.1%。在2020年世界产气量将达4.59× 1012m3。而我国已发现193个气田,探明的天然气地质储量为4.4937×1012m3,气层气有3.3727×1012m3,溶解气为1.121×1012m3。天然气可采储量达到2.570433×1012m,其中气层气占2.2002×1012m,溶解气占3702×108m3。天然气在我国的能源消费结构中比重稳步上升,1999年,陕京管线给北京提出年供气24×

1018m3,可以确保需求30年。

一. 天然气矿场集输现状

1.井场装置

我国气田在地理地貌条件、工矿和介质方面差别很大,有深层异常高压、高温、高产气田,有大面积分布的低渗低产气田,有高含、气田,有富含凝析油的深层凝析气田等,而且大多数主力气田位于我国中西部,地处沙漠戈壁,荒无人烟,环境条件十分恶劣,交通非常不便,而有的则位于人口稠密地区,位于广阔海洋,针对不同类型气田特点,形成了各种矿场集输主体工艺技术。

目前,矿场上采用的井场装置流程通常有两种类型,也是比较典型的流程,一种是加热天然气防止水合物形成的流程,另一种是向天然气注入抑制剂防止水合物形成的流程。

2.单井集输流程

我国目前采用的常温分离单井集输工艺流程有两种一种是三相分离,另一种是气液分离。

3.多井集输流程

常温分离单井集输工艺流程同常温单井类似。对于压力高,产量大,硫化氢和二氧化碳含量高以及凝析油含量高的天然气多采用低温分离流程。

二.矿场集输管网现状

集输管线热力条件的选择 根据中国多数油田生产“三高”原油(含蜡量高、凝固点高、粘度高)的具体情况,为使集输过程中油、气、水不凝,作到低粘度,安全输送,从油井井口至计量站或接转站间,一般采用加热集输。主要方法有:①井口设置水套加热炉,并在管线上配置加热炉,加热油气;②井口和出油管线用蒸汽或热水伴热;③从井口掺入热水或热油等。不加热集输是近几年发展起来的一项技术,能获得很好的技术经济效益。除油井产物有足够的温度或含水率,已具备不需加热的有利条件外,还应根据情况,选用以下技术措施:①周期性地从井口向出油管线、集油管线投橡胶球或化学剂球清蜡,同时,管线须深埋或进行保温;②选择一部分含水油井从井口加入化学剂,以便在管线内破乳、减摩阻、降

粘;③连续地从井口掺入常温水(可含少量化学剂)集输。在接转站以后,一般均需加热输送。

集输管线的路径选择要求:①根据井、站位置;②线路尽可能短而直,设置必要的穿跨越工程;③综合考虑沿线地形、地物以及同其他管线的关系;④满足工艺需要,并设置相应的清扫管线和处理事故的设施。

天然气产品具有不同于其他一般商品的特殊性,具体表现在管道输送是天然气陆上长距离运输和区域性配气的唯一方式;LNG 是跨洋运输的唯一形式,而且离岸前和到岸后,仍然全部依托管网;供需两波动的调节主要依靠井口产能、输气管道存量空间和储气库的容量空间;输气管存的气量依然是调节供需波动和应急预案的基本手段。这些特点表明天然气产品在运输、储存和销售等环节都必须依赖天然气管道,从而决定了天然气行业的经济特性。“十二五”规划提出,要优化能源开发布局,合理规划建设能源储备设施,完善石油储备体系,加强天然气和煤炭储备与调峰应急能力建设;加强能源输送通道建设,加快西北、东北、西南和海上进口油气战略通道建设,完成国内油气主干管网。统筹天然气进口管道,液化天然气接收站、跨区域骨干输气网和配气管网建设,初步形成天然气、煤层气、煤制气协调发展的供气格局。具体来说,今后五年,要建设中哈原油管道二期,中缅油气管道境内段、中亚天然气管道二期,以及西气东输三线、四线工程。输油气管道总长度达到15 万公里左右,加快储气库建设。目前,全国性管网已具雏形。目前已初步形成以西气东输、陕京输气系统(一线,二线)、忠武线、涩宁兰等干线管道,以冀宁线、淮武线等联络管道为主框架的全国性天然气管网雏形,除川渝、华北、长江三角洲等区域性管网比较完善外,其他区域性管网仍显薄弱。

三. 天然气脱水技术现状

目前,国外天然气脱水应用最多的方法是溶剂吸收法中的甘醇法。国内中石油股份公司内天然气集输系统采用的脱水设备主要有长庆油 田的三甘醇脱水净化系统;西南油气田分公司的J—T阀低温分离系统;大庆油田的透平膨胀机脱水系统;塔里木气田的分子筛脱水及低温分离脱水系统。目前存在的装置相对复杂、系统运行成本高、三甘醇的处理和再生难以解决及环境污染等问题。天然气脱水的几种主要方法

(1)低温冷凝脱水 该方法采用各种方法把高压天然气节流降压致冷,用低温分离法从天然气中回收凝析液。这种方法是国内气田中除三甘醇法外应用较多的天然气脱水工艺。长庆采气二厂、塔里木克拉等均采用该方法,它具有工艺简单、设备较少等优点,但也有耗能高、水露点高等缺点。

(2)J-T阀和透平膨胀机 J—T阀和透平膨胀机脱水属于低温冷凝方法脱水。对于高压天然气,冷却脱水是非常经济的。例如大庆油田目前采用很多透平膨胀机脱水,四川的卧龙河和中坝气田则使用了J—T阀脱水。

(3)三甘醇脱水 三甘醇脱水属于溶剂吸收法脱水,在天然气工业中得到了广泛的应用。这种脱水系统包括分离器、吸收塔和三甘醇再生系统。目前,国内的橇装三甘醇脱水系统多从国外引进。虽然性能很好,但是也存在很多问题。如一次性投资比较大;各种零配件和消耗品不易购买,而且价格昂贵;计量标准与我国现行标准不同;测量系统不适合我国的天然气性质等。(4)分子筛脱水

(5)超音速脱水 作为新型脱水技术的超音速脱水,国外主要是在壳牌石油公司支持下开展研究,包括计算机数值模拟、实验室研究和现场试验研究。基础 的

实验研究和数值模拟研究主要在荷兰的埃因霍恩科技大学等几所大学中进行;现场的试验研究正在荷兰(1998年)、尼 日利亚(2000年)和挪威(2002年)的天然气气田和海上平台进行主要验证系统长期稳定工作的能力,并在实际应用中进行不断的改进。所有的研究都取得了满意的结果。目前,这项技术已经进入商业应用状态。

四.天然气脱烃技术现状

(1)根据是否回收乙烷,轻烃回收装置可分为两大类:一类以回收C2+为目的;另一类以回收C3+为目的。目前国内油气田大部分轻烃回收装置主要以回收C3+,生产液化石油气等产品为设计目标。当前,国内外已开发成功的轻烃回收新技术有:轻油回流、涡流管、气波机、膜分离、变压吸附技术(PSA)、直接换热(DHX)技术等。这些新技术最主要的优势还是表现在节能降耗和提高轻烃收率两方面,它们代表了轻烃回收技术的发展方向。

(2)轻油回流:轻油回流是利用油的吸收作用,通过增加一台轻油回流泵将液化气塔后的部分轻油返注入蒸发器之前,提高液化率。这一方法增加了制冷系统的冷负荷,但与提高分离压力相比所需的能耗较低,对外冷法工艺不失为一种简单有效的方法。研究表明,轻油回流主要用于外冷浅冷工艺,且在较低压力下的经济效益比在较高压力下显著。

(3)涡流管技术:涡流管技术早在20世纪30年代国外就对其进行了研究,但直到80 年代才用于回收天然气中的轻烃。由于涡流管具有结构紧凑、体积小、重量轻、易加工、无运动部件、不需要吸收(附)剂、无需定期检修、成本低、安全可靠、可迅速开停车、易于调节和C3 +收率高等优点,故国外已将涡流管技术用于天然气轻烃回收,特别是对边远油气田具有其它方法难以取代的使用价值。天然气靠自身的压力通过涡流管时被分为冷、热流股,构成一个封闭的能量循环系统,可有效回收天然气中的液烃,脱除天然气中的水分,从而获得干燥的天然气。

(4)气波机技术:采用气波机技术可以回收天然气中的部分轻烃。大连理工大学已开发出了气波机脱水的成套技术。

(5)膜分离技术:近年在国外膜分离技术应用于气体分离有较大发展。用于气体分离的膜材料按材质大致分为多孔质膜和非多孔质膜,它们的渗透机理完全不同。多孔质膜分离是依靠各种气体分子渗透速度的不同达到分离目的;而非多孔质膜分离属溶解扩散机理,气体渗透过程分为三个阶段:气体分子溶解于膜表面;溶解的气体分子在膜内扩散、移动;气体分子从膜的另一侧解吸。目前轻烃回收包括其它气体分离上常用的是非多孔质膜。膜分离技术在轻烃回收和天然气脱水方面的应用具有很好的发展前景。据国外预测,气体分离膜将是21世纪产业的基础技术之一。

(6)PSA技术

(7)直接换热工艺 五.天然气脱硫技术

1、溶剂吸收法

(1)醇胺法

MDEA具有使用浓度高、酸气负荷大、腐蚀性弱、抗降解能力强、脱H2S选择性高、能耗低等优点,现已取代了MEA和DEA,应用相当普遍。a.MEDA法:普光气田的天然气为高含硫天然气,其中H2S含量为14.14%;CO2含量为8.63%。以MDEA溶液为溶剂,采用溶剂串级吸收工艺。b.砜胺法

迄今砜胺法仍是最有效的净化方法。但砜胺溶剂对重烃有很强的溶解能力。且不

易通过闪蒸而释出,故重烃含量较高的原料气不宜采用砜胺溶剂。

(2)配方型溶剂脱硫工艺

a位阻胺配方溶剂脱硫工艺

.Exxon公司开发的Flexsorb系列配方溶剂是目前唯一实现工业化的以空间位阻胺为基础的选择性脱硫溶剂。目前为止已开发Flexsorb SE、Flexsorb SE+、Flexsorb混合SE、Flexsorb PS和Flexsorb HP 5个系列,酸气处理量和传质速率高;溶剂负荷高,因而溶剂循环量较低;抗发泡、腐蚀和降解能力强。b.混合胺溶剂工艺

我国蜀南气矿荣县天然气净化厂通过在MDEA中添加一种空间位阻胺TBEE形成混合胺,可避免传统叔胺所具有的某些不足,新的混合胺剂与CO:的反应速率更低;对H2S的吸收速率极高,在CO:含量很高的原料气中选择脱除H2s非常有利。国外Bryan公司用MDEM DEA脱除高含C02天然气,将原来采用的DEA溶剂置换为MDEM DEA混合胺溶剂,用MDEM DEA混合胺净化的产品气中H2s和CO:浓度均可达到管输标准,在没有增加设备的基础上大大提高了装置的处理能力和效率。俄罗斯阿斯特拉罕气田天然气中H2S含量高达26%,20世纪90年代阿斯特拉罕天然气加工厂在采用的SNPA—DEA工艺的基础上将吸收剂由DEA改为DEA+MDEA混合溶液。c.活化MDEA d.UCARSOL系列工艺

e.Gas/Spec系列溶剂Dow化学公司生产的一系列的以Gas/Spec为牌号的专用配方溶剂Gas/Spec SS、Gas/Spec SS一

2、Gas/Spec CS溶剂具有选择性脱硫的能力,与MEA、DEA相比硫容量高,溶剂循环量低、能耗低、溶剂损耗低。

2、膜分离法美国一套采用上述串级流程的天然气处理装置先用Separex膜分离器把原料气中的H2S含量从20%降至3%;然后再以醇胺法处理,而酸气中的H2s浓度则达到71.6%。该工艺特别适合高含酸性组分的天然气的净化处理,具有广阔的发展前景。

3、其他脱硫方法

天然气的输送通常采用管道输送和LNG输送,凡管道能直达的地区,以管道输送为好,当管道难以直达或敷设管道不经济时,特别是跨洋运输天然气,则以液化天然气形式采用油轮运输较为经济。LNG应用领域广,每个方面均存在LNG储运问题。只有开展各方面的配套研究,才能起到天然气“西气东输”带动经济发展的目的。参考文献:[1]四川石油设计院

.国外液化天然气(LNG)工业技术

[2]刘丽,陈勇,康元熙等,天然气膜法脱水工业过程开发

[3]沈春红.夏道宏 国内外脱硫技术进展

[4]陈赓良 我国天然气净化工艺的现状与展望

篇2:天然气开发技术现状

(1)长运距、大管径和高压力管道是当今世界天然气管道发展主流

自20 世纪70 年代以来,世界上新开发的大型气田多远离消费中心。同时,国际天然气贸易量的增加,促使全球输气管道的建设向长运距、大管径和高压力方向发展。1990 年,前苏联的天然气管道的平均运距达到2 698 km。

从20 世纪至今,世界大型输气管道的直径大都在1 000 mm 以上。到1993 年,俄罗斯直径1 000 mm以上的管道约占63%,其中最大直径为1 420 mm 的管道占34.7%。西欧国家管道最大直径为1 219 mm,如著名的阿-意管道等。

干线输气管道的压力等级20 世纪70 年代为6~8 MPa;80 年代为8~10 MPa;90 年代为10~12MPa。

2000 年建成的Alliance 管道压力为12 MPa、管径为914 mm、长度为3 000 km,采用富气输送工艺,是一条公认的代表当代水平的输气管道。

(2)输气系统网络化

随着天然气产量和贸易量的增长以及消费市场的扩大,目前全世界形成了洲际的、多国的、全国性的和许多地区性的大型供气系统。这些系统通常由若干条输气干线、多个集气管网、配气管网和地下储气库构成,可将多个气田和成千上万的用户连接起来。这样的大型供气系统具有多气源、多通道供气的特点,保证供气的可靠性和灵活性。前苏联的统一供气系统是世界最庞大的输气系统,连接了数百个气田、数十座地下储气库及约1 500 个城市,管道总长度超过20×104km。目前欧洲的输气管网已从北海延伸到地中海,从东欧边境的中转站延伸到大西洋,阿-意输气管道的建成实际上已将欧洲的管网和北非连接起来。阿尔及利亚—西班牙的输气管道最终将延伸到葡萄牙、法国和德国,并与欧洲输气管网连成一体。

(3)建设地下储气库是安全稳定供气的主要手段

无论是天然气出口国家,还是主要依赖进口天然气的一些西欧国家,对建造地下储气库都十分重视,将地下储气库作为调峰、平衡天然气供需、确保安全稳定供气的必要手段。截止到1998 年,全世界建成储气库605 座,总库容575.5亿立方米、工作气量307.7立方米。工作气量相当于世界天然气消费量的11%,相当于民用及商业领域消费量的44%。2001 年美国的储气库总工作气量约120立方米,预计到2010 年储气能力将达到170立方米。国外天然气管道在计量技术、泄漏检测和储存技术等方面取得了一些新进展

(1)天然气的热值计量技术 世纪80 年代以后,热值计量技术的应用在西欧和北美日益普遍,已成为当今天然气计量技术的发展方向。天然气热值计量比体积和质量计量更为科学和公平,由于天然气成分比较稳定,按热值计价可以体现优质优价。天然气热值的测定方法有两种:直接测定法和间接计算法。近几年,天然气热值的直接测量技术发展较快,特别是在自动化、连续性、精确度等方面有了很大提高。

(2)天然气管道泄漏检测技术—红外辐射探测器

目前,美国天然气研究所(GRI)正在进行以激光为基础的遥感检漏技术研究,该方法是利用红外光谱(IR)吸收甲烷的特性来探测天然气的泄漏。该遥感系统由红外光谱接收器和车载式检测器组成,能在远距离对气体泄漏的热柱进行大面积快速扫描。现场试验表明,检漏效率比旧方法提高50%以上,且费用大幅度下降。

(3)天然气管道减阻剂(DRA)的研究应用

美国Chevron 石油技术公司(ChevronPetroleum Technology Co)在墨西哥湾一条长8 km、.152mm 的输气管道上进行了天然气减阻剂(DRA)的现场试验。结果表明,可提高输量10%~15%,最高压力下降达20%。这种减阻剂的主要化学成分是聚酰胺基,通过注入系统,定期地按一定浓度将减阻剂注入到天然气管道中,减阻剂可在管道的内表面形成一种光滑的保护膜;这层薄膜能够显著降低输送摩阻,同时还有一定的防腐作用。

(4)天然气储存技术

从商业利益考虑,国外管道公司非常重视使大型储气库垫底气最少化的技术研究。目前,正在研究应用一种低挥发性且廉价的气体作为“工作气体”来充当储气库的垫底气。

(5)管道运行仿真技术

管道在线仿真系统的应用可有效地提高管道运行的安全性和经济性。管道计算机应用表现在3 个方面:管道测绘及地理信息系统、管道操作优化管理模型和天然气运销集成控制系统。仿真技术在长输管道上的应用不仅优化了管道的设计、运行管理,而且为管输企业带来巨大的经济效益。目前,国外长输管道仿真系统主要分为3 种类型:一是用于油气管道的优化设计、方案优选;二是用于运行操作人员的培训;三是管道的在线运营管理。如美国最大的天然气管道公司之一的Williams 管道公司,采用计算机仿真培训系统在不影响正常工作的情况下即可完成对一线工人的上岗培训,大大缩短了培训时间,节约大量费用,比传统的培训方式提高效率约50%。

(6)GIS 技术在管道中的应用

随着管道工业自动化的发展,GIS(地理信息系统)在长输管道中得到了日益广泛的应用。它融合了管道原有的SCADA 系统自动控制功能,美国、挪威、丹麦等国家的管道普遍使用GIS 技术。目前,该技术已实现地理信息、数据采集、传输、储存和作图统一作业,可为管道的勘测、设计、施工、投产运行、管理监测、防腐等各阶段提供资料。技术发展趋势

(1)高压力输气与高强度、超高强度管材的组合是新建管道发展的最主要趋势

高压气管道是指运行压力在10~15 MPa 之间的陆上天然气管道。根据专家研究成果,年输量在10亿立方米以上时,采用高压输气可节省运输成本。当运输距离为5 000 km、年输量在15~30亿立方米之间时,采用高压输气比传统运输方式可节约运输成本20%~35%。采用高压输气可减小管径,通过高钢级管材的开发和应用可减小钢管壁厚,进而减轻钢管的重量,并减少焊接时间,从而降低建设成本。例如采用管材X100 比采用X65 和X70 节约费用约30%,节约管道建设成本10%~12%。

目前X100 管道钢管已由日本NKK、新日铁、住友金属、欧洲钢管等公司开发出来。另外,复合材料增强管道钢管正在开发,即在高钢级管材外部包敷一层玻璃钢和合成树脂。采用这种管材,可进一步提高输送压力,降低建设成本,同时可增加管输量,增加管道抵抗各种破坏的能力和安全性。当管材钢级超过X120 及X125 时,单纯依靠提高钢级来减少成本已十分困难,必须采用复合材料增强管道钢管。X100 及以上管道钢管目前还未得到商业应用的主要原因是对材料性能、安装技术和现场试验还需进一步验证和更好的了解。

(2)高压富气输送技术及断裂控制

高压富气输送是指在输送过程中采用高压使输送气体始终保持在临界点上,保证重组分不呈液态析出。采用高压富气输送能取得很大的经济效益,但富气输送时天然气的热值较高,要求管材不但能防止裂纹的启裂,而且还要具有更高的防止延性裂纹扩展的止裂韧性。以Alliance 管道为代表的高压富气输送是天然气输送技术的重大创新,其断裂控制是该管道的关键技术之一。

深入了解高钢级管道钢管的断裂控制是未来以低成本建设管道的前提。由ECSC、CSM、SNAM 和European 联合进行的项目,就是研究大口径X100管道在15 MPa 的高压下的断裂行为。

(3)多相混输技术 世纪70 年代,各发达国家相继投入了大量资金和人力,进行多相流领域的应用基础与应用技术研究,取得了不少成果。目前,这些成果已在上百条长距离混输管道上得到了应用。

近年来,英国、美国、法国及挪威等国相继建成了不同规模的试验环道,采用多种先进测量仪表和计算机数据采集系统,在大量高质量的试验数据基础上进行多相流研究。已有的多相流商业软件中,著名的OLGA 软件可以进行多相流稳态和瞬态流动模拟。

(4)天然气水合物(NGH)储运技术

据专家保守估计,世界上天然气水合物所含天然气的总资源量约为0.018亿亿立方米~0.021亿亿立方米,能源总量相当于全世界目前已知煤炭、石油和天然气能源总储量的两倍,被认为是21 世纪最理想、最具商业开发前景的新能源。天然气水合物潜在的战略意义和经济效益,已为世界许多国家所重视。目前,世界范围内正在兴起从海底开发天然气水合物新能源的热潮。虽然目前世界上还没有高效开发天然气水合物的技术,但许多国家已制定了勘探和开发天然气水合物的国家计划。美国1998 年将天然气水合物作为国家发展的战略能源列入长远计划,准备在2015 年试开采。日本、加拿大、印度等国都相继制定了天然气水合物的研究计划。

根据目前国外对天然气水合物技术的研究,可以得出几点共识:一是天然气水合物在常压、-15~-5℃的下储存在隔热容器中可长时间保持稳定;二是对于处理海上油田或陆上边远油田的伴生气,该技术的可行性优于液化天然气、甲醇和合成油技术。该技术安全且对环境无污染;三是天然气水合物技术的成本比液化天然气的生产成本约低四分之一;四是采用天然气水合物技术可以对天然气进行长距离运输。国内天然气管道技术现状

西气东输代表了目前我国天然气管道工程的最高水平。西气东输管道设计输量为120×108m3/a;管道全长3 898.5 km;管径1 016 mm;设计压力10MPa;管道钢级L485(X70);全线共设工艺站场35座,线路阀室137 座,压气站10 座。目前我国天然气管道的技术水平分析如下:

(1)采用的设计和建设标准与国际接轨。

(2)采用卫星遥感技术、GPS 系统,优化管道线路走向。

(3)采用国际上通用的TGNET、SPS、AutoCAD等软件,进行工艺计算、特殊工况模拟分析和设计出图。

(4)管材采用高强度、高韧性管道钢,主要有X52、X60、X65 和X70,国内有生产大口径螺旋缝埋弧焊钢管和直缝钢管的能力。

(5)管理自动化、通信多种方式并用。运营管理采用SCADA 系统进行数据采集、在线检测、监控,进行生产管理和电子商务贸易;通信采用微波、卫星和租用地方邮网方式,新建管道将与国际接轨,向光缆通信发展。

(6)管道防腐。管道外防腐层主要采用煤焦油瓷漆、单层环氧粉末、双层环氧粉末、聚乙烯防腐层(二层PE)和环氧粉末聚乙烯复合结构(三层PE)。管道内涂层主要采用液体环氧涂料。

(7)天然气计量。我国早期建设的管道天然气计量大都采用孔板计量;而近年新建的几条输气管道采用超声波流量计。

(8)主要工艺设备。目前国内输气管道输气站主要工艺阀门大都采用气动球阀,今后新建管道将以采用气-液联动球阀为主。国内在役输气管道采用的增压机组有离心式和往复式压缩机,驱动方式有燃驱和电驱;将来我国的长距离输气管道主流机型采用离心式,在有电源保证的条件下采用变频电机驱动为发展方向。

(9)管道施工。目前我国的管道建设引进了国际上通行的HSE 管理技术,采用了第三方监理的机制;管道专业化施工企业整体水平达到国际水平,装备有先进的施工机具,如:大吨位吊管机、全自动焊机等;掌握了管道大型穿(跨)越工程的施工技术,如水平定向穿越技术、盾构穿越技术。

(10)优化运行。目前在役输气管道利用进口或国产软件进行在线或离线不同工况模拟,以确定既能满足供气需求,又使单位输气成本最低的运行操作方案。差距分析

篇3:天然气开发技术现状及措施分析

1 天然气开发技术现状

进入21世纪以来, 2009年天然气使用量近600亿立方米, 是2000年245亿立方米的两倍多, 供需缺口较大, 所以提高天然气开采技术刻不容缓。如表1所示。

1.1 低渗透气藏综合表征技术

中国目前存在着大量的低渗透气藏, 储集层渗透率很低, 目前的开采过程是采用分析天然气沟槽分布特点、气水分布规律、气藏储集层水分布特点来实现的。根据相关的新技术、采用动静结合的方法。从控制储集层发育程度和渗流程度的成因方面入手, 对区域内天然气的分布特点进行把握。同时, 采用水平井、大斜度井技术, 这种技术主要应用于有以湖泊三角洲为主的水下分流河道砂体、河口坝砂体, 提高了天然气的开采效率。最后, 因为气井的施工造成的气层伤害严重的影响着气藏的产量, 应该加强对低渗储集层的保护。

1.2 碳酸盐气藏开发技术

碳酸盐开发技术主要应用于非匀质储集层中, 这里空气湿度大、水汽量多, 气水关系较为复杂。通过裂缝气藏综合评定技术, 以储集层描述为依据, 结合相关的模拟分析, 综合研究地质地貌相关规律, 结合开采数据的动态分析模型, 经过相关的实际模拟来解决气藏开采中的问题, 提高开采的效率。同时, 我国在天然气开采中还经常采用裂缝式采气技术, 通过优选管柱、排泡、气举、机抽等技术, 延长了气井使用周期、提高气藏采集率和产气量, 而且这种方法还是开发新气井的一个重要手段。

1.3 异常高气压气藏开发技术

异常高压气井因为其压力高、弹性能量充足, 一般较为高产。这种技术, 通过对区域地质进行反复的建模, 综合收集的数据进行分析, 能够提高资料的准确性。同时结合地质地貌的研究, 岩心的情况等横向因素的监测, 提高了整个三维立体模型的精确程度, 也提高了开采的效率。同时可以利用高陡构造的防斜快打技术, 结合异常高压高产钻井配套技术, 以先进的技术工艺为基础成功的解决了降低井压损失和冲蚀等问题, 通过这种方式对异常气压进行相关的开采, 可以提高油田的使用效率, 保证油田的持续有效开发。

1.4 中低含硫气藏开发技术

因为含硫天然气具有严重的腐蚀性, 且气藏类型较为复杂。中国在研究天然气开采的基础上, 查明了含硫天然气的存在肌理, 从而研究出了一套含硫天然气防腐开发技术并和相应的抗腐蚀剂。含硫天然气的开发, 净化脱硫技术非常重要, 应该针对不同的情况制定出适合的天然气净化技术, 是天然气得到更好的应用。

1.5 凝析气藏循环注气开发技术

中国近年来陆续出现了一些凝析气田, 及高含凝析油的气田, 如果采用传统的开采模式, 将会造成资源极大的浪费。因此, 中国在多年研究的基础上, 研究形成了凝析气藏注气开发配套设施通过对地质的探查、流体的评估和分析模拟, 实时的动态跟踪等相关手段, 提高气田的利用效率, 有效的保护资源。

2 提高天然气开发的相关对策

2.1 加强对低渗透气藏的开发

低渗透气藏受水气关系的影响较大, 储集层渗透率较低, 地质构造影响较大, 造成相关的开发难度较大。这样的状况要求开发过程中, 更加注重技术性, 选择天然气较为富足的地方最为开发重点, 对相关气层单井控制储量进行研究, 利用水气井等技术, 对较为复杂情况下的相关天然气田进行改造, 结合数据综合模拟技术和计算机三维立体模型, 更加详尽的对地质构造进行了解, 使得开采更加科学。

2.2 含硫气田的开发的完善

含硫气田的合理开发是目前要解决的重大问题, 因为一般含硫气田的天然气储备量较为丰富, 具有较大的开采前景, 目前需要解决的就是天然气开发中对于硫的控制, 因为硫本身的特点, 对相关的设备具有很强的腐蚀性, 给开采带来了很大的困难。因此在以后的开发过程中, 要加强对硫的控制, 通过分析肌理构造, 找出相关的解决方法, 对硫的腐蚀进行预防和缓解, 同时还要对天然气的提纯方法进行研究, 提高天然气开采工程中的洁净度。

2.3 对超高气田和凝析气田的安全开发

近年来, 一些超高气田和凝析气田逐渐被开发利用。但是由于此类气田的储集层处于被压实状态, 其岩层结构相较于传统的结构在参数上有着很大的不同, 加大了开采的难度。这类气藏在开采的过程中, 由于其本身气田内压力的降低, 直接影响储集层的渗流特征。因此, 此类矿井在开采过程中更要注意压力的问题, 因为压力使相关设备使用受到一定影响, 增加了工作的危险性。在开采前对相关的问题就要进行准确的分析, 发现问题及时进行解决, 而且对数据的采集要更加的准确, 通过数据对相关实际情况进行分析, 制定相关可行性法案和安全防治措施。

2.4 非常规天然气的有效开采

非常规的天然气即为包含致密沙岩气、煤层气、页岩气、天然气水等几种物质混合而形成的天然气气藏, 这种类型的天然气给相关的开采带来了非常大的困难。非常规天然气的开发是天然气开发的重要组成部分, 近年来中国通过不断的对技术进行改进, 对这类气藏的开发已经取得了较为显著的进展, 形成了自己的一套理论。在非常规气藏开发过程中, 要根据实际的情况, 完善相关的管理体系, 提高技术和开采成本, 保证气田的合理开发。

2.5 关注天然气开发后期存在的问题

实践证明, 许多的天然气田后期易产生较多问题, 造成天然气气井自喷能力下降, 受气藏区域边水汽侵入的影响有时还会出现停喷的现象, 对开采极为不利。为了解决这一问题, 要求相关技术人员在现场作业中, 实时的对矿井的工作状态进行分析, 综合利用地层水回注技术、增压开采技术, 提高天然气开采的技术水平, 保证开采过程的持续性和稳定性。

2.6 优化整体开采环境

目前, 国家西气东输项目的展开, 我国的天然气建设正朝着整体阶段发展。因此在现实工作中长期稳定的天然气田开发是一个重要的方面。工作中应该确保天然气整个网络体系的平稳运行, 优化天然气系统, 使得整个网络能够达到统筹管理, 合理的对能源进行分配。同时对气田进行结构的优化, 采用更加科学合理的方法对气田管理, 对于发现的问题及时进行改进, 关注相关的配套设施, 促进整个体系的完善和发展。对天然气进行统一调度科学管理, 节约成本, 提高效率。

3 结语

天然气作为新兴能源, 其发展前景非常广阔, 要求相关的技术人员针对具体问题进行技术的不断更新, 积极学习国外在这一方面的先进经验并结合自身实际对技术能力进行提高, 保证开采的效率。天然气是不可再生资源, 虽然我国天然气的储备量较为丰富, 但是也不能采用传统的破坏式的开发, 要坚持可持续发展其战略, 对天然气的开发尽可能的实现优化利用, 提高天然气的使用效率。天然气目前已经成为生活中不可或缺的能源, 如何让其通过技术的保障更大的发挥其自身价值, 是亟待解决的问题, 本文通过相关方法的阐述提出了一些解决目前天然气开采中问题的方法, 希望对相关天然气有效利用提供一些思考。

摘要:天然气作为清洁能源, 已经较多的应用到生产生活中, 替代着污染较为严重的能源促进着经济的发展。本文通过对天然气开发技术现状的分析, 从中发现问题并提出解决问题的方法。

关键词:天然气开发技术,现状,措施

参考文献

[1]张洪涛, 张海启, 祝有海.中国天然气水合物调查研究现状及其进展[J].中国地质, 2007, 34 (6) :17—19.

[2]谯华平, 李程.关于加强油气田公司应急平台建设的思考——以中国石油西南油气田公司为例[J].天然气工业, 2012, (09) .

篇4:天然气开发技术现状

摘要:本文根据个人多年的工作经验对天然气的化工技术的应用现状做了简单介绍,并探讨了其发展趋势。

关键词:天然气化工;天然气制合成气;精细化工

在化工领域,天然气是替代石油的最佳选择,我国近年来在天然气化工方面的发展为天然气资源的良好发展前景起到了有力又有效的推动作用。

一、天然气化工技术的应用现状

天然化工技术从被提出至今一直处在稳步发展的形式,近几年世界各国对其的日益重视加快了其发展速度,如今可被称为化工业的“顶梁柱”。研究发现每年天然气化工的耗气量在世界消费量中占据百分之五的份额,天然气化工每次的加工品总产量至少为11.6亿吨,其中包括CS2、NH4、C2H4、CH4O等,在国民经济的每个领域都有所使用。在我国,当属中西部地区的天然气化工较先发展,经过几年的摸索研究,产业基础已经打下,生产经验和设备、文化建设也已经有了一定的积累,在这些区域甲醇及其衍生物、合成氨和化肥的原材料就是本地相对来说比较便宜的天然气资源。重庆、四川、云南等地以及宁夏化肥厂的大化肥装置都是以天然气为原料;吐哈、靖边、内蒙伊盟化工公司已经拥有十万吨的甲醇装置。在我国的中西部地区这样的例子比比皆是,其配套的生产产品和生产能力随着天然气的日益发展都得到了逐步的提升。

二、天然气化工利用的技术路线

虽然天然气直接转化制化工产品的过程简单,经济收益较好,但是其仅能生产一些像氢氰酸、碳黑和乙炔等年产量不大的化工产品。对此领域的开发研究并没有因其不足之处而停止,甲烷无氧芳构化和甲烷氧化偶联制乙烯一直被研究开发者所青睐。天然气化工利用的主流技术路线还是天然气经合成气制化工产品。

三、天然气化工发展趋势研究

天然气化工发展前景有以下几个可能:

3.1传统的天然气化工产品仍占主导地位

一直以来,合成甲醇、合成氨、二甲醚用于石化产品生产都有着明显的优势,故不管未来怎么发展,主要发展方向还是这些较为传统又有优势的天然气化工产品。

3.1.1甲醇的生产原料主要是乙炔尾气、煤炭、渣油、石脑油、焦炭和天然气。然而自从20世纪50年代,合成甲醇的主要原料已逐步被天然气取代。甲醇生产工艺改进的主要目标转为减少天然气消耗以较少甲醇生产成本和降低设备投资。

3.1.2在生产合成氨的原料选择时天然气比石油和煤更具有优势,生产技术已不再生疏。合成氨发展主要在造气、催化剂和能量利用三方面有所体现。利用传统工艺,天然气作为生产原料的最低吨能耗为32.84GJ,平均为36.66GJ;利用节能型工艺,天然气作为生产原料的最低吨能耗为31.05GJ,平均为34.12GJ;然而把石脑油作为生产原料时,最低吨能耗为37.01GJ,平均为38.68GJ。

3.1.3二甲醚有很独特的物理性质,还具有优良的混溶性,能混容大多数非极性和极性有机溶剂。由于其具有良好的汽化、易压缩和冷凝特性,常被用于日用化学品、涂料、农药等生产过程的化工合成中间体。作为石油类和液化石油气的替代燃料,二甲醚具有与液化石油气的相类似的物理性质,二甲醚也可以以一定比例与液化石油气混溶,与液化石油气一起混烧,二甲醚的掺入可加大液化石油气燃烧度、减少析炭量。由于二甲醚具备成分物质相对单一,燃烧性能稳定,高效的热效率,燃烧过程中不产生黑烟、不产生残液,自身又含氧等优点,加上其燃料排气完全可以达到国家卫生标准,所以是一种清洁、优质的燃料。二甲醚独有的性质为其在国内、国际市场上的基础产业地位奠定了基础。

3.2合成烯烃、合成油会有一定的发展

边远地区利用天然气的一条重要途径是利用天然气合成烯烃、油,在石油价格高居不下时,天然气资源丰富且价格低廉的地区就充分利用其原料优势合成烯烃、油。通常我们把天然气制合成油,简称为GTL,该途径是天然气经合成气由费托合成(FT反应)生产合成原油,其是由H2和CO的混合气体在以铁系为主的催化剂的作用下制取石蜡烃为主的液体燃料的工艺过程。GTL技术可预见的产品方向主要有三种:柴油中间馏分油、石蜡馏分油、润滑油馏分油。

3.3进一步向天然气资源丰富、价格低廉的地区转移

在一些在传统上,天然气化工比较发达地区,例如西欧,因为天然气供不应求,使得价格逐步上涨,从而造成很多的天然气化工装置停止工作;然而中东等地区却新建了大量的天然气化工装置,因为这些地区的天然气资源丰富并且价格低廉。美国天然气的大规模开发应局势而生,这对天然气的供求形式起到了大幅度的扭转作用,与此同时,对大量的天然气化工项目的投资也日益增多。

3.4天然气供应增加对其化工利用起到了激进作用

天然气的供应随着天然气勘探开采技术的提高日益增加,这就在一定程度上拉小了其和石油的价格差距,又由于在运输时其具有一定的局限性,使得天然气多被用于合成油和生产化工产品。

3.5天然气化工的技术进步将推动其发展

天然气化工技术的研发投入的增加,促使了相关工艺技术的研发,提高了天然气化工的竞争地位,对天然气化工的进一步发展也起到了有效的推动作用。开发的热点技术有:MTP、MTO工艺;费托合成油新技术;天然气利用醋酸和氢反应合成乙醇;天然气利用乙炔液和氢的加权反应制乙烯等等。

随着我国能源需求量的高速增长和公众环境保护意识的不断增强,使得天然气及其化工工艺成为我国能源发展的重要而又永久的研究课题。天然气已经被国际工业领域所认可,主要还是因为它是一种经济、优质、清洁的化工原料和能源,现如今,新一轮天然气化工技术的研发高潮在世界范围内再次被掀起。相信在不断研发和创新的浪潮中,天然气化工技术会日益精湛。

参考文献

[1] Marcello P J.Ethylene technologies conclusion[J].Oil & Gas,1997,95(26):71.

[2] 王熙庭,任庆生.氦资源应用.市场和提取技术[J].天然气化工(C1化学与化工),2012,37(1):73-78.

[3]周正明.天然气化工发展趋势及深加工产品[J].化工生产与技术,1999年.

篇5:天然气开发技术现状

陈叔平,谢福寿,马志鹏,金树峰

论文编号: 1210301

LNG 船运现状及发展趋势

(兰州理工大学石油化工学院,兰州 730050)

摘 要:随着全球天然气需求持续增长,天然气在世界能源结构中的地位不断上升,已与煤炭、石油能源并称为世 界能源的三大支柱。分析表明全球天然气储量、分布、生产和消费极不均衡,将天然气液化,通过 LNG 船舶运输是 实现 LNG 跨地区远洋运输的最有效方式。论文回顾了 LNG 船舶运输的发展历程,阐述了船舶数量、装载容量、货 舱类型、推进系统、船舶建造厂以及中国 LNG 船舶现状,并对全球 LNG 船舶发展趋势做了展望。可以预计 LNG 船 舶数量在 2020 年之前会持续稳定增长,并向大型化、标准化、薄膜型、自动化、最低蒸发率、蒸发气再液化、节能 推进系统方向发展。

关键词:LNG;船运现状;发展趋势

引言

近年来由于石油危机的冲击以及煤、石油所带来的环境问题日趋严重,能源结构逐步发生了变

化,作为世界能源三大支柱之一的天然气消量急剧上升,其作为清洁能源越来越受到青睐,许多国 家都将其列为首选燃料[1]。

随着天然气市场需求的不断增长,LNG 贸易量的不断增加,使得 LNG 的运输成了目前急需解 决的问题。由于 LNG 船舶运输是天然气跨地区远洋运输最有效的方法,故世界范围内投入使用的 LNG 船的数量正逐年增加。全球天然气现状

1.1 全球天然气储量及其分布

1.1.1 全球天然气资源丰富

图 1 全球天然气探明储量[2] Fig.1 Word natural gas reserves

图 2 全球天然气探明储量分布[2]

Fig.2 Distribution of word natural gas proved reserves 1990 年全球天然气探明储量为 125.7 万亿 m,2000 年全球天然气探明储量为 154.3 万亿 m3,2009 年全球天然气探明储量为 186.6 万亿 m3,而 2010 年全球天然气探明储量为 187.1 万亿 m3,储

产比为 58.6 年。在过去 30 年中,全球天然气探明储量每年平均增长约 3.3%,天然气储存量非常丰

共同学习、共同提高;热心分享、热心交流,努力成为一名LNG行业的领跑者,尽在LNG领跑者论坛

富,详见图 1。

1.1.2 全球天然气分布不均衡

截止 2010 年,已探明的全球天然气储量 40.5%分布在中东地区,33.7%分布在欧洲及欧亚大陆,其余分布在亚太地区、非洲、北美洲、中南美洲,详见图 2。

2010 年世界前十位主要国家的天然气探明储量为 144.7 万亿 m3,占全球天然气总储量的 77.3%。其中俄罗斯拥有全球所探明的天然气储量的 23.9%,是世界第一天然气大国,储采比高达 76 年,详 见图 3。

图 3 各个国家天然气探明储量分布[2] Fig.3 Distribution of each country natural gas proved reserves

图 4 全球天然气生产和消费变化趋势[2] Fig.4 Changes of word natural gas production and

consumption

1.2 全球天然气生产及消费状况

全球天然气生产量和消费量平稳增长,在过去 10 年中,全球天然气生产量平均每年增长 779.9 亿 m3,平均增长率为 10%。到 2010 年,全球天然气平均消费量达到 31690 亿 m3,见图 4。

由 5 可知,全球天然气生产和消费分布不均衡,欧洲及欧亚大陆、北美洲和亚太地区既是全球 主要产气区,也是全球三大主要消费市场。2010 年,欧洲天然气产量为 10431 亿 m3,占全球天然气 总生产量的 32.6%,为各地区之首。同时,消费量为 11372 亿 m3,占全球天然气总消费量的 35.8%。

图 5 各地区天然气生产和消费量分布[2] Fig.5 Distribution of natural gas

图 6 各国建造 LNG 船舶数量[6]

Fig.6 Numers of LNG ships by each country consruction 由于全球天然气的生产和消费分布并不均衡,产销地区往往远隔重洋,故需要解决海上运输问 题。天然气经液化,体积只有原来气体的 1/625,可通过 LNG 船来实现远洋运输。全球 LNG 船舶现状

共同学习、共同提高;热心分享、热心交流,努力成为一名LNG行业的领跑者,尽在LNG领跑者论坛

2.1 LNG 船队历程

全球 LNG 的海上运输始于 20 世界 50 年代末。1959 年,由杂货船改装的世界上第一艘 LNG 船 ——Methane Pioneer 号,从美国路易斯安娜州的查尔斯湖向英国 Canvey 岛基地运送了 5000m3 的液 化天然气(LNG),揭开了 LNG 海上运输的篇章。1964 年,世界第一次 LNG 海上贸易诞生,Methane Pioneer 号和 Methane Progress 号在阿尔及利亚和英国 Canvey 岛之间运营,航次超过 900 次,总运输 量达到 22000m3。随后,在阿尔及利亚和 Leltayve(法)、阿拉斯加和日本、利比里亚与西班牙以及 文莱和日本之间开始了 LNG 船运输。从此,LNG 船作为天然气海上运输的载体,随着 LNG 海运贸 易的蓬勃发展而发展起来。1971 年,Kvaerner 开发了单舱舱容量 8.8 万 m3 的 Moss 球形液货物维护 系统。1973 年,第一条 MOSS 独立型 LNG 船“Norman Lady”在挪威 Moss Rosen beg 船厂开工建 造,其液货舱容为 8.76 万 m3。1997 年,Methane Princess”由于其较小的货舱容量,经济上不划算,“ 于是在经历了 32 年的服务之后正式报废。1998 年,全球营运 LNG 船舶突破 100 艘。2006 年,日本 邮船会社 NYK 旗下的“Jamal”,首次在 LNG 船上采用天然气再液化装置,以处理航行过程中货舱 中自然蒸发气体(Natural Boil-off Gas)[3-6]。

2.2 船舶数量及装载容量

单船容量是衡量 LNG 船舶运输能力的一个重要参数,LNG 船舶单船容量是指一艘 LNG 船舶所 能装载的最大 LNG 量。

截止 2012 年 2 月 29 日,全球交付的 LNG 船有 361 艘,总装载量达 5290.8 万 m3,其中装载量 12.5-15 万 m3 的有 223 条,总容量为 3068 万 m3,占全球 LNG 船舶总装载量的 58%,为主流船队,详见表 1。

表 1 全球船舶数量及装载量[7] Table 1 Numbers and load of word ships

装载量

数量(艘)29 223 80 29

总容量(万 m)

占总容量(%)3.3 58 25.7 13

(万 m)≥12.5 12.5-15 15-21.5 ≤21.5

173.1 3068 1358.8 690.59 由图 6 可知,LNG 船建造主要集中在韩国和日本,其中日本交付 96 艘,在建 2 艘;韩国交付

197 艘,在建 51 艘,占总交付 54.6%,为 LNG 船建造第一大国。

2.3 液货舱类型

图 7 LNG 船舶舱型比例[6]

Fig.7 Proportion of LNG ships cabin type LNG 船舶的液货舱有多种型式,如 Mixed、Conch、Esso、SPB、Moss、GAZ TRANSPORT(GT)、TECHNIGAZ(TZ)、CS 等等[8]。目前技术发展较为成熟、应用最为广泛的有 MOSS 型和薄膜型(GAZTRANSPORT 型和 TECHNIGAZ 型)。截止 2012 年 2 月 29 日,全球交付的 LNG 船舶舱型比 例见图 7。

共同学习、共同提高;热心分享、热心交流,努力成为一名LNG行业的领跑者,尽在LNG领跑者论坛

由图 7 易知,交付的 LNG 船舶有将近98%都采用的是 Moss 型或者薄膜型货舱,说明这两种货 舱形式已得到人们的广泛认同,其中薄膜型货舱的比例要高于 Moss 型货舱。

2.4 推进系统

LNG 船舶的动力推进系统可分为以下 4 种:

(1)蒸汽轮机推进系统(Steam)。其优点是可以同时燃烧以任何比例混合的天然气和燃料油,维护费用低,可靠性高;缺点是效率低,占用空间大。

(2)双燃料发动机推进系统(DFDE)。其优点是效率高,占用空间少,便于维护和操作;缺点 是不能将蒸发气体作为单一燃料燃烧,输出功率低。

(3)带再液化装置的柴油机推进系统(DRL)。其优点是主体本身燃烧效率高,货舱区与主机 区分离;缺点是重油消耗量大,需要驱动再液化的电力。

(4)柴油机推进系统(Diesel)。其装置的可行性好,比蒸汽轮机发动机燃料效率高;缺点是需 要高质量的燃油,不能与蒸发气体混合燃烧。

图 8 是目前世界 LNG 船队推进系统统计示意图。可知交付的 LNG 船舶绝大多数都采用的是蒸 汽轮机推进系统,但已经有越来越多的 LNG 船舶开始采用双燃料推进系统。

图 8 全球 LNG 船队推进系统统计示意图[2] Fig.8 Statistical schematic of LNG ships propulsion system 2.5 LNG 船舶建造厂

目前全球建造 LNG 船的造船厂主要分布在亚洲的韩国、日本和中国。历史上,欧洲一些国家,如挪威、瑞典、芬兰、德国等国都建造过 LNG 船。其中,以法国的大西洋船厂数量最多。美国也建 造过 LNG 船,但现在已停止建造。欧洲和美国造船厂在建造 LNG 船舶方面落后于亚洲船厂,主要 原因是这些国家造船厂高昂的劳动力成本,以及发达国家转移造船这种劳动力密集型产业[9]。

2.6 中国 LNG 船舶现状

随着中国经济的迅速发展以及能源战略的调整,我国对海运进口的液化天然气的需求快速增加,使得我国 LNG 船建造需求加大。多年来,我国造船界和航运界都一直在关注、酝酿和研讨发展天然 气运输船。交通部已近把“高技术性能船舶设计制造工程”项目列为十二大高技术工程项目之一,将 LNG 船列为该项目中的主要新船型之一。

在 2004 年,上海中华泸东造船厂通过和法国 GTT 公司、法国大西洋船厂的合作,掌握了 14.5 万 m3 薄膜型 LNG 船舶的建造技术,开始着手建造中国第一艘“大鹏昊”LNG 船舶,并于 2008 年 4 月 3 日建成交付船东,它是当时世界上最大的薄膜型 LNG 船,船厂 292 米、宽 43.35 米、型深 26.25 米,装载量为 14.7 万 m3,时速 19.5 节。接着第二艘 LNG 船“大鹏月”于 2008 年 7 月 10 日在上海 交付船东,该船同“大鹏昊”属同一级别,货舱类型为 GTTNO.96E-2 薄膜型,为广东大型 LNG 运 输项目建造。截止 2012 年 2 月 29 日,已交付 4 艘,在建 6 艘。2012 年,接到订单 4 艘。

共同学习、共同提高;热心分享、热心交流,努力成为一名LNG行业的领跑者,尽在LNG领跑者论坛LNG 船舶发展趋势

3.1 LNG 船舶数量稳定增长

从 10~20 年长远趋势来看,LNG 消费量和进口量都将快速增长。大量的 LNG 进口,再加上大 量老、旧 LNG 船的更新,需要建造大量的新 LNG 船舶。

3.2 LNG 船大型化

就经济而言,LNG 船与其它商用船舶相同,加大尺寸可以降低其单位运输费用。尤其是 LNG 运输,由于其单位运输量是恒定不变的,增大 LNG 船的尺寸就可以减少 LNG 船的数量,从而降低 成本和运营费用。

3.3 标准化

LNG 项目需要庞大的初期投资,因此一般按照生产与消费方之间的长期合同进行开发。这样,LNG 船作为该项目的专用船决定了最佳船型、航速等基本条件。另一方面,LNG 也与一般的海运货 物一样,存在着许多不特定的生产者与消费者之间转让合同的可能性,具体地说,也进行现货交易。因此,一般认为,将来多采用通用性强的标准进行交接。在这种背景下,与大型化不同的角度看,标准化也是可以考虑的方向。现在的标准船型从 14.7 万 m3 逐渐扩大至 20 万 m3。同时,大型化之 后会出现进港困难的 LNG 基地,因此设计标准船型时提高通用性是极为重要的。

3.4 薄膜型液货舱将成为发展的主流

从图 8 可知,世界现有船队中薄膜型 LNG 船占有 67.4%,已成为 LNG 船队发展的主流。

3.6 广泛采用自动化

LNG 船各部位广泛采用自动化装置,可使航运简单化,安全性提高。从环保考虑,可采用压载 水置换的自动化和聚四氟乙烯制冷剂等新技术,目前部分技术已进入实用阶段。

3.7 降低蒸发率

选用新的绝热型式和绝热结构来降低蒸发率,可提供经济效益,降低运行成本。如 MRV 型液 货舱采用增加绝热层厚度和减少液货舱数的方法来减小蒸发率,而对于 TZ 和 GT 型薄膜式液货舱主 要采用改进绝热层结构和应用真空绝热等技术。

3.8 蒸发气(BOG)再液化

由于液货舱内外壁的温差极大,不可避免地导致舱内的 LNG 蒸发汽化,蒸发气的产生会使得液 货舱内空间压力、温度以及 LNG 的密度发生变化。因为液货舱的设计压力都小于环境温度下的液货 蒸气压力,当液货舱内压力过高时,压力释放阀被迫打开,将货物气体排入大气中,造成直接的经 济损失。如果压力释放阀失灵,则会破坏液货舱结构,造成危险。显然,这会危及船舶航行安全,因此,有必要对蒸发气进行液化处理。

3.9 选用节能的推进系统

任何船舶燃料费在运营成本中都占有相当大的比例,LNG 船也不例外。因此,为降低运营成本,有必须选用低耗油率的动力装置,来提高船舶整体效益。结语

随着国际社会对清洁能源需求的快速增加,许多国家都开始扩大 LNG 进口,全球 LNG 消费量

共同学习、共同提高;热心分享、热心交流,努力成为一名LNG行业的领跑者,尽在LNG领跑者论坛

和进口量都将快速增长。由于大量 LNG 的进口,以及大量老、旧 LNG 船舶的更新,LNG 船舶市场 发展前景很大,并朝大型化、标准化、自动化、节能化、低蒸发率和蒸汽再液化方向发展。

参考文献

[1] 顾安忠.液化天然气技术[M].北京:机械工业出版社, 2003.[2] BP Statistical Review of World Energy June 2011[EB/OL].http://

通讯作者简介:

谢福寿,硕士,研究方向:低温贮运及传热传质技术; 工作单位:兰州理工大学石油化工学院; 通信地址:兰州市七里河区兰工坪路 287 号; 联系电话:***; E-mail:xiefushou0@126.com

篇6:天然气汽车发展现状及对策

--国务院发展研究中心 2006-03-27 15:03:10

【文章正文】

石油短缺和生态恶化是21世纪人类面临的主要问题,能源的短缺将直接影响各国经济的持续发展,而环境污染则直接威胁着人类的健康和生存。天然气是当今世界能源的重要组成部分,它与煤炭、石油并列为世界能源的三大支柱。据研究资料显示,世界已探明的石油储量,按汽车现在消耗的速度,还能支撑40-70年。而已探明的天然气储量,预计可以开采200年。从这个意义上讲,天然气汽车是21世纪汽车工业发展的一个重要方向。

一、天然气汽车的发展现状

近二十多年来,世界天然气需求持续稳定增长,平均增长率保持在2%,专家预计2020年其在世界能源组成中的比重将会增加到30%。21世纪天然气在世界能源结构中的比重将超过石油,成为世界第一大能源,21世纪将是一个天然气世纪。AA天然气是一种洁净的能源,主要成分是甲烷,燃烧后的主要生成物为二氧化碳和水,其产生的温室气体只有煤炭的1/2,是石油的2/3。天然气汽车则是以天然气作为燃料的汽车,按照天然气的化学成分和形态,可分为压缩天然气(CNG)汽车、液化天然气(LNG)汽车和液化石油气(LPG)汽车3种。近年来,天然气汽车在全球发展很快,在应用与运营方面比较成功。天然气汽车是一种理想的低污染车,与汽油汽车相比,它的尾气排放中CO下降约90%,HC下降约50%,NOx下降约30%,S02下降约70%,CO2下降约23%,微粒排放可降低约40%,铅化物可降低100%。可见天然气对环境造成的污染远远小于石油和煤炭,是一种优良的汽车发动机绿色代用燃料。同时,天然气汽车的使用成本较低,比燃油汽车节约燃料费约50%。此外,与电动汽车相比,天然气汽车的续驶里程长。有关专家认为天然气汽车是目前最具有推广价值的低污染汽车,尤其适合于城市公共交通和出租汽车使用。目前,它已在世界上得到广泛应用。

根据最新资料显示,全世界约有四百万辆天然气汽车,其中中国约有九万七千多辆天然气汽车。目前,世界上有六七十个国家在进行压缩天然气的研发和使用,全世界约有三百六十七万多辆汽车使用压缩天然气作为动力。中国使用压缩天然气的汽车约有九万辆,主要分布在四川、陕西等西部地区。其中,四川省使用压缩天然气的汽车最多,达到四万八千辆,加气站也有一百八十多个。上海有四百余辆CNG公交大客车投入使用。可以预见,随着国内其他城市供气系统和全国范围内的加气站网络建设的完善,天然气汽车必将得到大力推广,天然气企业和天然气汽车行业的市场空间极为广阔。

二、天然气汽车存在的问题

用天然气作为汽车动力有很多优势,如污染少,燃料经济性好、价格低等。但由于它与汽柴油在燃烧特性和储存方面有所不同,因而在天然气车的开发和应用中,存在如下问题。

动力性较低。燃用天然气与汽油相比,混合气的热值低(天然气/空气混合气热值为3.36MJ/m3,汽油/空气混合气热值为3.82MJ/m3),进气(空气)量少,分子变更系数少,动力性约下降20%。

供气体系建设有难度。天然气汽车在国内大城市推广应用,必须建立相应的加气站及为加气站输送天然气的管道,这涉及到城市建设规划、经费投入和环境安全等诸多因素。而且建加气站的费用相当高,需500-1000万元人民币,甚至更多。这个问题在一定程度上已经成为一些地区发展天然气汽车的瓶颈。

贮气瓶占用空间较大,携带不便。1m3常压天然气装入20MPa的贮气瓶中,约占5L容量。而与之等热量的汽油(0.81kg)只占1.1L容积,CNG所占容积等于汽油的4.5倍(容积系数等于4.47)。要保证相同的续驶里程,天然气汽车贮气瓶的体积比汽车油箱就要大许多,相对降低了车辆的承载能力。贮气瓶在压力下的携带,技术上不是难题,但毕竟不如汽油和柴油方便。而且气瓶贮气量直接关系到行驶的里程。

汽车用户的初始投资较大。天然气汽车的一些部件如贮气瓶、安全阀等,要求严格,成本较高。此外,尚未形成规模效益,使得它们的造价下降受限。对于目前采用的两用燃料车,则要在原车上另加一套价值数千元到数万元不等的天然气供气系统。

三、发展我国天然气汽车的对策

1.加快天然气发动机关键技术的研究

电子控制技术。应用先进的电控技术对天然气发动机的燃料供给、点火定时等进行精确控制,是实现天然气汽车发动机高效率、低污染燃烧的关键之一。电控系统主要包括电控单元、传感器和执行机构等。

空燃比控制技术。为协调发动机排放(NO/HC)、气耗率和可靠性(排温),空燃比在整个万有特性图上的快速与精细控制是关键。优化燃烧技术。发动机燃烧技术和高能点火技术及其协调优化是实现最佳性能的必要条件。

先进的后处理技术。由于欧Ⅲ排放法规不仅要求限制天然气发动机的非甲烷碳氢(NMHC)而且要求控制总碳氢排放(THC),先进的氧化型后处理技术就成为关键技术之一。

2.改善供气能力,加快加气站基础设施的建设

利用“西气东输”和进口天然气的管网建设在沿线和周边城市改善供气能力,为大力发展天然气汽车提供必要条件。影响天然汽车发展的一个重要的因素是加气站的建设。发展天然气必须有大量适用的加气站网点作保障。天然气汽车的发展要有计划有步骤的作好发展规划,逐步实施。各大城市,特别是有条件建设的城市应将天然气汽车加气站的建设列入城市的发展规划中,并尽早投入经费建立天然气的供气系统。

3.贮气瓶的研制

研制储存量大、耐高压、轻质的车载复合气瓶已是一个必须解决的重要关键技术。这方面国外已经成功地研制并生产了压力大于25MPa的复合材料气瓶,且其P/V(质量/容积)仅为0.6。我国应尽快开展这方面的研制工作。

4.政府政策的支持

政府的经济政策是影响燃气汽车发展的一个最重要因素。许多发达国家的政府为了保护环境,在价格,税收,投资,补贴等方面制定优惠措施,积极鼓励燃气汽车的发展。我国政府应结合实际情况,积极发挥引导、支撑和排障的作用,如在法律方面予以保障,在燃气汽车生产、改装、零部件生产、加气站建设、燃气汽车购买和使用等环节给予税收、资金等方面的优惠政策。例如上海市政府对新增天然气公交车进行补贴,政府投资进行加气站建设,由委托企业经营等,都是行之有效的措施。目前我国正在进行燃油税改革,实行税改后,燃油价格将上升,对燃气汽车的发展具有重要的促进作用。

上一篇:企图词语的含义及造句下一篇:2024年淘宝电商运营新思路