液压制动系统设计论文

2024-05-10

液压制动系统设计论文(精选6篇)

篇1:液压制动系统设计论文

题目:液压动力滑台液压传动系统设计

学院:机电工程学院

班级:

姓名:

学号:

液压动力滑台液压传动系统设计

一、设计要求

1.要求的工作循环:快进接近工件、工进加工、快退返回、原位停止。

2.给定的设计参数:快进、快退速度v1=0.1m/s;工进速度v2=0.1×10-3m/s;静摩擦力Fs=1960N;动摩擦力Fd=980N;启动和制动惯性负载Fi=500N;工作负载Fe=32000N;启动、制动时间t=0.2s;快进行程L1=100mm;工进行程:L2=50mm。

二、工况分析

1.由给定的设计参数,计算各工况负载见表1,其中,取液压缸机械效率ηcm=0.9。

表1液压缸负载的计算

计算公式

液压缸负载F/N

液压缸驱动力F0/N

反向启动

退

F=Fs

F=Fd+Fi

F=Fd

F=Fe+Fd

F=Fs

F=Fd+Fi

F=Fd

1960

1480

980

32000

1960

1480

980

2178

1645

1089

35556

2178

1645

1089

2.计算快进、工进时间和快退时间。

快进

t1=L1/v1=100×10-3/0.1=1s

工进

t2=L2/v2=50×10-3/(0.1×10-3)

=500s

快退

t3=(L1+L2)/v1=(100+50)×10-3/0.1=1.5s

3.根据以上数据绘制液压缸F-t与v-t图,如图1所示。

图1

F-t与v-t图

三、确定液压缸参数

1.初选液压缸工作压力。由工况分析可知,工进阶段的负载最大,所以液压缸的工作压力按此负载计算。查找资料[1]表7-2,选p1=4MPa。为防止工进时突然发生前冲现象,液压缸回油箱应有背压,查找资料[1]表7-3,选背压p2=0.8MPa。为使快进快退速度相等,选用A1=2A2差动油缸。液压缸快进和快退时油管中压力损失设为Δp=0.5MPa。

2.计算液压缸尺寸。

则液压缸缸筒直径

查找[2]表42.4-2,取标准直径

D=110mm

因为A1=A2,所以

则液压缸有效面积为

3.液压缸工况计算。液压缸在工作循环中各阶段压力、流量和功率的计算结果见表2。绘制液压缸工况图,如图2所示。

表2

各工况下的主要参数值

工况

液压缸推力F0/N

回油腔压力p2/MPa

进油腔压力p1/MPa

输入流量q/L·s-1

输入功率P/kW

计算公式

快快进

启动

2178

——

0.88

——

——

p1=

q=Av1

P=p1q

加速

1645

1.27

0.77

——

——

恒速

1089

1.16

0.66

0.5

0.33

工进

35556

0.8

4.12

9.5×10-4

3.9×10-3

p1=

q=A1v2

P=p1q的快退

起动

2178

——

0.88

——

——

p1=

q=A2v1

P=p1q

加速

1645

0.5

1.43

——

——

恒速

1089

0.5

1.30

0.45

0.59

图2

液压缸工况图

四、拟定液压系统图

1.调速方式。该液压系统功率较小,滑台运动速度低,工作负载为阻力负载且工作中变化小,故可选用进口节流调速回路。为防止负载突变,在回油路上加背压阀。

2.液压泵的选择。从液压缸工况图可以看出工作循环主要由快进、快退行程低压大流量和工进行程的高压小流量两个阶段组成,qmax/qmin=0.5/(9.5×10-4)=526.3;其相应的时间之比(t1+t3)/t2=(1+1.5)/500=0.005。因此在一个工作循环中的大部分时间都处于高压小流量工作。从提高系统效率、节省能量角度来看,选用单定量泵油源显然是不合理的,为此可选用限压式变量泵或双联叶片泵作为油源。考虑到前者系统较简单,经济性好,且无溢流损失,系统效率高,温升较小,故选择限压式变量泵。

3.速度换接方式。采用二位二通电磁换向阀,控制由快进转为工进。与行程阀相比,管路较简单,行程大小容易调整。当滑台由工进转为快退时,回路流量较大,为保证换向平稳,可采用电液换向阀。

4.快速回路与工进转快退控制方式的选择。为使快进快退速度相等,选用差动回路作快速回路,换向阀选用三位五通阀。

5.综上所述,拟定液压系统图,如图3所示。

图3

液压系统图

1-限压式变量叶片泵;2-三位五通电液换向阀;3-二位二通电磁阀;4-调速阀;5、7、10-单向阀;6-压力继电器;8-液控顺序阀;9-背压阀;11-溢流阀;12-过滤器

其中,部分元件的作用如下:

压力继电器6:便于系统自动发出快速退回信号。

单向阀7:将工进时的进油路、回油路隔断,防止其相互接通,无法建立压力;

液控顺序阀8:防止滑台快进时回油路接通油箱,无法实现液压缸差动连接,阻止液压油在快进阶段返回油箱;

单向阀10:防止机床停止工作时系统中的液压油流回油箱,导致空气进入系统,影响滑台运动平稳性;

液压系统工作原理:三位五通电液换向阀处于左位,二位二通电磁阀处于右位时,液压缸实现快进;当二位二通电磁阀处于左位时,油液从调速阀4通过,液压缸实现工进;到达终点时,三位五通电液换向阀处于右位,二位二通电磁阀处于右位,液压缸快退。三位五通电液换向阀处于中位时,液压缸停止运动。

五、选择液压元、辅件

1.选择液压泵

由表2可知,工进阶段液压缸压力最大,取进油路总压力损失为0.8MPa,则液压泵最高工作压力

故泵的额定压力

由表2可知,工进时所需流量最小,为9.5×10-4L/s,则变量泵的最小流量为

快进时所需流量最大,为0.5L/s,则变量泵的最大流量为

根据以上计算,查资料[2]表42.3-68,选用YBX-25型限压式变量叶片泵,该泵技术规格如下:

表3

液压泵参数

型号

排量调节范围

mL/r

额定压力

MPa

压力调节范围MPa

额定转速

r/min

YBX-25

0~25

6.3

2.0~6.3

600~1500

2.选择电动机

由表2可知,最大功率出现在快退工况。快退时,取进油路压力损失为0.4MPa,则

取泵的最大流量为q=35L/min=5.8×10-4m3/s,查找资料[2]表42.3-68取泵的总效率ηP=0.72,则

根据以上计算结果,查找资料[3]表16-2,选用与上述功率和液压泵转速相适应的Y90L-4三相异步电动机,额定功率为1.5kW,满载转速为1400r/min。

3.选择其他元、辅件

根据系统的工作压力以及通过阀的实际流量,查找液压技术手册[2]和[4],选择其他液压元件和辅件,其型号和参数见下表:

表4

其他元、辅件的选择

序号

元件名称

通过阀的最大流量

规格

额定流量

额定压力

MPa

型号

三位五通电液换向阀

6.3

35D-100B

二位二通电磁阀

610

6.3

22D-100BH

调速阀

<1

6.3

Q-6B

单向阀

6.3

I-100B

压力继电器

——

——

0.6~6.3

DP-63B

单向阀

6.3

I-63B

液控顺序阀

<1

6.3

XY-25B

背压阀

<1

6.3

B-10B

单向阀

6.3

I-63B

溢流阀

YF3-E10B

过滤器

6.3

XU-100×100

4.选择油管

管道尺寸根据选定的液压阀的连接油口尺寸确定。液压缸的进出油管按输入、排出的最大流量计算。快进时流量最大,其实际流量为泵的最大供应量的两倍,达到66L/min,则进出油管可选用内径为15mm,外径为18mm的无缝钢管。

5.确定油箱容量

按经验公式计算油箱容量

V=(5~7)qp=6×1500r/min×25mL/r=225L

参考资料

[1]官忠范主编.液压传动系统.北京:机械工业出版社,2004

[2]中国机械工程协会主编.中国机械设计大典.南昌:江西科学技术出版社,2002

[3]程志红,唐大方编著.机械设计课程上机与设计.南京:东南大学出版社,2006

[4]魏喜新主编.液压技术手册.上海:上海科学技术出版社,2013

篇2:液压制动系统设计论文

ZDY760全液压钻机液压系统设计

本文主要介绍了ZDY760钻机液压系统设计计算、工况分析、主要参数、液压原理及液压系统图.

作 者:王健 Wang Jian  作者单位:浙江杭钻机械制造股份有限公司,浙江杭州,310016 刊 名:地质装备 英文刊名:EQUIPMENT FOR GEOTECHNICAL ENGINEERING 年,卷(期):2009 10(3) 分类号:P634 关键词:工况分析   主要参数   液压系统图   结构特点  

篇3:一小型液压机液压系统设计

在黑龙江省齐齐哈尔市周边地区有着众多的农业机械生产制造企业。这些企业大部分规模较小,生产方式较为落后。其中部分企业为节约资金自行设计制造简易液压机。通过实际的生产表明这些液压机具有较好的实用性、可靠性,也为企业创造了客观的经济效益。

实践应用表明本液压系统很好的适应了液压机的工作需要,同时具有结构简单,成本较低的特点。

1 液压系统原理图

1.1 工况图

此液压机在应用上定位为万能型液压机,因此确定液压机工作循环是快速下行→慢速加压→快速返回→停止。

1.2 系统原理图

根据工况图设计的液压机的液压系统原理图如下 :

1. 滤油器2. 双联泵3. 电动机4. 溢流阀5. 单向阀6. 卸荷阀7. 三位四通手动换向阀8. 液压锁9. 液压缸

本系统采用双泵供油方式,在快进和快退工况双泵同时向系统供油,工作缸高速运动。在工进工况时低压大泵通过卸荷阀6卸荷高压小泵向系统供油,工作缸处于低速大输出力工作状态。同时该系统具备短时保压能力。设计压制力40t,工进速度约10mm/s, 快进速度为工进速度的4倍。

2 主要元件基本参数的确定

2.1 液压缸

2.1.1缸径

初步确定系统压力为20Mpa

由 F=P·A·η

得 :

得 :A=21778mm2

所需缸径为 :D=166.6mm

根据液压缸缸径系列选择液压缸缸径为180mm。

2.1.2 活塞杆杆径

压力机使用 :可选速比为2 ;

则由并查液压缸活塞杆外径系列表可得液压缸活塞杆杆径为 :d=125mm ;

2.1.3 验算系统压力

由 F=P·A·η,得

则p=17.1MPa

2.2 液压泵的排量

2.2.1高压小泵的排量

液压系统采用三相异步交流电动机作为驱动的动力,转速以1400r/min计算 ;

由液压缸压装工作速度10mm / s得工进时所需流量Q1为 :

泵每秒钟转数 :1400/60=23.33r/s ;

则泵理论排量为 :254.34/23.33=10.9ml/r ;

由泵的排量系列选择泵的排量为12.5ml/r。

2.2.2 低压大泵的排量

由快速下行速度应为工作速度的4倍,得大泵的排量应为小泵的3倍,按照3倍关系并根据泵的排量系列选择大泵排量为40ml/r ;

3 驱动电机功率

按照工进工况计算 :

卸荷阀调整压力为2.5Mpa,假设低压大泵卸荷时回路阻力为0.5MPa,则 :

由Y系列三相异步电动机的容量系列选择电机功率为7.5kw。

4 结论

(1)液压机在使用中性能稳定,液压系统较为简单,维护工作量较少。

篇4:液压制动系统设计论文

关键词:工况分析;主要参数;结构特点

中图分类号:TH137文献标识码:A文章编号:1006-8937(2011)22-0178-03

1ZDY3200S全液压钻机的主要参数

根据市场调研,用户需求 ZDY3200S全液压钻机的主要技术参数为:

①回转参数。转速范围:50~175 r/ min; 扭矩范围:2300~850 N·m;主轴内径:75 mm。

②进给参数。给进行程:600 mm;给进力:102 kN;给进速度:0~0.22 m/s; 起拔力:70 kN;起拔速度:0~0.32 m/s。

③使用范围。钻孔深度:350/100 m;终孔直径:150/200 mm;钻杆直径:63.5/73 mm。

2液压系统的工况分析 (负载与运动)

ZDY3200S钻机的液压系统需执行三个功能回转、给进、夹持,三个功能分别由三个执行元件。一个执行元件是液压马达,为钻机提供回转部分的转速和转矩;一个执行元件是液压油缸,为钻机提供给进部分的给进力和起拔钻具的起拔力;另一个执行元件也是液压油缸,是夹持器、卡盘部分,提供夹持钻杆的夹紧力。

①钻机的回转部分。ZDY3200S钻机的回转为一档无级变速50~175 r/min,最大扭矩为3200 N·m。在变量泵—定量马达的回路中液压马达的输出转矩为:

Tm=Vm?驻pm?浊mm=Kml?驻pm=T (1)

式中:Tm为液压马达输出转矩;?浊mm为液压马达机械效率;Vm为液压马达排量;?驻pm为液压马达进、出口压力差;Km1=Vm?浊mm常数(认为?浊mm是常数)。

式(1)为变量泵—定量马达容积调速回路的转矩特性方程。因此在液压马达的输出部分连接了变速箱,回转传动经变速后输出。参考西安ZDY3200S钻机可知,变速箱部分是无级一档变速,齿轮箱部分的传动比初步设计分别为i1=2.535和i2=2.56,所以i=i1×i2=6.489,则取i=6.489。推算油马达输出的转速n和最大的转矩T。

n油马达输出=175×6.489=1 135.57 r/min (2)

T最大=3200÷6.489=493.14 N·m (3)

②钻机的给进部分。液压缸的负载,随着钻头的回转供给相应的给进力102 kN,给进速度为0~0.22 m/s;随着钻孔深度的增加,添加钻杆时快速回升卡盘时,所需的起拔速度0.32 m/s,起拔钻具时提供最大的起拔力70 kN。

③钻机的夹持部分。夹持结构为液压打开,碟弹夹紧。液压打开方式为油缸活塞形式。夹持油缸有一定的结构限制,油压只需打开碟形弹簧即可。

3液压系统主要参数

压力和流量是液压系统最主要的两个参数。根据这两个参数来计算和选择液压元件、辅助件和原动机的规格型号。

3.1初选系系统压力

初选系系统压力选定的是否合理,直接关系到整个系统压力统设计的合理性。在液压系统功率一定的情况下,若系统压力选得过低,则液压元、辅件的尺寸和重量就增加,系统造价也相应增加;若系统压力选得较高,则液压设备的重量、尺寸和造价会相应降低。然而,若系统压力选用过高,由于对制造液压元、辅件的材质、密封、制造精度等要求的提高,反而会增大或增加液压设备的尺寸、重量和造价,其系统效率和使用寿命也会相应下降,因此也不能一味追求高压。根据经验本钻机的液压系统工作压力选定为21 MPa。

3.2计算液压马达排量和液压缸尺寸

①计算液压马达排量。

(7)

式中:P1为液压缸的工作腔压力;P2为液压缸的回油腔压力;A1为液压缸无杆腔的有效面积,A1=?仔D2/4;A2为液压缸有杆腔的有效面积,A2=?仔(D2-d2)/4;D为液压缸内径;d为活塞杆直径;F0为液压缸的最大工作力;F为液压缸的最大外负载,无杆腔为工作腔时(起拔),F=70 kN,有杆腔为工作腔时(给进),F=102 kN;?浊nm为液压缸的机械效率,一般取(0.9~0.97),选取?浊nm=0.95。

为调节给进及起拔的速度,本钻机的液压系统回路上分别设有减压阀和节流阀。

根据液压回路特点选取背压的经验数据如表1所示。

选取本钻机的液压缸回路的背压为1 MPa。

杆径比(即活塞杆直径与活塞直径的比)d/D。

一般按下述原则选取:

当活塞杆受拉时,一般取d/D=0.3~0.5,当活塞杆受压时,为保证压杆的稳定性,一般取d/D=0.5~0.7。杆径比d/D还常常按液压缸的往返速比 i=v2 / v1(其中v2 、v1分别为液压缸正反行程速度)的要求来选取。其经验数据如表2所示。

由钻机的给进参数可知:

D=81.3 mm,d=44.7 mm。

参考表3、表4液压缸内径和活塞直径系列,选取本钻机的液压缸D/d为:

D=80 mm,d=50 mm (8)

4计算液压马达和液压缸所需流量

液压马达的最大流量为:

qmax=Vm nm max(9)

式中:qmax为液压马达最大流量,单位ml/min;Vm为液压马达排量,单位ml/r;nm max为液压马达最高转速参考工况分析部分,单位r/min。

由式(2)和(5)可得:

qmax=1135.57×163.95=185 767.9 ml/min

液压缸的最大流量为:

qmax=AVmax (10)

式中:A为液压缸的有效面积,A=?仔D2/4(m2);Vmax为液压缸的最大速度(起拔钻杆时),此时回转器不工作,Vmax=0.32 m/s。

qmax=?仔×0.082/4×0.32=1.608×10-3m3/s

=96509.6 ml/min

在本钻机工作时,液压马达和液压缸是并联连接,而且液压马达和液压缸的流量不是同时达到最大。

在本钻机的液压系统中,由于变量泵产生的流量还将消耗于液压泵、液压马达、液压缸和阀等的内泄上,因而变量泵产生的流量,只有在满足泄漏外尚有多余时,才能使液压马达、液压缸建立起足够的压力、输出转矩和压力。以此来确定液压系统的最小流量qmin。

由于液压缸的最大流量大于液压马达的最大流量,选取液压执行元件的最大流量为96509.6 ml/min。

液压系统的最小流量,根据经验公式可算出:

qmax=96509.6 ml/min×(1+5%)=101335.1 ml/min (11)

5计算出液压马达和液压缸的总功率

液压马达和液压缸在钻机打孔时,给进和回转同时进行。液压系统的功率为:

(12)

式中:P为液压系统压力kgf / cm2;qmin为液压系统的最小流量m3/h。

P总功率=210×101 335.1×1×10-6×60/36.7=34.79 kW。

需要指出的是,式中的P仅是系统的静态压力。系统工作过程中存在过渡过程中的动态压力,其最大值往往比静态压力要大很多。所以选取液压泵的额定压力时应比系统最高压力大25%~60%,使液压泵有一定的压力储备。最高系统的压力储备宜取小值。中、低压系统的压力储备应取大值,本系统压力储备取大值。

6主要液压元件的选择

6.1液压马达

根据式(3)和(5)的计算结果需满足钻机的最大转矩,以液压马达的性能参数转矩、转速、工作压力等为依据进行选择。本钻机选用液压马达的参数为:V=160 ml/r。此马达为斜轴式变量马达。

6.2液压缸

根据式(8)的计算结果,参考液压缸的基本参数(负载、运动方式等)为依据进行选择。本钻机的液压缸选用80/50的车用液压油缸。

6.3液压泵

本钻机采用双泵系统,电动机直接带动主泵,主泵在经过皮带轮带动副泵,为整个系统提供油压。变量油泵和变量马达组合进行无级调速,转速和扭矩可在大范围内调整,提高了钻机对不同钻进工艺的适应能力。

①确定液压泵的工作压力。

PP=P1+?驻P

式中:P1为执行元件(液压马达)的最大工作压力;?驻P为液压泵出口到执行元件入口之间的压力损失。

?驻P=21+1=22 MPa。

②确定液压泵的流量。本钻机液压系统的执行元件液压马达和液压缸同时动作,但流量不同时达到最大。液压马达随着转矩的增大,工作压差随着增大,流量减小。

为液压系统最大工作压力;qp为液压泵流量;?浊P为液压泵总效率;容积效率与机械效率的乘积取0.86。

PP=220×89×10-3×60/46×0.86=26.69 kW

由转速及功率确定电动机的型号:YBK2-225S-4;电动机功率:37 kW;额定转速:1 480 r/min,验算符合假设电机转速的设定值。

7结论

按照选定型号的液压泵、液压马达、液压缸样本上的技术参数进行验算,能够达到本钻机要求的性能参数,系统温升可以得到控制。

参考文献:

篇5:液压制动系统设计论文

本毕业设计(论文)是我个人在导师指导下完成的。文中引用他人研究成果的部分已在标注中说明;其他同志对本设计(论文)的启发和贡献均已在谢辞中体现;其它内容及成果为本人独立完成。特此声明。

论文作者签名: 日期: 关于论文使用授权的说明

本人完全了解福州大学至诚学院有关保留、使用学位论文的规定,即:学院有权保留送交论文的印刷本、复印件和电子版本,允许论文被查阅和借阅;学院可以公布论文的全部或部分内容,可以采用影印、缩印、数字化或其他复制手段保存论文。保密的论文在解密后应遵守此规定。

论文作者签名: 指导教师签名: 日期: 小型液压挖掘机液压系统的设计 摘要

近年来,有关挖掘机液压系统方面的文献并不少见,但文献的内容大多针对某一专题进行研究,系统地论述现代液压挖掘机液压系统的论文却较少,因此研究和设计液压挖掘机液压系统具有重要的现实意义和理论意义。

本论文主要概述挖掘机液压技术的发展史及其目前在国内的外发展情况,简述了液压挖掘机发展趋势,本文对液压挖掘机的常用液压回路进行了简单阐述和分析,对课题要求设计的小型液压挖掘机液压系统进行了方案设计及分析,并通过进一步计算确定了需要的液压元件完成选型。运用AutoCAD 绘制液压系统原理图、工作油箱总成、液压布置图、油箱零件图。最后通过验算证明了本设计的可行性。

关键词:液压系统,挖掘机,Mini Hydraulic Excavator Hydraulic System of Design Abstract.In recent years, the excavator hydraulic systems, the literature is not uncommon, but most of the content documents of a topic for research, systematic exposition of modern hydraulic excavator hydraulic system of the paper is less, so the research and design of hydraulic excavator system has important practical and theoretical significance.Hydraulic excavator of this thesis outlines the history of technology and its current developments in the foreign country, outlines the development trend of hydraulic excavators, hydraulic excavators used this hydraulic circuit for a simple set and analysis, subject to design small hydraulic excavator hydraulic system design and analysis, and by further calculation to determine the need for complete selection of hydraulic components.AutoCAD drawing using hydraulic system diagram, work tank assembly, hydraulic layout, tank parts diagram.Finally, tests prove the feasibility of this design.Keywords :Hydraulic System,Excavator 目 录 绪论......................................................................1 1.1 选题意义...............................................................................................................................................1 1.2 挖掘机及其液压技术概述...................................................................................................................1

1.3 国内外研究现状...................................................................................................................................2 1.4 挖掘机发展趋势...................................................................................................................................3 2 挖掘机液压系统概述........................................................5 2.1 挖掘机液压系统的基本组成及其基本要求.......................................................................................5 2.2 挖掘机液压系统的基本动作分析.......................................................................................................6 2.3 挖掘机液压系统的基本回路分析.......................................................................................................6 2.3.1 限压回路....................................................................................................................................6 2.3.2 缓冲回路..................................................................................................................................7 2.3.3 节流回路....................................................................................................................................8 2.3.4 行走限速回路............................................................................................................................9 2.3.5 合流回路.................................................................................................................................11

2.3.6 闭锁回路................................................................................................................................12 2.3.7 再生回路..................................................................................................................................12 3 挖掘机液压系统设计.......................................................13 3.1 挖掘机的功用和对液压系统的要求.................................................................................................13 3.2 挖掘机液压系统分析.........................................................................................................................13 3.2.1 挖掘机的液压系统原理图......................................................................................................13 3.2.2 系统工作循环分析..................................................................................................................14 3.2.3 主要液压元件在系统中的作用..............................................................................................15 3.2.4 液压系统中几种低压回路的作用..........................................................................................16 3.3 液压元件的选用.................................................................................................................................16 3.3.2 液压阀的选用..........................................................................................................................16

3.3.4 辅助元件的选用......................................................................................................................17 4参数计算及选择...........................................................18 4.1 计算所需要的泵的流量.....................................................................................................................18 4.2回转台启动力矩和制动力矩..............................................................................................................19 4.2泵的选择..............................................................................................................................................22 4.3油箱容积计算......................................................................................................................................22 4.4油管尺寸计算......................................................................................................................................23 4.5热平衡验算..........................................................................................................................................24 5 结论.....................................................................25 参考文献...................................................................27 致谢.......................................................................27 绪论 1.1 选题意义

随着国民经济的快速发展,液压挖掘机在各种工程建设领域,特别是基础设施建设中所起的作用越来越明显,液压挖掘机作为一类快速、高效的施工机械愈来愈被人们所认识。据统计,国内主要23家主要挖掘机制造公司2009年挖掘机市场总计销售各级别挖掘机约95,000台,同比2008年大幅增长23%,再次创造中国挖掘机销量记录。

挖掘机的发展与液压技术密不可分,二者相互促进,一方面,液压技术是现代挖掘机的技术基础,另一方面,挖掘机的发展又促进了液压技术的提高。挖掘机的液压系统复杂,其性能的优劣决定着挖掘工作性能的高低,可以说目前液压传动的许多先进技术都体现在挖掘机上。近年来,有关挖掘机液压系统方面的文献并不少见,但文献的内容大多针对某一专题进行研究,系统地论述现代液压挖掘机液压系统的论文却较少,因此研究挖掘机液压系统具有重要的现实意义和理论意义。

1.2 挖掘机及其液压技术概述

挖掘机的发展史可追溯到 19 世纪三四十年代。美国实施西部大开发工程催生了以蒸汽机作为动力,模仿人体大臂、小臂和手腕构造,能行走和扭腰的挖掘机。随后的一百多年中,挖掘机并没有得到很大发展,其原因一是当时的工程主要是国土开发、大规模的筑路和整修场地等,平面作业较多,使铲土运输机械成为当时的主力机种,二是挖掘机作业装置动作多、运动范围大、采用多自由度机构,机械传动难以适应这些要求,而当时的液压技术还不成熟,不能大规模地应用到实际工业中。随着社会的不断进步,工程建设和施工形式逐渐向土木施工方向发展,同时液压技术也逐步得以完善,这些因素的变化反过来又促进挖掘机的不断更新换代。20 世纪 40 年代有了在拖拉机上配装液压铲的悬挂式挖掘机,50年代初期和中期相继研制出拖式全回转液压挖掘机和履带式全液压挖掘机,60 年代,当液压传动技术成为成熟的传动技术时,液压挖掘机进入了推广和蓬勃发展吉阶段,各国挖掘机制造厂和品种增加很快(见表 1—1),产量猛增。1968~1970年间液压挖掘机产量

已占挖掘机总产量的 83%,目前已接近100%,所谓挖掘机在现代主要是指液压挖掘机,机械式挖掘机已很少见,液压传动技术为挖掘机的发展提供了强有力的技术支撑。

液压传动是挖掘机的重要组成部分之一,目前常用的传动方式有机械传动、电力传动和流体传动。流体传动包括液体传动和气体传动,液体传动又分为液压传动和液力传动。所谓液压传动是指在密闭的回路中,利用液体的压力能来进行能量的转换、传递和分配的

液体传动。在现代工业中液压传动技术几乎应用于所有机械设备的驱动、传动和控制,如操纵车辆转向和制动,控制和驱动飞机、机床、工程机械、农业机械、采矿机械、食品机械和医疗机械等

1650 年法国帕斯卡提出的封闭静止流体中压力传递的帕斯卡原理成为液压传动的理论基础,此后液压传动理论不断得以丰富和完善,如 1686 年牛顿揭示了粘性流体的内磨擦定律,18 世纪建立了流体力学的两个重要方程:连续性方程和伯努利方程。丰富的理论和实践的需要促进了液体应用技术和成果的不断涌现。1795 年英国人约瑟夫步拉默发明了世界上第一台水压机;随后出现在英国的工业革命促进了液压技术的迅速发展;到 1870 年液压传动技术已经被用来驱动各种液压设备,如液压机、起重机、绞车、挤压机、剪切机和铆接机等; 1900 年,世界上出现了第一台轴向柱塞泵;1910 年及 1922 年海勒.肖及汉斯.托马斯研制出用油作工作介质的径向柱塞泵;1926 第一套由泵﹑控制阀和执行元件组成的集成液压系统在美国诞生;1936 年哈里威克斯又发明了先导式液流阀。第二次世界大战之后,美国麻省理工学院的布莱克本、李诗颖等人对液压伺服控制问题作了深入的研究,于 1958 年制造了喷嘴挡板型电液伺服阀;20 世纪六十年代末,电液比例阀应运而生;70 年代后期,德美等国相继研制成负载敏感泵及大功率电磁阀;近年来,为适应机电一体化、控制柔性化和计算机集中控制的要求,液压系统的研究已由手动控制转向数字控制和信号控制。目前液压技术的研究和发展动向主要体现在以下几个方面:(1)提高效率,降低能耗。(2)提高技术性能和控制性能。(3)发展集成、复合、小型化、轻量化元件。(4)开展液压系统自动控制技术方面的研究

与开发。(5)加强以提高安全性和环境保护为目的研究开发。(6)提高液压元件和系统的工作可靠性。(7)标准化和多样化。

(8)开展液压系统设计理论和系统性能分析研究。1.3 国内外研究现状

我国挖掘机生产起步较晚,从 1954 年抚顺挖掘机厂生产第一台机械式单斗挖掘机至今,大体经历了测绘仿制、自主研发和发展提高三个阶段。

新中国成立初期,以测绘仿制前苏联 20 世纪 30~40 年代的机械式单斗挖掘机为主,开始了我国的挖掘机生产历史,由于当时国家经济建设的需要,先后建立起十多家挖掘机生产厂,到 20 世纪 80 年代末,我国的中小型液压挖掘机已形成系列,但总的说来,我国的挖掘机生产批量小,产品质量不稳定,与国际先进水平相比,差距较大。改革开放以来,生产企业积极引进、消化、吸收国外先进技术,促进了我国挖掘机行业的发展,目前国产液压挖掘机的产品性能指标已达到 20 世纪 80 年代的国际水平,部分产品达到了 90 年代的水平。

国外挖掘机生产历史较长,液压技术的不断成熟使挖掘机得到全面发展。德国是世界上较早开发研制挖掘机的国家,1954 年和 1955 年德国的德马克和利渤海尔两家公司分

别开发了全液压挖掘机;美国是继德国以后生产挖掘机历史最长、数量最大、品种最多和技术水平处于领先地位的国家;日本挖掘机制造业是在二次大战后发展起来的,其主要特点是在引进、消化先进技术的基础上,通过大胆创新发展起来的;韩国是液压挖掘机生产的后起之秀,20 世纪 70 年代开始引进技术,由于产业政策支持,很快进入国际市场,并已挤入国际液压挖掘机的主要生产国之一。世纪 60 年代,挖掘机进入成熟期,各国挖掘机制造商纷纷采用液压技术并与其它技术相结合,使产品的适应性得到较快发展,产品寿命和质量不断提高操纵更加舒适,产品更加节能。例如美国卡特彼勒公司 1995 年以后推出的 300B系列液压挖掘机,采用一种命名为 maestro 的系统,通过载荷传感液压装置,控制发动

机的输出功率,实现与液压泵的严格匹配。Maestro 控制面板在机型上安装两种功率模式和四种工况状态,允许用户自行决定功率工况模式。再如韩国现代公司生产的 ROBEX450-3 型液压挖掘机,有四种功率模式,通过集成化的电子控制系统自动确定最佳的发动机转速和液压泵的输出参数,使得发动机、液压泵的速度及液压系统压力与实际工况相适应,从而获得最高的生产率和最佳的燃油消耗。此种技术在日本小松、日立建机、神钢、韩国大宇重工、德国的利渤海尔、英国的 JCB等公司均得到普遍应用,代表了当代液压挖掘机的最高水平。

1.4 挖掘机发展趋势

随着液压挖掘机的生产向大型化、微型化、多功能化、专用化和自动化方向发展,挖掘机对液压技术的要求不断提高并呈现如下特点:

(1)迅速发展全液压挖掘机并进一步改进液压系统。中、小型液压挖掘机的液压系统有向变量系统转变的明显趋势。因为变量系统在油泵工作过程中,压力减小时用增大流量来补偿,使液压泵功率保持恒定,亦即装有变量泵的液压挖掘机可经常性地充分利用油泵的最大功率;当外阻力增大时则减少流量(降低速度),使挖掘力成倍增加;采用三回路液压系统,产生三个互不成影响的独立工作运动,实现与回转机构的功率匹配,将第三泵在其他工作运动上接通,成为开式回路第二个独立的快速运动。液压技术在挖掘机上的普遍使用,为电子技术、自动控制技术在挖掘机上的应用与推广创造了条件,液压、电子和自动化技术日益结合,共同促进挖掘机的控制性能不断提高。挖掘机由简单的杠杆操纵发展到液压操纵、气压操纵、液压伺服操纵和电气控制、无线电遥控、电子计算机综合程序控制。在危险地区或水下作业采用无线电操纵,利用电子计算机控制接收器和激光导向相结合,实现了挖掘机作业操纵的完全自动化。20 世纪 70 年代,为了节省能源消耗和减少对环境的污染,使挖掘机的操作更加轻便和安全作业,降低挖掘机噪音,改善驾驶员工作条件,电子和自动控制技术逐步应用在挖掘机上。随着对挖掘机的工作效率、节能环保、操作轻便、安全舒适、可靠耐用等方面性能要求的提高,机电一体化技术在挖掘机上得以广泛应用,并使其各种性能有了质的飞跃。20 世纪 80 年代,以微电子技术为核心 的高新技术,特别是微机、微处理器、传感器和检测仪表在挖掘机上的应用,推动了电子控制技术在挖掘机上应用和推广,并已成为挖掘机现代化的重要标志,亦即目前先进的挖掘机上设有发动机自动怠速及油门控制系统、功率优化系统、工作模式控制系统、监控系统等电控系统。所有这一切,都是挖掘机的全液压化奠定的基础并为挖掘机的全面发展创造了美好的前景。

篇6:液压传动系统设计与计算

1.明确设计要求,进行工况分析,

2.初定液压系统的主要参数。

3.拟定液压系统原理图。

4.计算和选择液压元件。

5.估算液压系统性能。

6.绘制工作图和编写技术文件。

根据液压系统的具体内容,上述设计步骤可能会有所不同,下面对各步骤的具体内容进行介绍。

第一节 明确设计要求进行工况分析

在设计液压系统时,首先应明确以下问题,并将其作为设计依据。

1.主机的用途、工艺过程、总体布局以及对液压传动装置的位置和空间尺寸的要求。

2.主机对液压系统的性能要求,如自动化程度、调速范围、运动平稳性、换向定位精度以及对系统的效率、温升等的要求。

3.液压系统的工作环境,如温度、湿度、振动冲击以及是否有腐蚀性和易燃物质存在等情况。

图9-1位移循环图

在上述工作的基础上,应对主机进行工况分析,工况分析包括运动分析和动力分析,对复杂的系统还需编制负载和动作循环图,由此了解液压缸或液压马达的负载和速度随时间变化的规律,以下对工况分析的内容作具体介绍。

一、运动分析

主机的执行元件按工艺要求的运动情况,可以用位移循环图(L—t),速度循环图(v—t),或速度与位移循环图表示,由此对运动规律进行分析。

1.位移循环图L—t

图9-1为液压机的液压缸位移循环图,纵坐标L表示活塞位移,横坐标t表示从活塞启动到返回原位的时间,曲线斜率表示活塞移动速度。该图清楚地表明液压机的工作循环分别由快速下行、减速下行、压制、保压、泄压慢回和快速回程六个阶段组成。

2.速度循环图v—t(或v—L)

工程中液压缸的运动特点可归纳为三种类型。图9-2为三种类型液压缸的v—t图,第一种如图9-2中实线所示,液压缸开始作匀加速运动,然后匀速运动,

图9-2 速度循环图

最后匀减速运动到终点;第二种,液压缸在总行程的前一半作匀加速运动,在另一半作匀减速运动,且加速度的数值相等;第三种,液压缸在总行程的一大半以上以较小的加速度作匀加速运动,然后匀减速至行程终点。v—t图的三条速度曲线,不仅清楚地表明了三种类型液压缸的运动规律,也间接地表明了三种工况的动力特性。

二、动力分析

动力分析,是研究机器在工作过程中,其执行机构的受力情况,对液压系统而言,就是研究液压缸或液压马达的负载情况。

1.液压缸的负载及负载循环图

(1)液压缸的负载力计算。工作机构作直线往复运动时,液压缸必须克服的负载由六部分组成:

F=Fc+Ff+Fi+FG+Fm+Fb (9-1)

式中:Fc为切削阻力;Ff为摩擦阻力;Fi为惯性阻力;FG为重力;Fm为密封阻力;Fb为排油阻力。

图9-3导轨形式

①切削阻力Fc:为液压缸运动方向的工作阻力,对于机床来说就是沿工作部件运动方向的切削力,此作用力的方向如果与执行元件运动方向相反为正值,两者同向为负值。该作用力可能是恒定的,也可能是变化的,其值要根据具体情况计算或由实验测定。

②摩擦阻力Ff:

为液压缸带动的运动部件所受的摩擦阻力,它与导轨的形状、放置情况和运动状态有关,其

计算方法可查有关的设计手册。图9-3为最常见的两种导轨

液压系统设计的步骤大致如下:

1.明确设计要求,进行工况分析。

2.初定液压系统的主要参数。

3.拟定液压系统原理图。

4.计算和选择液压元件。

5.估算液压系统性能。

6.绘制工作图和编写技术文件。

根据液压系统的具体内容,上述设计步骤可能会有所不同,下面对各步骤的具体内容进行介绍。

第一节 明确设计要求进行工况分析

在设计液压系统时,首先应明确以下问题,并将其作为设计依据。

1.主机的用途、工艺过程、总体布局以及对液压传动装置的位置和空间尺寸的要求。

2.主机对液压系统的性能要求,如自动化程度、调速范围、运动平稳性、换向定位精度以及对系统的效率、温升等的要求。

3.液压系统的工作环境,如温度、湿度、振动冲击以及是否有腐蚀性和易燃物质存在等情况。

图9-1位移循环图

在上述工作的基础上,应对主机进行工况分析,工况分析包括运动分析和动力分析,对复杂的系统还需编制负载和动作循环图,由此了解液压缸或液压马达的负载和速度随时间变化的规律,以下对工况分析的内容作具体介绍。

一、运动分析

主机的执行元件按工艺要求的运动情况,可以用位移循环图(L—t),速度循环图(v—t),或速度与位移循环图表示,由此对运动规律进行分析。

1.位移循环图L—t

图9-1为液压机的液压缸位移循环图,纵坐标L表示活塞位移,横坐标t表示从活塞启动到返回原位的时间,曲线斜率表示活塞移动速度。该图清楚地表明液压机的工作循环分别由快速下行、减速下行、压制、保压、泄压慢回和快速回程六个阶段组成。

2.速度循环图v—t(或v—L)

工程中液压缸的运动特点可归纳为三种类型。图9-2为三种类型液压缸的v—t图,第一种如图9-2中实线所示,液压缸开始作匀加速运动,然后匀速运动,

图9-2 速度循环图

最后匀减速运动到终点;第二种,液压缸在总行程的前一半作匀加速运动,在另一半作匀减速运动,且加速度的数值相等;第三种,液压缸在总行程的一大半以上以较小的加速度作匀加速运动,然后匀减速至行程终点。v—t图的三条速度曲线,不仅清楚地表明了三种类型液压缸的运动规律,也间接地表明了三种工况的动力特性。

二、动力分析

动力分析,是研究机器在工作过程中,其执行机构的受力情况,对液压系统而言,就是研究液压缸或液压马达的负载情况。

1.液压缸的负载及负载循环图

(1)液压缸的负载力计算。工作机构作直线往复运动时,液压缸必须克服的负载由六部分组成:

F=Fc+Ff+Fi+FG+Fm+Fb (9-1)

式中:Fc为切削阻力;Ff为摩擦阻力;Fi为惯性阻力;FG为重力;Fm为密封阻力;Fb为排油阻力。

图9-3导轨形式

①切削阻力Fc:为液压缸运动方向的工作阻力,对于机床来说就是沿工作部件运动方向的切削力,此作用力的方向如果与执行元件运动方向相反为正值,两者同向为负值。该作用力可能是恒定的,也可能是变化的,其值要根据具体情况计算或由实验测定。

②摩擦阻力Ff:

为液压缸带动的运动部件所受的摩擦阻力,它与导轨的形状、放置情况和运动状态有关,其

计算方法可查有关的设计手册。图9-3为最常见的两种导轨

形式,其摩擦阻力的值为:

平导轨: Ff=f∑Fn (9-2)

V形导轨: Ff=f∑Fn/[sin(α/2)] (9-3)

式中:f为摩擦因数,参阅表9-1选取;∑Fn为作用在导轨上总的正压力或沿V形导轨横截面中心线方向的总作用力;α为V形角,一般为90°。

③惯性阻力Fi。惯性阻力Fi为运动部件在启动和制动过程中的惯性力,可按下式计算:

(9-4)

表9-1 摩擦因数f

导轨类型

导轨材料运动状态摩擦因数(f)滑动导轨铸铁对铸铁启动时低速(v<0.16m/s) 高速(v>0.16m/s)0.15~0.20 0.1~0.12 0.05~0.08滚动导轨铸铁对滚柱(珠) 淬火钢导轨对滚柱(珠)0.005~0.020.003~0.006静压导轨铸铁0.005

式中:m为运动部件的质量(kg);a为运动部件的加速度(m/s2);G为运动部件的重量(N);g为重力加速度,g=9.81 (m/s2);Δv为速度变化值(m/s);

Δt为启动或制动时间(s),一般机床Δt=0.1~0.5s,运动部件重量大的取大值。

④重力FG:垂直放置和倾斜放置的移动部件,其本身的重量也成为一种负载,当上移时,负载为正值,下移时为负值。

⑤密封阻力Fm:密封阻力指装有密封装置的零件在相对移动时的摩擦力,其值与密封装置的类型、液压缸的制造质量和油液的工作压力有关。在初 算时,可按缸的机械效率(ηm=0.9)考虑;验算时,按密封装置摩擦力的计算公式计算。

⑥排油阻力Fb:排油阻力为液压缸回油路上的阻力,该值与调速方案、系统所要求的稳定性、执行元件等因素有关,在系统方案未确定时无法计算,可放在液压缸的设计计算中考虑。

(2)液压缸运动循环各阶段的总负载力。液压缸运动循环各阶段的总负载力计算,一般包括启动加速、快进、工进、快退、减速制动等几个阶段,每个阶段的总负载力是有区别的。 ①启动加速阶段:这时液压缸或活塞处于由静止到启动并加速到一定速度,其总负载力包括导轨的摩擦力、密封装置的摩擦力(按缸的机械效率ηm=0.9计算)、重力和惯性力等项,即:

F=Ff+Fi±FG+Fm+Fb (9-5)

②快速阶段: F=Ff±FG+Fm+Fb (9-6)③工进阶段: F=Ff+Fc±FG+Fm+Fb (9-7)④减速: F=Ff±FG-Fi+Fm+Fb (9-8)

对简单

液压系统,上述计算过程可简化。例如采用单定量泵供油,只需计算工进阶段的总负载力,若简单系统采用限压式变量泵或双联泵供油,则只需计算快速阶段和工进阶段的总负载力。

(3)液压缸的负载循环图。对较为复杂的液压系统,为了更清楚的了解该系统内各液压缸(或液压马达)的速度和负载的变化规律,应根据各阶段的总负载力和它所经历的工作时间t或位移L按相同的坐标绘制液压缸的负载时间(F—t)或负载位移(F—L)图,然后将各液压缸在同一时间t(或位移)的负载力叠加。

图9-4负载循环图

图9-4为一部机器的F—t图,其中:0~t1为启动过程;t1~t2为加速过程;t2~t3为恒速过程; t3~t4为制动过程。它清楚地表明了液压缸在动作循环内负载的规律。图中最大负载是初选液压缸工作压力和确定液压缸结构尺寸的依据。

2.液压马达的负载

工作机构作旋转运动时,液压马达必须克服的外负载为:M=Me+Mf+Mi (9-9)

(1)工作负载力矩Me。工作负载力矩可能是定值,也可能随时间变化,应根据机器工作条件进行具体分析。

(2)摩擦力矩Mf。为旋转部件轴颈处的摩擦力矩,其计算公式为:

Mf=GfR(N·m) (9-10)

式中:G为旋转部件的重量(N);f为摩擦因数,启动时为静摩擦因数,启动后为动摩擦因数;R为轴颈半径(m)。

(3)惯性力矩Mi。为旋转部件加速或减速时产生的惯性力矩,其计算公式为:

Mi=Jε=J(N·m) (9-11)

式中:ε为角加速度(r/s2);Δω为角速度的变化(r/s);Δt为加速或减速时间(s);J为旋转部件的转动惯量(kg·m2),J=1GD2/4g。

式中:GD2为回转部件的飞轮效应(Nm2)。

各种回转体的GD2可查《机械设计手册》。

根据式(9-9),分别算出液压马达在一个工作循环内各阶段的负载大小,便可绘制液压马达的负载循环图。

第二节 确定液压系统主要参数

一、液压缸的设计计算

1.初定液压缸工作压力 液压缸工作压力主要根据运动循环各阶段中的最大总负载力来确定,此外,还需要考虑以下因素:

(1)各类设备的不同特点和使用场合。

(2)考虑经济和重量因素,压力选得低,则元件尺寸大,重量重;压力选得高一些,则元件尺寸小,重量轻,但对元件的制造精度,密封性能要求高。

所以,液压缸的工作压力的选择有两种方式:是根据机械类型选;二是根据切削负载选。

如表9-2、表9-3所示。

表9-2 按负载选执行文件的工作压力

负载/N

<5000500~1000010000~020000~3000030000~50000>50000工作压力/MPa≤0.8~11.5~22.5~33~44~5>5

表9-3 按机械类型选执行文件的工作压力

机械类型

机 床农业机械工程机械磨床组合机床龙门刨床拉床工作压力/MPaa≤23~5≤88~1010~1620~32

2.液压缸主要尺寸的计算

缸的有效面积和活塞杆直径,可根据缸受力的平衡关系具体计算,详见第四章第二节。

3.液压缸的流量计算

液压缸的最大流量: qmax=A·vmax (m3/s) (9-12)

式中:A为液压缸的有效面积A1或A2(m2);vmax为液压缸的最大速度(m/s)。

液压缸的最小流量: qmin=A·vmin(m3/s) (9-13)

式中:vmin为液压缸的最小速度。

液压缸的最小流量qmin,应等于或大于流量阀或变量泵的最小稳定流量。若不满足此要求时,则需重新选定液压缸的工作压力,使工作压力低一些,缸的有效工作面积大一些,所需最小流量qmin也大一些,以满足上述要求。

流量阀和变量泵的最小稳定流量,可从产品样本中查到。

二、液压马达的设计计算

1.计算液压马达排量 液压马达排量根据下式决定:

vm=6.28T/Δpmηmin(m3/r) (9-14)

式中:T为液压马达的负载力矩(N·m);Δpm为液压马达进出口压力差(N/m3);ηmin为液压马达的机械效率,一般齿轮和柱塞马达取0.9~0.95,叶片马达取0.8~0.9。

2.计算液压马达所需流量液压马达的最大流量:

qmax=vm·nmax(m3/s)

式中:vm为液压马达排量(m3/r);nmax为液压马达的最高转速(r/s)。

第三节 液压元件的选择

一、液压泵的确定与所需功率的计算

1.液压泵的确定

(1)确定液压泵的最大工作压力。液压泵所需工作压力的确定,主要根据液压缸在工作循环各阶段所需最大压力p1,再加上油泵的出油口到缸进油口处总的压力损失ΣΔp,即

pB=p1+ΣΔp (9-15)

ΣΔp包括油液流经流量阀和其他元件的局部压力损失、管路沿程损失等,在系统管路未设计之前,可根据同类系统经验估计,一般管路简单的节流阀调速系统ΣΔp为(2~5)×105Pa,用调速阀及管路复杂的系统ΣΔp为(5~15)×105Pa,ΣΔp也可只考虑流经各控制阀的压力损失,而将管路系统的沿程损失忽略不计,各阀的额定压力损失可从液压元件手册或产品样本中查找,也可参照表9-4选

取。

表9-4 常用中、低压各类阀的压力损失(Δpn)

阀名

Δpn(×105Pa)阀名Δpn(×105Pa)阀名Δpn(×105Pa)阀名Δpn(×105Pa)单向阀0.3~0.5背压阀3~8行程阀1.5~2转阀1.5~2换向阀1.5~3节流阀2~3顺序阀1.5~3调速阀3~5

(2)确定液压泵的流量qB。泵的流量qB根据执行元件动作循环所需最大流量qmax和系统的泄漏确定。

①多液压缸同时动作时,液压泵的流量要大于同时动作的几个液压缸(或马达)所需的最大流量,并应考虑系统的泄漏和液压泵磨损后容积效率的下降,即

qB≥K(Σq)max(m3/s) (9-16)

式中:K为系统泄漏系数,一般取1.1~1.3,大流量取小值,小流量取大值;(Σq)max为同时动作的液压缸(或马达)的最大总流量(m3/s)。

②采用差动液压缸回路时,液压泵所需流量为:

qB≥K(A1-A2)vmax(m3/s) (9-17)

式中:A 1,A 2为分别为液压缸无杆腔与有杆腔的有效面积(m2);vmax为活塞的最大移动速度(m/s)。

③当系统使用蓄能器时,液压泵流量按系统在一个循环周期中的平均流量选取,即

qB=ViK/Ti (9-18)

式中:Vi为液压缸在工作周期中的总耗油量(m3);Ti为机器的工作周期(s);Z为液压缸的个数。

(3)选择液压泵的规格:根据上面所计算的最大压力pB和流量qB,查液压元件产品样本,选择与PB和qB相当的液压泵的规格型号。

上面所计算的最大压力pB是系统静态压力,系统工作过程中存在着过渡过程的动态压力,而动态压力往往比静态压力高得多,所以泵的额定压力pB应比系统最高压力大25%~60%,使液压泵有一定的压力储备。若系统属于高压范围,压力储备取小值;若系统属于中低压范围,压力储备取大值。

(4)确定驱动液压泵的功率。

①当液压泵的压力和流

量比较衡定时,所需功率为:

p=pBqB/103ηB (kW) (9-19)

式中:pB为液压泵的最大工作压力(N/m2);qB为液压泵的流量(m3/s);ηB为液压泵的总效率,各种形式液压泵的总效率可参考表9-5估取,液压泵规格大,取大值,反之取小值,定量泵取大值,变量泵取小值。

表9-5 液压泵的总效率

液压泵类型

齿轮泵

螺杆泵

叶片泵

柱塞泵

总效率

0.6~0.7

0.65~0.80

0.60~0.75

0.80~0.85

②在工作循环中,泵的压力和流量有显著变化时,可分别计算出工作循环中各个阶段所需的驱动功率,然后求其平均值,即

p=(9-20)

式中:t1,t2,…,tn为一个工作循环中各阶段所需的时间(s);P1,P2,…,Pn为一个工作循环中各阶段所需的功率(kW)。

按上述功率和泵的转速,可以从产品样本中选取标准电动机,再进行验算,使电动机发出最大功率时,其超载量在允许范围内,

二、阀类元件的选择

1.选择依据

选择依据为:额定压力,最大流量,动作方式,安装固定方式,压力损失数值,工作性能参数和工作寿命等。

2.选择阀类元件应注意的问题

(1)应尽量选用标准定型产品,除非不得已时才自行设计专用件。

(2)阀类元件的规格主要根据流经该阀油液的最大压力和最大流量选取。选择溢流阀时,应按液压泵的最大流量选取;选择节流阀和调速阀时,应考虑其最小稳定流量满足机器低速性能的要求。

(3)一般选择控制阀的额定流量应比系统管路实际通过的流量大一些,必要时,允许通过阀的最大流量超过其额定流量的20%。

三、蓄能器的选择

1.蓄能器用于补充液压泵供油不足时,其有效容积为:

V=ΣAiLiK-qBt(m3) (9-21)

式中:A为液压缸有效面积(m2);L为液压缸行程(m);K为液压缸损失系数,估算时可取K=1.2;qB为液压泵供油流量(m3/s);t为动作时间(s)。

2.蓄能器作应急能源时,其有效容积为:

V=ΣAiLiK(m3) (9-22)

当蓄能器用于吸收脉动缓和液压冲击时,应将其作为系统中的一个环节与其关联部分一起综合考虑其有效容积。

根据求出的有效

容积并考虑其他要求,即可选择蓄能器的形式。

四、管道的选择

1.油管类型的选择

液压系统中使用的油管分硬管和软管,选择的油管应有足够的通流截面和承压能力,同时,应尽量缩短管路,避免急转弯和截面突变。

(1)钢管:中高压系统选用无缝钢管,低压系统选用焊接钢管,钢管价格低,性能好,使用广泛。

(2)铜管:紫铜管工作压力在6.5~10MPa以下,易变曲,便于装配;黄铜管承受压力较高,达25MPa,不如紫铜管易

弯曲。铜管价格高,抗震能力弱,易使油液氧化,应尽量少用,只用于液压装置配接不方便的部位。

(3)软管:用于两个相对运动件之间的连接。高压橡胶软管中夹有钢丝编织物;低压橡胶软管中夹有棉线或麻线编织物;尼龙管是乳白色半透明管,承压能力为2.5~8MPa,多用于低压管道。因软管弹性变形大,容易引起运动部件爬行,所以软管不宜装在液压缸和调速阀之间。

2.油管尺寸的确定

(1)油管内径d按下式计算:

d=(9-23)

式中:q为通过油管的最大流量(m3/s);v为管道内允许的流速(m/s)。一般吸油管取0.5~5(m/s);压力油管取2.5~5(m/s);回油管取1.5~2(m/s)。

(2)油管壁厚δ按下式计算:

δ≥p·d/2〔σ〕 (9-24)

式中:p为管内最大工作压力;〔σ〕为油管材料的许用压力,〔σ〕=σb/n;σb为材料的抗拉强度;n为安全系数,钢管p<7MPa时,取n=8;p<17.5MPa时,取n=6;p>17.5MPa时,取n=4。

根据计算出的油管内径和壁厚,查手册选取标准规格油管。

五、油箱的设计

油箱的作用是储油,散发油的热量,沉淀油中杂质,逸出油中的气体。其形式有开式和闭式两种:开式油箱油液液面与大气相通;闭式油箱油液液面与大气隔绝。开式油箱应用较多。

1.油箱设计要点

(1)油箱应有足够的容积以满足散热,同时其容积应保证系统中油液全部流回油箱时不渗出,油液液面不应超过油箱高度的80%。

(2)吸箱管和回油管的间距应尽量大。

(3)油箱底部应有适当斜度,泄油口置于最低处,以便排油。

(4)注油器上应装滤网。

(5)油箱的箱壁应涂耐油防锈涂料。

2.油箱容量计算

油箱的有效容量V可近似用液压泵单位时间内排出油液的体积确定。

V=KΣq (9-25)

式中:K为系数,低压系统取2~4,中、高压系统取5~7;Σq为同一油箱供油的各液压泵流量总和。

六、滤油器的选择

选择滤油器的依据有以下几点:

(1)承载能力:按系统管路工作压力确定。

(2)过滤精度:按被保护元件的精度要求确定,选择时可参阅表9-6。

(3)通流能力:按通过最大流量确定。

(4)阻力压降:应满足过滤材料强度与系数要求。

表9-6 滤油器过滤精度的选择

系统

过滤精度(μm)元件过滤精度(μm)低压系统100~150滑阀1/3最小间隙70×105Pa系统50节流孔1/7孔径(孔径小于1.8mm)100×105Pa系统25流量控制阀2.5~30140×105Pa系统10~15安全阀溢流阀15~25电液伺服系统5高精度伺服系统2.5

第四节 液压系统性能的验算

为了判断液压系统的设计质量,需要对系统的压力损失、发热温升、效率和系统的动态特性等进行验算。由于液压系统的验算较复杂,只能采用一些简化公式近似地验算某些性能指标,如果设计中有经过生产实践考验的同类型系统供参考或有较可靠的实验结果可以采用时,可以不进行验算。

一、管路系统压力损失的验算

当液压元件规格型号和管道尺寸确定之后,就可以较准确的计算系统的压力损失,压力损失包括:油液流经管道的沿程压力损失ΔpL、局部压力损失Δpc和流经阀类元件的压力损失ΔpV,即:

Δp=ΔpL+Δpc+ΔpV (9-26)

计算沿程压力损失时,如果管中为层流流动,可按下经验公式计算:

ΔpL=4.3V·q·L×106/d4(Pa) (9-27)

式中:q为通过管道的流量(m3/s);L为管道长度(m);d为管道内径(mm);υ为油液的运动粘度(m2)。

局部压力损失可按下式估算:

Δpc=(0.05~0.15)ΔpL (9-28)

阀类元件的ΔpV值可按下式近似计算:

ΔpV=Δpn(qV/qVn)2(Pa) (9-29)

式中:qVn为阀的额定流量(m3/s);qV为通过阀的实际流量(m3/s);Δpn为阀的额定压力损失(Pa)。

计算系统压力损失的目的,是为了正确确定系统的调整压力和分析系统设计的好坏。

系统的调整压力:

p0≥p1+Δp (9-30)

式中:p0为液压泵的工作压力或支路的调整压力;p1为执行件的工作压力。

如果计算出来的Δp比在初选系统工作压力时粗略选定的压力损失大得多,应该重新调

整有关元件、辅件的规格,重新确定管道尺寸。

二、系统发热温升的验算

系统发热来源于系统内部的能量损失,如液压泵和执行元件的功率损失、溢流阀的溢流损失、液压阀及管道的压力损失等。这些能量损失转换为热能,使油液温度升高。油液的温升使粘度下降,泄漏增加,同时,使油分子裂化或聚合,产生树脂状物质,堵塞液压元件小孔,影响系统正常工作,因此必须使系统中油温保持在允许范围内。一般机床液压系统正常工作油温为30~50℃;矿山机械正常工作油温50~70℃;最高允许油温为70~90℃。

1.系统发热功率P的计算

P=PB(1-η) (W) (9-31)

式中:PB为液压泵的输入功率(W);η为液压泵的总效率。

若一个工作循环中有几个工序,则可根据各个工序的发热量,求出系统单位时间的平均发热量:

P=(w) (9-32)

式中:T为工作循环周期(s);ti为第i个工序的工作时间(s);Pi为循环中第i个工序的输入功率(W)。

2.系统的散热和温升系统的散热量可按下式计算:

P′=(W) (9-33)

式中:Kj为散热系数(W/m2℃),当周围通风很差时,K≈8~9;周围通风良好时,K≈15;用风扇冷却时,K≈23;用循环水强制冷却时的冷却器表面K≈110~175;Aj为散热面积(m2),当油箱长、宽、高比例为1∶1∶1或1∶2∶3,油面高度为油箱高度的80%时,油箱散热面积近似看成A=0.065(m2),式中V为油箱体积(L);Δt为液压系统的温升(℃),即液压系统比周围环境温度的升高值;j为散

热面积的次序号。

当液压系统工作一段时间后,达到热平衡状态,则:

P=P′

所以液压系统的温升为:

Δt=(℃) (9-34)

计算所得的温升Δt,加上环境温度,不应超过油液的最高允许温度。

当系统允许的温升确定后,也能利用上述公式来计算油箱的容量。

三、系统效率验算

液压系统的效率是由液压泵、执行元件和液压回路效率来确定的。

液压回路效率ηc一般可用下式计算:

ηc=(9-35)

式中:p1,q1;p2,q2;……为每个执行元件的工作压力和流量;pB1,qB1;pB2,qB2为每个液压泵的供油压力和流量。

液压系统总效率:η=ηBηCηm (9-36)

式中:ηB为液压泵总效率;ηm为执行元件总效率;ηC为回路效率。

第五节 绘制正式工作图和编写技术文件

经过对液压系统性能的验算和必要的修改之后,便可绘制正式工作图,它包括绘制液压系统原理图、系统管路装配图和各种非标准元件设计图。

正式液压系统原理图上要标明各液压元件的型号规格。对于自动化程度较高的机床,还应包

括运动部件的运动循环图和电磁铁、压力继电器的工作状态。

管道装配图是正式施工图,各种液压部件和元件在机器中的位置、固定方式、尺寸等应表示清楚。

自行设计的非标准件,应绘出装配图和零件图。

编写的技术文件包括设计计算书,使用维护说明书,专用件、通用件、标准件、外购件明细表,以及试验大纲等。

第六节 液压系统设计计算举例

某厂汽缸加工自动线上要求设计一台卧式单面多轴钻孔组合机床,机床有主轴16根,钻14个φ13.9mm的孔,2个φ8.5mm的孔,要求的工作循环是:快速接近工件,然后以工

作速度钻孔,加工完毕后快速退回原始位置,最后自动停止;工件材料:铸铁,硬度HB为240;假设运动部件重G=9800N;快进快退速度v1=0.1m/s;动力滑台采用平导轨,静、动摩擦因数μs=0.2,μd=0.1;往复运动的加速、减速时间为0.2s;快进行程L1=100mm;工进行程L2=50mm。试设计计算其液压系统。

一、作F—t与v—t图

1.计算切削阻力钻铸铁孔时,其轴向切削阻力可用以下公式计算:

Fc=25.5DS0.8硬度0.6 (N)

式中:D为钻头直径(mm);S为每转进给量(mm/r)。

选择切削用量:钻φ13.9mm孔时,主轴转速n1=360r/min,每转进给量S1=0.147mm/r;钻8.5mm孔时,主轴转速n2=550r/min,每转进给量S2=0.096mm/r。则

Fc=14×25.5D1S0.81硬度0.6+2×25.5D2S0.82硬度0.6=

14×25.5×13.9×0.1470.8×2400.6+2×25.5×8.5×0.0960.8×2400.6=30500(N)

2.计算摩擦阻力

静摩擦阻力:Fs=fsG=0.2×9800=1960N

动摩擦阻力:Fd=fdG=0.1×9800=980N

3.计算惯性阻力

4.计算工进速度

工进速度可按加工φ13.9的切削用量计算,即:

v2=n1S1=360/60×0.147=0.88mm/s=0.88×10-3m/s

5.根据以上分析计算各工况负载如表9-7所示。

表9-7 液压缸负载的计算

其中,取液压缸机械效率ηcm=0.9。

6.计算快进、工进时间和快退时间

快进: t1=L1/v1=100×10-3/0.1=1s

工进: t2=L2/v2=50×10-3/0.88×10-3=56.6s

快退: t3=(L1+L2)/v1= (100+50)×10-3/0.1=1.5s

7.根据上述数据绘液压缸F—t与v—t图见图9-5。

图9-5 F—t与v—t图

二、确定液压系统参数

1.初选液压缸工作压力

由工况分析中可知,工进阶段的负载力最大,所以,液压缸的工作压力按此负载力计算,根据液压缸与负载的关系,选p1=40×105Pa。本机床为钻孔组合机床,为防止钻通时发生前冲现象,液压缸回油腔应有背压,设背压p2=6×105Pa,为使快进快退速度相等,选用A1=2A2差动油缸,假定快进、快退的回油压力损失为Δp=7×105Pa。

2.计算液压缸尺寸由式(p1A1-p2A2)ηcm=F得:

液压缸直径:D=

取标准直径:D=110 mm

因为A1=2A2,所以d=≈80mm

则液压缸有效面积:

A1=πD2/4=π×112/4=95cm2

A2=π/4 (D2-d2)=π/4 (112-82)=47cm2

3.计算液压缸在工作循环中各阶段的压力、流量和功率液压缸工作循环各阶段压力、流量和功率计算表。

表9-8 液压缸工作循环各阶段压力、流量和功率计算表

工况

计算公式F0/nP2/paP1/paQ/(10-3m3/s)P/kw快进启动P1=F0/A+p22180P2=04.6*1050.5加速Q=av11650P2=7x10510.5*105快进P=10-3p1q10909x1050.5工进p1=F0/a1+p2/2q=A1V1p=10-3p1q3500P2=6x10540x1050.83x1050.033快退反向启动P1=F0/a1+2p22180P2=04.6x105加速165017.5x105快退Q=A2V21090P2=7*10516.4x1050.50.8制动P=10-3p1q53215.2x105图9—6 液压缸工况图

4.绘制液压缸工况图见图9-6。

三、拟定液压系统图

1.选择液压回路

(1)调速方式;由工况图知,该液压系统功率小,工作负载变化小,可选用进油路节流调速,为防止钻通孔时的前冲现象,在回油路上加背压阀。

(2)液压泵形式的选择;从q—t图清楚的看出,系统工作循环主要由低压大流量和高压小流量两个阶段组成,最大流量与最小流量之比qmax/qmin=0.5/0.83×10-2≈60,其相应的时间之比t2/t1=56。根据该情况,选叶片泵较适宜,在本方案中,选用双联叶片泵。

(3)速度换接方式:因钻孔工序对位置精度及工作平稳性要求不高,可选用行程调速阀或电磁换向阀。

(4)快速回路与工进转快退控制方式的选择:为使快进快退速度相等,选用差动回路作快速回路。

2.组成系统在所选定基本回路的基础上,再考虑其他一些有关因素组成图9-7所示液压系统图。

四、选择液压元件

1.选择液压泵和电动机

(1)确定液压泵的工作压力。前面已确定液压缸的最大工作压力为40×105Pa,选取进油管路压力损失Δp=8×105Pa,其调整压力一般比系统最大工作压力大5×105Pa,所以泵的工作压力pB=(40+8+5)×105=53×105Pa

这是高压小流量泵的工作压力。

由图9-7可知液压缸快退时的工作压力比快进时大,取其压力损失Δp′=4×105Pa,则快退时泵的工作压力为:

pB=(16.4+4)×105

=20.4×105Pa

这是低压大流量泵的工作压力。

(2)液压泵的流量。由图9-7可知,快进时的流量最大,其值为30L/min,最小流量在工进时,其值为0.51L/min,根据式9-20,取K=1.2,

则: qB=1.2×0.5×10-3=36L/min

由于溢流阀稳定工作时的最小溢流量为3L/min,故小泵流量取3.6L/min。

根据以上计算,选用YYB-AA36/6B型双联叶片泵。

(3)选择电动机:

由P-t图可知,最大功率出现在快退工况,其数值如下式计算:

P=

式中:ηB为泵的总效率,取0.7;q1=36L/min=0.6×10-3m3/s,为大泵流量;q2=6L/min=0.1×10-3m3/s,为小泵流量。

根据以上计算结果,查电动机产品目录,选与上述功率和泵的转速相适应的电动机。

2.选其他元件 根据系统的工作压力和通过阀的实际流量选择元、辅件,其型号和参数如表9-9所示。

表9-9 所选液压元件的型号、规格

3.确定管道尺寸

根据工作压力和流量,按式(9-27)、式(9-28)确定管道内径和壁厚。(从略)

4.确定油箱容量油箱容量可按经验公式估算,取V=(5~7)q。

上一篇:以童年傻事为题目的作文600字下一篇:小升初简历写作