合成氨工艺介绍

2024-05-20

合成氨工艺介绍(共8篇)

篇1:合成氨工艺介绍

氨气合成工艺流程图

新乡中科化工合成氨工艺

煤„„

造气„„

净化除尘„„静电除尘„„

脱硫„„合成甲醇(CO+2H2-----CH3OH △H1 =651kj/mol 吸热)

CO置换„„

脱碳„„

精制气体„„

制取氨气„„

气体循环„„气体回收

1)予脱塔

原料气进入工段经过预脱塔先进行初脱硫。2)预热塔

用蒸汽加热到40-80℃,为接下来的水解塔工段进行做准备。3)水解塔

使用水解催化剂,脱出无机硫。在温度为320~350℃、压力为1.3~1.5MPa的条件下,在钴钼脱硫剂的作用下进行有机硫加氢转化反应及氧化锌吸收生成H2S ZnS,排入地沟。4)水冷器

水冷器是为使水冷却到常温,方便后一阶段的精脱硫。5)精脱塔

这个工段脱出的是有机硫,把最后残余的硫进行精脱,减少氨气中硫的含量。

经过这5个工段后,硫的含量小于0.06×10-6,甲醇催化剂寿命大大延长,减少更换甲醇催化剂,生产时间和能力大幅度提高。

用到的设备有预脱塔、预热器、水解塔、水冷器、精脱塔。

合成氨

氨(Ammonia,旧称阿莫尼亚)是重要的无机化工产品之一,在国民经济中占有重要地位。农业上使用的氮肥,除氨水外,诸如尿素、硝酸铵、磷酸铵、氯化铵以及各种含氮复合肥都是以氨为原料生产的。合成氨是大宗化工产品之一,世界每年合成氨产量已达到1亿吨以上,其中约有80%的氨用来生产化学肥料,20%作为其它化工产品的原料。

合成氨指由氮和氢在高温高压和催化剂存在下直接合成的氨。别名氨气,分子式为NH3,英文名:synthetic ammonia。世界上的氨除少量从焦炉气中回收外,绝大部分是合成的氨。

合成氨主要用于制造氮肥和复合肥料。氨作为工业原料和氨化饲料,用量约占世界产量的12%。硝酸、各种含氮的无机盐及有机中间体、磺胺药、聚氨酯、聚酰胺纤维和丁腈橡

胶等都需直接以氨为原料生产。液氨常用作制冷剂。发现

德国化学家哈伯(F.Haber,1868-1934)从1902年开始研究由氮气和氢气直接合成氨。于1908年申请专利,即“循环法”,在此基础上,他继续研究,于1909年改进了合成,氨的含量达到6%以上。这是目前工业普遍采用的直接合成法。反应过程中为解决氢气和氮气合成转化率低的问题,将氨产品从合成反应后的气体中分离出来,未反应气和新鲜氢氮气混合重新参与合成反应。合成氨反应式如下:

N2+3H2≒2NH3(该反应为可逆反应,等号上反应条件为:“高温 高压”,下为:“催化剂”)合成氨的主要原料可分为固体原料、液体原料和气体原料。经过近百年的发展,合成氨技术趋于成熟,形成了一大批各有特色的工艺流程,但都是由三个基本部分组成,即原料气制备过程、净化过程以及氨合成过程。

工艺流程

1.合成氨的工艺流程

(1)原料气制备 将煤和天然气等原料制成含氢和氮的粗原料气。对于固体原料煤和焦炭,通常采用气化的方法制取合成气;渣油可采用非催化部分氧化的方法获得合成气;对气态烃类和石脑油,工业中利用二段蒸汽转化法制取合成气。

(2)净化 对粗原料气进行净化处理,除去氢气和氮气以外的杂质,主要包括变换过程、脱硫脱碳过程以及气体精制过程。

① 一氧化碳变换过程

在合成氨生产中,各种方法制取的原料气都含有CO,其体积分数一般为12%~40%。合成氨需要的两种组分是H2和N2,因此需要除去合成气中的CO。变换反应如下:

CO+H2O→H2+CO2 =-41.2kJ/mol 0298HΔ

由于CO变换过程是强放热过程,必须分段进行以利于回收反应热,并控制变换段出口残余CO含量。第一步是高温变换,使大部分CO转变为CO2和H2;第二步是低温变换,将CO含量降至0.3%左右。因此,CO变换反应既是原料气制造的继续,又是净化的过程,为后续脱碳过程创造条件。

② 脱硫脱碳过程

各种原料制取的粗原料气,都含有一些硫和碳的氧化物,为了防止合成氨生产过程催化剂的中毒,必须在氨合成工序前加以脱除,以天然气为原料的蒸汽转化法,第一道工序是脱硫,用以保护转化催化剂,以重油和煤为原料的部分氧化法,根据一氧化碳变换是否采用耐硫的催化剂而确定脱硫的位置。工业脱硫方法种类很多,通常是采用物理或化学吸收的方法,常用的有低温甲醇洗法(Rectisol)、聚乙二醇二甲醚法(Selexol)等。

粗原料气经CO变换以后,变换气中除H2外,还有CO2、CO和CH4等组分,其中以CO2含量最多。CO2既是氨合成催化剂的毒物,又是制造尿素、碳酸氢铵等氮肥的重要原料。因此变换气中CO2的脱除必须兼顾这两方面的要求。

一般采用溶液吸收法脱除CO2。根据吸收剂性能的不同,可分为两大类。一类是物理吸收法,如低温甲醇洗法(Rectisol),聚乙二醇二甲醚法(Selexol),碳酸丙烯酯法。一类是化学吸收法,如热钾碱法,低热耗本菲尔法,活化MDEA法,MEA法等。

③ 气体精制过程

经CO变换和CO2脱除后的原料气中尚含有少量残余的CO和CO2。为了防止对氨合成催化剂的毒害,规定CO和CO2总含量不得大于10cm3/m3(体积分数)。因此,原料气在进入合成工序前,必须进行原料气的最终净化,即精制过程。

目前在工业生产中,最终净化方法分为深冷分离法和甲烷化法。深冷分离法主要是液氮洗法,是在深度冷冻(<-100℃)条件下用液氮吸收分离少量CO,而且也能脱除甲烷和大部分氩,这样可以获得只含有惰性气体100cm3/m3以下的氢氮混合气,深冷净化法通常与空分

以及低温甲醇洗结合。甲烷化法是在催化剂存在下使少量CO、CO2与H2反应生成CH4和H2O的一种净化工艺,要求入口原料气中碳的氧化物含量(体积分数)一般应小于0.7%。甲烷化法可以将气体中碳的氧化物(CO+CO2)含量脱除到10cm3/m3以下,但是需要消耗有效成分H2,并且增加了惰性气体CH4的含量。甲烷化反应如下:

CO+3H2→CH4+H2O =-206.2kJ/mol 0298HΔ

CO2+4H2→CH4+2H2O =-165.1kJ/mol 0298HΔ

(3)氨合成 将纯净的氢、氮混合气压缩到高压,在催化剂的作用下合成氨。氨的合成是提供液氨产品的工序,是整个合成氨生产过程的核心部分。氨合成反应在较高压力和催化剂存在的条件下进行,由于反应后气体中氨含量不高,一般只有10%~20%,故采用未反应氢氮气循环的流程。氨合成反应式如下:

N2+3H2→2NH3(g)=-92.4kJ/mol

2.合成氨的催化机理

热力学计算表明,低温、高压对合成氨反应是有利的,但无催化剂时,反应的活化能很高,反应几乎不发生。当采用铁催化剂时,由于改变了反应历程,降低了反应的活化能,使反应以显著的速率进行。目前认为,合成氨反应的一种可能机理,首先是氮分子在铁催化剂表面上进行化学吸附,使氮原子间的化学键减弱。接着是化学吸附的氢原子不断地跟表面上的氮分子作用,在催化剂表面上逐步生成—NH、—NH2和NH3,最后氨分子在表面上脱吸而生成气态的氨。上述反应途径可简单地表示为:

xFe + N2→FexN

FexN +[H]吸→FexNH

FexNH +[H]吸→FexNH2

FexNH2 +[H]吸FexNH3xFe+NH3

在无催化剂时,氨的合成反应的活化能很高,大约335 kJ/mol。加入铁催化剂后,反应以生成氮化物和氮氢化物两个阶段进行。第一阶段的反应活化能为126 kJ/mol~167 kJ/mol,第二阶段的反应活化能为13 kJ/mol。由于反应途径的改变(生成不稳定的中间化合物),降低了反应的活化能,因而反应速率加快了。

3.催化剂的中毒

催化剂的催化能力一般称为催化活性。有人认为:由于催化剂在反应前后的化学性质和质量不变,一旦制成一批催化剂之后,便可以永远使用下去。实际上许多催化剂在使用过程中,其活性从小到大,逐渐达到正常水平,这就是催化剂的成熟期。接着,催化剂活性在一段时间里保持稳定,然后再下降,一直到衰老而不能再使用。活性保持稳定的时间即为催化剂的寿命,其长短因催化剂的制备方法和使用条件而异。

催化剂在稳定活性期间,往往因接触少量的杂质而使活性明显下降甚至被破坏,这种现象称为催化剂的中毒。一般认为是由于催化剂表面的活性中心被杂质占据而引起中毒。中毒分为暂时性中毒和永久性中毒两种。例如,对于合成氨反应中的铁催化剂,O2、CO、CO2和水蒸气等都能使催化剂中毒。但利用纯净的氢、氮混合气体通过中毒的催化剂时,催化剂的活性又能恢复,因此这种中毒是暂时性中毒。相反,含P、S、As的化合物则可使铁催化剂永久性中毒。催化剂中毒后,往往完全失去活性,这时即使再用纯净的氢、氮混合气体处理,活性也很难恢复。催化剂中毒会严重影响生产的正常进行。工业上为了防止催化剂中毒,要把反应物原料加以净化,以除去毒物,这样就要增加设备,提高成本。因此,研制具有较强抗毒能力的新型催化剂,是一个重要的课题。

4.我国合成氨工业的发展情况

解放前我国只有两家规模不大的合成氨厂,解放后合成氨工业有了迅速发展。1949年全国氮肥产量仅0.6万吨,而1982年达到1021.9万吨,成为世界上产量最高的国家之一。

近几年来,我国引进了一批年产30万吨氮肥的大型化肥厂设备。我国自行设计和建造的上海吴泾化工厂也是年产30万吨氮肥的大型化肥厂。这些化肥厂以天然气、石油、炼油气等为原料,生产中能量损耗低、产量高,技术和设备都很先进。

5.化学模拟生物固氮的研究

目前,化学模拟生物固氮的重要研究课题之一,是固氮酶活性中心结构的研究。固氮酶由铁蛋白和钼铁蛋白这两种含过渡金属的蛋白质组合而成。铁蛋白主要起着电子传递输送的作用,而含二个钼原子和二三十个铁和硫原子的钼铁蛋白是络合N2或其他反应物(底物)分子,并进行反应的活性中心所在之处。关于活性中心的结构有多种看法,目前尚无定论。从各种底物结合物活化和还原加氢试验来看,含双钼核的活性中心较为合理。我国有两个研究组于1973—1974年间,不约而同地提出了含钼铁的三核、四核活性中心模型,能较好地解释固氮酶的一系列性能,但其结构细节还有待根据新的实验结果精确化。

国际上有关的研究成果认为,温和条件下的固氮作用一般包含以下三个环节:

①络合过程。它是用某些过渡金属的有机络合物去络合N2,使它的化学键削弱;②还原过程。它是用化学还原剂或其他还原方法输送电子给被络合的N2,来拆开N2中的N—N键;③加氢过程。它是提供H+来和负价的N结合,生成NH3。

目前,化学模拟生物固氮工作的一个主要困难是,N2络合了但基本上没有活化,或络合活化了,但活化得很不够。所以,稳定的双氮基络合物一般在温和条件下通过化学还原剂的作用只能析出N2,从不稳定的双氮络合物还原制出的NH3的量相当微少。因此迫切需要从理论上深入分析,以便找出突破的途径。

固氮酶的生物化学和化学模拟工作已取得一定的进展,这必将有力地推动络合催化的研究,特别是对寻找催化效率高的合成氨催化剂,将是一个有力的促进。生产方法

生产合成氨的主要原料有天然气、石脑油、重质油和煤(或焦炭)等。

①天然气制氨。天然气先经脱硫,然后通过二次转化,再分别经过一氧化碳变换、二氧化碳脱除等工序,得到的氮氢混合气,其中尚含有一氧化碳和二氧化碳约0.1%~0.3%(体积),经甲烷化作用除去后,制得氢氮摩尔比为3的纯净气,经压缩机压缩而进入氨合成回路,制得产品氨。以石脑油为原料的合成氨生产流程与此流程相似。

②重质油制氨。重质油包括各种深度加工所得的渣油,可用部分氧化法制得合成氨原料气,生产过程比天然气蒸气转化法简单,但需要有空气分离装置。空气分离装置制得的氧用于重质油气化,氮作为氨合成原料外,液态氮还用作脱除一氧化碳、甲烷及氩的洗涤剂。

③煤(焦炭)制氨。随着石油化工和天然气化工的发展,以煤(焦炭)为原料制取氨的方式在世界上已很少采用。

用途 氨主要用于制造氮肥和复合肥料,氨作为工业原料和氨化饲料,用量约占世界产量的12%。硝酸、各种含氮的无机盐及有机中间体、磺胺药、聚氨酯、聚酰胺纤维和丁腈橡胶等都需直接以氨为原料。液氨常用作制冷剂。

贮运 商品氨中有一部分是以液态由制造厂运往外地。此外,为保证制造厂内合成氨和氨加工车间之间的供需平衡,防止因短期事故而停产,需设置液氨库。液氨库根据容量大小不同,有不冷冻、半冷冻和全冷冻三种类型。液氨的运输方式有海运、驳船运、管道运、槽车运、卡车运。

篇2:合成氨工艺介绍

一 合成氨工艺简介

中小型氮肥厂是以煤为主要原料,采用固定层间歇气化法制造合成氨原料气。从原料气的制备、净化到氨的合成,经过造气、脱硫、变换、碳化、压缩、精炼、合成等工段。工艺流程简图如下所示:

该装置主要的控制回路有:(1)洗涤塔液位;

(2)洗涤气流量;(3)合成塔触媒温度;(4)中置锅炉液位;(5)中置锅炉压力;(6)冷凝塔液位;(7)分离器液位;(8)蒸发器液位。

其中触媒温度控制可采用全系数法自适应控制,其他回路采用PID控制。

二 主要控制方案

(一)造气工段控制

工艺简介:

固定床间歇气化法生产水煤气过程是以无烟煤为原料,周期循环操作,在每一循环时间里具体分为五个阶段;(1)吹风阶段约37s;(2)上吹阶段约39s;(3)下吹阶段约56s;(4)二上吹阶段约12s;(5)吹净阶段约6s.l、吹风阶段

此阶段是为了提高炉温为制气作准备的。这一阶段时间的长短决定炉温的高低,时间过长,炉温过高;时间过短,炉温偏低并且都影响发气量,炉温主要由这一阶段控制。般工艺要求此阶段的操作时间约为整个循环周期的18%左右。

2、上吹加氮制气阶段

在此阶段是将水蒸汽和空气同时加入。空气的加入增加了气体中的氮气含量,是调节 H2/N2的主要手段。但是为了保证造气炉的安全该段时间最多不超过整个循环周期的26%。

3、上吹制气阶段

该阶段与上吹加氯制气总时间为整个循环的32%,随着上吹制气的进行下部炉温逐渐下降,为了保证炉况和提高发气量,在此阶段蒸汽的流量最好能得以控制。

4、下吹制气阶段

为了充分地利用炉顶部高温、提高发气量,下吹制气也是很重要的一个阶段。这段时间 约占整个循环的40%左右。

5、二次上吹阶段

为了确保生产安全,造气炉再度进行吹风升温之前,须把下吹制气时留在炉底及下部管 道中的半水煤气吹净以防不测,故进行第二次上映。这段时间约占7%左右。

6、吹净阶段

这段时间主要是回收上行煤气管线及设备内的半水煤气。约占整个循环的3%。该阶段是由吹风管路送风,该段时间的长短直接影响H2/N2.该控制系统是一个较复杂的时变、间歇、非线性、大滞后控制系统。故将该系统设计为串级控制。

造气炉的工作方式分为开车、停车、正常造气、升温和制惰等五种方式。每台造气炉需要控制15个电磁阀,为了防止多台炉同时进入吹风阶段而引起争风抢汽观象,各台炉之间必须进行吹风排队顺序控制。

控制方案:

1、造气工段H2/N2控制方案

造气工段是通过加减氮操作来进行氢氮比控制的,而加减氮操作又是通过调节上下吹加氮时间和吹风回收时间来实现的,因此,该控制系统最终得到的控制量要转化为上下吹加氮时间或吹风回收时间。本系统的氢氮比控制采用调节吹风回收时间来实现。

在合成氨生产过程中,影响氢氮比的主要干扰来源是造气、脱硫两个环节,这部分仅有较小的滞后,所以对脱硫制氢采用PID闭环控制和较高的采样频率,这是控制的内环。然后将造气脱硫与变换、脱碳、精炼及合成组成一个广义外环,采用预测控制进行控制,这是控制的外环。可选作控制量的参数有:脱硫氢、变换氢、补充氢和循环氢,这四个氢值之间的波动有一个时间差,脱硫氢到变换氢大约有5min,变换氢到补充氢大约有15min,再由补充氢到循环氢又有20min,而且补充氢与循环氢之间存在积分关系,补充氢中氢氮比的微小变化就会造成循环氢中氢的增加与减小,即稳定的补充氢并不能保证循环氢的稳定。而循环氢是生产过程最终阶段的信号,所以采用循环氢作为主调节参数,并选择脱硫氢作为副调参数,以克服循环氢巨大的滞后。

2、H2/N2调节方法

采用改变加氮空气量的方法调节H2/N2,在上吹和下吹阶段设置用/否加氮软手动开关决定是否启用加氮空气,同时采用上/下加氮调节阀来改变加氮空气量,其次可以通过调整 吹净时间的方法来调整H2/N2,同时还采用打吹净软开关确定在吹风阶段是否提前关闭烟囱阀,以辅助调节H2/N2.(三)CO变换工段控制

工艺简介:工艺流程图如下:

中温变换护的正常操作应该是将各段催化剂的温度控制在适宜的范围内,以充分发挥催化剂的活性。同时用最低的蒸汽消耗实现最高的CO变换率。影响中变炉催化剂床层温度变化的因素很多,如蒸汽的加入量、蒸汽的温度、进入催化剂前反应气体的温度、反应气体的组成以及生产负荷等。

该工段主要的控制系统主要有:中变炉入口温度定值控制,入中变护蒸汽流量定值控制,入中变沪中段蒸汽流量定值控制,中变炉下段温度控制等。(1)中变炉人口温度定值控制系统

该系统是通过控制中变炉的入口温度来稳定上段催化剂的温度。选中变炉人口气体的温度作为被控变量,操作变量为中温换热器的半水煤气副线流量。

其主要干扰因素有:半水煤气流量,半水煤气温度,蒸汽流量,蒸汽温度,变换气温度等。

在这个系统中,中变炉人口温度是根据生产要求由人工设定,当受到干扰使该温度偏离没定值时,通过改变中温换热器副线流量来维持其入口温度的稳定。

(2)入炉蒸汽流量定值控制

控制流程图如下:

被控变量和操作变量均为与煤气混合的蒸汽流量。其主要干扰因素是蒸汽的温度和蒸汽管网的压力。求由人工设定,通过改变蒸汽流量调节阀的开度来维持蒸汽流量的稳定。当生产负荷变动或其它干扰因索引起中变炉上段催化剂温度发生变化而需要改变入炉的蒸汽量时,只能通过人工调整系统的设定值来实现,可见该系统不能自动跟踪生产负荷,亦不能按照上段催化剂温度的变化来自动控制所需的蒸汽量。

(3)

中变炉中段蒸汽流量定值控制

(六)氨合成工段控制

在合成氨生产中,合成塔人塔气体的氢气与氮气的比例是工艺上一个极为重要的控制指标。氢氯比合格率对于全厂生产系统的稳定、提高产量和降低原料及能源消耗起着重要作用,氢氮比的过高或过低,都会直接影响合成效率,导致合成系统超压放空,使合成氨产量减少,消耗增加。但合成氨氢氮比对象是一个纯滞后和容积滞后大,无自衡能力和时变的工艺过程,所以氢氮比控制是氨合成工段的主要控制对象。

方案一:

采用变比控制方案,对负荷变化和加氮空气量进行预测控制其工作框图如下:

原料气中各有效成分分析合成总的含H2量作为主物料信号,乘上一个比值系数K,就作为空气调节阀的输入信号,驱动调节阀以得到所需要的与总含H2成比例的N2量。如果由于某种因素使H2/N2比值偏离给定值,就通过调节器GC输出信号修正比值系数K,使H2/N2比回到给定值上来。对于空气流量的干扰,设置一个副环,构成串级控制,对空气的测量,采用压力和温度的补偿。

方案2 预测加PID控制方案

上述方案由两个回路组成:内回路是由造气到脱磕和可调控制器组成的线性反馈回 路;外回路由变换到精炼和通推参数估计器及校正器组成。

方案3 预测+PID串级控制方案

氢氮比通过改变二段炉的空气量来调节,针对被控对象的特点,本文采用多步MAC 预测控制算法、PID算法及前馈调节相结合的控制规律构成氢氮比前馈中级控制系统。系统结构方块图如下所示:

由于负荷(原料气流量)变化是系统可测不可控的干扰,为此,采用前馈调节系统,以便及时克服负荷波动的干扰。由于空气流量波动大,必须采用闭环控制,空气流量调节回路采用YS-80单回路调节器实现。

由于系统滞后时间长,为了能及时克服转化、变化工段的干扰,引入变换氢副调回路,此回路纯滞后时间短,可采用PID调节;主被控对象氢氮比系统纯滞后时间长,惯性大,干扰多,因此主控器采用MAC预测控制

(八)精馏塔控制方案

工艺简介:

合成氨厂氨精馏塔是氨回收单元,以水为溶剂,吸收氨合成回路的放空气和液氨贮槽放空气中的氨,然后利用外部供热使氨水溶液解吸,水作为吸收剂循环使用。其工艺流程图如下:

由于本精馏工段受多种干扰因素如进料量、进料温度、冷凝器冷却水温度、环境温度变化等的影响,而且难以直接测量产品浓度作为被调参数,故选用间接参数温度、压力作为被调参数。

控制方案: 1.压力控制

针对压力设置了一套压力分程调节系统,由PRC-10001检测塔内压力,分别控制塔顶排出的情气量和塔顶冷却器的回水量。其调节过程为:

当PRC-10001测量值增加时,其输出值若在100%~50%内,则情气阀PV—10001A全关(F.C),冷却水阀PV-10001B(F.0)逐渐开大,直至全开,以充分冷凝气体中的氨;若输出值小于50%,则PV—10001B全 开,PV—1000lA逐渐开大,从而使塔内压力降低,反之亦然。以此达到塔内压力恒定。

2、温度控制

由于成品氨的质量与温度有直接关系,液氨流量直接影响着温度,为保证精馏塔温度,设置一套以惰馏塔温度TICAH—10004和液氨流量FIC—10006组成的串级系统。其中流星为副参数,克服影响氨水流量波动的各种扰动因素;以温度为主参数,保证精馏塔温度,其工艺控制流程图如下:

首先,手动调整F—10006输出值,使得T—10004满足工艺要求。然后,调整T—10004的给定值等于测量值,调整F—10006的设定值等于测量值。在此过程中,要保证T—10004输出值等于F—10006,设定值。随后将由手动投入自动,等稳定后投入串级。系统稳定后将T—10004由手动投入自动。

至此,完成了串级调节系统的投运。

篇3:合成氨工艺介绍

美国凯KBR公司开发出一种氨合成新工艺PURIFIERplus, 采用高压热交换蒸气重整联合天然气深冷净化技术, 由烃原料生产氨。

PURIFIERplus工艺的关键技术是重整, 包括KBR过量空气重整交换系统 (KRES) , 合成气深冷净化及在卧式合成塔内, 采用磁催化剂进行氨合成。主要步骤如下:

原料经压缩机加压并经加热器预热后进入脱硫单元, 脱硫后进料与蒸气混合, 加热, 分成两股物流, 一股物流流至自动热重整系统, 另外一股流至重整交换器管程, 与自动热重整装置 (ATR) 并行操作。两种操作都是采用常规镍催化剂将烃进料转化为粗合成气。在ATR系统, 进料与过量空气部分燃烧, 为残留的烃进料重整提供热能。将热的自动热重整物料加入KRES重整交换器壳程, 与催化剂填充管内的重整气混合。联合物流流过重整交换器壳程, 为管内重整反应提供热能。

在沸热锅炉内将重整交换器壳程流出物冷却, 产生高压蒸气, 流至装有两种催化剂的CO转换塔:一种是高温催化剂, 另一种是低温催化剂。冷却转换反应器流出物分离冷凝水, 按规定线路进入气体净化单元, 利用湿CO2洗涤系统, 如热碳酸钾或MDEA (甲基二乙醇胺) 从合成气中脱除CO2。

脱除CO2后, 残余的碳氧化物在甲烷化塔中转化为甲烷。甲烷化塔流出物冷却, 在粗合成气干燥前分离水, 干燥的合成气流至深冷净化器, 通过进料/流出物热交换将合成气冷却, 加入精馏塔。在精馏塔提纯合成气, 产生氢氮比为75∶25的塔顶馏出物。塔底为废气, 包括来自重整单元未转化的甲烷、过量氮和氩。在进料/流出物交换器内再次加热塔顶馏出物和塔底。废气物流用于生成干燥剂, 然后作为燃料在主重整器燃烧。净制冷由一个小型低速膨胀机提供。在合成气压缩机内压缩提纯的合成气, 与回路物流混合, 进入卧式合成塔。在组合冷冻器内, 合成塔流出物冷却并通过氨制冷剂冷冻。从未反应的合成气中分离氨产物, 未反应的合成气循环至压缩机, 通过水洗进行简单清洁, 循环至干燥器。

2 PURIFIERplus合成氨工艺流程图 (见图1)

3 小 结

PURIFIERplus是一种低成本、低能耗的氨合成技术, 环境友好, 降低了操作难度并提高了灵活性。工厂采用该项氨合成技术生产无水氨, 产能可以达到并超过500~2 000t/d。

摘要:介绍了PURIFIERplus氨合成新工艺。

篇4:合成氨工艺介绍

【关键词】合成氨;工艺流程;节能措施

合成氨工业是基础化学工业的重要组成部分,在国民经济中占有重要地位。氨是化学工业的重要原料之一,具有非常广泛的用途。我国合成氨技术发展迅速,在工艺技术、节能降耗能方面都有重大进步,我国氨产量排名世界第一。

一、合成氨工艺流程的系统分析

1.原料气的制取

合成氨的原料是煤、天然气、重油、石脑油和焦碳等。无论何种原料均可用CmHn来表示。这些原料在高温下与水蒸气作用生成以氢和一氧化碳为主体的合成气。此过程是强烈吸热过程。煤气化法是我国合成氨的主要制气方法。煤气化法是指用蒸汽、氧和其他气化剂对煤进行高温加工,使煤转化为氢及一氧化碳等可燃性气体。对于气态烃类,工业上普遍采用二段蒸汽转化法制取合成气。重油部分氧化法是以重油为原料,利用氧气进行不完全燃烧,使烃类在高温下裂解与燃烧产生的水蒸气与二氧化碳在高温下与甲烷进行转化反应,从而获得以氢气和一氧化碳为主体的合成气[1]。

2.原料气净化

无论任何方法制得的粗原料气,除含氢和氮外,还含有硫化氢、有机硫、一氧化碳、二氧化碳和少量氧等。这些物质对氨合成催化剂有毒害,必须进行脱除。

(1)原料气脱硫

在天然气蒸汽转化流程中,脱硫置于管式炉之前,以保护蒸汽转化催化剂的活性。在间歇式煤气炉制气流程中,脱硫置于变换之前,以保护变换催化剂的活性。在重油部分氧化生产的流程中,脱硫与脱二氧化碳在同一甲醇洗涤系统中进行。原料气脱硫的方法很多,包括干法脱硫和湿法脱硫。干法脱硫一般有活性炭法、有机硫化氢转化法和氧化锌法等。湿法脱硫方法很多,按吸收过程特点可分为化学吸收法和物理吸收法。

(2)一氧化碳变换

粗原料气一般含有大量的一氧化碳。通常,需先经过一氧化碳变换反应,使其转化为易于清除的二氧化碳和氨合成所需要的氢,反应如下:

CO+H2O(g)→CO2+H2

因此,一氧化碳的净化过程既是原料气的净化过程,又是原料气制取的继续。最后,少量一氧化碳可通过铜液洗涤法、液氨洗涤法或者低温变换连串甲烷化法加以脱除[2]。以煤为原料的中小合成氨厂,一氧化碳变换工序耗用大量外供蒸汽,是工厂的主要能耗工序之一。因此,降低一氧化碳的能耗是中小型氨厂节能工作的重点。

(3)二氧化碳脱除

原料气经变换后含有大量的二氧化碳。这些二氧化碳进入合成工序以前必须脱除干净。同时,二氧化碳又是制造尿素、纯碱、碳酸氢铵的重要原料。因此,在合成氨的生产过程中,二氧化碳的脱除及其回收利用是脱碳工序的双重目的。工业上通常采用的脱除二氧化碳的方法为溶液吸收法。它分为两大类,一类是循环吸收过程,即吸收二氧化碳后在再生塔放出纯态的二氧化碳,以便为制造尿素提供原料。另一类则是将吸收二氧化碳与其他产品生产结合起来同时进行,例如碳铵、联碱和联尿的生产过程。

3.原料气精炼

经一氧化碳变换和二氧化碳脱除后的原料气尚含有少量残余的一氧化碳、二氧化碳、氧和水等杂质。为了防止它们对合成催化剂的毒害,原料气在送往合成之前,必须经过精炼。原料气的精炼方法一般有三种,即铜氨液吸收法、甲烷化法和深冷液氮洗涤法。

4.氨的合成

氨合成工段的任务是将精制的氢气与氮气合成为氨,提供液氨产品。氨的合成工序基本由三部分组成,即在高温、高压和催化剂参与的条件下,氢与氮的混合气在合成塔中合成为氨;反应后的混合气体经回收、冷却、冷凝分离出产品氨;未反应的气体和补充的新鲜气体在升压后返回合成塔继续进行合成氨的反应。整个系统构成一个循环。氨合成工段是整个合成氨工艺流程的核心。氨合成工段的生产状况直接影响到工厂成本的高低,是合成氨厂高产低耗的关键工段。

5.氨的分离

在合成塔内的合成反应由于受反应平衡的限制。仅有部分氢氮气体合成为氨,尚有大部分氢气和氮气未反应。因此,为了充分利用合成塔出口混合气中未反应的氢气和氮气,同时也为了得到纯净的产品氮,需要将氨从混合气中分离出来。氨的分离一般采用两种方法。一种是水吸收法,另一种是冷凝分离法。目前,我国大型氨厂都采用冷凝分离法分离氨。冷凝分离法是通过氨冷的方法使混合气中的气态氨冷凝为液态氨,然后通过分离器进行气液分离。

二、合成氨工艺流程的节能措施

合成氨生产是能耗巨大的产业,过程中除消耗原料如煤、天然气、石油等一次能源外,还要消耗大量的电力、蒸汽等二次能源。合理高效利用能源,做好节能技改工作,已成为合成氨工业的重要内容[3]。下面是根据合成氨厂的实际情况,提出一些节能措施。

(1)添加合成排放气回收氢装置。此装置具有节省原料氢消耗,允许二段炉出口甲烷含量较高和降低惰性气含量的优点。

(2)提高表面冷却器效率。这是普遍使用的节能改造的措施。

(3)采用压降低净值高的径向合成塔代替陈旧的老合成塔。 这一措施不但可以节省循环功和冷却功,还可以降低原料气消耗。

(4)设置一段燃烧炉空气预热器。

(5)脱碳过程的节能。例如采用两段再生、贫液再生和更换新的活化剂等。

(6)完善热回收系统和利用低位热。改造热回收系统可使更多的废热产生蒸汽,使原料气和空气进行蒸汽预饱和。设置氨吸收制冷装置可利用多余的低位能热量,以供合成氨冷凝所需冷量[4]。

(7)在甲烷化前后采用选择性氧化和分子筛干燥工艺。 这可有效提高合成气的利用率和改善氨合成工艺并降低能耗。

(8)提高氨合成的水冷氨量,减少氨冷系统热损失,降低铜液所需冷冻量,可以有效降低电能消耗。

三、结束语

当今世界能源紧缺和价格不断上涨,使合成氨工业的节能降耗已成当务之急。完善合成氨工艺,采取节能措施,合理高效利用能源,是合成氨生产技术的重要内容。

参考文献

[1]孙凤伟,欒智宇.合成氨工艺技术的现状及其发展趋势[J].化学工程师, 2010(04)

[2]韩明山.合成氨生产技术探讨[J].化学工程与装备,2011(5)

[3]徐松华,王文富,李涛,吴玉华.探讨节能减排技术在合成氨生产中的应用[J]. 科技信息,2011(25).

[4]於子方.合成氨行业节能技术综述[J].企业与科技 2010(03)

篇5:合成氨工艺流程

尽管氨合成工艺流程各异,但合成基本原理相同,故有许多相同之处。

由于氨合成率不高,大量氢气、氨气未反应,需循环使用,故氨合成是带循环的系统。

氨合成的平衡氨含量取决于反应温度、压力、氢氨比及惰性气体含量,当这些条件一定时,平衡氨含量就是一个定值,不论进口气体中有无氨存在,出口气体中氨含量总是一定值。因此反应后的气体必须冷凝以分离所含的氨,使循环回合成塔入口的混合气体中氨含量尽量少,以提高氨净值。

当循环系统惰性气体积累达到一定浓度值时,会降低合成率和平衡氨含量。因此,应定期或连续排放定量的循环气,使惰性气体含量保持在要求的范围内。

氨合成系统是在高压下进行的,必须用压缩机加压。管道、设备及合成塔床层压力降以及氨冷凝等阻力的原因,使循环气与合成塔进口气间产生压力差,需采用循环压缩机弥补压力降的损失。

此外,还有反应气体的预热和反应后气体热能的回收等。

篇6:合成氨生产工艺见习报告

别:专 业:班 级:学 生:学 号:

化 学 化 工 学 院

化 学 11化学

于静 2011021004

合成氨生产工艺流程

一、见习目的和意义

通过见习使我们了解合成氨工艺的生产流程,规划和工艺参数的控制,以 制取氨成品。学会收集各种资料和数据参数,判断工艺过程的实际情况,培养理论联系实际的习惯。同时也是对化工生产知识的实践,培养运用化工专业理论知识,分析和解决实际问题的能力。对化工生产也有一定的了解,为以后的就业打下基础。理论联系实际,是一种全新的领域,不仅加深对合成氨工艺流程的了解,对具体化工设备的感性认识,还培养学习兴趣的勇于创新的精神。

二、见习要求

1.听从老师和企业工作人员的安排指导,有秩序,有礼貌,遵守工厂的相关规定。

2.认真听取工作人员的讲解介绍,有问题及时虚心提问,有意见建议要有礼貌地提出并做好相应的笔记。

三、见习时间

2014-9-20

四、见习单位

牡丹江师范学院-理工楼-实验室

五、产品简介

氨(Ammonia,即阿摩尼亚),或称“氨气”,分子式为NH3,是一种无色气体,有强烈的刺激气味。极易溶于水,常温常压下1体积水可溶解700倍体积氨。氨对地球上的生物相当重要,它是所有食物和肥料的重要成分。氨也是所有药物直接或间接的组成。氨有很广泛的用途,同时它还具有腐蚀性等危险性质。由于氨有广泛的用途,氨是世界上产量最多的无机化合物之一,多于八成的氨被用于制作化肥。由于氨可以提供孤对电子,所以它也是一种路易斯碱。

六、见习内容

1.生产的产品只要以煤为原料是合成氨,其常见过程为:

造气→半水煤气脱硫→压缩→变换→变换气脱硫→压缩机3段→ 脱硫→压缩机4,5工段→铜洗→压缩机6段→氨合成→产品NH3

造气:将煤和天然气等原料制成含氢和氮的粗原料气。对于固体原料煤和焦炭,通常采用气化的方法制取合成气;渣油可采用非催化部分氧化的方法获得合成气;对气态烃类和石脑油,工业中利用二段蒸汽转化法制取合成气。

净化:原料气进行净化处理,除去氢气和氮气以外的杂质,主要包括变换过程、脱硫脱碳过程以及气体精制过程。

氨合成:将纯净的氢、氮混合气压缩到高压,在催化剂的作用下合成氨。氨的合成是提供液氨产品的工序,是整个合成氨生产过程的核心部分。氨合成反应在较高压力和催化剂存在的条件下进行,由于反应后气体中氨含量不高,一般只有10%~20%,故采用未反应氢氮气循环的流程。氨合成反应式如下:

N2+3H2→2NH3(g)=-92.4kJ/mol 2 生产流程简述

合成氨的典型工艺流程介绍

合成氨的生产过程包括三个主要步骤:原料气的制备、净化和压缩和合成。

(1)原料气制备

将煤和天然气等原料制成含氢和氮的粗原料气。对于固体原料煤和焦炭,通常采用气化的方法制取合成气;渣油可采用非催化部分氧化的方法获得合成气;对气态烃类和石脑油,工业中利用二段蒸汽转化法制取合成气。

(2)净化

对粗原料气进行净化处理,除去氢气和氮气以外的杂质,主要包括变换过程、脱硫脱碳过程以及气体精制过程。

① 一氧化碳变换过程

在合成氨生产中,各种方法制取的原料气都含有CO,其体积分数一般为12%~40%。合成氨需要的两种组分是H2和N2,因此需要除去合成气中的CO。变换反应如下:

CO+H2O→H2+CO2 ΔH=-41.2kJ/mol;

由于CO变换过程是强放热过程,必须分段进行以利于回收反应热,并控制变换段出口残余CO含量。第一步是高温变换,使大部分CO转变为CO2和H2;第二步是低温变换,将CO含量降至0.3%左右。因此,CO变换反应既是原料气制造的继续,又是净化的过程,为后续脱碳过程创造条件。

② 脱硫脱碳过程

各种原料制取的粗原料气,都含有一些硫和碳的氧化物,为了防止合成氨生产过程催化剂的中毒,必须在氨合成工序前加以脱除,以天然气为原料的蒸汽转化法,第一道工序是脱硫,用以保护转化催化剂,以重油和煤为原料的部分氧化法,根据一氧化碳变换是否采用耐硫的催化剂而确定脱硫的位置。工业脱硫方法种类很多,通常是采用物理或化学吸收的方法,常用的有低温甲醇洗法、聚乙二醇二甲醚法等。

粗原料气经CO变换以后,变换气中除H2外,还有CO2、CO和CH4等组分,其中以CO2含量最多。CO2既是氨合成催化剂的毒物,又是制造尿素、碳酸氢铵等氮肥的重要原料。因此变换气中CO2的脱除必须兼顾这两方面的要求。

一般采用溶液吸收法脱除CO2。根据吸收剂性能的不同,可分为两大类。一类是物理吸收法,如低温甲醇洗法,聚乙二醇二甲醚法,碳酸丙烯酯法。一类是化学吸收法,如热钾碱法,低热耗本菲尔法,活化MDEA法,MEA法等。

③ 气体精制过程

经CO变换和CO2脱除后的原料气中尚含有少量残余的CO和CO2。为了防止对氨合成催化剂的毒害,规定CO和CO2总含量不得大于10cm3/m3(体积分数)。因此,原料气在进入合成工序前,必须进行原料气的最终净化,即精制过程。

目前在工业生产中,最终净化方法分为深冷分离法和甲烷化法。深冷分离法主要是液氮洗法,是在深度冷冻(<-100℃)条件下用液氮吸收分离少量CO,而且也能脱除甲烷和大部分氩,这样可以获得只含有惰性气体100cm/ m以下的氢氮混合气,深冷净化法通常与空分以及低温甲醇洗结合。甲烷化法是在催化剂存在下使少量CO、CO2与H2反应生成CH4和H2O的一种净化工艺,要求入口原料气中碳的氧化物含量(体积分数)一般应小于0.7%。甲烷化法可以将气体中碳的氧化物(CO+CO2)含量脱除到10cm3/m3以下,但是需要消耗有效成分H2,并且增加了惰性气体CH4的含量。

33(3)氨合成 将纯净的氢、氮混合气压缩到高压,在催化剂的作用下合成氨。氨的合成是提供液氨产品的工序,是整个合成氨生产过程的核心部分。氨合成反应在较高压力和催化剂存在的条件下进行,由于反应后气体中氨含量不高,一般只有10%~20%,故采用未反应氢氮气循环的流程。3 生产工艺流程图

4.工业生产中所涉及到的主要反应式为:

(1)3H2(g)+N2(g)→2NH3(g)(2)CO2+H2O==CO+H2(3)NH4HS+O2→S+NH3·H2O(4)NH3·H2O+HS→NH4HS+H2O(5)NH3·H2O+ CO==NH4HCO3

七、主要设备简介

1.造气炉:以煤为原料加入水蒸气在催化剂、高温、适当温度的条件下合成原料气氢气。2.压缩机:压缩气体,扁于储存和运输。

3.脱硫塔:出去反应过程中产生的硫,提高产品纯度和防止催化剂中毒。4.旋风分离设备:除去生产过程中未反应的颗粒和粉尘。5.换热器:对流体冷却或加热,达到反应或生产需要。6.吸收塔:吸收或脱出生产过程中不需要的物质。

八、见习体会

在见习的过程中,自己学到了许多原先在课本上学不到的东西,这次实习带给我们的不仅仅是经验,它还培养了我们刻苦的精神和谨严当真的风格。此次见习使我们学到了很多书中学不到的东西,它使我们懂得视察生活,敢于探索生活,也为我们多方面去意识和了解生活供给了一个契机。它是生活的一种能源,增进我们知、情、意、行的构成和和谐的发展,赞助自我完美。有些老师不仅教我们实习的内容,还教我们如何学习,如何做人,让我们学到了课本上学不到的知识。

任何理论和知识只有与实习相联合,能力施展出作用。而作为思维可塑性大的我们,不能单纯地依附书本,还必需到实践中测验、锻炼、立异;去造就科学的精力,良好的品格,高贵的情操,文化的行动,健康的心理和解决问题的能力。

为期一天的见习落下了大幕,总的来说这次为期一天的见习是一次有趣且必将影响我今后的学习工作的重要的教训。

保险第一 , 在产业生产中,安全要摆在第一位,是至关重要的!这是每个老师给我们的第一忠告。

现在想想从前的这段难忘时间,其中味道,只有亲自阅历的人才能体会得到。通过学习各种工种,我们了解了很多机加操作的原理和过程,大抵把握了一些操作工艺与方法,还有以前的那些生疏的专业名词现在听来都是那么熟悉亲热!见习给我们带来的那些经验与感触,却是对我们每一个人的工作学习生活来说都是一笔无价之宝的财富。

一起见习的同学也让我受益非浅。真挚的彼此激励加油,相互了解自己没有发现的问题,然后请教老师来解决我们之前所不知道的问题,相互学习,彼此促进。一天的见习更象是一个集体活动,拉近我们彼此的间隔,弥补了曾经存在的距离,群体主义的魅力得到了彻彻底底的展示!大学里连同班同学相处的机会都很少,感激这次见习给了我们这样一个机会。这样的活动值得教育部分的借鉴。

短短的一天时光,我们在实习中充实地渡过了,我们学习的知识虽然不是很多,但通过这次让我们明确了我们需要实际学习控制的技能还很多、很多。假如我们不常常加入这方面的实习,我们这些大学生将来恐怕只能是“夸夸其谈”。社会需要人才,社会需要的是有能力的人才。我们新世纪的大学只有多参加实践,才能保障在未来的社会竞争中有自己的地位。

篇7:国外合成氨工艺新技术

摘要:介绍了近些年来国外合成氨工艺各工序出现的新技术。

关键词:合成氨;工艺;新技术

氨是最为重要的基础化工产品之一,其产量居各种化工产品的首位,同时也是能源消耗的大户,世界上大约有10%的能源用于生产合成氨。氨主要用于农业,合成氨是氮肥工业的基础,氨本身是重要的氮素肥料,其他氮素肥料也大多是先合成氨、再加工成尿素或各种铵盐肥料,同时氨也是重要的无机化学和有机化学工业基础原料,用于生产铵、胺、染料、炸药、制药、合成纤维、合成树脂的原料[1]。随着合成氨生产竞争的日益加剧,提高装置产量、降低生产成本一直是合成氨生产厂家探索的课题。近些年来,经过许多专家、学者的研究,国外合成氨工艺各工序出现了许多新技术。未来合成氨技术进展的主要趋势是“大型化、低能耗、结构调整、清洁生产、长周期运行。转化

1.1 增设预转化炉

许多氨厂蒸汽转化部分是装置的“瓶颈”,制约了产量的提高。增设一台预转化炉提高转化能力,可以增加氨产量。以天然气作原料的工艺,当混合的原料气和蒸汽预热后进入绝热预转化炉催化床层时,发生的吸热反应会使工艺气温度下降,因此从预转化炉出来的气体在进入一段炉之前还须再加热(加热到高于一段炉原来的进口温度),这样可节约转化炉燃料,保证高的转化率和反应速率。另外,重烃可在预转化炉中除去,消除了转化炉结碳的危险。增设预转化炉后节省了转化炉燃料,因而可增加转化炉的进气量[2]。

ICI Katalco新建了一个以天然气为原料有预转化炉的合成氨装置,将预转化炉出来的气体加热到一段炉原来的进口温度,大大减少了一段炉所需的燃料,一段炉燃料进料速率还未达到原来值,原料天然气进料就已增加了9%。预转化炉体积小,安装费用低,可用现有脱硫设备作预转化炉。可在系统检修时将预转化炉并入系统。增设预转化炉后,装置效益大大提高。1.2 催化剂装填

NorskHydr最近研究出了一种新的一段炉催化剂装填技术,适用于氨、甲醇、氢以及其它有转化炉的装置,这就是UnidenseTM。该技术简单,装填迅速,装填过程无需振打炉管,适用于装填内径为3~6英寸的炉管。用该法装填的催化剂,密度均匀,能提高一段炉的生产效率。

装填方法是,炉管内先放入一根带有弹簧刷子的装填绳,催化剂装进炉管后,慢慢拉出装填绳如图1。装填绳上的弹簧刷子可减缓催化剂颗粒的下降速度,避免催化剂破碎。不会因架桥而产生空穴,因而装填过程无需振打炉管。采用该技术装填的催化剂密度比常用的“布袋”法高,且装填时间大大缩短。

图1 催化剂装填

1.3 新型烧嘴

在使用高比表面积(GSA)催化剂降低床层高度后仍不能改善气体混合状况时,就需更换烧嘴。ICI设计的新型烧嘴如图2所示。从图中可见,空气从很多点进入工艺气中,且分布均匀。该烧嘴现已成功地用于二段炉中,在工艺气和空气混合体积受限的转化炉中其性能很好。南方石油化学工业有限公司(SPIC)1996年在印度的吐提可林氨厂的改造中采用了这种烧嘴。

图2 二段炉新型烧嘴 变换 全低变工艺的改进 全低变催化剂Co-Mo-K/γ-Al2O3使用时,活性金属易转化成硫化态,催化剂中的硫会氧化成硫酸根,与钾反应生成硫酸钾,使催化剂失活,第一段汽/气高,反应气易带水雾,导致钾往表面迁移而流失,也引起催化剂失活。此外,还存在第一段阻力升高快的问题。为此,齐鲁石化研究院周红军等提出完善的方案是:制备不含碱金属、不需净化剂的催化剂,从而避免钾失活和催化剂结块等问题。另外,将反应器改造为轴径向反应器[3]。脱碳

在合成氨装置中,脱碳的投资费用占很大比例,同时脱氮也是合成氨装置的主要能耗工序。下面介绍2种低能耗的脱碳方法。3.1 活化MDEA法(aMDEA法)该方法是BASF公司60年代末开始研究、70年代初投入工业应用的,经过不断改进和发展,其工艺技术已很成熟可靠。至今世界上已有66套装置成功地采用了aMDEA法。

aMDEA法综合了化学吸收和物理吸收的优点,通过在MDEA中添加活化剂,大大改善了溶液的吸收能力和吸收速度。改变活化剂的添加量,可使溶液适应各种操作条件。aMDEA法净化度高,不仅能脱除CO2,还可脱除净化气中的H2S多,既适用于装置改造,也适用于新建装置。aMDEA溶液的化学稳定性和热稳定性很好,溶液不易降解,蒸发损失很少,生产过程中补给量较少;溶液不含砷化物,且排放量很少,对周围环境基本上不造成污染。

采用aMDEA法,不会有热钾碱法那样的高强度生产控制,生产过程的监测也很简单,只需配置必要的分析仪表。aMDEA溶液中各组分溶解度大,无颗粒沉淀物,无需对装置进行伴热。另外,aMDEA中的活化剂具有良好的缓蚀性能,对设备材质要求不高,主要设备都可采用碳钢制作。虽然aMDEA法与热钾碱法不同,但它对热钾碱系统的设备有很好的兼容性。由MEA法改为aMDEA法,主要设备不变,只需排放原有溶液,将系统清洗干净,然后加入aMDEA溶液即可开车,开车前也无需对设备进行钝化。aMDEA溶液再生效果好,一般经过一次闪蒸就可完全再生,再生出的CO2含量可达到98%以上,经过简单的净化处理就可得到高品质的CO2。3.2 ACT-1法

该法是环球油品公司(UOP)开发出的。主要是采用一种称为ACT-1的新型活化剂用于热钾碱脱碳液中,促进CO:的吸收,改善脱碳液的性能。其显著特点是活化剂ACT-1本身极其稳定,不降解,不易起泡,具有很高的化学稳定性。可单独使用,亦可与DEA活化剂共用,对原苯菲尔溶液无副作用。若ACT-1活化剂与DEA活化剂共用,ACT-1的浓度为0.5%~1.0%;若单独使用,则为1%~3%。用ACT-1脱碳,可将净化气中的CO2含量降低25%~85%;溶液的循环量降低5%~25%;再生热耗降低5%~15%;设备通气能力增加5%~25%。活化剂消耗量很小,吨氨消耗仅0.02kg。合成

具有代表性的低能耗制氨工艺有4种:Kellogg公司的KREP工艺、Braun公司的低能耗深冷净化工艺、UHDE-ICI-AMV工艺、Topsoe工艺。4.1 Kellogg先进的合成氨工艺(KAAP)英国石油公司(BP)研究开发了触媒,凯洛格(Kellogg)公司设计了新工艺,钉触媒采用促进剂使其活性大大提高,顺利地实现了600吨/日的生产,生产率增加了40%。

钌系触媒的有以下特点:

①对于载体和促进剂非常敏感肖添加碱金属和氧化物时,活性提高非常大;②氮原子的吸附作用弱,不会由于生成氨导致的触媒中毒,而由于氢所致的触媒中毒严重。钌(Rn)触媒在低的H/N比条件下是有利的,在高产NH3条件下其活性也高。

Kellogg工艺补充气和循环气经合成气压缩机压缩后通过进/出物料换热器入有4个床层的径向流KAAP合成塔。合成塔出来的气体压力约9MPa(表压)、氨含量为20%。通过产生高压蒸汽回收热量。回收热后,合成塔出料送到氨回收工序,冷凝得到氨;不凝性气体一小部分送到弛放气回收系统回收氢和氮后再与其余大部分气体汇合,组成循环气。KAAP合成塔是直立的有4个床层的内冷型径向流合成塔。由于操作压力和温度较低,可以采用“热壁”设计和轻质钢结构。第一床层装填铁催化剂,另3个床装活性较高的KAAP催化剂。KAAP催化剂在低温低压条件下活性较高,虽然合成塔操作压力较低,合成塔出口氨含量仍较高。KAAP系统的成功之处在于其独特的催化剂,它由比表面积较大的石墨载体浸渍锗组成,该催化剂活性是铁催化剂的10~20倍。

凯活格公司新的合成氨工艺(KAAP法)与旧的工艺相比有两大不同特点:①在旧工艺中,为了一次重整炉的加热,要用其他燃料,而在新工艺中,将二次重整炉的热量移到一次重整炉中;②在旧工艺中,反应器上面的H/N比约为3,而在新工艺中低达1~2,在反应器下游中(氢回收装置)除了被浓缩的未反应N2外,使其再循环。这两点对于新触媒为高活性的有利条件,在工艺上就把受氢的触媒中毒的不利条件被转化为有利条件[4]。

在触媒活性高的情祝下.可以在合成系统低压而高转化率下开动生产,不需要高压循环的大量能源。

参考文献

篇8:合成氨工艺教学初探

一、教师应该是一个“双师型”的教师,才能胜任这门科的教学

教师一定要在合成氨生产系统进行过一定的生产实践,熟悉生产的设备、工艺流程、工艺条件。尤其是工艺条件的确定是合成氨工艺的难点,也是整个化工生产的难点,所有化工理论知识在这里交汇。温度、压力、浓度、流量、物料和热量的衡算等理论数据和实际生产要求的数据出现一定偏差,甚至出现脱节,造成教学的难点和学生的迷茫。所以如何把理论知识和生产知识结合起来进行对照、分析,就显得非常重要。

二、理清思路,抓住主线条

在课堂上要把氨的用途和氨的生产原理和生产过程进行简明扼要的讲解,让学生有一个初步的认识。

氨是重要的无机化工产品之一,在国民经济中占有重要地位。除液氨可直接作为肥料外,农业上使用的氮肥,例如尿素、硝酸铵、碳酸氢铵、磷酸铵、氯化铵及各种含氮复合肥,都是以氨为原料的,同时氨还是生产纯碱的主要原料。

氨合成反应式如下:

合成氨的主要原料可分为固体原料、液体原料和气体原料。工艺流程都是由三个基本部分组成,即原料气制备过程、净化过程及氨合成过程。

1. 原料气制备。

将煤和天然气等原料制成含氢和氮的粗原料气。对于固体原料煤和焦炭,通常采用气化的方法制取合成气;渣油可采用非催化部分氧化的方法获得合成气;对气态烃类和石脑油,工业中利用二段蒸汽转化法制取合成气。

2. 净化。

对粗原料气进行净化处理,除去氢气和氮气以外的杂质,主要包括变换过程、脱硫脱碳过程及气体精制过程。

(1)一氧化碳变换过程。在合成氨生产中,各种方法制取的原料气都含有CO,其体积分数一般为12%—40%。合成氨需要的是H2和N2,因此需要除去合成气中的CO。

变换反应如下:

由于CO变换过程是强放热过程,必须分段进行以利于回收反应热,并控制变换段出口残余CO含量。第一步是高温变换,使大部分CO转变为CO2和H2;第二步是低温变换,将CO含量降至0.3%左右。因此,CO变换反应既是原料气制造的继续,又是净化的过程,为后续脱碳过程创造条件。

(2)脱硫脱碳过程。各种原料制取的粗原料气,都含有一些硫和碳的氧化物,为了防止合成氨生产过程催化剂的中毒,必须在氨合成工序前加以脱除。以天然气为原料的蒸汽转化法,第一道工序是脱硫,用以保护转化催化剂,以重油和煤为原料的部分氧化法,根据一氧化碳变换是否采用耐硫的催化剂而确定脱硫的位置。工业脱硫方法种类很多,通常是采用物理或化学吸收的方法,常用的有低温甲醇洗法 (Rectisol) 、聚乙二醇二甲醚法 (Selexol) 等。粗原料气经CO变换以后,变换气中除H2和CO2外,还有少量的CO和CH4等组分,其中以CO2含量最多。CO2既是氨合成催化剂的毒物,又是制造纯碱、尿素、碳酸氢铵等氮肥的重要原料。因此变换气中CO2的脱除必须兼顾这两方面的要求。一般采用溶液吸收法脱除CO2。根据吸收剂性能的不同,可分为两大类。一类是物理吸收法,如低温甲醇洗法 (Rectisol) 、聚乙二醇二甲醚法 (Selexol) 、碳酸丙烯酯法。一类是化学吸收法,如热钾碱法,低热耗本菲尔法,活化MDEA法、MEA法。

(3)气体精制过程。经CO变换和CO2脱除后的原料气中尚含有少量残余的CO和CO2。为了防止对氨合成催化剂的毒害,规定CO和CO2总含量不得大于30ppm。因此,原料气在进入合成工序前,必须进行原料气的最终净化,即精制过程。

目前在工业生产中,最终净化方法分为深冷分离法和甲烷化法。深冷分离法主要是液氮洗法,是在深度冷冻 (<-100℃条件下用液氮吸收分离少量CO,而且也能脱除甲烷和大部分氩,这样可以获得只含有惰性气体100cm3/m3以下的氢氮混合气,深冷净化法通常与空分以及低温甲醇洗结合。甲烷化法是在催化剂存在下使少量CO、CO2与H2反应生成CH4和H2O的一种净化工艺,要求入口原料气中碳的氧化物含量 (体积分数) 一般应小于0.7%。甲烷化法可以将气体中碳的氧化物 (CO+CO2) 含量脱除到10cm3/m3以下,但是需要消耗有效成分H2,并且增加了惰性气体CH4的含量。甲烷化反应如下:

3. 氨合成。

将纯净的氢、氮混合气压缩到高压,在催化剂的作用下合成氨。氨的合成是提供液氨产品的工序,是整个合成氨生产过程的核心部分。氨合成反应在较高压力和催化剂存在的条件下进行,由于反应后气体中氨含量不高,一般只有10%—20%,故采用未反应氢氮气循环的流程。氨合成反应式如下:

三、在教学过程中找到合成氨过程的一些共同点

1. 脱硫、脱碳、气体精制的共同点。

(1)反应原理有共同点:大多都采用溶液吸收和再生两个过程。a.大都是采用碱性溶液吸收;b.吸收过程都是可逆反应;c.反应都放出热量;d.反应后气相介质体积减小;e.再生过程都是吸收的逆反应,都是吸热和体积增大的反应。

(2)使用的设备有共同点:a.都使用吸收塔和再生塔;b.吸收塔和再生塔都是钢板卷焊而成的;c.吸收塔必须承受吸收的高压力要求;d.吸收塔的直径小于再生塔。

(3)工艺条件有共同点:吸收过程采用低温、加压的方法,再生采用加热、减压的方法。

(4)工艺流程有共同点:为了节约能源和动力消耗吸收和再生过程采用互相换热的装置。

2. 氨的合成和一氧化碳的变换有共同点。

(1)反应过程都使用催化剂,开车前必须对催化剂进行升温还原,停车时都要对催化剂进行钝化(缓慢氧化)保护。

(2)都是可逆反应,反应不彻底,变换采用两段以上的反应,合成采用气体循环的方式。

(3)反应前要求进入塔内气体温度高,都在450℃以上,反应后都是放热反应,反应后温度超出操作温度要求,所以工艺上都采取反应前后的气体进行间壁换热,达到节约热能的目的。

(4)因为都是可逆放热反应,化学热力学要求提高温度,以达到快的反应速度,而化学动力学要求降低温度,以提高最终转化率。

(5)由于都使用催化剂,同时考虑化学热力学和动力学对温度的相反影响,因此都存在最适宜温度,操作要在最适宜温度附近才能达到高产和合格产品。

上一篇:写简历的标准是什么下一篇:高校教师入党申请