计算机材料应用论文

2024-05-16

计算机材料应用论文(共6篇)

篇1:计算机材料应用论文

计算机应用基础辅导材料

一、单项选择题

1-5DACBB6-10ABACB11-15CDBBA16-20CCDBC21-25CDABD26-30CBBCB31-35DCBAD

二、填空题

答案液晶显示器

答案浮点数

答案Alt +F4

答案Shift

答案显示属性 对话框

答案粘贴

答案段落

答案SUM

答案=A1&A2

45答案Sheet1

答案页面设置

答案标题栏

答案32

答案因特网

答案ASCII

三、简答题

51答:第一种方法:(1)选定要重命名的文件。(2)从“文件”菜单中选择“重命名”命令。(3)输入一个新的名字,最后按下回车键即可。

第二种方法 :(1)选定要重命名的文件。(2)单击鼠标右键并在快捷键菜单中选择“重命名”命令。(3)输入一个新的名字,最后按下回车键即可。

52答:Word窗口由标题栏、菜单栏、工具栏、文档编辑区和状态栏等部分组成。

53答:第一种:=SUM(E3:E4:E5)

第二种:=E3+E4+E5

第三种:=SUM(E3,E4,E5)

54答:第一种:(1)选中要复制的幻灯片(2)在“编辑”菜单下选择“复制”命令

(3)用鼠标点击需要复制幻灯片的地方(4)在“编辑”菜单下选择“粘贴”命令。第二种:(1)选中要复制的幻灯片(2)单击鼠标右键在快捷菜单中选择“复制”命令

(3)用鼠标点击需要复制幻灯片的地方(4)单击鼠标右键在快捷菜单中选择“粘贴”命令

55答:安装反病毒软件并及时更新病毒库,这是最有效的遏制病毒的方法。同时安装个人防火墙软件,也可以阻止互联网上的其他用户对该计算机进行非法访问。

篇2:计算机材料应用论文

何x,男,韶山环球中等职业技术学校教师,2011年7月12日参加了湖南省中等职业学校专业教师省本级培训(2011年第2期)计算机应用专业培训。

在培训期间,何x老师自觉转换角色,树立“学生角色”的自我意识,自觉遵守法律法规及培训基地、实习企业的一切规章制度,不向培训基地提任何不合理要求。他克服身体的不适(身患痛风性关节炎,期间三次发作),坚持学习,按时出勤,他身上总是挎着一个大大的黑皮包,皮包里少不了的一个东西就是药品。

何x老师学习态度端正,学习目的明确,他是中职计算机专业教师,专业知识扎实,动手能力强,但他在本班学员当中,从不觉得自己有多了不起,在培训过程中,认真的做好听课笔记,深入地钻研新理念、新知识、新的操作技能,能利用一切机会主动向老师求教,能要求自己做到理论与实际相结合。在学习中有很好的团队精神,担任第二小组组长,他专业能力应该是四人中最强的,但在作品的完成过程中付出的劳动也是最多的,他经常帮助小组其他学员,一起学习进步,第二小组作业完成质量在全班是最好的。同时在学习过程中,经常与其学员交流学习体会,对班上其他学员在操作中的遇到的疑问能耐心解决,尽量帮助,共同进步。课后能认真及时完成老师布置的作业,填写好培训日志,同时能每天进行自觉的学习反思。每个模块结束后能认真地写好学习心得体会,多次被评为优秀。

篇3:计算机在材料科学中的应用分析

现在, 材料科学领域已经有了一个较好地发展, 这就需要我们在充分利用计算机的前提下把对材料科学的研究推向一个全新的高度, 同时, 这个新发展将大大提高研究领域的使用效能。

1 常用计算方法和数据处理

常用计算方法和数据处理:常用数值分析方法;线性方程组解法;最小二乘法曲线拟合;三次样条插值函数;数值分析软件及应用举例;材料科学研究中的数据处理;材料科学研究的数据类型;材料研究中的数据分析;材料研究的实验设计;图象处理在材料领域的应用;数据分析软件介绍及应用举例;

2 材料科学研究中数值模拟方法基础

材料科学研究中数值模拟方法基础:有限差分法, 差分方程的建立;差分方程的求解方法;有限元法的基本概念;有限元法的基本理论;现代有限元分析软件简介及在各专业方向应用举例;

3 材料科学与工程中的物理场计算机分析

材料科学与工程中的物理场计算机分析:温度场计算机分析;温度场及传热学问题;导热微分方程;导热问题的数值解析;非稳态导热问题的有限差分格式;温度场计算机分析举例;浓度扩散场计算机分析;扩散方程;扩散方程初始条件和边界条件;扩散方程的数值解析及针对物理场和温度场在各专业方向实际过程介绍;

4 材料相关学科和计算机学科的相互交叉

4.1 材料学和计算机学科的相互学习和使用

从一定程度上, 计算机科学与材料科学之间没有明确的界限, 也就是说, 当我们在学习材料科学的时候, 需要间歇式地学习一些计算机相关知识。计算机和材料相关学科是结合在一起的, 它们的交叉体现在要通过计算机的高技术手段来研究材料的性质、仿制材料的构成。

材料科学的研究少不了要对计算机进行使用, 并且计算机对材料科学的作用还是极为重要的。它们两者在相互交叉中也可以来共同促进对对方的研究发展。

4.2 在材料科学研究中使用计算机不可缺少

在材料科学的研究过程中, 分析材料的性能、分析材料的组成、新性能材料的设计以及制备方法、加工工艺等等都需要用到计算机;材料科学研究的每一个领域倘若离开计算机就无法正常完成任务, 因此说, 计算机在材料科学研究领域中起着不可忽视的重要作用, 更是材料科学研究中的高科技工具。

通过对计算机的运用, 材料科学的研究才能更趋向自动化与集成化。

5 利用计算机更好为材料科学使用

5.1 方便研究人员进行知识交流和查阅

运用计算机网络的强大功能可以为材料科学行业的研究人员提供更加便捷的服务, 通过计算机网络, 研究人员可以查阅自己所需要的科研资料、及时关注材料科学研究领域的最新动态、了解材料科学研究的发展方向、并且可以发表自己的论文以供广大阅读者学习, 同时还可以建立自己的网页来专门介绍自己的研究成果, 以此通过计算机网络实现了科研人员之间的交流研究, 也可以进一步推进材料科学的巨大发展。

5.2 用于材料的开发加工和构造的理论等方面的分析

在材料科学的开发设计过程中, 计算机的作用尤为重要, 新材料研究开发中, 需在结合理论的基础上运用计算机来实现预报材料的组成、结构以及性能, 而且, 通过理论设计来定做新材料的时候更是离不开对计算机的使用, 因此说, 计算机在设计新材料领域中发挥着不可替代的作用。它促进材料科学的向前发展, 同时也为材料科学的开发设计做出了一定的贡献。

5.3 可以发挥出计算机在数值模型等方面分析的功能

在对材料分析和研究中, 很多时候要利用计算机软件对真实地操作系统进行一定的仿真模拟操作, 同时提供模拟的结果来有效地促进材料科学研究的发展;通过计算机模拟可以把真实的操作结果与仿真模拟的结果相比较, 从而来检验数据模型的准确性和正确性;对于计算机模拟系统的应用遍及材料科学的整个环节中, 对材料科学的研究可谓是起着非常重要的作用, 通过对材料的合成、研究性能设备等方面来更好地促进材料科学领域的发展。例如可以使用ansys对钢管进行网格划分并分析其压力场等。

5.4 强大图像分析功能在材料学当中的应用

在材料微观构造的分析中, 会出现大量的数据以及需要对图像进行必要的处理。在这种时候, 充分借助计算机的存储处理功能不仅仅可以保存大量的数据, 而且在一定程度上可以减少对人力的使用, 节省我们宝贵的时间;同时, 计算机在计算存储方面标准正确, 我们就不用再担心对数据处理出错的问题了;对于材料研究过程中的图像处理也会方便得多, 利用计算机的图像处理功能来研究材料的结构组成则会更加方便快捷。例如用matlab分析碳素的ct图像可以得知其碳素成分或比例。

通过以上分析可以看出, 材料科学作为一门新型的学科不仅涉及面广, 而且发展还不是那么的成熟, 当前对于它的研究仍需要一个过程去努力进行探索, 我们仍需要一个很长的阶段去探讨。作为高科技之一的计算机, 在当今社会各个领域的发展中都起着极为关键的作用, 同样, 在材料科学研究过程中的作用也是不可忽视的, 计算机为材料科学的发展提供了重要的工具, 以此来推进材料科学领域的发展, 并成为了材料科学研究领域中的重要工具。

摘要:计算机作为现代化的工具对各个领域来说都有着极为重要的作用, 尤其是在材料科学的研究发展中发挥着愈来愈重要的作用, 材料科学属于研究材料的一种综合性学科, 如, 以钢铁行业为例来说, 高炉内温度的测量、炉内流体运动的监控、高炉使用寿命的仿真等等都离不开对计算机的使用。随着各项产业的逐渐精细化和完整化, 对计算机的使用要求也在不断地提高, 计算机在材料科学中可以说是有着广阔的发展前景。本文主要试通过浅谈计算机和材料的关系来解析计算机在材料分析中的几个应用方向, 目的是来进一步推进计算机在各个学科研究范畴的发展, 从而也能促进我国社会经济的进一步向前发展。

关键词:材料科学,计算机,应用

参考文献

[1]吴兴惠, 项金钟.现代材料计算设计教程[M].北京:电子工业出版社, 2006.

[2]龚曙光, 罗显光.ANSYS基础应用及范例解析[M].北京:机械工业出版社, 2003.

篇4:计算机在材料科学中的应用浅析

【关键词】计算机 材料科学 应用

材料科学是多个专业结合下新产生的学科,我国目前对于材料科学的研究还处于发展阶段,没有成熟。但在实际之中,我们对于材料的性能、质量有了更高的要求,这在一定程度上提升了材料科学理论研究的动力,但也给研究带来了很大的压力。计算机在材料科学中的应用是材料科学发展的必经之路,也是材料科学进一步发展的台阶。这是实际中对材料要求更严格的体现,计算机的快速、便捷、高精度能够给材料科学的研究带去很大的便利,材料科学的发展也离不开计算机技术的引进。

一.计算机在材料科学中的应用方向

1.利用计算机进行新材料设计

随着社会经济的发展,人们对于材料的质量、功能都有了更高的要求,同时,人们也不再满足原有的材料类别,而是希望能够研究并设计出新的材料用于生产、生活。新材料的设计需要将大量的理论和实验对比数据、图像进行分析,从而提出设计新材料的方法。其中涉及到的大量的数据和图像,如果根据以往的采取人工分析的方法,需要投入大量的人力、物力,并且人工进行数据的分析,因为人力的精力有限,无法达到计算机的精确程度,在数据分析过程中极容易出现错误。而新材料的设计是一个需要极高的精准度的工作,其中即便是一点小失误,也会引起新材料的特性的变化,所以新材料的设计必然是离不开计算机的加入的,只有计算机才能保证设计过程中的错误少发生甚至是不发生。

2.利用计算机进行数据和图像处理

计算机在材料科学中的应用主要体现的就是数据和图像的分析能力,其准确性和高强度的分析能力是人工所不能比拟的。一般而言,对于数据的分析最便捷、最直观的是利用图表进行分析,而计算机拥有良好的存储系统,将数据录入计算机并保存,即可在计算机上通过简易的方式绘出图表进行分析,除此之外,计算机储存系统还拥有很强的查询功能,面对如此庞大的研究数据,也只有计算机的查询功能能够在分析中便捷的找出研究人员所需要的数据。

3.利用计算机对系统进行模拟

众所周知,材料科学的研究过程中,需要根据理论做出许多的模拟实验,再从实验中总结需要的数据,并对数据进行分析,从而再进行试验。任何一门科学在进行新材料的设计或是新理论的提出时,都需要这一个“研究—实验—分析”的循环的过程。计算机强大的数据分析能力和对比能力在材料科学是模拟试验中就可以派上用场。计算机模拟的主要操作过程就是将模拟得出的分析数据和实际体系的实验数据进行比较,发现其中的缺陷,即是检验其准确程度。一般而言,一次对比是远远不够的,需要不断的分析、实验、对比,这一循环过程涉及到的庞大的工作量就需要计算机来完成。

二.计算机在材料科学中的作用分析

1.方便查阅资料和人员之间的交流

研究人员要在某一领域进行研究,必须要能够掌握该领域科研的最新消息,即要能够知道该领域的其他研究人员都在做什么,该领域未来的发展前景如何,以及研究出成果之后发表途径是什么等。计算机网络对于科研人员查阅资料以及各科研人员之间研究成果的交流是有很大便利的,研究人员可以在网络平台上找出自己需要的资料,计算机很多的数据库,总会找到满意的资料。除此之外,研究人员科研通过阅读别的研究人员的科研论文,以此来了解别人的研究成果,而当自己的研究有了成果时,也可以通过网络平台发表出来,供他们学习参考。材料科学作为新兴的学科,需要各研究人员相互沟通共同努力,唯有这样才能更进一步推动材料科学的发展。

2.计算机是材料科学的开发设计中的重要工具

材料科学还处于发展阶段,其研究还不成熟,这就需要材料科学的学者不能停下脚步,需要不停的进行学习和研究。但是研究人员的精力是有限的,这就需要计算机的加入,研究人员利用计算机进行研究,其效果会好很多,效率也会更高,这就更有利于材料科学的发展。在新材料的开发中,需要利用计算机进行材料的组成、性能的分析,因此,計算机在新材料的研究、设计中有着重要的作用。而另一方面,材料科学的研究中,必须要经历实验、模拟这一过程,计算机凭借其强大的运行能力,可以被研究人员用来进行模拟操作,从而检验材料的各种属性。

3.计算机图像分析功能

材料科学的研究过程中,研究人员面对的最大的困难应该是大量的数据的分析,首先,数据的分析不能出错,其次,数据过于庞大,人力难以完成。所以这就需要借助计算机对于数据的分析能力。将数据录入计算机并保存,计算机同时又拥有查询功能,可以即时查询数据。计算机在数据、图像的分析上也有着极强的能力,并且也拥有很强的准确度,这也正是计算机可利用之处。

三.总结

现代技术的发展已经到达一定程度,计算机也已经融入到了各个领域。而对于材料科学这样的新兴的学科,研究中必然会涉及到许多的数据、图像,所以对于计算机的应用也就显得极为重要,一般来说,要促进材料科学的发展,计算机成了必要的工具。材料科学的研究还不成熟,在计算机的应用之后,还需要研究人员坚持不懈的努力,为材料科学的发展贡献力量。

【参考文献】

[1]黄少鹤.计算机在材料科学中的应用分析[J].信息科技,2013.

篇5:计算机材料应用论文

学 专 姓

材料科学与工程 称

防腐131班

蓝 文 程

计算机辅助设计在材料生产中的应用

摘要

计算机辅助设计是利用计算机及其图形设备帮助设计人员进行设计工作,简称CAD。在工程和产品设计中,计算机可以帮助设计人员担负计算、信息存储和制图等项工作。在设计中通常要用计算机对不同方案进行大量的计算、分析和比较,以决定最优方案;各种设计信息,不论是数字的、文字的或图形的,都能存放在计算机的内存或外存里,并能快速地检索;设计人员通常用草图开始设计,将草图变为工作图的繁重工作可以交给计算机完成;利用计算机可以进行与图形的编辑、放大、缩小、平移和旋转等有关的图形数据加工工作。

随着现代计算机技术的飞速发展,计算机辅助设计CAD(Computer Aided Design)在生产中的应用日益广泛,本文主要从计算机辅助设计在材料生产中的应用等方面阐述了其在材料计中的显著优势,并对目前国内企业产品开发过程三维CAD系统应用现状和存在问题进行了分析。

关键词:计算机辅助设计 三维CAD 应用 绪 论

开始于上世纪50年代后期的计算机辅助设计技术,从最初的仅仅被简单的作为图板的替代品到70年代的二维制图过度到三维建模再到现在的集产品的构思、功能设计、结构分析、加工制造、数据管理于一体的智能CAD技术,计算机辅助设计经历了一个漫长又曲折的发展历程。在今天,CAD技术越来越广泛的用于生产中。CAD技术从二维CAD向三维CAD的过渡

2.1 CAD简介

计算机辅助设计是利用计算机强大的图形处理能力和数值计算能力,辅助工程技术人员进行工程或产品的设计与分析,达到理想的目的,并取得创新成果的一种技术。自1950年计算机辅助设计(CAD)技术诞生以来,已广泛地应用于材料、电子、建筑、化工、航空航天以及能源交通等领域,产品的设计效率飞速地提高。现已将计算机辅助制造技术(Computer Aided Manufacturing,CAM)和产品数据管理技术(Product Data Management,PDM)及计算机集成制造系统(Computer Integrated manufacturing system,CIMS)集于一体。

产品设计是决定产品命运的研究,也是最重要的环节,产品的设计工作决定着产品75%的成本。目前,CAD系统已由最初的仅具数值计算和图形处理功能的CAD系统发展成为结合人工智能技术的智能CAD系统(ICAD)(Intelligent CAD)。21世纪,ICAD技术将具备新的特征和发展方向,以提高新时代制造业对市场变化和小批量、多品种要求的迅速响应能力。

以智能CAD(ICAD)为代表的现代设计技术、智能活动是由设计专家系统完成。这种系统能够模拟某一领域内专家设计的过程,采用单一知识领域的符号推理技术,解决单一领域内的特定问题。该系统把人工智能技术和优化、有限元、计算机绘图等技术结合起来,尽可能多地使计算机参与方案决策、性能分析等常规设计过程,借助计算机的支持,设计效率有了大大地提高。

CAD技术正从二维CAD向三维CAD过渡。三维设计软件具有工程及产品的分析计算、几何建模、仿真与试验、绘制图形,工程数据库的管理,生成设计文件等功能。三维CAD技术诞生以来,已广泛地应用于机械、电子、建筑、化工、航空航天以及能源交通等领域,产品的设计效率得以迅速提高。我国CAD技术的研究、开发和推广已取得较大进展,产品设计已全面完成二维CAD技术的普及,结束了手工绘图的历史,对减轻人工劳动强度、提高经济效益起到了明显的作用。有相当一部分CAD应用较早的企业已完成了从二维CAD向三维CAD转换,并取得了巨大的经济效益和社会效益。随着市场经济的逐步深入,市场竞争日趋激烈,加强自身的设计能力是提高企业对市场变化和小批量、多品种

要求的迅速响应能力的关键。2.2 三维CAD的优势

首先CAD技术以实用的零件实体建模优势和简便的产品造型修改和实体装配图的生成被用在机械设计的多个方面设计软件为三维建模提供了多种工具,包括最基本的几何造型如球体、圆柱等,对简单的零件,可通过对其结构进行分析,将其分解成若干基本体,对基本体进行三维实体造型,之后再对其进行交、并、差等布尔运算,便可得出零件的三维实体模型。对于较复杂的图形,软件提供了草图工具,设计人员可以通过它先勾勒出截面,再拉伸出较复杂的几何形体。为了满足人们不断提高的审美要求,目前主要流行的几款三维设计软件基本上都提供面片模块,该模块为设计人员提供了非常方便的曲面设计工具。对于具有大块曲面的零件,设计师可以方便地对单个面或片体进行变形处理,以达到需要的曲面。

企业生产的产品往往是按系列区分,各系列中每一代产品与上一代产品之间的区别较小,也许只是增加了一个功能部件或是产品造型尺寸上有所改动。三维CAD可以方便地修改一些参数就能达到设计师更改造型的目的。三维CAD在建模中一般使用参数化建模,整个建模的步骤和产品的外型尺寸被参数化,这些参数是与产品的造型直接关联的。若要对尺寸或造型进行局部的更改,只需要更改相关参数,整个造型将被自动更新。这样不仅大大减少了设计人员的工作量,还保证了产品外造型的延续性。

实体装配不仅能让设计人员直观地看到各零件装配后的状态,还可以测量各零件之间的空间大小,方便零件的布置。在装配完成后,零件可以被隐藏或设置成半透明的状态,方便设计人员观察内部结构。此外,在装配状态下,软件提供的标准件库,也方便了设计人员对标准件型号的选择。装配状态下的干涉分析也是常用的功能,计算机通过计算各装配零件的体积的大小和位置来确定是否有相交的部分,并确定各零件是否干涉,自动生成分析报告,明确指出互相干涉零件的名称和干涉的尺寸。方便设计师修改产品设计尺寸。

另外随着技术发展,为了减轻人工劳动强度,提高产品的精度,制造行业装备从普通机床逐步到数控机床和加工中心,模具激光快速成型技术(RPM)等,几乎应用到整个制造行业。这些数控加工装备基本都具有与各三维设计软件的接口。当产品模型在三维CAD软件中完成后,再由CAD软件模拟出加工刀具路径,随后生成数控语言,通过接口输入数控设备中,再由数控设备按照模拟出的加工路径加工产品。

2.3 CAE简介

CAE是三维CAD软件的重要模块,CAE功能包括工程数值分析、结构优化设计、强度设计评价与寿命预估、动力学、运动学仿真等。CAD技术在建模模块完成产品造型后,才能由CAE模块针对设计的合理性、强度、刚度、寿命、材料、结构合理性、运动特性、干涉、碰撞问题和动态特性进行分析。CAE技术在我国也得到了广泛应用,以汽车制造业为例,国内多家主车厂和汽车设计公司在使用三维CAD软件完成新车型的设计后,进行CAE分析,如干涉检查、钣金成型分析、塑料件拔模角分析、车身强度刚度的测试,在车窗、车门、雨刮器等运动部件上广泛采用CAE模块中的运动仿真功能,计算出零件的运动轨迹,以及零部件在运动中的状态,为设计人员提供直观的参考。这些分析工作大大提高了新车型的可靠度,缩短了新车型的开发周期,减少了返工,节约了研发成本。采用三维CAD技术,机械设计时间缩短了近1/3。同时,三维CAD系统具有高度变型设计能力,能通过快速重构,得到一种全新的机械产品,大大提高了工作效率。

3计算机辅助设计在材料加工中的应用

材料加工CAD技术是传统材料加工技术与计算机技术、控制技术、信息处理技术等相结合的产物,是材料加工和技术进步和标志。材料加工CAD又可分为铸造成形CAD、塑性成形CAD、焊接成形CAD、注射成型CAD以及模具CAD等几个方面:

3.1 铸造成形CAD

包括铸造工艺CAD以及铸造工装(模具/模板)CAD。前者的主要功能有铸造浇注系统设计,冒口补缩系统设计,冷铁的设计,砂芯的设计,铸造分型面的确定,加工余量的确定,起模斜度的确定,开放浇注系统库、冒口库、冷铁库、芯头库的建立,工艺图的标注与打印等,可以实现铸造工艺的快速准确设计。另外,基于有限分析的优化技术在CAD系统配套使用,例如充型过程模拟、凝固过程模拟、应力应变分析、微观组织模拟等,为制定合理的铸造工艺起到了有力的指导作用。

铸件弃型流动与凝固过程数值模拟在短短十余年的发展过程中,由二维到三维,由简单到复杂,由工作站到微机,由实用化到商品化,为铸造生产提供越来越重要的指导作用。华中科技大学推出的商品化三维模拟软件华铸CAD。这些铸造模CAD软件在铸造生产中取得了显著的效益。已覆盖了铸钢、球墨铸铁、灰铸铁、铸铝和铸铜等各类铸件,大到一二百吨,小到几千克,无论是解决缩孔和缩松,还是优化浇冒口结构,提高生产效率,改进浮渣等方面,都发挥了明显的作用。

3.2 塑性成形CAD

包括冷冲模、冲裁模、弯曲模、拉伸模以及锻造模设计CAD。随着工业技术的发展,产品对模具的需求愈来愈多。传统的模具设计与制造方法不能适应工业产品及时更新换代和提高质量的要求。因此,国外先进工业国家对模具CAD/CAM技术的开发非常重视。早在20世纪60代的初期,国外一些飞机和汽车制造公司就开始了CAD/CAM的研究工作,投入了大量人力和物力。各大公司都先后建立了自己的CAD/CAM系统,并将其应用于模具的设计与制造。目前,应用CAD/CAM技术较普遍的为美、日、德等国。日本丰田汽车公司于1965年将数控用于模具加工。20世纪80年代初期开始用覆盖件冲模CAD/CAM系统。该系统包括设计覆盖件的NTDFB和CADET软件和加工凸、凹模的TINCA软件。利用坐标测量仪测量粘土模型,并将数据送入计算机。将所得图形经平滑处理后,再把这些数据用于覆盖件设计、冲模的设计与制造。该系统有较强的三维图形功能,可在屏幕

上反复修改曲面形状,使工件在冲压成形时不致产生工艺缺陷,从而保证了模具和工件的质量。模具型面的模型保存在数据库中,TINCA软件可利用这些数据,进行模具型面的数控加工。美国的Diecomp公司开发的计算机辅助级进模设计系统PDDC,可以完成冷冲模设计的全过程,包括从输入产品和技术条件开始设计出最佳样图,确定操作顺序、步距、空位、总工位数,绘制带料排样图,输入模具装配图和零件图等,比传统设计提高功效8倍以上。在优化设计方面,利用有限元技术的应力应变分析在塑性成形CAD中已获得较为普遍应用。

我国模具CAD/CAM的研究与开发始于20世纪70年代末,发展也很迅速。到目前为止,先后通过国家有关部门鉴定的有精冲模、普遍冲裁模、级进模、汽车覆盖模、辊锻模、锤锻模和注塑模等CAD/CAM系统。但直到现在有些系统仍处于试用阶段,尚未在生产中推广应用。为迅速改变我国模具生产的落后面貌,今后应继续加速模具CAD/CAM的研究开发和推广应用工作。

3.3焊接成形CAD 目前,在焊接结构生产的各个环节中计算机得到广泛应用。90年代初,国际焊接学会将这类应用概括为“计算机辅助焊接技术”(CAW)。现在CAW已不限于焊接结构和接头的计算机辅助设计、焊接工装计算机辅助设计、焊接工艺计算机辅助计划、焊接工艺过程计算机辅助管理等以计算机软件为主的许多方面,而且还涵盖了焊接过程模拟、焊接工艺过程控制、传感器以及生产过程自动化等与计算机应用有关的方面。

20世纪80年代提出了计算机集成制造系统的概念。可以认为,CIMS是从订货到加工、直至发货的全部过程的各个步骤都可以从计算机中及时得到必需的信息集成系统。焊接CIMSA系统,自20世纪90年以来在造船、桥梁、建筑、汽车等行业中得到了一些应用。以船舶生产为例,设计人员首先要根据设计标准和用户要求进行初步设计,然后在对结构强度、刚度分析的基础上,还要考虑制造能力,再进行分段的详细设计。这些工作可运用CAD、CAE等软件来实现。焊接生产的计划管理与装配焊接过程设计,则通过计算机的CAPM和CAPP系统来实现。

3.4 注射成型CAD 包括产品图模具型腔图的尺寸转换、标准模架与典型结构的生成、模具零件图和总培育图的生成、模具刚度与强度校核、设计进程管理、模具成本分析与计算等。注射模工艺分析已成熟的商品化软件,可以预测注射成型流动和保压阶段的压力场、温度场、应

力应变场和凝固层的生成,从而有效地指导实际生产。

在西方先进工业国家,注射模CAD/CAE/CAM技术的应用已非常普遍。公司之间模具订货所需的塑料制品资料已广泛使用电子文档,能否具有接受电子文档的模具CAD/CAM系统已成为模具企业生存的必要条件。当前代表国际先进汪洋的注射模CAD/CAE/CAM的工程应用具体表现在如下方面:

(1)基于网络的模具CAD/CAE/CAM集成化系统开始使用。英国Delcam公司在原有软件DUCT5的基础上,为适应最新软件发展及实际需求,向模具行业推出了可用于注射模CAD/CAM的集成化系统。该系统覆盖了几何建模、注射模结构设计、反求工程、快速原型、数控编程及测量分析等领域。系统的每一个功能既可独立运行,又可通过数据接口作集成分析。

(2)微机软件在模具行业中发挥着越来越重要的作用。在90年代初,能用于注射制品几何造型和数控加工的模具CAD/CAM系统主要是在工作站上采用UNIX操作系统开发和应用,如在模具行业中应用较广的美国Pro/E、UGII、CADDS5,法国CATIA、EUCLID和英国的DUCT5等。随着微机技术的飞速进步,在90年代后期,基于Windows操作系统的新一代微机软件,如Solid Works、Solid Edge、MDT等崭露头角。这些软件不仅在采用NURSB曲面三维参数化特征造型等先进技术方面继承了工作站级CAD/CAM软件的优点,并且在Window风格、动态导航、特征树、面向对象等方面具有工作站级软件所不能比拟的优点,深得使用者的好评。

(3)模具CAD/CAE/CAM系统的智能化程度正逐步提高。当前,面向制造、基于知识的智能化功能现已成为衡量模具软件先进性和实用性的重要标志之一。许多软件都在智能化方面做了大量的工作。如以色列Cimatron公司的注射模专家系统,能根据脱模方向优化成分模面,其设计过程实现了加工参数的优化等,这些具有智能化的功能可显著提高注射模的生产率和质量。

(4)三维设计与三维分析的应用和结合是当前注射模技术发展的必然趋势。在注射模结构设计中,传统的方法是采用二维设计,即先将三维的制品几何模型投影为若干二维视图后,再按二视图进行模具结构设计。这种沿袭手工设计的方式已不能适应现代化生产的集成化技术的要求,在国外已有越来越多的公司采用基于实体模型的三维模具结构设计。与此相适应,在注射过程模拟软件方面,也开始由基于中性层面的二维分析方工式向基于实体模型的三维分析方式过渡,使三维设计与三维分析的集成得以实现。

参考文献

篇6:计算机材料应用论文

前言:随着计算机的日益普及,计算机在各行各业已运用得越;计算机科学的概述;计算机科学的简介:计算机科学(英语:comput;计算机科学的发展,现状:计算机领域是一个需要不断;计算机科学技术的不断完善,让计算机进入到越来越多;无机硅酸盐材料的概述;无机硅酸盐材料的简介:无机非金属材料(inorg;磷酸盐、硼酸盐等物质组成计算机在无机非金属材料检测生产中的应用。

计算机科学的概述

计算机科学的简介:计算机科学(英语:computer science,有时缩写为CS)是系统性研究信息与计算的理论基础以及它们在计算机系统中如何实现与应用的实用技术的学科。它通常被形容为对那些创造、描述以及转换信息的算法处理的系统研究。计算机科学包含很多分支领域;有些强调特定结果的计算,比如计算机图形学;而有些是探讨计算问题的性质,比如计算复杂性理论;还有一些领域专注于怎样实现计算,比如编程语言理论是研究描述计算的方法,而程序设计是应用特定的编程语言解决特定的计算问题,人机交互则是专注于怎样使计算机和计算变得有用、好用,以及随时随地为人所用。

计算机科学的发展,现状:计算机领域是一个需要不断创新的领域,计算机的软硬件在实际的操作运用中会遇到很多的问题,而技术的不断完善更新是计算机科学技术发展的一个重要方面。旧的技术已经不能满足社会对于计算机的需求,而新的技术应运而生,当新的技术被运用到计算机中,计算机会有更高的性能、更灵巧的外观以及跟实用的操作。计算机的硬件方面在采用更多的材料,让其更好地为计算机的功能而服务。而计算机的软件系统,是根据人们的意见反馈以及市场预期,在做着关于观念上最终到技术上的持续创新,让计算机的操作更加接近现代的需要。

计算机科学技术的不断完善,让计算机进入到越来越多的领域。计算机所涉及到的科学运算、过程检测与控制、数据处理、计算机辅助系统等功能,让计算机所涉及的领域逐渐增多,涉及到人类社会的军事、教育、医疗、商业、文化、经济、政治等各个方面。计算机科学技术的加入,使得社会的面貌和生产方式发生了巨大的改变,加快了人们的学习、工作效率,让计算机去计算和操作一些数据和过程,减省人力物力的消耗,提高社会运转效率。

无机硅酸盐材料的概述

无机硅酸盐材料的简介:无机非金属材料(inorganic nonmetallic materials)是以某些元素的氧化物、碳化物、氮化物、卤素化合物、硼化物以及硅酸盐、铝酸盐、磷酸盐、硼酸盐等物质组成的材料。是除有机高分子材料和金属材料以外的所有材料的统称。无机非金属材料的提法是20世纪40年代以后,随着现代科学技术的发展从传统的硅酸盐材料演变而来的。无机非金属材料是与有机高分子材料和金属材料并列的三大材料之一。

主要物理化学性能:在晶体结构上,无机非金属的晶体结构远比金属复杂,并且没有自由的电子。具有比金属键和纯共价键更强的离子键和混合键。这种化学键所特有的高键能、高键强赋予这一大类材料以高熔点、高硬度、耐腐蚀、耐磨损、高强度和良好的抗氧化性等基本属性,以及宽广的导电性、隔热性、透光性及良好的铁电性、铁磁性和压电性。

主要应用领域:无机非金属材料品种和名目极其繁多,用途各异,因此,还没有一个统一而完善的分类方法。通常把它们分为普通的(传统的)和先进的(新型的)无机非金属材料两大类。传统的无机非金属材料是工业和基本建设所必需的基础材料。如水泥是一种重要的建筑材料;耐火材料与高温技术,尤其与钢铁工业的发展关系密切;各种规格的平板玻璃、仪器玻璃和普通的光学玻璃以及日用陶瓷、卫生陶瓷、建筑陶瓷、化工陶瓷和电瓷等与人们的生产、生活息息相关。它们产量大,用途广。其他产品,如搪瓷、磨料(碳化硅、氧化铝)、铸石(辉绿岩、玄武岩等)、碳素材料、非金属矿(石棉、云母、大理石等)也都属于传统的无机非金属材料。新型无机非金属材料是20世纪中期以后发展起来的,具有特殊性能和用途的材料。它们是现代新技术、新产业、传统工业技术改造、现代国防和生物医学所不可缺少的物质基础。

计算机技术在无机非金属材料中的应用

检测分析方面的应用:通过对检测机构的日常工作的考察与分析,我们发现检测机构的工作特点为:工作流程清晰,分工明确,责任明确,需协同工作完成一个检测任务,这些都符合网络管理的要求,为建立内部网络系统提供了可行性。同时发现与检测业务有关的日常工作主要由以下几个部分组成:检测任务管理、检测仪器设备管理、日常业务学习培训、与质监站联系。我们可以从这几个方面着手进行相应的软件设计与开发。通过相应的软件,我们可以提升我们检测的准确性和智能化,如混凝土抗压、抗渗、混凝土配合比设计、水泥化学分析等,都可以通过软件实现全自动化或者半自动化,大大的解放了劳动力资源。

例如:1.在功能陶瓷制备过程中,掺杂改性和生产条件控制是制备这类高性能材料的重要手段,由于材料组分和工艺条件对其性能影响很大,且组分间还可能发生复杂的交互作用,因此,如何优化配方和工艺是高性能功能陶瓷材料研究的重点。在传统数学方法无法分析的情况下,将计算机技术用于功能陶瓷研究中,建立数学模型,可以很好地对组分和工艺过程进行优化。

2.混凝土的性能评价与预测一直是学术界与工程界的研究难点,常规的预测模型主要基于某几项指标,形式因个人的理解不同而各异。而一种仿生模型——人工神经网络则能很好地解决这个难题,试验尝试用BP 人工神经网络对多种配后比的混凝土进行抗裂性能评价与预测,结果表明此模型的可靠度很高,效果良好。该方法用于掺矿物掺和料混凝土抗裂性能预测方面是可行的。计算机模拟技术在无机非金属中的应用:

1.分子筛研究方面:近年来,计算机模拟作为一种有效的方法已经广泛用于固体材料,尤其是微孔材料,如分子筛的研究。在结构、热力学、吸附分离和催化等性质的研究中取得了成功。中国科学院山西煤炭化学研究所王建国等总结了计算机模拟:包括分子力学方法(能量最低化、分子动力学和蒙特卡罗方法)、量子化学方法(半经验算法和从头算法)和密度函数方法及其在分子筛若干研究领域诸如吸附、扩散、形状选择反应、分子筛骨架-模板剂相互作用、分子与 分子筛酸性位的结合以及分子筛骨架、表面结构中的应用。北京化工大学张现仁等采用巨正则蒙特卡罗方法研究了甲烷在两个不同孔径的MCM-41中不同温度下的吸附等温线和其在孔中的相行为和排列方式。北京大学朱丽荔等用巨正则蒙特卡罗方法研究了邻二甲苯和间 二甲苯在ITQ-1分子筛中的吸附特征。

2.晶体材料方面:晶体的性能决定其内部结构、成分和缺陷的分布状态。通常人们或是希望获得高度完整 的晶体即成分均匀、结构完整、缺陷甚少的晶体;或者是为了获得某种物理性能,力图生长出具有预定的成分或者缺陷分布状态的晶体,所以晶体生长是晶体研究的必要环节。到目前为止,对晶体生长的数值模拟研究已有30余年的历史。浓度场和温度场对晶体生长有直接影响。

晶体生长过程中,溶质在晶体和熔体中都不是均匀的,晶体和熔体中的溶质浓度随空间位置而变化,在晶体和熔体的全部空间中,每一点都有确定的浓度,而不同点的浓度不完 全相同并且还与时间有关。苏伟等采用有限差分法对使用Cz法生长Nd∶YAG激光晶体过程中熔体内和晶体内Nd3+ 浓度场进行数值模拟研究。晶体拉速、晶体直径和坩埚尺寸都对熔体内和晶体内Nd3+ 浓度场有影响。对勾形磁场中直拉硅单晶浓度场的数值模拟研究,提出在非均匀轴对称勾形磁场中利用磁控提拉法生长硅单晶。

无机非金属材料也和金属材料以及有机高分子材料等一样,是当代完整的材料体系中的一个重要组成部分。

普通无机非金属材料的特点是:耐压强度高、硬度大、耐高温、抗腐蚀。此外,水泥在胶凝性能上,玻璃在光学性能上,陶瓷在耐蚀、介电性能上,耐火材料在防热隔热性能上都有其优异的特性,为金属材料和高分子材料所不及。但与金属材料相比,它抗断强度低、缺少延展性,属于脆性材料。与高分子材料相比,密度较大,制造工艺较复杂。特种无机非金属材料的特点是:①各具特色,例如:高温氧化物等的高温抗氧化特性;氧化铝、氧化铍陶瓷的高频绝缘特性;铁氧体的磁学性质;光导纤维的光传输性质;金刚石、立方氮化硼的{TodayHot}超硬性质;导体材料的导电性质;快硬早强水泥的快凝、快硬性质等。②各种物理效应和微观现象,例如:光敏材料的光-电、热敏材料的热-电、压电材料的力-电、气敏材料的气体-电、湿敏电阻材料的湿度-电等材料对物理和化学参数间的功能转换特性。③不同性质的材料经复合而构成复合材料,例如:金属陶瓷、高温无机涂层,以及用无机纤维、晶须等增强的材料。

沿革 旧石器时代人们用来制作工具的天然石材是最早的无机非金属材料。20世纪以来,随着电子技术、航天、能源、计算机、通信、激光、红外、光电子学、生物医学和环境保护等新技术的兴起,对材料提出了更高的要求,促进了特种无机非金属材料的迅速发展。30~40年代出现了高频绝缘陶瓷、铁电陶瓷和压电陶瓷、铁氧体(又称磁性瓷)和热敏电阻陶瓷(见半导体陶瓷)等。50~60年代开发了碳化硅和氮化硅等高温结构陶瓷、氧化铝透明陶瓷、β-氧化铝快离子导体陶瓷、气敏和湿敏电阻陶瓷等。至今,又出现了变色玻璃、光导纤维、电光效应、电子发射及高温超导等各种新型无机材料。

分类 无机非金属材料的名目繁多,用途各异,因此,还没有一个统一而完善的分类方法。通常把它们分为普通的(传统的)和特种的(新型的)无机非金属材料两大类。前者指以硅酸盐为主要成分的材料并包括一些生产工艺相近的非硅酸盐材料;例如:碳化硅,氧化铝陶瓷,硼酸盐、硫化物玻璃,镁质、铬镁质耐火材料和碳素材料等。

无机非金属材料在现实生活中有着很广泛的应用,简单的举几个例子生活中的日用陶瓷,工业陶瓷,玻璃,建筑用的水泥,现在新型的墙体砖等等,在社会的基础建设中材料是不可少的无机材料所涉及的方面也是很广泛的,目前为止还没有什么新型材料可以替代无机非金属材料的地位,因为传统非金属材料工业的原料来源是最广泛的也是最便宜的是地球上最多的:粘土,岩石等矿物。而新型的非金属材料更是基础建设乃至国防建设的重要方面:比如说航空用陶瓷,隐形飞机使用的吸收电磁波的材料等等都是无机非金属材料的范围。这个专业现阶段处于过渡时期,传统的无机材料在社会建设中广泛应用,但是从事传统的无机材料工作工资比较低,而从事新型材料研究和开发就比较大的发展空间了

我国是一个经济和社会正在迅速发展的世界大国,高新技术产业的快速发展、传统产业的技术进步与结构调整、环保国策的全面落实,以及在未来20年全面建设小康社会发展目标的实施,将给我国非金属矿物材料带来前所未有的挑战和发展机遇。紧紧抓住这一难得的历史机遇,加速非金属矿物材料的研发和生产,不仅可以满足我国经济、科技和社会发展对非金属矿物材料日益增长的需求,促进非金属矿产资源的综合利用,全面提升我国非金属矿加工应用的水平,而且还将成为国民经济发展的新增长点,促进我国高新技术产业、传统产业及环保产业的全面发展和进步。今后我国非金属矿物材料的发展方向主要包括非金属矿物材料的基础理论及应用基础理论研究,非金属矿物材料的深加工装备技术研究,发展优势非金属矿种的深加工产品技术研究,逐步实现产品标准化、系列化、配套化,纳米材料技术研究,智能材料技术研究等几个方面。

国家发展与改革委员会在制定建材工业“十五”规划中,非金属矿物材料行业的发展方针和主要目标就是发展非金属矿深加工装备技术,围绕建筑、石化、汽车、机电、环保等产业的需要,发展超细粉碎、精细提纯、表面改性与改型、超微细和微孔技术,复合与制品技术。发展高性能摩擦材料、绝缘材料、密封材料、工程塑料功能填料、电子工程材料和环保矿物材料,提高产品的科技含量和产业化水平。在技术装备水平、产品质量、规格品种等方面尽快缩小与国际先进水平的差距,加大非金属矿大型低能耗及专用设备的研发,非金属矿成套装备的综合集成和工程化转化。

近年来,在微米技术上出现的非金属矿物的纳米技术是以化学的方法制备的。这是一门新技术。非金属矿物纳米材料是纳米材料的重要组成部分。目前,主要纳米非金属材料有纳米二氧化钛、纳米碳酸钙、纳米碳管、纳米棒、纳米丝、纳米电缆、纳米金刚石、纳米半导体、纳米陶瓷材料以及聚合物-黏土矿物纳米复合材料等。其中聚合物-黏土矿物纳米复合材料已成为日本、美国、德国等发达国家近年来材料科学研究的热点。我国的纳米技术将在未来20年后变成主导技术,现在它有一个孕育期、生长期和高速发展期,纳米技术必定代替现在的微米技术。就目前而言,现在还处于孕育期。当今世界的主导技术还是微米技术,或者说是刚刚进入微米技术与纳米技术交叉阶段,纳米技术的应用所占比重还很小,甚至不到1%.权威专家预测,纳米技术与信息技术和生物技术成为21世纪社会经济发展的3大支柱。它将引起加工技术、信息技术、材料技术、分子生物技术、微电子技术等领域的革命性变化,引发一场新的产业革命。

智能材料是指具有对环境可感知、可响应并具有功能发现能力的新材料,它是由非金属矿物复合制备而成,由日本高木俊宜教授于20世纪90年代首先提出了智能材料概念,它是新材料中的佼佼者。由它制成的合金、复合物、流体、塑料、玻璃、陶瓷等物件,在应用时,既可感知环境条件的变化,又可根据需要作出相应反应。智能材料是功能陶瓷发展的更高阶段,它是人类社会的需求和现代科学技术发展的必然结果。日前,欧洲科学家已研制出能协助清除汽车所排放的包括氧化氮在内的废气的生态涂料,氧化氮气体是会形成烟雾和引发人类呼吸道疾病的污染源。据悉,当生态涂料涂在建筑物表面后,能吸附和消除氧化氮气体,这种作用长达5年,直到其神奇功能耗竭为止。生态涂料的神奇奠基在直径仅20纳米的光触媒二氧化钛和碳酸钙微粒上,它与聚硅氧烷树脂混合而产生作用。由于微粒非常细小,这种涂料是清澈透明的,能添加各种颜料调成想要的颜色。聚硅氧烷具有相当多的细孔,能让氧化氮气体通过后被吸附在二氧化钛微粒上。二氧化钛微粒吸收太阳光中的紫外线,利用其能量产生化学反应将氧化氮气转化成硝酸,再利用碱性的碳酸钙予以中和。如此一来仅会释出“无害”的二氧化碳、水和硝酸钙,这些副产品将被雨水等冲刷流失。

进入21世纪,科学技术发展日新月异,科技进步和创新已成为增强各个国家及地区综合实力的主要途径和方式。党的十六届五中全会已提出自主创新的战略,全国科技大会也提出加强自主创新,建设创新型国家。2006年2月,中共中央和国务院发布、实施《国家中长期科学和技术发展规划纲要(2006~2020年)》,经过15年的努力,使我国进入创新型国家的行列。今后我国非金属矿物材料行业的发展主要目标也就是围绕着发展方向进行创新。因此,我们应该首先认清形势,大力加强科研队伍建设和培养,建立国家实验室或科技开发中心,组建一支在国内甚至国外都有影响的科研机构,利用自身的优势和国家的扶持,在较短的时间里加快发展,加强产学研结合,加快科技成果转化,提高全行业整体水平,实现跨越式发展,走出一条非金属矿物材料自主创新发展的新路子。

总结

计算机技术在无机非金属材料中的应用是非常广泛的,不仅仅是以上提到的几点,还有图像模拟,辅助设计,数据分析等等,并且随着材料科学以及计算机科学的不断发展,这两门学科的联系还将日益密切,相信在不久的将来会有更多的计算机技术成功应用到无机非金属材料的生产过程中,为材料科学的蓬勃发展贡献突出的力量。

参考文献:

①于忠《计算机在建筑工程材料中的应用》四川建筑科学研究,2001(3)②尹君《计算机网络在无机非金属材料中的应用》材料导报,2006 ,20(11)③黄春华,沈东,夏春秋《计算机网络技术在建筑材料检测机构中的应用》《工程质量》, 2001(10)④董荣胜,古天龙,蔡国永,谢春光《计算机科学与技术方法论》人民邮电出版社, 2002, 29(1)⑤陈泉水《无机非金属材料物性测试》化学工业出版社, 2013 三亿文库3y.uu456.com包含各类专业文献、各类资格考试、应用写作文书、外语学习资料、高等教育、生活休闲娱乐、计算机在无机非金属材料检测生产中的应用(小论文)29等内容。

计算机材料应用论文

——计算机在无机非金属材料配方中的应用

专业:

无机非金属

班级:

无机1302

学号:

201226910312

姓名:

冯换晖

指导教师:

上一篇:酒店客房服务礼仪下一篇:学校教学常规管理