材料学科前沿讲座总结

2024-05-05

材料学科前沿讲座总结(精选5篇)

篇1:材料学科前沿讲座总结

材料学科前沿讲座总结

生物医用高分子

一.引言

生物医用功能材料即医用仿生材料,又称为生物医用材料。这类材料是用于与生命系统接触并发生相互作用,能够对细胞、组织和器官进行诊断治疗、替换修复或诱导再生的天然或人工合成的特殊功能材料。随着化学工业的发展和医学科学的进步,生物医用功能材料的应用越来越广泛。从高分子医疗器械到具有人体功能的人工器官,从整形材料到现代医疗仪器设备,几乎涉及到医学的各个领域,都有使用医用高分子材料的例子。医用高分子材料所用的材料种类已由最初的几种,发展到现在的几十种,其制品种类已有上千种。

目前,生物医用功能材料应用很广泛,几乎涉及到医学的各个领域。其大致可分为机体外使用与机体内使用两大类。机体外用的材料主要是制备医疗用品,如输液袋、输液管、注射器等。由于这些高分子材料成本低、使用方便,现已大量使用。机体内用材料又可分为外科用和内科用两类。外科方面有人工器官、医用黏合剂、整形材料等。内科用的主要是高分子药物。所谓高分子药物,就是具有药效的低分子与高分子载体相结合的药物,它具有长效、稳定的特点。二.发展历史

生物医用高分子材料的发展经历了三个阶段,第一阶段始于1937年,其特点是所用高分子材料都是已有的现成材料,如用丙烯酸甲酯制造义齿的牙床。第二阶段始于1953年,其标志是医用级有机硅橡胶的出现,随后又发展了聚羟基乙酸酯缝合线以及四种聚酯心血管材料,从此进入了以分子工程研究为基础的发展时期。该阶段的特点是在分子水平上对合成高分子的组成、配方和工艺进行优化设计,有目的地开发所需要的高分子材料。目前的研究焦点已经从寻找替代生物组织的合成材料转向研究一类具有主动诱导、激发人体组织器官再生修复的新材料,这标志着生物医用高分子材料的发展进入了第三个阶段。其特点是这种材料一般由活体组织和人工材料有机结合而成,在分子设计上以促进周围组织细胞生长为预想功能,其关键在于诱使配合基和组织细胞表面的特殊位点发生作用以提高组织细胞的分裂和生长速度。

三.基本性能要求 1.力学性能稳定

在使用期限内,针对不同的用途,材料的尺寸稳定性、耐磨性、耐疲劳度、强度、模量等应适当。比如,用超高分子量聚乙烯材料做人工关节时,应该用模量高、耐疲劳强度好、耐磨性好的材料。2.化学性能稳定

作为生物材料,化学性能必须稳定,对人体的血液、体液等无影响,不形成血栓等不良影响。人体是一个相当复杂的环境,血液在正常环境下呈现微碱性,胃液呈酸性,且体液与血液中含有大量的钾、钠、镁离子,含有多种生物酶、蛋白质、人体的环境易引起聚合物的降解、交联及氧化反应;生物酶会引起聚合物的解聚;体液会引起高分子材料中的添加剂析出;血液中的脂类、类固醇以及脂肪等会引起聚合物的溶胀,使得材料的强度降低。例如聚氨酯中含有的酰胺基极易水解,在体内会降解而失去强度,经过嵌段改性后,化学稳定性提高。

3.与人体的组织相容性好

医用材料必须与人体的组织相容性好,不会引起炎症或其他排异反应材料,所引起的宿主反应应该能够控制在一定可以接受的范围之内。一些含有对人体有毒有害的基团是不能用作生物医用功能材料的,如有些添加剂对人体有害或有些残留单体对人体有不良影响等,这都应该引起极度的警惕。有些添加剂会随时间的变化,从材料内部逐渐迁移到表面与体液和组织发生作用,引起各种急性和慢性的反应。4.无致癌性,耐生物老化

无致癌性,耐生物老化,长期放置体内的材料及物理机械性能不发生明显的变化。生物医用药用功能材料植入人体时,除应该考虑材料的物理性质和化学性质外,另外还应该考虑其形状因素。引起癌变的因素是多方面的,有化学因素、物理因素以及病毒等。应用高分子材料植入人体后,其本身的性能以及它所包含的杂质、残余单体等都有可能引起和众多副反应的发生。研究表明,高分子材料对人体并不存在更多的致癌因素。5.易于加工成型并且来源广泛

除上述一般要求外,根据用途的不同和植入部位的不同有着各自的特殊要求,如与血液接触的不能产生凝血,眼科材料应对角膜无刺激,注射整形材料要求注射前流动性好,注射后固化要快等。作为体外时用的材料,要求对皮肤无害,不导致皮肤过敏,耐汗水等侵蚀,耐消毒而不变质。人工器官还要求材料应具有良好的加工性能,易于加工成所需的各种复杂形状。总而言之,不同的用途有着许多特殊的要求。

四、医用高分子材料分类 1.高分子人造器官

高分子人造器官主要包括人造心脏、人造肺、人造肾脏等内脏器官;人造血管、人造骨骼等体外器官;人造假肢等。由于这些人造器官需要长时间与人体细胞、体液和血液接触,因此此类材料除了需要具备特殊的功能外,还要求材料安全无毒,稳定性好,具备良好的生物相容性。大多数的高分子本身对生物体并无毒副作用,不产生不良影响,毒副作用往往来自于高分子生产时加入的添加剂,如抗氧剂、增塑剂、催化剂以及聚合不完全产生的低分子聚合物。因此对材料的添加剂需要仔细选择,对高分子人造器官应进行生物体测定。人造器官在使用前的灭菌也是重要的一个环节。另外,人造器官要求在使用条件下材料不能发生水解、降解和氧化反应等。2.高分子治疗材料 用于治疗用的功能高分子材料主要包括牙科材料、眼科材料、美容材料和外用治疗用材料。对这种材料的基本要求首先也是稳定性和相容性好,无毒副作用;其次才是机械性能和使用性能。例如,人工晶状体以前多用硅玻璃水晶体,后采用硅橡胶球,也可以用甲基丙稀酸环和甲基丙烯酸丁酯的共聚物来提高其折光性和韧性。20世纪80年代初,聚乙烯醇水凝胶被用来制造人工玻璃体,PVA水凝胶的特性与玻璃体比较接近,注入后可以与玻璃体完全融合。3.高分子包装材料

用于药物包装的高分子材料正逐年增加。包装药物的高分子材料大体上可分为软、硬两种类型。硬型材料如聚酯、聚苯乙烯、聚碳酸酯等,由于其强度高、透明性好、尺寸稳定、气密性好,常用来代替玻璃容器和金属容器,制造饮片和胶囊等固体制剂的包装。新型聚酯聚萘二甲酸乙二醇酯除具有优异的力学性能及阻隔性能外,还有较强的耐紫外线性,可用于口服液、糖浆等的热封装。软型材料如聚乙烯、聚丙烯、聚偏氯乙烯及乙烯-醋酸乙烯共聚物等,常加工成复合薄膜,主要用来包装固体冲剂、片剂等药物。而半硬质聚氯乙烯片材则被用作片剂、胶囊的铝塑泡罩包装的泡罩材料。至于药膏、洗剂、酊剂等外用药液的包装,则用耐腐蚀性极强且综合性能优良的聚四氟乙烯来担任。

五、小结

医用高分子的发展已经渗透到医学的各个领域,但离随心所欲地应用高分子医用材料的目标尚有许多差距。传统的医用高分子材料多采用聚甲基丙烯酸甲酯、聚碳酸酯作为硬组织材料,但它们的性能还远远不够。医用高分子材料在许多方面尚有待进一步发展。

迄今为止,许多人工脏器还不能解决凝血问题,异体材料的抗凝血性已成为医用高分子材料发展的一个重要的问题,制备生物相容性好、具有抗血栓性能的材料已成为目前的一个重要的课题。研究开发混合型人工脏器,将生物酶和生物细胞固定在高分子材料上,制备具有生物活性的人工脏器已取得很大的成就。医用材料近些年来研究效果显著,但目前仍然处于经验和半经验阶段。由于医用材料与肌体组织在结构、功能、代谢、生物化学行为和生物力学特性方面具有差异,这些材料往往被生物体看作异物,从而不被生物体接受。考虑如何才能使植入材料整合,使得组织重建并建立在分子设计的基础上以材料的结构与性能关系、材料的化学组成表面性质和生命体组织的相容性之间的关系为依据,从而研究开发新材料才是重要课题。

PVC复合材料

一、引言

二十世纪30年代广泛发展起来的以塑料为代表的聚合物,已具有越来越重要的地位。塑料工业在当今世界已成为新型的材料工业,塑料已经和钢材、木材、水泥并列为4大基本材料,而今作为塑料原料的合成树脂产量多年来始终以高速增长。到上实际90年代中期已经突破一亿吨。二十一世纪能源工业、材料工业、信息工业将是世界经济的三大支柱产业。塑料工业将创造各种各样性能的材料,为世界经济的发展注入强大的动力。PVC作为通用树脂之一,具有价廉、阻燃性能优良、绝缘性能好、耐腐蚀等优良的综合性能和价格低廉、原材料来源广泛的优点,已被广泛的应用于建筑、包装及汽车工业等领域,其产量仅次于聚乙烯(PE)而居世界树脂产量的第二位。硬质PVC塑料具有硬度大、刚性和强度大、耐腐蚀、耐老化性优良、电绝缘性好等优点,且价格便宜。近年来硬质品发展迅速,其中硬质挤出制品如管材、板材、异型材等正被用来代替钢材、木材等制造管道、板材、建筑结构材料、装饰材料以及各种嵌条。广泛应用于建筑、化工、医学、电子、轻工、农业及交通等部门。

我国硬质PVC制品比例甚小,无论在树脂品级、改性剂的研究、生产、加工设各改良及制品市场开拓诸方面有待发展。作为结构材料,硬质PVC制品面临的主要技术难点是:材料脆性大、耐热变形性差及热稳定性差、加工性能不佳等,这在一定程度上使它的应用受到限制。为了改进这些性能,国内外自上世纪70年代起开始大规模的开展PVC改性的研究,内容涉及增韧、增强、提 高耐热性能、赋予PVC特种功能等方面,迸一步拓宽了PVC的应用领域。国外常用PVC共混物来替代价格昂贵的工程塑料,大大提高了PVC的使用价值。PVC的增韧增强改性引起了世界各国学者广泛的关注,并展开了大量的研究工作。

二、PVC的改性 1.共混改性PVC 塑料共混改性是指在一种树脂中掺入一种或多种其它树脂(包括塑料和橡胶)。从而达到改变原有树脂性能的一种改性方法。共混方法是高分子材料改性最常用的方法,共混物中各聚合物组分之间主要是物理结合,共混物的形态结构取决于聚合物之间的热力学相容性、聚合物的组分特性、实施共混的方法和工艺条件等多方面的因素影响。PVC与其他性能相对优良的材料共混,可以提高PVC的性能。如PVC与ABS共混,能提高PVC的拉伸强度、冲击强度和加工性能。PVC与ACR或CPE共混,能显著提高PVC冲击强度和加工性能.制备共混物的方法主要有:1.机械共混法:将诸聚合物组分在混合设备如高速混合机、双辊混炼机、挤出机中均匀混合。2.溶液共混法:系将各聚合物组分溶解于共同溶剂中再除去溶剂即得到聚合物共混物。3.乳液共聚法:将不同聚合物的乳液均匀混合再共沉析而得的共混物。溶液共混法适用于易溶聚合物和某些液态聚合物共混物以溶液状态被应用的情况。4.共聚一共聚法:这是制备共混物的化学方法。该法又有接枝共聚一共混与嵌段共聚一共混之分,在制取聚合物共混物方面,接枝共聚一共混法更为重要。5各种互穿网络聚合物(IPN)技术,IPN法形成了互穿网络聚合物,是一种以化学法制备物理共混物的方法。

2.3纳米复合技术改性PVC 研究表明,任何材料进入纳米尺寸(1~100nm)时都会具有奇异或反常的特性,表面界面效应、小尺寸效应、量子尺寸效应和宏观量子隧道效应等。这些特性使纳米微粒结构表现出奇异的物理、化学特性,具有卓越的光、力、电、热、放射、吸收等特殊功能。聚合物纳米复合材料是以聚合物为基体、填充颗 粒以纳米尺度(小于100nm)分散于基体中的新型高分子复合材料。与传统的复合材料相比,由于纳米粒子带来的纳米效应和纳米粒子与基体间强的界面相互作用,聚合物纳米复合材料具有优于相同组分常规聚合物复合材料的力学、热学性能,为制各高性能、多功能的新一代复合材料提供了可能。

近年来,利用将纳米材料分散于聚合物中以提高聚合物材料性能的研究日趋活跃。研究较多的复合技术主要有:纳米粒子增韧增强PVC、纳米插层复合物增韧增强PVC、分子复合纳米材料增韧增强PVC、原位复合材料增韧增强PVC、纳米晶须增韧增强PVC及纳米级聚合物微纤增韧增强PVC等。2.4添加改性助剂在PVC中

塑料添加改性是指在聚合物(树脂)中加入小分子无机物或有机物,通过物理或化学作用,以取得某种预期性能的一种改性方法。塑料的添加改性是开发最早的一种改性方法,它改性效果明显,工艺简单,成本低,因而应用十分广泛.塑料添加改性按添加剂的性质可以分成无机添加改性和有机添加改性两种。无机添加改性是指在塑料中添加无机添加剂的一类改性,常用的无机添加剂主要有:填充剂、增强剂、阻燃剂、着色剂及成核剂等。有机添加改性是指在塑料中添加有机添加剂的一类改性,常用的有机添加剂主要有:增塑剂、有机锡稳定剂、抗氧剂从有机阻燃剂等。

PVC的改性助剂主要包括增塑剂、抗冲剂、热稳定剂、润滑剂等几大类。

三、小结

PVC是一种通用塑料,价格低廉,应用广泛,但其韧性差、稳定性差,通过不同的方式对其进行改性复合,不仅可以使PVC达到增强、增韧的目的,还会赋予PVC一些特殊性能(如高阻隔性、高导电性、高阻燃、抑氧、尺寸稳定性、优良的光学性能等)。随着复合材料技术的发展,PVC改性复合材料的市场前景非常看好,在高性能化和功能化方面具有潜在的市场。

航空航天材料

一、简介

航空航天材料是指飞行器及其动力装置、附件、仪表所用的各类材料,是航空航天工程技术发展的决定性因素之一。也是航空航天材料科学是材料科学中富有开拓性的一个分支。18世纪60年代发生的欧洲工业革命使纺织工业、冶金工业、机器制造工业得到很大的发展,从而结束了人类只能利用自然材料向天空挑战的时代。1903年美国莱特兄弟制造出第一架装有活塞式航空发动机的飞机,当时使用的材料有木材(占47%),钢(占35%)和布(占18%),飞机的飞行速度只有16公里/时。1906年德国冶金学家发明了可以时效强化的硬铝,使制造全金属结构的飞机成为可能。40年代出现的全金属结构飞机的承载能力已大大增加,飞行速度超过了600公里/时。在合金强化理论的基础上发展起来的一系列高温合金使得喷气式发动机的性能得以不断提高。50年代钛合金的研制成功和应用对克服机翼蒙皮的“热障”问题起了重大作用,飞机的性能大幅度提高,最大飞行速度达到了3倍音速。40年代初期出现的德国 V-2火箭只使用了一般的航空材料。50年代以后,材料烧蚀防热理论的出现以及烧蚀材料的研制成功,解决了弹道导弹弹头的再入防热问题。60年代以来,航空航天材料性能的不断提高,一些飞行器部件使用了更先进的复合材料,如碳纤维或硼纤维增强的环氧树脂基复合材料、金属基复合材料等,以减轻结构重量。返回型航天器和航天飞机在再入大气层时会遇到比弹道导弹弹头再入时间长得多的空气动力加热过程,但加热速度较慢,热流较小。采用抗氧化性能更好的碳-碳复合材料、陶瓷隔热瓦等特殊材料可以解决防热问题。

二、基本性能要求 1.高的比强度和比刚度

对飞行器材料的基本要求是:材质轻、强度高、刚度好。减轻飞行器本身的结构重量就意味着增加运载能力,提高机动性能,加大飞行距离或射程,减少燃油或推进剂的消耗。因此比强度和比刚度是衡量航空航天材料力学性能优劣的重要参数。同时飞行器除了受静载荷的作用外还要经受由于起飞和降落、发动机振动、转动件的高速旋转、机动飞行和突风等因素产生的交变载荷,因此材料的疲劳性能也受到人们极大的重视。2.优良的耐高温性质

航空材料要能耐受较高的工作温度。对机身材料,气动力加热效应使表面温度升高,需要结构材料具有好的高温强度;对发动机材料,要求涡轮盘和涡轮叶片材料要有好的高温强度和耐高温腐蚀性能。3.耐老化、耐腐蚀

各种介质和大气环境对材料的作用表现为腐蚀和老化。航空航天材料接触的介质是飞机用燃料(如汽油、煤油)、火箭用推进剂(如浓硝酸、四氧化二氮、肼类)和各种润滑剂、液压油等。其中多数对金属和非金属材料都有强烈的腐蚀作用或溶胀作用。在大气中受太阳的辐照、风雨的侵蚀、地下潮湿环境中长期贮存时产生的霉菌会加速高分子材料的老化过程。所以耐腐蚀性能、抗老化性能、抗霉菌性能也是航空航天材料应该具备的良好特性。4.寿命长以及安全性高

作为载人技术的支撑材料,安全因素是必须考虑在内的。同时要注意的是,在不断减少飞机质量的同时,更加不能忽视因质量减少而导致安全性减小现象的产生。5.成本要低

新型号的先进飞机价格不断攀升,各航空技术领先的国家和地区都先后对航空产品提出了“买得起”的要求。而材料在航空产品的成本和价格构成中占有相当份额,所以科学地选材和努力发展低成本材料技术是航空材料发展的重要方向。同时很多民航飞机,作为普通民众所要使用的交通工具,努力降低成本也是实现“以人为本”的一项要求。

三、材料分类 1.铝合金 铝合金因其技术成熟、成本低、使用经验丰富等优势,在相当长的时期内,仍将是亚音速飞机和低超音速飞机的主要结构用材之一。2.结构钢

一些新型超高强度钢在今后仍然还会是起落架、主要接头、隔框等一些主要承力构件的备选材料。3.钛合金

钛合金在飞机结构用材中所占的重要地位已确定无疑,但是钛合金的较贵的价格和较差的工艺性,是影响使用的很大因素。4.先进复合材料

由于先进复合材料具有比钢、铝、钛高得多的比强度、比模量和耐疲劳等优点,在未来高性能的飞机结构材料中,先进复合材料将会占据越来越重要的地位,甚至完全有可能出现全复合材料结构的飞机。

光纤通信

一、光纤通信的发展史

1966年,英籍华人高馄指出:如果能够减少玻璃中的杂质含量,就可以制造出损耗低于 20dB/km 的光纤。1970 年是使光纤通信发展出现跨越的一年,美国康宁公司研制出了损耗系数为 20dB / km 的光纤。同年,美贝尔公司研制出使用寿命长达几小时的半导体激光器,光纤通信从此进入飞速发展。通过以上的发展时期可以把光纤通信的发展归纳为三个阶段: 1966~1976 年:从基础研究到商业应用的开发时期;1976~1986 年:以提高传输速率和增加传输距离为目的和大力推广的发展阶段;1986~1996 年:以实现超大容量超长距离为目标,全面深入开展新技术的援救阶段。

二、光纤通信的特点 目前光纤通信己经成为通信中的最主要的传输技术,以下优点: 1.传输频带宽,通信容量大

由信氨论知道,载波频率越高,通信容量越大。它与其他通信传输系统相比,具有目前光纤通信使用的光载波频率在 1014Hz ~1015Hz 数量级,比常用的微波频率高 104倍~105倍,因而,通信容量原则上比微披通信高 104倍~105 倍。

2.传输衰减小,传输距离长

普通传输线的传输损耗,主要是由铜线的电阻以及导线间电容的漏电引起的,要想降低损耗,就得增大传输线的尺寸。而光纤传输损耗不同于普通传输线,其损耗几乎与光纤尺寸无关,且在使用的光波段内,光纤对每一频率的损耗几乎是相同的,提高纯度可以降低损耗。目前,通信用的普通石英光纤损耗一般都低于l0dB/k m。使用 1.55 波长时,损耗可以降为 0.2dB/km。3.抗电磁十扰,传输质量好

制造光纤的材料石英是绝缘介质,它不受输电线、电气化铁路的馈电线和高压设备等电器干扰的影响,不会在光纤中产生感应电磁干扰,也可避免雷电等自然因素产生的损害和危险。4.体积小、重量轻、便于施

光纤真正传光的是线芯,多模光纤的线芯直径为 50 m~85 m,单模光纤的线芯直径为 5 m~10 m,国际上规定通信光纤的包层自径为 125 m,当然,外面还要有保护层,再将若干光纤制成光缆。与电缆相比,无论是尺寸还是重量都少得多,由于光缆线径细,重量轻,可以节约地下管道建设投资,而且便于敷设、运输和施工。

5.原材料丰富,节约有色金属

有利于环保制造光纤的原材料是石英,材料丰富,并且可以代替光缆的铜线或铝线,节约有色金属,也有利于环保。光纤本身也有缺点:如光纤质地脆,机械强度低;光纤的切断和接续需要一定的工具设备和技术,光缆的歪曲半径不能过小等等。但总的说来,光纤技术比其他通信方式优越,大力发展光纤通信己成趋势。

三、光纤的结构与分类

目前通信用的光纤大多采用石英玻璃(SiO2)制成的横截面很小的双层同心圆柱体,未经涂覆和套塑时称为裸光纤,如图1所示。从图1中可以看出,光纤由纤芯和包层两部分组成,纤芯的材料是SiO2,掺杂微量的其他材料,掺杂的作用是为了提高材料的光折射率。包层的材料一般用纯 SiO2,也有掺杂的,掺杂的作用是降低材料的光折射率。所以纤芯的折射率略高于包层的折射率,目的在于使进入光纤的光有可能全部限制在纤芯内部传输。由于石英玻璃质地脆、易断裂,为保护光纤不受损害,提高抗拉度,一般需要在裸光纤外面指经过两次涂敷。它的剖面结构如图2 所示。

图一 光纤的结构图图

从图 2 中可以看出:纤芯位于光纤中心,直径(2a)为 5 m~75 m,作用是传输光波。包层位于纤芯外层,直径(2b)为 100 m ~150 m,作用是将光波限制在纤芯中。为了使光波在纤芯中传送,包层材料折射率 n2比纤芯材料折射率 n l 小,即光纤导光的条件是 n l > n2。一次涂敷层是为了保护裸纤而在其表面涂上的聚氨基甲酸乙脂或硅酮树脂层,厚度一般为30 m ~150 m。套层又称二次涂覆或被覆层,多采用聚乙烯塑料或聚丙烯塑料、尼龙等材料。经过二次涂敷的裸光纤称为光纤芯线。

图二 光纤剖向结构图

光缆一般由缆芯、加强元件和护层三部分组成。(a)缆芯:由单根或多根光纤芯线组成,有紧套和松套两种结构。紧套光纤有二层和三层结构。(b)加强元件:用于增强光缆敷设时可承受的负荷,一般是用金属丝或非金属纤维制作。(c)护层:具有阻燃、防潮、耐压、耐腐蚀等特性,主要是对己成缆的光纤芯线进行保护。根据敷设条件可由铝带/聚乙烯综合粘接外护层(LAP),钢带(或钢丝)销装和聚乙烯护层等组成。

实际使用的光缆分类如表 1 所示:

表一 实际使用的光缆分类

吸附材料

一、简介 吸附法是利用吸附剂吸附废水中某种或几种污染物,以便回收或去除它们,从而使废水得到净化的方法。利用吸附法进行物质分离已有漫长的历史,国内外的科研工作者在这方面作了大量的研究工作,目前吸附法已广泛应用于化工、环境保护、医药卫生和生物工程等领域。在化工和环境保护方面,吸附法主要用于净化废气、回收溶剂(特别适用于腐蚀性的氯化烃类化合物、反应性溶剂和低沸点溶剂)和脱除水中的微量污染物。后者的应用范围包括脱色、除臭味、脱除重金属、除去各种溶解性有机物和放射性元素等。在处理流程中,吸附法可作为离子交换、膜分离等方法的预处理,以去除有机物、胶体及余氯等,也可作为二级处理后的深度处理手段,以便保证回用水质量。利用吸附法进行水处理,具有适应范围广、处理效果好、可回收有用物料以及吸附剂可重复使用等优点,随着现有吸附剂性能的不断完善以及新型吸附剂的研制成功,吸附法在水处理中的应用前景将更加广阔。

二、基本性能要求

吸附剂是决定高效能的吸附处理过程的关键因素,广义而言,一切固体都具有吸附能力,但是只有多孔物质或磨得极细的物质由于具有很大的表面积,才能作为吸附剂。工业上常用的吸附剂有:活性氧化铝、硅胶、活性炭、分子筛等,另外还有针对某种组分选择性吸附而研制的吸附材料。气体吸附分离成功与否,极大程度上依赖于吸附剂的性能,因此选择吸附剂是确定吸附操作的首要问题。工业吸附剂还必须满足下列要求:(1)吸附能力强;(2)吸附选择性好;(3)吸附平衡浓度低;(4)容易再生和再利用;(5)机械强度好;(6)化学性质稳定;(7)来源广;(8)价廉。

三、常见吸附材料种类 1.活性氧化铝

活性氧化铝是由铝的水合物加热脱水制成,它的性质取决于最初氢氧化物的结构状态,一般都不是纯粹的Al2O3,而是部分水合无定形的多孔结构物质,其中不仅有无定形的凝胶,还有氢氧化物的晶体。由于它的毛细孔通道表面具有较高的活性,故又称活性氧化铝。它对水有较强的亲和力,是一种对微量水 深度干燥用的吸附剂。在一定操作条件下,它的干燥深度可达露点‐70℃以下。市售的层析用氧化铝有碱性、中性和酸性三种类型,粒度规格大多为100~150目。2.硅胶

硅胶是硅酸的部分脱水后的产物,其成分是SiO2·xH2O,又叫缩水硅酸。是一种坚硬、无定形链状和网状结构的硅酸聚合物颗粒,为一种亲水性的极性吸附剂。它是用硫酸处理硅酸钠的水溶液,生成凝胶,并将其水洗除去硫酸钠后经干燥,便得到玻璃状的硅胶,它主要用于干燥、气体混合物及石油组分的分离等。工业上用的硅胶分成粗孔和细孔两种。粗孔硅胶在相对湿度饱和的条件下,吸附量可达吸附剂重量的80%以上,而在低湿度条件下,吸附量大大低于细孔硅胶。

3、活性炭

吸附剂中活性炭应用于水处理已有几十年的历史。60 年代后有很大发展,国内外的科研工作者已在活性炭的研制以及应用研究方面作了大量的工作。制作活性炭的原料种类多、来源丰富,包括动植物(如木材、锯木屑、木炭、谷壳、椰子壳、稻麦杆、坚果壳、脱脂牛骨、鱼骨等)、煤(泥煤、褐煤、沥青煤、无烟煤等)、石油副产物(石油残渣、石油焦等)、纸浆废物、合成树脂以及其他有机物(如废轮胎)等。是将木炭、果壳、煤等含碳原料经炭化、活化后制成的。活化方法可分为两大类,即药剂活化法和气体活化法。药剂活化法就是在原料里加入氯化锌、硫化钾等化学药品,在非活性气氛中加热进行炭化和活化。气体活化法是把活性炭原料在非活性气氛中加热,通常在700℃以下除去挥发组分以后,通入水蒸气、二氧化碳、烟道气、空气等,并在700~1200℃温度范围内进行反应使其活化。活性炭含有很多毛细孔构造所以具有优异的吸附能力。3.分子筛

又包括沸石分子筛和碳分子筛。分子筛与其他吸附剂相比, 还具有特殊的吸附性能, 即在低分压(或低浓度)及较高温度的吸附情况下, 分子筛与其他吸附剂 有显著的差别。如对于水, 即使在低分压或低浓度、高温度下仍有很高的吸附容量, 是其他吸附剂所不及的。

多孔金属材料的制备及应用

一、介绍

多孔材料可分为金属和非金属两大类,也可细分为多孔陶瓷材料、高分子多孔材料和多孔金属材料3 种不同的类型。多孔金属材料又称为泡沫金属,作为结构材料,它具有密度小、孔隙率高、比表面积大等特点;作为功能材料,它具有多孔、减振、阻尼、吸音、隔音、散热、吸收冲击能、电磁屏蔽等多种性能。而且,多孔金属材料往往兼有结构材料和功能材料的双重作用,是一类性能优异的多用途材料。目前,多孔金属材料已经在冶金、石油、化工、纺织、医药、酿造等国民经济部门以及国防军事等部门得到了广泛的应用。

二、制备方法

多孔金属材料作为多孔材料的重要组成部分,在材料学领域具有不可取代的地位。从20 世纪中叶开始,世界各国竞相投入到多孔金属材料的研究与开发之中,并相继提出了各种不同的制备工艺。根据制备过程中金属所处的状态可以将这些制备方法划分为以下几种:(1)液相法,(2)气相法,(3)金属沉积法。1 液相法 1.1 直接发泡法

早在19 世纪六七十年代,以直接发泡法制备多孔金属就已经获得了成功。相关实验主要集中在Al、Mg、Zn 等低熔点金属及其合金的闭孔金属材料的制备方面。经过研究者多年的实验和研究,直接发泡法制备多孔金属材料的工艺日渐成熟,目前已广泛应用于工业生产领域。直接发泡法包括两类不同的工艺:(1)直接吹气法发泡法;(2)金属氢化物分解发泡法。(1)直接吹气法发泡法 对于制备泡沫金属,直接吹气法是一种简便、快速且低耗能的金属发泡方法。该方法的工艺是首先向金属液中加入SiC、Al2O3等以提高金属液的粘度,然后使用特制的旋转喷头向熔体中吹入气体(如空气、氩气、氮气)。该法制备泡沫金属的工艺流程如图1 所示。

图1 直接吹气法发泡法制备泡沫金属材料的流程图

该方法主要应用于泡沫铝的生产中。用这种工艺来生产泡沫铝,首先应在熔融铝液中加入一种高熔点材料的细小颗粒,这种难熔颗粒在铝液中既可以增加铝液粘度,又可以在气体和金属的界面上形成一层表面活性剂,从而保证气体能稳定地滞留在铝液中,并在凝固过程中不会导致泡沫塌陷。尽管有多种符合应用条件的难熔材料,但在实际生产中常选用碳化硅作为增加铝液粘度的增粘剂。在这一过程中,碳化硅可与铝液反应形成碳硅铝的合成物,并使铝液保持在相对较低的搅拌温度。

(2)金属氢化物分解发泡法

这种方法是在熔融的金属液中加入发泡剂(金属氢化物粉末),氢化物被加热后分解出H2 ,并且发生体积膨胀,使得液体金属发泡,冷却后得到泡沫金属材料。在制备过程中,为了防止不均匀现象的发生,也可以加入固体Ca来增加粘度,以避免气泡逸出。1.2 铸造法(1)熔模铸造法 熔模铸造法是先将已经发泡的塑料填充入一定几何形状的容器内,在其周围倒入液态耐火材料,在耐火材料硬化后,升温加热使发泡塑料气化,此时模具就具有原发泡塑料的形状,将液态金属浇注到模具内,在冷却后把耐火材料与金属分开,可得到与原发泡塑料的形状一致的金属泡沫。采用这种方法制备多孔金属的成本较高,以多孔锌为例,每立方厘米的成本在10美元以上。(2)渗流铸造法

该原理是先把填料放于铸模之内,在其周围浇铸金属,然后把填料去除掉,得到泡沫金属材料。渗流铸造法可根据渗透压力的不同分为高压渗流法和低压渗流法。高压渗流法是将填料和调节性载体(均可燃)按一定的比例混合均匀,把这种混合物在模子内压实,烘干后得到一定尺寸的预制块,将预制块放入高压渗流模内,加入熔融金属液,在一定的高压下,金属液体快速渗入预制块的孔隙之中,冷却后将可燃性预制块在一定温度下燃烧去除,就得到了三维网络状的金属泡沫金属。低压渗流法则是将可溶性填料放置于预热炉的上部,通过进气口加压,使金属液体沿着型腔内壁上升至预热炉内并与填料颗粒混合,冷却后将颗粒溶解去除即可。填料有许多种,它可以是有机的或无机的颗粒,也可以是低密度的空心球。可溶性盐、泡沫玻璃球、氧化铝空心球可以作为无机填料颗粒。如果熔融的金属液凝固的速度足够快,高分子聚合物也可以作为有机填料颗粒。为了避免金属液提前凝固而不能充分的渗入,填料颗粒必须经过预热。1.3 溅射法

溅射法可以制备多孔金属(合金)材料。该方法的原理是在反应器内维持可控的惰性气体压力,在等离子的作用下,通过电场的作用将金属沉积在基体上,与此同时,惰性气体的原子也一并沉积,升高温度,金属熔化时惰性气体发生膨胀形成一个个的空穴,冷却后即为泡沫金属。2 固相法

2.1 粉末冶金(PM)法 该方法的原理是将金属粉末与造孔剂按一定的配比混合均匀后,在一定的压力下压制成具有一定致密度的预制品。将预制品在真空烧结炉中进行烧结,制得复合材料烧结坯,将烧结坯以一定方法去除造孔剂,最后制得了多孔金属材料。2.2 粉末发泡法

该方法的基本工艺是将金属或非金属粉末与发泡剂按一定的比例混合均匀,然后在一定的压力下压制成具有一定致密度的预制品。将预制品经过进一步加工,如轧制、模锻等,使之成为半成品,然后将半成品放入一定的钢模中加热,使得发泡剂分解放出气体发泡,最后得到多孔泡沫金属材料。2.3 金属空心球法

该方法是将一个个的金属空心球通过烧结粘结到一起而形成多孔结构。目前所用的金属空心球原料是以铜、镍、钢或者钛为基体的。金属空心球可以通过化学合成和电沉积的方法在高分子球的表面镀上一层金属,然后把高分子球去除而得到;通常金属空心球的直径在0.8~8mm ,壁的厚度在10~100μm。金属空心球可以用来制备通孔或闭孔、排列规则或不规则的多孔金属材料。2.4 金属粉末纤维烧结法

烧结金属粉末多孔材料是采用金属或合金粉末为原料,通过压制成型和高温烧结而制得具有刚性结构的多孔材料。其孔隙结构由规则和不规则的粉末颗粒堆垛而成,孔隙的大小和分布以及孔隙率大小取决于粉末粒度组成和加工工艺。3 金属沉积法

金属沉积法就是采用化学的或物理的方法把欲得泡沫金属的金属物沉积在易分解的有机物上,可分为电沉积和气相沉积两种。3.1 电沉积法

电沉积是用电化学的方法实现制备,它主要由4个步骤组成:(1)以泡沫有机物为基体,由于它不导电,故须在酸性条件下用强氧化剂对有机物进行腐蚀,使其表面变得易于被水润湿并产生微痕,常用的氧化剂为H2Cr2O7、H2SO4、H3PO4的混合物,这一步骤常称为粗化;(2)粗化后用PdCl2 溶液中的Pd2+对表面进行催化,称为活化;(3)放入镀液进行化学镀,得到均匀地附着于与有机物表面导电的金属层,镀液中含有金属离子和还原剂,常见的镀层有Cu、Ni、Fe、Co、Ag、Au和Pd;(4)最后将经过化学镀处理的有机物进行电镀得到所需要种类的金属和厚度。必要时可把有机物在高温下进行处理使其分解。Pd 较为昂贵,活化时加入PdCl2 会导致泡沫金属的生产成本较高,此外Pd2 + 离子吸附在高分子材料表面又具有催化作用,会加速化学镀液的分解使稳定性变差,故可采用Pd 的代用品或进行无Pd 活化工艺的研究,有的已取得了较为理想的效果。3.2 气相沉积法

泡沫金属也可以由气态的金属或金属复合体来制得。固态的基体是必须的,因为它可以说明泡沫金属产生的几何学。以泡沫镍的制备为例,通过Ni+4CO→Ni(CO)4 的反应。当加热到120℃以上时,Ni(CO)4 分解为金属Ni和CO,在分解过程中,Ni沉积在泡沫体表面上即为所要制备的产物。4 多孔金属材料的应用

由于多孔金属材料具有轻质、比表面积大等特点,又集结构材料和功能材料的特点于一身,所以多孔金属材料的应用范围很广。4.1 多孔金属材料作为结构材料的应用

多孔金属材料作为结构材料的应用领域主要集中在汽车行业、船舶行业、铁路行业三大行业。而在这三大行业中,多孔金属材料主要扮演着能量吸收材料和减振材料的角色。此外,多孔金属材料在生物医学领域也有应用。(1)能量吸收材料

多孔金属材料可用作能量吸收材料。例如,泡沫铝材作为能量吸收材料已广泛应用于汽车行业,它在汽车制造中的应用多为三明治式的三夹板,即芯层为泡沫铝或泡沫铝合金,上下层为铝板或其他金属薄板。(2)减振材料 多孔金属材料具有优良的抗冲击性能,因此它可作为减振材料。超轻质泡沫镁是密度最低的轻质金属材料,并且具有很高的减振能力。此外,在发生碰撞时,泡沫镁合金能有效地吸收冲击能。(3)生物材料

因为多孔材料具有开放多孔状结构,允许新骨细胞组织在内生长及体液的传统。尤其是多孔材料的强度及杨氏模量可以通过对孔隙率的调整同自然骨相匹配。多孔钛对人体无害且具有优良的力学性能和生物相容性,已被用作植入骨用生物材料。多孔镁因具有生物降解及生物吸收特性也被列入植入骨用生物材料的行列。

三、多孔金属材料作为功能材料的应用

用传统的粉末冶金法制备的多孔金属材料作为功能材料的应用很广泛,就目前来看,其应用主要有以下几个方面。1.电池电极材料

利用高孔隙率的多孔金属材料作电极是电池电极行业的一大发展。例如,泡沫镍可以作为电化学反应堆中的电极材料还可以作可充电的NiCd 电池。2.过滤与分离

多孔金属材料具有优良的渗透性,因此过滤与分离又是其应用的一大热点。多孔金属材料的孔道对液体有阻碍作用,从而能从液体中过滤分离出固体或悬浮物。目前使用最广的金属过滤器材料是多孔青铜和多孔不锈钢。3.催化载体材料

泡沫金属在韧性和热导率方面的优势,是催化载体材料的又一选择。如将催化剂浆料涂于薄的泡沫金属片表面,然后通过成型(如轧制)和高温处理, 可以用于电厂废气氮氧化物(NOX)等的处理。4.消音材料 多孔金属材料具有如此好的能量吸收的性能,因此它也是一种很好的消音材料。泡沫铝由铝质骨架和气孔组成,它质轻并具有一定的强度,具有吸声、耐火、防火、减震、防潮、无毒等优良的特性。因此,泡沫铝是一种综合性能良好的多孔性吸声材料。5.装饰材料

泡沫金属材料作为一种新材料,不仅被工业界的人士所重视,而且也受到了设计师和艺术家们的重视。与普通材料相比,在装饰领域,泡沫金属材料可以给人们一种独特的视觉效果。以金、银为基体的泡沫材料被认为是一种有很大潜力的珠宝材料,它可以给人们带来意想不到的利润。泡沫铝已被用来制作奇特的家具、钟表、灯具等。6.其他用途

多孔金属材料的孔道对电磁波有很好的吸收能力,因此可以用作电磁屏蔽材料。在石油化工、冶金等工业中,青铜、镍、蒙乃尔合金、不锈钢等粉末烧结多孔材料应用于流体分布板。多孔金属材料还用于流体控制。最近大量应用的是在自动化系统中作为信号的控制延时器。用多孔金属材料作为灯芯材料,用多孔青铜作铸模中的排气塞,可提高铸锭质量。用多孔钛作为海水钓鱼鱼饵。在日本,多孔铁已被用作一种去臭材料。泡沫材料已经成为建筑物、高速列车电机室、无线电录音室等建筑内经常使用的吸音材料、装饰材料。由于具有质量轻和能量吸收的特点,多孔金属材料还可以应用在运动器械等领域。具有开孔结构的多孔金属材料还可以起到净化水的作用,因此被用于污水处理行业中。

锂离子电池

一、介绍

锂离子电池:是一种二次电池(充电电池),它主要依靠锂离子在正极和负极之间移动来工作。在充放电过程中,Li+ 在两个电极之间往返嵌入和脱嵌:充电时,Li+从正极脱嵌,经过电解质嵌入负极,负极处于富锂状态;放电时则 相反。电池一般采用含有锂元素的材料作为电极,是现代高性能电池的代表。锂系电池分为锂电池和锂离子电池。手机和笔记本电脑使用的都是锂离子电池,通常人们俗称其为锂电池,而真正的锂电池由于危险性大,很少应用于日常电子产品。

二、发展历史

1970年,埃克森的M.S.Whittingham采用硫化钛作为正极材料,金属锂作为负极材料,制成首个锂电池。锂电池的正极材料是二氧化锰或亚硫酰氯,负极是锂。电池组装完成后电池即有电压,不需充电。锂离子电池(Li-ion Batteries)是锂电池发展而来。

1982年伊利诺伊理工大学(the Illinois Institute of Technology)的R.R.Agarwal和J.R.Selman发现锂离子具有嵌入石墨的特性,此过程是快速的,并且可逆。与此同时,采用金属锂制成的锂电池,其安全隐患备受关注,因此人们尝试利用锂离子嵌入石墨的特性制作充电电池。首个可用的锂离子石墨电极由贝尔实验室试制成功。

1983年M.Thackeray、J.Goodenough等人发现锰尖晶石是优良的正极材料,具有低价、稳定和优良的导电、导锂性能。其分解温度高,且氧化性远低于钴酸锂,即使出现短路、过充电,也能够避免了燃烧、爆炸的危险。

1989年,A.Manthiram和J.Goodenough发现采用聚合阴离子的正极将产生更高的电压。

1992年日本索尼公司发明了以炭材料为负极,以含锂的化合物作正极的锂电池,在充放电过程中,没有金属锂存在,只有锂离子,这就是锂离子电池。随后,锂离子电池革新了消费电子产品的面貌。此类以钴酸锂作为正极材料的电池,至今仍是便携电子器件的主要电源。

1996年Padhi和Goodenough发现具有橄榄石结构的磷酸盐,如磷酸铁锂(LiFePO4),比传统的正极材料更具安全性,尤其耐高温,耐过充电性能远超过传统锂离子电池材料。因此已成为当前主流的大电流放电的动力锂电池的正极材料。纵观电池发展的历史,可以看出当前世界电池工业发展的三个特点,一是绿色环保电池迅猛发展,包括锂离子蓄电池、氢镍电池等;二是一次电池向蓄电池转化,这符合可持续发展战略;三是电池进一步向小、轻、薄方向发展。在商品化的可充电池中,锂离子电池的比能量最高,特别是聚合物锂离子电池,可以实现可充电池的薄形化。正因为锂离子电池的体积比能量和质量比能量高,可充且无污染,具备当前电池工业发展的三大特点,因此在发达国家中有较快的增长。电信、信息市场的发展,特别是移动电话和笔记本电脑的大量使用,给锂离子电池带来了市场机遇。而锂离子电池中的聚合物锂离子电池以其在安全性的独特优势,将逐步取代液体电解质锂离子电池,而成为锂离子电池的主流。聚合物锂离子电池被誉为 “21世纪的电池”,将开辟蓄电池的新时代,发展前景十分乐观。

2015年3月,日本夏普与京都大学的田中功教授联手成功研发出了使用寿命可达70年之久的锂离子电池。此次试制出的长寿锂离子电池,体积为8立方厘米,充放电次数可达2.5万次。并且夏普方面表示,此长寿锂离子电池实际充放电1万次之后,其性能依旧稳定。

三、组成部分

锂离子电池虽然形状各不相同,但其组成部分主要为以下几个部分: 1.正极

活性物质一般为锰酸锂或者钴酸锂,镍钴锰酸锂材料,电动自行车则普遍用镍钴锰酸锂(俗称三元)或者三元+少量锰酸锂,纯的锰酸锂和磷酸铁锂则由于体积大、性能不好或成本高而逐渐淡出。导电极流体使用厚度10--20微米的电解铝箔。2.隔膜

一种经特殊成型的高分子薄膜,薄膜有微孔结构,可以让锂离子自由通过,而电子不能通过。3.负极 活性物质为石墨,或近似石墨结构的碳,导电集流体使用厚度7-15微米的电解铜箔。4.有机电解液

溶解有六氟磷酸锂的碳酸酯类溶剂,聚合物的则使用凝胶状电解液。5.电池外壳

分为钢壳(方型很少使用)、铝壳、镀镍铁壳(圆柱电池使用)、铝塑膜(软包装)等,还有电池的盖帽,也是电池的正负极引出端。

参考文献

1.金华.医用高分子材料[J].化工新型材料, 1986, 6: 004.2.Vidur K L.医用高分子材料[J].国际纺织导报, 2005(2): 75-78.3.长有, 列.医用高分子材料[M].化学工业出版社, 2006.4.TAN Y, LIANG Y.Biomedical Polymer Materials[J].Shanxi Chemical Industry, 2005, 4: 007.5.Ramakrishna S, Mayer J, Wintermantel E, et al.Biomedical applications of polymer-composite materials: a review[J].Composites science and technology, 2001, 61(9): 1189-1224.6.温变英.生物医用高分子材料及其应用[J].化工新型材料, 2001, 29(9): 41-44.7.黄静欢.生物医用高分子材料与现代医学[J].中国医疗器械信息, 2004, 10(4): 1-5.8.Tsuruta T.Biomedical applications of polymeric materials[M].CRC, 1993.9.谭英杰, 梁玉蓉.生物医用高分子材料[J].山西化工, 2006, 25(4): 17-19.10.钟鑫, 薛平, 丁筠.改性木粉/PVC 复合材料的性能研究[J].中国塑料, 2004, 18(3): 62-66.11.曾晓飞, 陈建峰, 王国全.纳米 CaCO3/PVC 复合材料结构形态与冲击性能 [J].高校化学工程学报, 2002, 16(2): 203-206.12.Jaeger R J, Rubin R J.Migration of a phthalate ester plasticizer from polyvinyl chloride blood bags into stored human blood and its localization in human tissues[J].New England Journal of Medicine, 1972, 287(22): 1114-1118.13.赵永生, 王克俭, 朱复华, 等.蒙脱土/硅烷改性木粉/PVC 复合材料 [J][J].复合材料学报, 2007, 24(3): 63-71.14.许国杨, 张凯舟, 何力, 等.无机填料/PVC 复合材料的力学性能与加工性能 [J][J].塑料, 2010, 39(2): 108-110.15.王平华, 王贺宜, 唐龙祥, 等.碳纳米管/PVC 复合材料的制备及表征[J].高分子材料科学与工程, 2008, 24(1): 36-38.16.张兴华, 何显运.碳黑/无机材料填充聚合物复合材料的微波吸收特性[J].材料导报, 2002, 16(7): 76-77.17.郭文静, 王正, 鲍甫成, 等.天然植物纤维/可生物降解塑料生物质复合材料研究现状与发展趋势[J].林业科学, 2008, 44(1): 157-163.18.Hall C K, 田青.航空航天材料[J].导弹与航天运载技术, 1990, 7: 005.19.杜善义.先进复合材料与航空航天[J].复合材料学报, 2007, 24(1): 1-12.20.邱惠中, 吴志红.国外航天材料的新进展[J].宇航材料工艺, 1997, 27(4): 5-13.21.莳, 北京航空航天大学材料科学任教.功能材料[M].北京航空航天大学出版社, 1995.22.Minggao Y A N, Xueren W U, Zhishou Z H U.Recent progress and prospects for aeronautical material technologies[J].Aeronautical Manufacturing Technology, 2003(12;ISSU 244): 19-25.23.何东晓.先进复合材料在航空航天的应用综述[J].高科技纤维与应用, 2006, 31(2): 9-11.24.钱九红.航空航天用新型钛合金的研究发展及应用[J].稀有金属, 2000, 24(3): 218-223.25.先志, 光纤通信.光纤与光缆技术[M].电子工业出版社, 2007.26.毛谦.我国光纤通信技术发展的现状和前景[J].电信科学, 2006, 8(2): 3.27.辛化梅, 李忠.论光纤通信技术的现状及发展[J].山东师范大学学报: 自然科学版, 2004, 18(4): 95-97.28.黄清一.光纤通信技术发展的新动向[J].光纤通信, 1991(2): 94-100.29.李方文, 魏先勋.粉煤灰改性吸附材料的研究[J].四川环境, 2002, 21(2): 37-39.30.朱利中, 陈宝梁.膨润土吸附材料在有机污染控制中的应用*[J].化学进展, 2009, 21(0203): 420-429.31.阮湘元, 白燕.表面包覆聚合氯化铝吸附材料的制备与性能表征[J].环境污染治理技术与设备, 2002, 3(5): 84-88.32.朱格仙, 张建民, 王蓓.一种新型吸附材料的除磷性能研究[J].污染防治技术, 2007, 20(5): 11-12.33.刘培生, 黄林国.多孔金属材料制备方法[J].功能材料, 2002, 33(1): 5-8.34.杨雪娟, 刘颖, 李梦, 等.多孔金属材料的制备及应用[J].材料导报, 2007, 21(F05): 380-383.35.杨雪娟, 刘颖, 李梦, 等.多孔金属材料的制备及应用[J].材料导报, 2007, 21(F05): 380-383.36.汤慧萍, 张正德.金属多孔材料发展现状[J].稀有金属材料与工程, 1997, 26(1): 1-6.37.张勇, 陈锋.发展中的新型多孔泡沫金属[J].材料导报, 1993(4): 11-15.38.左孝青, 杨晓源.多孔泡沫金属研究进展[J].昆明理工大学学报: 理工版, 1997, 22(1): 90-93.39.杨绍斌, 胡浩权.锂离子电池[J].辽宁工程技术大学学报: 自然科学版, 2004, 19(6): 659-663.40.尤金跨, 杨勇, 舒东, 等.锂离子电池纳米电极材料研究 ①[J].电化学, 1998, 4(1).41.胡继文, 许凯.锂离子电池隔膜的研究与开发[J].高分子材料科学与工程, 2003, 19(1): 215-219.42.刘景, 温兆银, 吴梅梅, 等.锂离子电池正极材料的研究进展[J].无机材料学报, 2002, 17(1): 1-9.43.赵健, 杨维芝, 赵佳明.锂离子电池的应用开发[J].电池工业, 2005, 5(1): 31-36.44.Wu G, Sun H, Pan L.Lithium-ion battery: U.S.Patent 8,865,330[P].2014-10-21.45.刘汉三, 杨勇, 张忠如, 等.锂离子电池正极材料锂镍氧化物研究新进展[J].电化学, 2001, 7(2): 145-154.46.Chen J, Xu L, Li W, et al.α‐Fe2O3 nanotubes in gas sensor and lithium‐ion battery applications[J].Advanced Materials, 2005, 17(5): 582-586.47.Scrosati B.Recent advances in lithium ion battery materials[J].Electrochimica Acta, 2000, 45(15): 2461-2466.48.周燕芳, 钟辉.锂离子电池正极材料的研究进展[J].材料开发与应用, 2003, 18(2): 34-38.49.彭薇, 岳敏, 梁奇, 等.锂离子电池[J].物理学报, 2011, 60(3).

篇2:材料学科前沿讲座总结

专 业:飞行器适航技术班 级:学 号:姓 名:陈昌浩日 期:小结

01071401 2014300465 月20日 光阴似箭,日月如梭,转眼之间我已经成为了一名大三的学生。在大一大二充分学习了基础学科知识以后,终于在大三能接触到专业相关的课程。

在前两年的基础知识学习过程中,我对航空专业的发展方面和前景以及研究方向各方面其实并不十分了解,但是学科前沿讲座给了我机会让我了解到更多本学科的一些先进技术,让我对航空系统中电子系统的领域有了更多更全面的认识,同时也给了我很大的启发,让我燃起了斗志,为航空事业的前沿科学研究贡献自己的力量,在短短的四周课时时间里,学校为我们先后安排了四位赫赫有名的教授,有姜洪开教授,宋东教授,张安教授和马存宝教授。由于时间限制和我们有限的知识水平,老师们都从大处着眼,为我们大概介绍了他们的研究方向和内容,同时还简单向我们介绍这些研究将来的实际意义,以及和我们飞行器适航专业的联系。在每次短短的两小节课中我都被他们研究的这些东西深深吸引着。也许理论上逻辑上的很专业的知识,我们没有学到多少,但老师们利用不到两个小时的时间,就基本上将一个新的领域在我们的脑海中勾勒了出来,使我们真正了解到与工程实际应用有直接联系的科学研究。虽然好多东西以我现在的水平还不能弄懂,但却让我看到我们航空专业的前景——只要努力学好知识,总有用武之地的。通过这些课程,我收获颇多。

上课期间,老师们为我们讲述了火控系统、航空电子系统、飞机通信导航与雷达系统、飞机结构健康监测与深度学习这四方面的内容,在让我们大开眼界的同时,也让我们对这些研究产生了浓厚的兴趣。

第一堂课张安老师为我们讲了火控系统,张安老师是航空学院综合技术与控制工程系的教授,张老师对火控系统的了解相当深入,从火控系统的发展历史给我们讲起,武器火控系统是控制武器自动或半自动地实施瞄准与发射的装备的总称。武器火力控制系统的简称。现代火炮、坦克炮、战术火箭和导弹、机载武器(航炮、炸弹和导弹)、舰载武器(舰炮、鱼雷、导弹和深水炸弹)等大多配有火控系统。非制导武器配备火控系统,可提高瞄准与发射的快速性与准确性,增强对恶劣战场环境的适应性,以充分地发挥武器的毁伤能力。制导武器配备火控系统,由于发射前进行了较为准确的瞄准,可改善其制导系统的工作条件,提高导弹对机动目标的反应能力,减少制导系统的失误率。

张老师告诉我们,战斗机的火控系统主要指的是:机载雷达、探测器、显示器和火控计算机等。为完成作战任务,火控系统必须能对机上所携带的各种机载武器或其他外挂物进行管理和控制,以实现对敌空中、地面、水上和水下各种运动的或静止的、可视的或不可视的目标,进行搜索、识别、跟踪、瞄准与实施各种攻击方式的武器发射、制导、战果记录等整个作战行动过程的控制和监控。可以说,火控系统直接关系到战斗的成败!

经过第一次课的熏陶,我对学科前沿研究产生了浓厚的兴趣,抱着期待的心,迎来了宋东老师带来的航空电子系统的讲解。宋东老师是西北工业大学教授、硕导,学科专业是通信与信息系统、载运工具、运用工程,研究方向包含航空电子技术以及飞行器适航性等,可以说是恰好和我在学的专业达成一致。

宋老师为我们讲解了航空电子系统发展历程和发展趋势以及各个阶段的优劣性,航空电子系统走过了漫长的发展道路,至今已经历了四代,每一代系统结构的不断演变,都进一步推动航空电子技术的发展,成为划时代的主要依据。基本上经历了分立、联合、综合到高度综合这四个阶段。

第一代航空电子系统为分立式结构,不存在中心计算机对整个系统的控制并且缺少灵活性,难以实现大量的信息交换;第二代称为联合式航空电子系统,其子系统相对独立,降低了研制经费且便于维护、更改和功能扩充;第三代称为综合式航空电子系统,其系统结构层次化,功能标准模块标准化,数据总线高速化,兼有成本低和维护方便的优点;第四代称为先进的综合航空电子系统,采用了综合核心处理机(ICP)技术,具有更大的综合范围和更高的综合程度,实现了综合传感器系统、综合飞行器管理系统,外挂系统。未来的航空电子系统会进一步朝着综合化、信息化和智能化的方向发展。

第三次课时马存宝老师带来的飞机通信导航与雷达系统的讲解,马存宝老师是我们学校的博士生导师,马老师的讲课方式幽默生动,从自己讲师的一次经历讲起,生动的告诉我们,每一堂课都可能是改变人一生的课程,它可能会影响你今后的从事方向和人生轨迹。和之前一样,老师也为我们讲解了机通信导航与雷达系统的发展历程。航电系统在现代航空和航天工程电子系统中是重要的系统之一,它按功能分为通信、导航、雷达、目标识别、遥测、遥控、遥感、火控、制导、电子对抗等系统。微电子技术和电子计算机技术则是提高各种电子系统性能的基础。

马老师以马航失联为例,为我们讲解了通信系统的构成和作用,它实现了飞机与地面的互联,飞机与飞机的相互通信,机组成员的通话,机舱内的广播试听等娱乐,系统一般包括飞行器上的电子系统和相应的地面电子系统两部分,这两部分通过电磁波传输信号合成为一个系统,实现通讯。发电报的设备实时自动的吧航班运行的数据,包括经纬度、飞行高度以及速度等数据持续不断的发回航空公司。监控终端设备在飞机起飞后实时接收飞机发出的信息,机载应答设备通过对讲机一样的东西,使得飞行员和地面空管人员建立实时联系。此外飞机通信系统不仅能用于飞机上,还能用于卫星定位等关键地方。飞机上载有的黑匣子能储存飞机的各方面信息,便于对飞机的搜救和事故的分析。可以说这一套系统不仅在民用上起到很大的作用,在军事上也起到了至关重要的作用。

最后一堂课由姜洪开老师为我们讲解飞机结构健康监测与深度学习,姜洪开老师是西工大教授和博士生导师,研究方向是飞行器故障预测与健康管理,过硬的专业知识使得这节课内容十分充实。

姜老师直击重点为我们介绍起了飞机结构健康监测与深度学习的知识,结构健康监测技术最早就起源于航空航天领域,最初的目的主要是进行结构的在和监测。随着结构设计的日益大型化、复杂化和智能化的发展,结构健康监测的内容逐渐丰富起来,不再是单纯的在和监测,而是向结构损伤监测、损伤定位、结构寿命预测等方面发展。结构健康监测是一门综合技术,涉及到结构动力学、信息技术、传感技术、设计优化等多个学科。、深度学习起源于对人脑视觉神经网络的研究。科学家通过实验发现人脑的视觉神经系统对视觉信息的处理是一个不断抽象、不断迭代的过程。深度学习可以将复杂的问题层次化,通过对每一个层次的研究使问题简单化,适合于对复杂函数的表达。如表示函数log(cos(exp(sin3(x)))),普通的浅层学习只能通过原本的表达式表示这个函数,复杂而且容易出现不可更改的错误。而深度学习可以将上述函数分为sin(x),x3,exp(x),cos(x),log(x)五层,每一层只表示出该层的关键信息,大大减少了每一层的计算量,并且如果其中一层出现错误,它之后的层次可以对该层错误进行一定程度的弥补[iii]。深度学习这一特点极其适合于运用到计算复杂的航空航天领域的数据分析之中,它的一定程度的纠错能力也符合航空航天领域的高精确度、低错误率的要求。并且,目前为止,世界各国甚至创业公司已经进行了大量的航天器发射、飞行、返回实验,积累了大量的实验数据。根据航空航天领域、深度学习及迁移学习的相关知识,深度学习与迁移学习在航空航天领域中的可能应用有如下几条:航空器航天器各类部件的故障判断;对航空器航天器实验数据进行分析;对新研发航空器航天器进行预判、模拟。尽管目前深度学习及迁移学习要实际应用在航空航天领域还十分困难,但是随着计算机领域的不断发展以及在各行各业中越来越广泛的运用,深度学习及迁移学习在将来必将为航空航天领域做出自己的贡献。

篇3:材料学科前沿讲座总结

有这样一群老师, 他们熟知学科前沿, 对教育教学饱含热情, 看重学科发展前景, 着力培育学科继承人。

于是, “材料科学与工程导论”这样一门课程应运而生, 将这两个群体零距离无缝衔接起来, 让他们于大学课堂上融洽和谐相处, 在科学之路上一同携手前行。

1 教学内容:前沿科普

“衣食住行乐, 材料把桥搭”, 材料与人类的生存息息相关, 是人类文明、社会进步和科学技术发展的物质基础和技术先导。进入21世纪后人们开始认真思考材料、能源和环境的密切关系, 越来越重视材料的可持续发展。作为现代科学技术和国民经济发展的三大支柱之一的材料学科是研究材料成分、结构、制备和加工工艺、性能和应用的学科。材料科学与工程是一门研究材料的制备或加工工艺、材料的微观结构与材料宏观性能三者之间的相互关系的科学, 它涉及物质的性质及其在各个科学和工程领域的应用, 是研究“为什么”和解决“怎么做”的学问。

大一新生甫一入校, 绝大多数都未能明白“材料是什么, 材料学科是什么, 材料科学与工程专业会学习什么?”为提高材料专业本科生质量, 培养高素质、创造性人才, 帮助本科新生顺利完成从高中生到大学生的跨越和角色转变, 使新生尽快了解、认识、热爱自己所学的专业, 北京科技大学材料科学与工程学院从2005年开始, 开设“材料科学与工程导论”这一名师课堂。一批知名教授开始了“一班一师”的小班授课, 教学内容也从科普讲解的角度延伸到领悟学科前沿魅力。名师课堂上不仅有传统的课堂教学, 包括专业内涵特点、主要学科知识和课程体系、人才培养目标要求和实现途径、专业发展历程和发展方向、专业与行业职业的关系和联系、学校的人才培养特色和学科特色等, 还拓展了许多新的教学内同, 如开展学术讲座、学术交流、经验座谈, 参观科研教学实验室和行业知名企事业单位, 参与科研和教学实验设备的研制、维修、改造及众多专业实践活动, 帮助学生了解学科专业的特性及学术前沿, 为其学习提供指引、支持和帮助。授课教师之一、现任学校本科教学副校长张跃教授形象的指出, 我们要当牧羊人, 不可当放羊人, 虽一字之差, 但效果大不同;要有组织、有计划、有步骤的带领学生走入科学前沿, 迈入材料学科高水平的高地。

2 师资团队:名师云集

“材料科学与工程导论”这门课程的讲授教师无一例外都是材料学科中赫赫有名的翘楚。教学团队名师云集、星光熠熠, 有国家“海洋腐蚀973项目”首席科学家、北京市百名科技领军人物、腐蚀控制系统工程研究室首席教授李晓刚, 长江学者奖励计划特聘教授、国家杰出青年科学基金获得者、先进粉末冶金成形技术研究室首席教授曲选辉, 长江学者奖励计划特聘教授、国家杰出青年科学基金获得者、材料失效与延寿研究室首席教授乔利杰, 全国优秀教师、全国优秀科技工作者、教育部跨世纪优秀人才、材料优化设计与生物医用材料研究室首席教授刘国权, 长江学者奖励计划特聘教授、国家杰出青年科学基金获得者, 国家973计划项目首席科学家、新材料制备与加工研究室首席教授谢建新, 国家杰出青年科学基金获得者、国家重大科学研究计划项目首席科学家、纳米材料与器件研究室首席教授张跃, 国家百千万人才工程第一二层次入选者、教育部跨世纪优秀人才培养计划, 国家有突出贡献专家孙冬柏, 长江学者奖励计划特聘教授、国家杰出青年科学基金获得者、磁电子材料与器件研究室首席教授姜勇, 还有吴春京、康永林、孙加林、尚成嘉、毛卫民、刘雪峰等国内外材料学科领域知名的专家学者教授。

正如就读博士三年级的小付同学所言, 材料学科学习了近十年, 回顾自己和同学的学习生涯, 感触最深的就是名师课堂, 它引导大家迅速走入学科前沿殿堂, 每一位教授都是那样的善诱善导, 每一个学科方向都清晰的展现给大家, 教授们传递给我们的“对科学的渴求、对学科的探究”的学术思想成就了一批材料新生代的成长成才。

授课教师之一、现任材料科学与工程学院院长姜勇教授强调, 开设导论这门课的意义在于通过名师与新生的课堂交流, 借助教学名师和科研领军人物的人格魅力和高尚风范, 帮助新生感受到教师对科学的执着热爱和刻苦钻研精神;通过名师讲授国家需求和国际前沿等内容, 借助最新科研技术成果的吸引力, 开启“本科生课堂”与“世界一流科研工作”之间的“直通车”。

3 课堂体验:创新吸引

启迪学生创新思维是课程建设的重点, 教师们使尽全身解数打造不拘一格的课堂教学, 务求学生们感受到极具吸引力的课堂体验。“我们被老师描绘的材料科学世界所吸引, 从一个不知道材料为何物的高中生, 转变成了兴趣浓厚的大学生, 更加坚定了认真学习材料专业的信念, 这是大学生活中最重要、印象最深刻的一堂课。”众多学生如是说。

体验1:“何为纳米?纳米是什么?纳米能干什么?”张跃教授介绍了从“费曼提出纳米的概念”之后纳米这一学科的发展、纳米材料的分类、制备方法、应用领域等纳米领域的基本知识。不时穿插自己学生时代的经历, 课堂气氛活跃。带领学生参观国家纳米中心、纳米领域研究实验室, 近距离观察电子显微镜等设备, 引导学生清晰了解了纳米材料的研究过程。考试方式是把同学分成若干小组, 对行业中自己最感兴趣的一个小分支进行研究, 通过答辩的形式介绍自己对这一分支的了解。相比于试卷, 这种期末考试显得十分灵活, 更有益于学生提高能力。

体验2:姜勇教授课上介绍了千奇百怪的多功能材料、绚丽夺目的发光材料、耐火耐压的建筑材料等, 各式各样的材料种类吸引着同学们的眼球。带领学生领悟了材料研究中各种仪器设备的使用方法, 如隧道扫描仪是用探针“访问材料表面”, X射线衍射则用来探索材料神奇的内部世界等, 耐心生动的讲解着仪器的结构、原理及用途。组织研究生、留学生与大一新生座谈, 通过面对面和学长们交流, 同学们对未来的学科、专业发展有了更深的了解。座谈会这一有趣而实用的教学方式得到了学生一致好评。

体验3:李晓刚教授从讲授大学的概况入手, 谈到“大学之道, 在明明德, 在亲民, 在止于至善。”, 为刚进入大学尚有迷茫的新生指点了方向。借助具体的事例和数字向同学们展示了学校在金属腐蚀方面取得的成就、重要意义和未来发展前景。曾去英国牛津大学交流的他用风趣幽默的语言和一张张图片展现了牛津大学、剑桥大学等学校的风貌, 开阔了同学们的眼界, 激起了部分同学出国深造的愿望。还请来了曾在美国留学的同学, 现场解答有关出国留学的疑惑。

……

每一位教授的课堂教学都是别具一格、丰富多彩的, 学生们得到的是新奇、深刻、鲜活的课堂体验。这门课程犹如一把钥匙为学生打开了材料科学研究的大门, 引导他们充满激情的在材料研究之路上持续前行。

经过多年发展与探索, “材料科学与工程导论”成功入选2013年“国家级精品视频公开课”试点建设课程, 作为重要部分参与的“发挥材料学科优势, 培养高水平创新型本科人才的探索与实践”获得2014年高等教育国家级教学成果一等奖。据悉, “材料科学与工程导论”在今后的发展中会吸收更多的专业大牌教授讲授该课程, 进一步拓展研究领域的前沿介绍, 启迪学生创新思维, 开阔专业视野, 激发学习动力, 为材料学科培育更多的创新型高素质拔尖人才。

摘要:记一次国家级精品视频公开课“材料科学与工程导论”, 启迪创新思维。

关键词:学科前沿,创新思维

参考文献

[1]王乃毅.高职高专药学专业仪器分析课教学方法探讨[J].山西职工医学院学报.2009.92-93.

篇4:学科前沿系列讲座课程总结

学号: 2014300466

学院:航空学院 学科前沿系列讲座总结

本学期我们进行了四周的学科前沿系列讲座的课程学习。在四周的时间里,我们在四位来自航空学院的教授的精心讲解和介绍下,了解了许多关于航空火控系统发展及趋势、航空电子系统及其综合化发展、飞机通信导航与雷达系统发展历程及趋势、结构健康监测与深度学习理论四个方面的知识,掌握一些先进技术发展的最新动态,受到了很大的教育和启发。

在第一次讲座中,张安教授给我们讲解了航空火力控制系统的发展历程以及新一代机载火控系统的发展方向。从中我们了解到,随着科技的进步,机载武器火控系统已成为现代作战飞机的主体控制系统,将继续向着高度综合化、智能化、模块化、标准化的方向发展,可实现远距指挥引导、超视距多目标、多机协同攻击、近距大机动格斗、对面精确打击和反隐身、反电子对抗的作战能力。而我国的的机载火控雷达技术发展也经历了漫长的过程,到上世纪末,我国已经先后开发完成了多种性能较先进的机载火控雷达系统,形成了国内装备和外贸出口两大系列十余个品种,机载雷达的规格覆盖从装备在歼-7G上的小口径脉冲多普勒雷达到第三代重型战斗机的大型多用途雷达系统;功能由可以为离轴发射的红外格斗弹引导目标到可制导中距离拦射导弹,再到可导引发射后不管的主动雷达制导导弹和先进对地攻击弹药。我军新型作战飞机装备的雷达系统已经由单纯的制空作战发展到了具备地形测绘、合成孔径、地形跟随等功能,具备较强对地、海目标作战能力的现代化多功能火控雷达系统。以脉冲多普勒体制和平板缝阵天线为标志的新一代机载火控雷达系统,目前已经全面装备国产歼-8系列战斗机、"飞豹"战斗轰炸机、新型多用途战斗机和重型远程战斗机等。我国现有机载雷达整体性能基本达到了上世纪九十年代初期的国际先进技术水平,在部分技术性能方面已经接近当今国际先进水平,已经可以满足为我国第三代战斗机配套的需要。在这次讲座之后,我才真正的了解到了火控技术发展的艰辛和它无与伦比的重要性。

第二次讲座由宋东老师为我们讲解了航空电子系统的发展概况。在这次讲座中,我们了解到了综合航空电子技术发展至今,基本上经历了分立、联合、综合到高度综合这四个阶段。航电综合系统结构不断改进,使航空电子综合系统的水平迅速提高,从而促成了战斗机水平的更新换代。在航空电子系统对飞机整体性能影响日益增大的同时,航空电子系统的硬件成本占飞机出厂总成本的比例也在直线上升:从20世纪60年代F-4的10%,70年代F-15C 的21%,80年代中期F-16C的30%,到90年代EF2000和F-22战斗机的40%~50%。因此,未来的航空电子系统除继续保持航空电子的进一步综合化、信息化和智能化的发展势头外,还必须探索有效的解决办法减少航空电子的寿命周期费。

在第三次讲座中,马存宝教授给我们讲解了飞机的通信导航和与雷达系统。飞机的导航系统测量飞机的位置、速度、航迹、姿态等参数,供驾驶员或自动飞行控制系统引导飞行器按预定航线航行。飞机的机载气象雷达系统用于在飞行中实时地探测飞机前方航路上的危险气象区域,以选择安全的回避航路,保障飞行安全工作方式有“气象”、“气象与湍流”、“地图”等几种。机载GPS借助导航卫星给飞机电子设备和机组人员提供飞机位置信息。GPS可以提供经度、纬度、高度、精确时间和地速。GPS 可提供飞机的真航向信息。有了通信导航和雷达系统,飞机便仿佛拥有了千里眼和顺风耳,可以耳听六路眼观八方,使得飞行更加快捷安全。

最后一次讲座,姜洪开老师为我们讲述了结构健康监测与深度学习理论,十分手动。在这次讲座中,我们学习到机在长期飞行过程中,由于疲劳、腐蚀、材料老化以及高空中的环境等不利因素的影响,不可避免地产生损伤积累,甚至发生飞机坠毁等突发的严重事故,造成无法挽回的伤害。因此,对飞机结构进行适时健康监测,从而在事故之前给出预警,减少或避免灾害性事件发生显得十分重要。目前,大量军用及民用飞机在超过其设计寿命很多年的情况下仍在运营,飞机结构健康监测研究对于这类飞机尤为重要,对其进行健康监测以确保其安全运营,在一定程度上是延长了其安全使用寿命。建立安全可靠的健康监测系统将有助于根据飞机的整体性能决定其是否退役,而不是按照设计预定计划退役,从而充分利用了飞机,节约了成本。在飞机结构健康监测研究领域中,常用的方法有基于模态理论的损伤检测和基于波动理论的损伤检测方法。信号分析方法如小波变换、时频分析法、HHT 法以及神经网络法也逐渐在这一领域中被采用。而关于深度学习理论,我们了解到深度学习的概念源于人工神经网络的研究。多层感知器就是一种深度学习结构。深度学习通过组合低层特征形成更加抽象的高层表示属性类别或特征,以发现数据的分布式特征表示。

深度学习的概念由Hinton等人于2006年提出。基于深信度网(DBN)提出非监督贪心逐层训练算法,为解决深层结构相关的优化难题带来希望,随后提出多层自动编码器深层结构。此外Lecun等人提出的卷积神经网络是第一个真正多层结构学习算法,它利用空间相对关系减少参数数目以提高训练性能。

深度学习是机器学习研究中的一个新的领域,其动机在于建立、模拟人脑进行分析学习的神经网络,它模仿人脑的机制来解释数据,例如图像,声音和文本。

同机器学习方法一样,深度机器学习方法也有监督学习与无监督学习之分.不同的学习框架下建立的学习模型很是不同。例如,卷积神经网络(Convolutional neural networks,简称CNNs)就是一种深度的监督学习下的机器学习模型,而深度置信网(Deep Belief Nets,简称DBNs)就是一种无监督学习下的机器学习模型。

篇5:学科前沿讲座

专业班级: 光信13-3_

姓 名: 朱家兴_

学 号: _10134425__

任课教师: 张国营

2016年 11月 11 日

量子计算与量子计算机

【摘要】量子计算的强大运算能力使得量子计算机具有广阔的应用前景。该文简要介绍了量子计算的发展现状和基本原理,列举了典型的量子算法,阐明了量子计算机的优越性,最后预测了量子计算及量子计算机的应用方向。

【关键词】量子计算;量子计算机;量子算法;量子信息处理 1.引言

在人类刚刚跨入21世纪的时刻!科技的重大突破之一就是量子计算机的诞生。德国科学家已在实验室研制成功5个量子位的量子计算机,而美国LosAlamos国家实验室正在进行7个量子位的量子计算机的试验【1】。它预示着人类的信息处理技术将会再一次发生巨大的飞跃,而研究面向量子计算机以量子计算为基础的量子信息处理技术已成为一项十分紧迫的任务。2.子计算的物理背景

任何计算装置都是一个物理系统。量子计算机足根据物理系统的量子力学性质和规律执行计算任务的装置【2】。量子计算足以量子计算目L为背景的计算。是在量了力。4个公设(postulate)下做出的代数抽象。Feylllilitn认为,量子足一种既不具有经典耗子性,亦不具有经典渡动性的物理客体(例如光子)。亦有人将量子解释为一种量,它反映了一些物理量(如轨道能级)的取值的离散性。其离散值之问的差值(未必为定值)定义为量子。按照量子力学原理,某些粒子存在若干离散的能量分布。称为能级。而某个物理客体(如电子)在另一个客体(姻原子棱)的离散能级之间跃迁(transition。粒子在不同能量级分布中的能级转移过程)时将会吸收或发出另一种物理客体(如光子),该物理客体所携带的能量的值恰好是发生跃迁的两个能级的差值。这使得物理“客体”和物理“量”之问产生了一个相互沟通和转化的桥梁;爱因斯坦的质能转换关系也提示了物质和能量在一定条件下是可以相互转化的因此。量子的这两种定义方式是对市统并可以相互转化的。量子的某些独特的性质为量了计算的优越性提供了基础。3.量子计算机的特征

量子计算机,首先是能实现量子计算的机器,是以原子量子态为记忆单元、开关电路和信息储存形式,以量子动力学演化为信息传递与加工基础的量子通讯与量子计算,是指组成计算机硬件的各种元件达到原子级尺寸,其体积不到现在同类元件的1%。量子计算机是一物理系统,它能存储和处理关于量子力学变量的信息【3】。量子计算机遵从的基本原理是量子力学原理:量子力学变量的分立特性、态迭加原理和量子相干性。信息的量子就是量子位,一位信息不是0就是1,量子力学变量的分立特性使它们可以记录信息:即能存储、写入、读出信息,信息的一个量子位是一个二能级(或二态)系统,所以一个量子位可用一自旋为1/2的粒子来表示,即粒子的自旋向上表示1,自旋向下表示0;或者用一光子的两个极化方向来表示0和1;或用一原子的基态代表0第一激发态代表1。就是说在量子计算机中,量子信息是存储在单个的自旋’、光子或原子上的。对光子来说,可以利用Kerr非线性作用来转动一光束使之线性极化,以获取写入、读出;对自旋来说,则是把电子(或核)置于磁场中,通过磁共振技术来获取量子信息的读出、写入;而写入和读出一个原子存储的信息位则是用一激光脉冲照射此原子来完成的。量子计算机使用两个量子寄存器,第一个为输入寄存器,第二个为输出寄存器。函数的演化由幺正演化算符通过量子逻辑门的操作来实现。单量子位算符实现一个量子位的翻转。两量子位算符,其中一个是控制位,它确定在什么情况下目标位才发生改变;另一个是目标位,它确定目标位如何改变;翻转或相位移动。还有多位量子逻辑门,种类很多。要说清楚量子计算,首先看经典计算。经典计算机从物理上可以被描述为对输入信号序列按一定算法进行交换的机器,其算法由计算机的内部逻辑电路来实现【4】。经典计算机具有如下特点:

a其输入态和输出态都是经典信号,用量子力学的语言来描述,也即是:其输入态和输出态都是某一力学量的本征态。如输入二进制序列0110110,用量子记号,即10110110>。所有的输入态均相互正交。对经典计算机不可能输入如下叠加Cl10110110>+C2I1001001>。

b经典计算机内部的每一步变换都将正交态演化为正交态,而一般的量子变换没有这个性质,因此,经典计算机中的变换(或计算)只对应一类特殊集。

相应于经典计算机的以上两个限制,量子计算机分别作了推广。量子计算机的输入用一个具有有限能级的量子系统来描述,如二能级系统(称为量子比特),量子计算机的变换(即量子计算)包括所有可能的幺正变换。因此量子计算机的特点为:

c量子计算机的输入态和输出态为一般的叠加态,其相互之间通常不正交;

d量子计算机中的变换为所有可能的幺正变换。得出输出态之后,量子计算机对输出态进行一定的测量,给出计算结果。由此可见,量子计算对经典计算作了极大的扩充,经典计算是一类特殊的量子计算。量子计算最本质的特征为量子叠加性和相干性。量子计算机对每一个叠加分量实现的变换相当于一种经典计算,所有这些经典计算同时完成,并按一定的概率振幅叠加起来,给出量子计算的输出结果。这种计算称为量子并行计算,量子并行处理大大提高了量子计算机的效率,使得其可以完成经典计算机无法完成的工作,这是量子计算机的优越性之一。

4.量子智能计算

自Shor算法和Grover算法提出后,越来越多的研究员投身于量子计算方法的计算处理方面,同时智能计算向来是算法研究的热门领域,研究表明,二者的结合可以取得很大的突破,即利用量子并行计算可以很好的弥补智能算法中的某些不足【5】。

目前已有的量子智能计算研究主要包括:量子人工神经网络,量子进化算法,量子退火算法和量子免疫算法等。其中,量子神经网络算法和量子进化算法已经成为目前学术研究领域的热点,并且取得了相当不错的成绩,下面将以量子进化算法为例。

量子进化算法是进化算法与量子计算的理论结合的产物,该算法利用量子比特的叠加性和相干性,用量子比特标记染色体,使得一个染色体可以携带大数量的信息。同时通过量子门的旋转角度表示染色体的更新操作,提高计算的全局搜索能力。

目前量子进化算法已经应用于许多领域,例如:工程问题、信息系统、神经网络优化等。同时,伴随着量子算法的理论和应用的进一步发展,量子进化算法等量子智能算法有着更大的发展前景和空间。

5.量子计算的应用

1.量子叠加态的计算魅力。在经典物理学中,物质在确定的时刻仅有确定的一个状态。量子力学则不同,物质会同时处于不同的量子态上。因为处于叠加态,这就意味着,量子计算一次运算就可以处理210=1024个数(从0到1023被同时处理一遍)【6】。以此类推,量子计算的速度与量子比特数是2的指数增长关系。一个64位的量子计算机一次运算就可以同时处理264=***709551616个数。如果单次运算速度达到目前民用电脑CPU的级别(1GHz),那么这个64位量子计算机的数据处理速度将是世界上最快的“天河二号”超级计算机(每秒33.86千万亿次)的545万亿倍。

量子力学叠加态赋予了量子计算机真正意义上的“并行计算”,而不像经典计算机一样只能并列更多的CPU来并行。因此在大数据处理技术需求强烈的今天,量子计算机越来越获得互联网巨头们的重视。

2.肖尔算法――RSA加密技术的终结者。1985年,牛津大学的物理学家戴维・德意志提出了量子图灵机模型的概念。随后贝尔实验室的彼得・肖尔于1995年提出了量子计算的第一个解决具体问题的思路,即肖尔因子分解算法。

我们今天在互联网上输入的各种密码,都会用到RSA算法加密。这种技术用一个很大的数的两个质数因子生成密钥,给密码加密,从而安全地传输密码。由于这个数很大,用目前经典计算机的速度算出它的质数因子几乎是不可能的任务。但利用量子计算的并行性,肖尔算法可以在很短的时间内通过遍历算法来获得质数因子,从而破解掉密钥,使RSA加密技术不堪一击。

量子计算机会终结任何依靠计算复杂度的加密技术,但这不意味着从此我们会失去信息安全的保护。量子计算的孪生兄弟――量子通信,会从根本上解决信息传输的安全隐患。

6.量子计算机的应用前景

目前经典的计算机可以进行复杂计算,解决很多难题。但依然存在一些难解问题,它们的计算需要耗费大量的时间和资源,以致在宇宙时间内无法完成【7】。量子计算研究的一个重要方向就是致力于这类问题的量子算法研究。量子计算机首先可用于因子分解。因子分解对于经典计算机而言是难解问题,以至于它成为共钥加密算法的理论基础。按照Shor的量子算法,量子计算机能够以多项式时间完成大数质因子的分解。量子计算机还可用于数据库的搜索。1996年,Grover发现了未加整理数据库搜索的Grover迭代量子算法。使用这种算法,在量子计算机上可以实现对未加整理数据库Ⅳ的平方根量级加速搜索,而且用这种加速搜索有可能解决经典上所谓的NP问题。量子计算机另一个重要的应用是计算机视觉,计算机视觉是一种通过二维图像理解三维世界的结构和特性的人工智能。计算机视觉的一个重要领域是图像处理和模式识别。由于图像包含的数据量很大,以致不得不对图像数据进行压缩。这种压缩必然会损失一部分原始信息 参考文献

1.王书浩,龙桂鲁.大数据与量子计算

2.张毅,卢凯,高颖慧.量子算法与量子衍生算法 3.Deutsch D,Jozsa R.Rapid solution of problems by quanturm computation[C]//Proc Roy Soc London A,1992,439:553-558

4.吴楠,宋方敏。量子计算与量子计算机

5.苏晓琴,郭光灿。量子通信与量子计算。量子电子学报,2004,21(6):706-718

6.White T.Hadoop: The Defintive Guide,California:O’Reilly Media,Inc.2009:12-14

上一篇:简述职场新人应具备的良好心态下一篇:第14课普罗米修斯盗火