学科讲座心得体会

2022-07-20

时间的流逝过程中,我们不断接触各种事物,这些事物会带给我们一定的启发,对于这些心得体会,我们应当记录下来。如何让自己的心得体会更具有感染力呢?下面是小编为大家整理的《学科讲座心得体会》,供大家参考借鉴,希望可以帮助到有需要的朋友。

第一篇:学科讲座心得体会

学科前沿讲座心得

08营销一班

汤申萍

0806100117 在科学技术和信息技术的带动下,经济全球化的进程逐步加快,企业面临的竞争已演变为价值链与价值链之间的竞争,为了提高供应链管理对我绩效,要做到拥有高效运行机制的同时建立一个科学合理的供应链及其管理系统。因此,供应链优化势在必行。

今天企业面临的最大挑战之一,就是要对从未有过的需求变数做出快速的反应。很多原因导致了产品和技术的生命周期缩短,企业间的竞争压力也导致产品的频繁变化。为了应对这个挑战,企业需要集中力量做到比以前更敏捷,以便在更短的时间内对产量和种类的变化做出反应。一条快速的供应链能够是企业更加快速的发展。

供应链的定义是:供应链是围绕核心企业,将供应商、制造商、分销商、零售商,直至最终客户连成一个整体的功能网链结构,通过对信息流、物流,资金流的控制,从采购原材料开始,制成中间产品以及最终产品,最后由销售网络把产品送到消费者手中。供应链管理的基本概念使供应商、制造商、分销商、零售商和最终 用户形成整体的功能网链;包括所有加盟企业(节点企业);从原材料供应开始,直至最终产品;通过供应商到用户的物料链、信息链和资金链,实现增值链,即使相关企业都有收益(多赢)。

首先,供应链管理把产品在满足客户需求的过程中对成本有影响的各个成员单位都考虑在内了,包括从原材料供应商、制造商到仓库再经过配送中心到渠道商。不过,实际上在供应链分析中,有必要考虑供应商的供应商以及顾客的顾客,因为它们对供应链的业绩也是有影响的。

其次,供应链管理的目的在于追求整个供应链的整体效率和整个系统费用的有效性,总是力图使系统总成本降至最低。因此,供应链管理的重点不在于简单地使某个供应链成员的运输成本达到最小或减少库存,而在于通过采用系统方法来协调供应链成员以使整个供应链总成本最低,使整个供应链系统处于最流畅的运作中。

第三,供应链管理是围绕把供应商、制造商、仓库、配送中心和渠道商有机结合成一体这个问题来展开的,因此它包括企业许多层次上的活动,包括战略层次、战术层次和作业层次等。

尽管在实际的物流管理中,只有通过供应链的有机整合,企业才能显著地降低成本和提高服务水平,但是在实践中供应链的整合是非常困难的,这是因为:首先,供应链中的不同成员存在着不同的、相互冲突的目标。比如,供应商一般希望制造商进行稳定数量的大量采购,而交货期可以灵活变动;与供应商愿望相反,尽管大多数制造商愿意实施长期生产运转,但它们必须顾及顾客的需求及其变化并作出积极响应,这就要求制造商灵活地选择采购策略。因此,供应商的目标与制造商追求灵活性的目标之间就不可避免地存在矛盾。

供应链是一个动态的系统,随时间而不断地变化。事实上,不仅顾客需求和供应商能力随时间而变化,而且供应链成员之间的关系也会随时间而变化。比如,随着顾客购买力的提高,供应商和制造商均面临着更大的压力来生产更多品种更具个性化的高质量产品,进而最终生产定制化的产品。

在听讲座的时候老师讲得很认真,我也带着解决以下五个问题尝试着学习。包括物流管理与供应链管理的关系处理,物流企业和生产制造企业物流的视觉差异、物流管理战略和战术问题的区分与协调、反映物流领域的最新研究与实践成果及理论性与实用性相合共五个问题。

学习的过程可以分为两个阶段,一从被动地听老师授课,起初就觉得讲座理论性太强,而可感性又不高,难以更好的理解书中的理论,没法更好地学习知识点,二对课本上所提到的案例加上老师的讲解后,案例具体的指出存在的相关问题,并提出的对应的解决措施,我对课程理论的学习进入了半知半解的状态,有了一定的认识、了解、感悟,通过听讲座我对书本的理论又有了进一步的认识,可感悟有了进一步的提升。对比自己本学期所学到的知识及能力,感觉自己再具体提出相关解决措施的时候,没办法更好的调研、分析,得出解决的方案,理论与实际的两者结合不够,没办法列出更为具体且行的方式以解决问题,提出方案的可操作性都有待提升。

自己学习方面的转变由只是老师讲解,转变到了自己主动去了解、学习。通过自己上网下载相关案例,学习更多的东西。这就是我这学期有学习进步的地方。

不足之处:由于是第一次听这一类的讲座,自己没办法去了解到哪些途径与方法能够更好的解决我们的问题。 通过本学期的学习,我明显的感觉到了,在看待问题,分析、解决具体问题方面的能力,明显不足,心态上有些急切,很想学习相关方面的具体解决问题的知识,进一步提升自己。

在进一步学习的方面,我希望老师能再强化学生在这方面的意识,旨在合适的时候指出学生的不足和问题,让学生更好的意识到问题,有何途径去更好的解决问题,灌输树立学生们树立这方面的意识或习惯。

学生和老师的沟通不足,导致学生上课没办法更好的与老师所讲解的内容,能有知识。思想或思维上的碰撞,擦出思维碰撞的火花。在讲座之前,老师能先提前跟下节课有关的案例,课后让学生更好的在课前提出相关的问题,讲座上引导学生更好的在课前思考提出相关的问题,讲座上引导学生广泛地参与到思考与讨论中出现了什么问题,为什么会出现问题,怎么去解决问题,为什么要这么去解决问题,如何具体的提出相关可行具体的方案去落实。这样子就能更好地让学生对理论与运用有更深地认识了。

通过这次讲座我不仅学习到了专业知识,也使得我的视野更开阔了,学习能力也提高了。我觉得这是我踏上社会之前收获的一笔财富。

第二篇:学科前沿讲座心得

桂林电子科技大学 学科前沿技术讲座

心得体会

学号:10203110

5姓名:刘瑞

指导教师:王冲

专业名称:计算机应用技术

所属学院:计算机科学与工程学院

成绩:

近年来,数据挖掘引起了信息产业界的极大关注,其主要原因是存在大量数据,可以广泛使用, 并且迫切需要将这些数据转换成有用的信息和知识。获取的信息和知识可以广泛用于各种应用,包括商务管理,生产控制,市场分析,工程设计和科学探索等。

机器学习和数据挖掘这些年一直是计算机应用方面研究的重点和热点,首先要了解什么是数据挖掘,简单地说,数据挖掘是从大量数据中提取或"挖掘"知识。我一直对这方面的知识颇感兴趣,这学期学院开设的学术前沿讲座的课程,很有幸听到了文益民教授对于自己在机器学习和数据挖掘方面研究的讲座,让我对这些知识有了深入浅出的理解,受益匪浅。

12月5号,文益民教授做了题为“大规模数据的分类”的讲座,在讲座的最开始,文教授提到了戈登·德莱顿《学习的革命》一书,皆在指导我们如何积累知识如何思考如何学习如何去做研究,具有抛砖引玉的指导意义。在这之后,又对了解机器学习和数据挖掘首先要了解的知识做了简要的说明,比如对于问题的分类是分为线性问题和非线性问题;比如聚类的含义是将物理或抽象对象的集合分成由类似的对象组成的多个类的过程;比如对于这个世界上计算机的分类可以只分成工人(maker)和思考者(thinker)两类。至此正式进入问题的讨论。

对于这次讲座,文教授从四个方面进行了讲授。第一,实际应用中的大规模数据分类问题。第二,大规模数据给机器学习带来的挑战。第三,大规模数据分类算法的研究。第四,展望发展前景。文教授主要是在第三点中做了很多工作也取得了可喜的成绩。

在机器学习的实际应用中,大规模数据分类问题一般会应用在以下几个方面,在高速高精度的工业图像检测方面,在专利分类方面,在生物信息数据快速增长方面,在支持向量机参数选择方面。

大规模数据给机器学习带来的问题有:

1、算法一般不是收敛太慢就是难以收敛,训练时间过长。

2、海量数据无法一次装入内存。

3、算法可靠性得不到保证。

4、已经训练好的学习器遇到心得训练样本时需要重新训练。

在最重要的部分,文教授提到了几个重要的研究方法,包括算法,这里面包含有:

1、基于并行计算的算法,

2、以并行计算方法求解工作集方法中每个迭代步中二次规划的子问题,

3、Meta-learning,最小最大模块化支持向量机以及快

速模块化支持向量机,

4、Cluster-SVM,Cluster-based-SVM,Cascade-SVM。文教授在第三和第四点中都有自己的工作和贡献,在第三点中,他提出了分类面拼接算法,在第四点中,提出了分层并行支持向量机训练算法。对于分类面拼接算法我进行了比较仔细的了解,并下载阅读了文教授于2009年3月份在湖南大学学报上发表的论文“基于分类面的快速模块化支持向量机研究”,对于分类面拼接算法有了初步的研究,下面说说我对这个算法的理解。

信息采集和信息处理技术的快速发展导致了诸如公共健康数据、信用交易数据、国家经济普查数据、网络文本数据和地理信息数据等大规模数据集的产生。 由于训练时间很长和空间需求很大,现有的大多数机器学习算法很难被直接用于大规模数据的机器学习。

这个算法是针对大多数现有的机器学习算法处理大规模问题时需要的训练时间很长和存储空间很大的难点而提出的,英文名是psfnr SVMs,

在训练阶段,psfm2SVMs采用一簇平行超平面对大规模问题实施软划分,然后针对每个子问题并行训练支持向量机。 在测试阶段,测试样本坐落于哪个子问题所在空间中,就由该子问题训练的支持向量机给出判别结果。 在4个大规模问题上的实验表明:与采取硬划分的快速模块化支持向量机(fm2SVMs)相比,软划分能够使psfm2SVMs得到更加光滑的分类面,因而ps2fm2SVMs的泛化能力较高。 在不增加训练时间的条件下,psfm2SVMs减少了由于训练集分割导致的分类器泛化能力下降。

支持向量机方法的本质是在训练集的一个高维像空间中寻找最大间隔分类超平面,这个分类超平面对应于训练集所在空间的一个光滑曲面。 如果采用训练集分割的方法,将这个光滑曲面分段求出,然后进行连接,就可以得到这个光滑曲面的近似曲面。

该算法使用平行超平面簇对训练集实施软划分,使得拼接后的分类面相比fm2SVMs得到的分类面更光滑,更接近最优分类曲面。 因而,psfm2SVMs 的泛化能力比fm2SVMs的泛化能力要高。 在并行条件下,两者的训练时间和测试时间相同。 在多核计算技术快速发展的今天,本文提出的算法,提供了一种可行的并行机器学习框架,对于研制高速高精度的机器学习算法具有一定的借鉴意义。 未来计划研究随机向量w的方向对psfm2SVMs泛化能力的影响,并将

该算法用于高速高精度工业图像检测。

这就是我的心得体会,在讲座的最后,文教授还对机器学习和数据挖掘的未来进行了展望,诸如现在流行的云计算,还有动态数据流学习,例外的发现,学习更复杂的函数,粒计算等等,都是今后发展的的热点。听完这个讲座,我感到责任重大,即使是一个点,也还有很多方面值得拓展和探索,作为研究生,研究是我们主要的工作,想要取得满意的结果和优异的成绩,我们所要做的就是倍加努力,汲取现有的知识,在新的领域开拓新的研究道路,积极探索,永不止步。

第三篇:学科前沿讲座学习心得

在开头必须注明:班级、学号、专业等个人信息。

总结开头需对照凭证自查写明参加各类前沿讲座的次数,如:参加学术讲座8次,包括:名师讲坛2次,学术沙龙2次......;学期教育讲座8次,包括院士校园行1次、安全教育1次,心理教育1次,职业生涯规划沙龙1次......。

大学里开设的课程总是异彩纷呈,可以无限地满足我们学生求知欲和好奇心,似乎无论我们对哪一方面感兴趣,总可以在琳琅满目的课程条目中找到自己的归宿。然而,本学期我院开设的学科前沿讲座,却在众多的课程中独领风骚,展现出了其独特的魅力,其专业性、尖端性,在学术领域给我们打开了新的窗户,使我们眼前一亮。

学科前沿是指某一学科中最能代表该学科发展趋势制约该学科当前发展的关键性科学问题、难题及相应的学说。在短短一年的时间里,我们有幸参加学习了各种学术讲座和教育讲座。这无疑全是精华中的萃取,而对于我们学生而言,则更是一场知识盛宴,带给我们完全优于课本,来自时代尖端的知识风暴。下面我将就自己这一学年的所学,谈谈自己我简单的想法。

在这十六次精彩纷呈的讲座中,给我留下最深刻的印象就是校医院开设的急救知识安全培训讲座。

主讲老师理论联系实践,深入浅出地向同学们讲解了灾难的分类、急救的基本程序、创伤救护的基本技术以及心肺复苏的实施方法。讲座现场,老师与学生们形成良好互动,由学生扮演受伤者,现场演示了不同伤情下创伤救护的止血包扎方式,并利用模拟人手把手地教同学们如何进行心肺复苏操作,对胸外按压的部位、频率、深度和气道开放消除异物的方法以及人工呼吸的要点进行了详细讲解。同学们听得非常投入,反响热烈并积极参与,几名同学代表在老师的指导下先后进行了现场练习。

此次讲座内容丰富精彩,达到了预期效果。通过学习和演练,同学们对急救知识有了更加全面的了解,同时也掌握了一些基本急救技能,增强了同学们的自我保护意识。极大的提升了自己的急救能力。

既然上学了,免不了面对就业问题,在3月27号,潘显钟老师给我们带来了一场就业指导讲座。潘显钟老师主要从学校理念的各项数据入手,包括研究生毕业初期的待遇情况,近几年毕业生的留京比例,以及继续深造与直接就业的差异等等,深入浅出的为我们剖析当前的就业形势。

一个人如果想实现他的目标,需要付出很多的努力,他在开始之前需要有很多的准备工作。所以我们不能够在面临就业抉择之时才去确定自己的人生目标,应该尽早做出打算,给自己定一个符合自己能力范围内的目标。职业生涯规划的训练有助于全面提高大学生的综合素质,避免学习的盲目性和被动性;规划个人的职业生涯,可以使职业目标和实施策略能了然于心中,并便于从宏观上予以调整和掌控,能让大学生在职业探索和发展中少走弯路,节省时间和精力;同时,职业生涯规划还能对大学生起到内在的激励作用,使大学生产生学习、实践的动力,激发自己不断为实现各阶段目标和终极目标而进取。

大学生首先要认识到生涯规划的重要意义,职业生涯规划将伴随我们的大半生,拥有明确的职业生涯规划才能实现完美人生。因此,职业生涯规划具有特别重要的意义。人的成功或许就在于那一分钟的坚持,一分钟之后你或许就是那个成功者,但是如果那一分钟你没有继续坚持而是选择放弃,那你注定是失败的,潘老师用实例向我们证明,没有人天生愚笨,也没有人注定一事无成,一个人的成功与否在于他对一件事情的热爱程度,决定于你对目标的坚持。每个人的潜力都是无穷的,只要你足够自信,相信自己,并锁定目标坚持不懈,那你就是最后的成功者。

大学是人才的培养基地,讲座则是大学生活中浓墨重彩的一道风景。丰富多彩的讲座对于繁荣校园文化,活跃学术气氛,鼓励理论研究和学术创新等,具有良好的促 进作用。而对于人才培养和教育而言,在“通才教育”理念占据教育哲学主导地位的时代,讲座是其中不可忽视的培养和塑造手段。指导性讲座能给大学生以切实的 人生指导,引导他们养成健康的生活方式;学术性讲座是大学生开阔知识视野,发掘学术兴趣和增强学术功底的第二通道,并能广泛涉猎各个学科领域,这对于优化 学生的知识结构,提升他们的综合素质具有不可替代的作用。在讲座这个自由的空间里,我们有机会和来自各个方面各个行业的人接触,能从他们那里听到许多在校园中接触不到的事情;在学术科研讲座上,我们有机会分享 专家、学者们潜心研究的成果,聆听他们的观点和见解,了解他们学术人生的平凡与伟大;听了某位成功人士的演讲我们可能会热血沸腾,激发出创业的勇气和信心„„以上种种,都是讲座给我们带来的收获。

第四篇: 控制学科前沿讲座学习心得

本学期学院为我们开设了控制学科前沿讲座,通过对本门功课的学习, 我们对自动化专业有了更深的了解,对专业的学习有了更明确的目标和方向。同时也坚定了我们为祖国控制学科发展而奉献的决心。

控制科学与工程是一个覆盖面宽、层次跨度大的一级学科,它由控制理论与 控制工程、模式识别与智能系统、系统工程、制导·导航与控制、检测技术与自动化装置五个二级学科组成。控制科学是以控制论、信息论、系统论为其方法论基础的,因此它首先是一门科学,它研究的是人们实现有目的行为的一般原理和方法,在这个意义上,控制科学对于人们认识自然、改造自然具有普遍的意义,控制科学的精髓是它的概念和方法,特别是作为其核心的模型、控制、反馈、优化等概念和方法。 控制工程是控制论一般原理在工程系统中的具体体现,因此必须从工程系统的角度进行技术的集成,必然涉及到各行各业的技术和工艺背景。所以,控制工程从来就不是控制学科的专利,它应该也必须在与各工程领域的结合和各种相关技术的集成中得到发展。控制科学与工程作为一门通用的技术学科,这一学科包含的内容软硬俱全,软可以软到控制数学,在抽象层面上以数学和逻辑为工具研究控制系统的一般规律,硬可以硬到到完全与硬件打交道,用元器件、集成电路搭建控制器与传感器和执行机构组合成一个实实在在的控制系统。

“自动化”顾名思义是指实现过程或系统的自动运行,但它比用机械取代人的肢体劳动即机械化有着更深更广的含义,其核心就是用控制论、系统论和信息论的思想去实现有目的的行为的过程。 “信息化” 提出在60年代,它是培养、发展以计算机为主的智能化工具为代表的新生产力,并使之造福于社会的历史过程。信息资源是信息化的基础,开发利用信息资源是信息化的核心。 “自动化”与“信息化”并不是同一回事,但是,两者既有联系,也有区别与特点。“自动化”与“信息化”两者的联系是:研究工作的时代相同,研究工作的理论基础相似,研究工作的基本工具相同,研究问题的领域交融。 两者的区别是,首先,研究的对象明显不同。其次,研究“自动化”与“信息化” 两者的科学技术界的出发点不同,角度不同。再次,内涵与特点不同。 “自动化” 信息化”双方既互为依托, 同时也相互促进。 信息时代里 “自动化”与“信息化”双方既互为依托, 同时也相互促进。 信息时代里,自动化就成了在机械化时代自动化的基础上的信息时代的自动化。在计算机用 于自动化之前,自动化的功能目标是以省力为目的,代替人的体力劳动。 随着计算机和信息技术的发展,计算机和信息技术作为自动化技术的重要手段,自动化的视野大大扩展,自动化的功能目标不再仅仅是代替人的体力,而且可以代替人的部分脑力劳动。目前,国际上很多著名的工业自动化企业(厂商)纷至沓来,将他们信息技术用于企业产品设计、制造、管理和销售的全过程,以 提高企业在“全球化”的形势之下的市场应变能力和竞争能力。工业控制自动化技术正在向智能化、网络化和集成化方向发展。因此,从提高企业自动化系统工作层次的角度看,信息化的确是促进了自动化的提高,而且可以说,信息化是更高层次的自动化。

随着科技的发展和时代的进步,智能化深入人心,“物联网”的概念也随即产生。顾名思义,“物联网就是物物相连的互联网”。“物联网”是一个基于互联网、传统电信网等信息承载体,让所有能够被独立寻址的普通物理对象实现互联互通的网络。其核心就是通过各种信息传感设备,实时采集任何需要监控、连接、互动的物体或过程的声、光、热、电、力学、化学、生物、位置等各种需要的信息,与互联网结合形成的一个巨大网络。其目的是实现物与物、物与人,所有的物品与网络的连接,方便识别、管理和控制。因此,物联网的实现对“自动化”与“信息化”提出了更高的要求,也体现了两者结合的重要性。 纵观20世纪人类有许多的大发现和大发明,而21世纪人类也必将有更大更新的大发现和大发明。我学院正在紧跟时代的步伐,考虑如何在科技与经济高速发展的21世纪将学院提高到一个更高的档次,于是物联网工程学院便诞生了!但是,现今物联网技术还没有发展成熟,还有很大的提升空间,我们难得的与西方发达国家站在同一起跑线上,所以,我们要抓住机遇赶超西方发达国家,让祖国的控制学科位于世界一流之列。同时,作为一名大学生,我一定要好好学习专业知识,为祖国控制学科的发展贡献一份微薄力量。

过控

0403

廖卫平

第五篇: 学科前沿讲座

专业班级: 光信13-3_

姓 名: 朱家兴_

学 号: _10134425__

任课教师: 张国营

2016年 11月 11 日

量子计算与量子计算机

【摘要】量子计算的强大运算能力使得量子计算机具有广阔的应用前景。该文简要介绍了量子计算的发展现状和基本原理,列举了典型的量子算法,阐明了量子计算机的优越性,最后预测了量子计算及量子计算机的应用方向。

【关键词】量子计算;量子计算机;量子算法;量子信息处理 1.引言

在人类刚刚跨入21世纪的时刻!科技的重大突破之一就是量子计算机的诞生。德国科学家已在实验室研制成功5个量子位的量子计算机,而美国LosAlamos国家实验室正在进行7个量子位的量子计算机的试验【1】。它预示着人类的信息处理技术将会再一次发生巨大的飞跃,而研究面向量子计算机以量子计算为基础的量子信息处理技术已成为一项十分紧迫的任务。 2.子计算的物理背景

任何计算装置都是一个物理系统。量子计算机足根据物理系统的量子力学性质和规律执行计算任务的装置【2】。量子计算足以量子计算目L为背景的计算。是在量了力。4个公设(postulate)下做出的代数抽象。Feylllilitn认为,量子足一种既不具有经典耗子性,亦不具有经典渡动性的物理客体(例如光子)。亦有人将量子解释为一种量,它反映了一些物理量(如轨道能级)的取值的离散性。其离散值之问的差值(未必为定值)定义为量子。按照量子力学原理,某些粒子存在若干离散的能量分布。称为能级。而某个物理客体(如电子)在另一个客体(姻原子棱)的离散能级之间跃迁(transition。粒子在不同能量级分布中的能级转移过程)时将会吸收或发出另一种物理客体(如光子),该物理客体所携带的能量的值恰好是发生跃迁的两个能级的差值。这使得物理“客体”和物理“量”之问产生了一个相互沟通和转化的桥梁;爱因斯坦的质能转换关系也提示了物质和能量在一定条件下是可以相互转化的因此。量子的这两种定义方式是对市统并可以相互转化的。量子的某些独特的性质为量了计算的优越性提供了基础。 3.量子计算机的特征

量子计算机,首先是能实现量子计算的机器,是以原子量子态为记忆单元、开关电路和信息储存形式,以量子动力学演化为信息传递与加工基础的量子通讯与量子计算,是指组成计算机硬件的各种元件达到原子级尺寸,其体积不到现在同类元件的1%。量子计算机是一物理系统,它能存储和处理关于量子力学变量的信息【3】。量子计算机遵从的基本原理是量子力学原理:量子力学变量的分立特性、态迭加原理和量子相干性。信息的量子就是量子位,一位信息不是0就是1,量子力学变量的分立特性使它们可以记录信息:即能存储、写入、读出信息,信息的一个量子位是一个二能级(或二态)系统,所以一个量子位可用一自旋为1/2的粒子来表示,即粒子的自旋向上表示1,自旋向下表示0;或者用一光子的两个极化方向来表示0和1;或用一原子的基态代表0第一激发态代表1。就是说在量子计算机中,量子信息是存储在单个的自旋’、光子或原子上的。对光子来说,可以利用Kerr非线性作用来转动一光束使之线性极化,以获取写入、读出;对自旋来说,则是把电子(或核)置于磁场中,通过磁共振技术来获取量子信息的读出、写入;而写入和读出一个原子存储的信息位则是用一激光脉冲照射此原子来完成的。量子计算机使用两个量子寄存器,第一个为输入寄存器,第二个为输出寄存器。函数的演化由幺正演化算符通过量子逻辑门的操作来实现。单量子位算符实现一个量子位的翻转。两量子位算符,其中一个是控制位,它确定在什么情况下目标位才发生改变;另一个是目标位,它确定目标位如何改变;翻转或相位移动。还有多位量子逻辑门,种类很多。要说清楚量子计算,首先看经典计算。经典计算机从物理上可以被描述为对输入信号序列按一定算法进行交换的机器,其算法由计算机的内部逻辑电路来实现【4】。经典计算机具有如下特点:

a其输入态和输出态都是经典信号,用量子力学的语言来描述,也即是:其输入态和输出态都是某一力学量的本征态。如输入二进制序列0110110,用量子记号,即10110110>。所有的输入态均相互正交。对经典计算机不可能输入如下叠加Cl10110110>+C2I1001001>。

b经典计算机内部的每一步变换都将正交态演化为正交态,而一般的量子变换没有这个性质,因此,经典计算机中的变换(或计算)只对应一类特殊集。

相应于经典计算机的以上两个限制,量子计算机分别作了推广。量子计算机的输入用一个具有有限能级的量子系统来描述,如二能级系统(称为量子比特),量子计算机的变换(即量子计算)包括所有可能的幺正变换。因此量子计算机的特点为:

c量子计算机的输入态和输出态为一般的叠加态,其相互之间通常不正交;

d量子计算机中的变换为所有可能的幺正变换。得出输出态之后,量子计算机对输出态进行一定的测量,给出计算结果。由此可见,量子计算对经典计算作了极大的扩充,经典计算是一类特殊的量子计算。量子计算最本质的特征为量子叠加性和相干性。量子计算机对每一个叠加分量实现的变换相当于一种经典计算,所有这些经典计算同时完成,并按一定的概率振幅叠加起来,给出量子计算的输出结果。这种计算称为量子并行计算,量子并行处理大大提高了量子计算机的效率,使得其可以完成经典计算机无法完成的工作,这是量子计算机的优越性之一。

4.量子智能计算

自Shor算法和Grover算法提出后,越来越多的研究员投身于量子计算方法的计算处理方面,同时智能计算向来是算法研究的热门领域,研究表明,二者的结合可以取得很大的突破,即利用量子并行计算可以很好的弥补智能算法中的某些不足【5】。

目前已有的量子智能计算研究主要包括:量子人工神经网络,量子进化算法,量子退火算法和量子免疫算法等。其中,量子神经网络算法和量子进化算法已经成为目前学术研究领域的热点,并且取得了相当不错的成绩,下面将以量子进化算法为例。

量子进化算法是进化算法与量子计算的理论结合的产物,该算法利用量子比特的叠加性和相干性,用量子比特标记染色体,使得一个染色体可以携带大数量的信息。同时通过量子门的旋转角度表示染色体的更新操作,提高计算的全局搜索能力。

目前量子进化算法已经应用于许多领域,例如:工程问题、信息系统、神经网络优化等。同时,伴随着量子算法的理论和应用的进一步发展,量子进化算法等量子智能算法有着更大的发展前景和空间。

5.量子计算的应用

1. 量子叠加态的计算魅力。在经典物理学中,物质在确定的时刻仅有确定的一个状态。量子力学则不同,物质会同时处于不同的量子态上。因为处于叠加态,这就意味着,量子计算一次运算就可以处理210=1024个数(从0到1023被同时处理一遍)【6】。以此类推,量子计算的速度与量子比特数是2的指数增长关系。一个64位的量子计算机一次运算就可以同时处理264=18446744073709551616个数。如果单次运算速度达到目前民用电脑CPU的级别(1GHz),那么这个64位量子计算机的数据处理速度将是世界上最快的“天河二号”超级计算机(每秒33.86千万亿次)的545万亿倍。

量子力学叠加态赋予了量子计算机真正意义上的“并行计算”,而不像经典计算机一样只能并列更多的CPU来并行。因此在大数据处理技术需求强烈的今天,量子计算机越来越获得互联网巨头们的重视。

2. 肖尔算法――RSA加密技术的终结者。1985年,牛津大学的物理学家戴维・德意志提出了量子图灵机模型的概念。随后贝尔实验室的彼得・肖尔于1995年提出了量子计算的第一个解决具体问题的思路,即肖尔因子分解算法。

我们今天在互联网上输入的各种密码,都会用到RSA算法加密。这种技术用一个很大的数的两个质数因子生成密钥,给密码加密,从而安全地传输密码。由于这个数很大,用目前经典计算机的速度算出它的质数因子几乎是不可能的任务。但利用量子计算的并行性,肖尔算法可以在很短的时间内通过遍历算法来获得质数因子,从而破解掉密钥,使RSA加密技术不堪一击。

量子计算机会终结任何依靠计算复杂度的加密技术,但这不意味着从此我们会失去信息安全的保护。量子计算的孪生兄弟――量子通信,会从根本上解决信息传输的安全隐患。

6.量子计算机的应用前景

目前经典的计算机可以进行复杂计算,解决很多难题。但依然存在一些难解问题,它们的计算需要耗费大量的时间和资源,以致在宇宙时间内无法完成【7】。量子计算研究的一个重要方向就是致力于这类问题的量子算法研究。量子计算机首先可用于因子分解。因子分解对于经典计算机而言是难解问题,以至于它成为共钥加密算法的理论基础。按照Shor的量子算法,量子计算机能够以多项式时间完成大数质因子的分解。量子计算机还可用于数据库的搜索。1996年,Grover发现了未加整理数据库搜索的Grover迭代量子算法。使用这种算法,在量子计算机上可以实现对未加整理数据库Ⅳ的平方根量级加速搜索,而且用这种加速搜索有可能解决经典上所谓的NP问题。量子计算机另一个重要的应用是计算机视觉,计算机视觉是一种通过二维图像理解三维世界的结构和特性的人工智能。计算机视觉的一个重要领域是图像处理和模式识别。由于图像包含的数据量很大,以致不得不对图像数据进行压缩。这种压缩必然会损失一部分原始信息 参考文献

1.王书浩,龙桂鲁.大数据与量子计算

2.张毅,卢凯,高颖慧.量子算法与量子衍生算法 3.Deutsch D,Jozsa R.Rapid solution of problems by quanturm computation[C]//Proc Roy Soc London A,1992,439:553-558

4.吴楠,宋方敏。量子计算与量子计算机

5.苏晓琴,郭光灿。量子通信与量子计算。量子电子学报,2004,21(6):706-718

6. White T.Hadoop: The Defintive Guide,California:O’Reilly Media,Inc.2009:12-14

7.王蕴,黄德才,俞攸红.量子计算及量子算法研究进展.

上一篇:下料车间管理规定下一篇:孝老爱亲主题班会

本站热搜