轴设计

2024-04-12

轴设计(精选6篇)

篇1:轴设计

湖 北 民 族 学 院

HUBEI MINZU UNIVERSITY 大作业设计说明书

课程名称: 机 械 设 计 设计题目:

设计搅拌机用单级斜齿圆柱

齿轮减速器中的低速轴

系:

理 学 院

专业班级:

机械电子工程0211411班

设 计 者:

号:

设计时间: 2013年12月20日

目录(宋体,三号,加粗,居中)

1、设计任务书 …………………………………………………………1

2、……………………………………………………………

3、轴结构设计 …………………………………………………

3.1轴向固定方式 ……………………………………………………… 3.2选择滚动轴承类型 ……………………………………………………… 3.3键连接设计 ………………………………………………… 3.4阶梯轴各部分直径确定…………………………………………………… 3.5阶梯轴各部段长度及跨距的确定 ………………………………………

4、轴的受力分析 ……………………………………………………………

4.1画轴的受力简图 ……………………………………………………… 4.2计算支反力 ……………………………………………………… 4.3画弯矩图 ……………………………………………………… 4.4画扭矩图 ………………………………………………………

5、校核轴的弯扭合成强度……………………………………………………

6、轴的安全系数校核计算………………………………………………

7、参考文献……………………………………………

注:其余小四,宋体。自己按照所需标题编号,排整齐。

设计任务书

1.已知条件

某搅拌机用单级斜齿圆柱减速器简图如上所示。已知:电动机额定功率P=4kW,转速n1=750r/min,低速轴转速n2=130r/min,大齿轮节圆直径d2=300mm,宽度B2=90mm,轮齿螺旋角β=12°,法向压力角αn=20°。

2.设计任务

设计搅拌机用单级斜齿圆柱减速器中的高速级/低速轴(包括选择两端的轴承及外伸端的联轴器)。

要求:(1)完成轴的全部结构设计;

(2)根据弯扭合成理论验算轴的强度;(3)精确校核轴的危险截面是否安全。

篇2:轴设计

基于 UG平台的偏心轴的加工分析及车削工

艺的夹具设计

姓 名 班 级 专 业 时 间 指导老师

目录

摘 要---------3 Abstract------4 1绪论---------6

1.1偏心轴车削加工的简介----------------6 1.2 UG简介----6 1.3论文的主要工作-------------------------6

2偏心轴的机械加工工艺规程-----------7

2.1 零件工艺分析---------------------------7 2.2毛坯设计---8 2.3定位基准的选择-------------------------9 2.4加工方法的选择-----------------------10 2.5加工顺序的安排-----------------------10 2.6加工工艺过程的确定-----------------10 2.7加工余量及工序尺寸的确定---------11

3夹具设计---12

3.1 偏心轴装配----------------------------12 3.2 基于 CAD的定位夹紧元件设计---17 结 语------19 致 谢--------20 参考文献-----21

摘 要

机械传动中,由回转运动变为往复运动,往往是由偏心轴和曲轴来完成的。机械的开会和缩紧也往由偏心零件来完成的,可见偏心零件在机械制造中运用的非常广泛。

本课题来源于生产实践,充分利用所学的机械制图、机械设计及机械制造等课程,了解针对偏心工件的特点,通过UG软件,利用该软件制图功能,完成偏心工件类零件偏心外圆车组合夹具的设计。通过分析偏心工件类零件传统加工手段和三爪微调车削法, 得出了加工困难、效率低、互换性差及精度不易保证的结论,针对其缺陷提出了高效加工高精度偏心工件类零件的工艺方案——组合夹具车削法。加工精度要求比较高或批量较大的偏心工件类零件的车削加工,均适合采用专用夹具车削法。

在课题的研究设计阶段,首先从众多的零件中选择一个作为设计夹具的零件。针对该零件的结构特点,制定该零件的加工工艺。其次要了解夹具的相关知识,结合零件的结构特点选择需要的夹具元件,设计出夹具的大体结构。机床夹具作为一种重要的工艺装备在机械制造工艺过程中起着十分重要的作用,它的设计不但要保证工件的加工质量,提高加工效率,降低成本,在操作维护中安全方便还要注意到夹具结构的标准化,夹具制造的精密化。为了保证夹具组装精度,需要学习了解工件定位原理。根据这些原理结合零件的结构特点确定零件在夹具中以轴外圆作为定位,计算夹具的定位精度与夹紧力保证零件在夹具上的加工精度。然后使用UG绘图软件参考《夹具设计手册》

绘制夹具元件的机械图,完成夹具的设计。

关键词 : 偏心轴 ; 车削 ; 夹具

Abstract This topic comes from production practice, make full use of what have learned mechanical drawing, mechanical design and mechanical manufacturing, and other programs, to understand the characteristics for the eccentric shaft, through the UG software, the use of the software mapping function, complete with eccentric shaft parts special combination jig turning design.In this paper , the traditional process methods and the three jaw fine tuning turning method were analyzed , afterthat , a conclusion that the process on eccentric shaft parts are difficulties , low efficiency , poor interchang eability and difficult toguarantee the accuracy can be drawn.Finally , according to the shortcomings of the original process methods , a technology program for process high precision eccentric shaft parts special combination jig turning method is put forward In the research projects in the design phase, first select from a number of parts as the design of a fixture parts.For that part of the structural characteristics of the development

of the parts processing technology.Second, we must understand the fixture knowledge, combined with the structural features of components select the required fixture components, the general structure of fixture design.As an important fixture of the technology and equipment in the mechanical manufacturing process plays an important role, it is designed not only to ensure that the workpiece processing quality, improve processing efficiency, reduce costs, in the operation and maintenance of safe and convenient but also noted that Fixture structure of standardization, the precision of fixture manufacturing.In order to ensure the fixture assembly of precision, need to learn to understand principles of positioning the workpiece.Combination of components based on these principles to determine the structural characteristics of components in the fixture to cylindrical shaft as the positioning of the positioning accuracy of calculation of fixture clamping force to ensure the parts with the fixture on the machining accuracy.And then use the UG drawing software reference, “Fixture Design Handbook,” a mechanical fixture elements drawn map, complete fixture design.Keyword: The eccentric shaft;turning;jig

1绪论

1.1偏心轴车削加工的简介

在传动机构中,一般常用偏心工件或曲轴等偏心件来完成回转运动与往复运动相互转换的功能, 因此偏心件在机械传动中应用的十分广泛。偏心件加工工艺水平的高低(特别是大型偏心工件)可以反映出一个企业的机械加工工艺能力。

偏心类工件是轴线与轴线平行但不重合的工件,其中外圆与外圆偏心的工件称为偏心工件,内孔与外圆偏心的工件称为偏心套,轴线之间的距离称为偏心距。车削加工偏心类工件的方法很多, 如三爪自定心卡盘车削法、四爪单动卡盘车削法、双重卡盘车削法、花盘车削法、偏心卡盘车削法、两顶尖车削法和专用夹具车削法。偏心工件工件在机械加工中比较常见,属于轴类零件中比较难加工的,常见的车削加工方法有三爪车削法、四爪车削法、花盘车削法、三爪微调车削法和专用夹具车削法。

1.2 UG简介

UG是Unigraphics的缩写,这是一个交互式CAD/CAM(计算机辅助设计与计算机辅助制造)系统,它功能强大,可以轻松实现各种复杂实体及造型的建构。它在诞生之初主要基于工作站,但随着PC硬件的发展和个人用户的迅速增长,在PC上的应用取得了迅猛的增长,目前已经成为模具行业三维设计的一个主流应用。

1.3论文的主要工作

本课题要求对偏心轴进行合理的工艺规程设计,包括零件每一道

工序的选用设备、切削刀具、切削用量、定位方式等,充分利用所学的机械制图、机械设计及机械制造等课程,了解针对偏心工件的特点,通过UG软件,利用该软件制图功能,完成偏心工件类零件偏心外圆车组合夹具的设计。

2偏心轴的机械加工工艺规程

2.1 零件工艺分析

图1零件图

本次设计是加工阶梯轴,结构相对简单,取来毛坏后,检查是否存在缺陷。先铣左端端面,然后用三爪卡盘夹紧Φ40m6的轴,采用一夹一顶的方法加工小端外圆,应注意偏心外圆垂直误差。加工时应使直径大的余量大些,以方便在加工出现误差过大时作适度调整。

加工大端外圆,同样也应注重偏心外圆垂直度误差。在加工时要留有加工余量,以确保下一步的精加工。加工偏心外圆要用到设计的专用夹具,调整偏心工件线和主轴线间距离,加工Φ26和Φ8的外圆。

在偏心工件进行粗加工后,要对零件进行热处理,使零件达到一

0.016定的要求。精加工小端面,加工侧面到轴端面的距离在13加工轴0.016,0.02表面精度达到Φ8h6。精加工大端面,使侧面到轴端面为380.02,加工精度要求要达到Φ40m6。加工偏心外圆要用到设计的专用夹具,精加

0.02工偏心外圆表面,保证偏心工件线和主轴线间距离为30.02mm,精加工0.0330.05偏心圆Φ8h6和Φ26m6,端面距离分别为63和760.0330.05,最后进行全面的检验产品,有要求的轴表面加工粗糙度为Ra3.2μm,其余的加工表面要求一般精度即可。

2.2毛坯设计

在制定工艺规程时,正确选择毛坯类型的种类具有重要意义。它不仅影响到毛坯的制造工艺、设备、费用,而且对零件的加工工艺、设备、消耗也有较大影响。毛坯分为:铸件、锻件和其它类型毛坯。毛坯的选择原则:(1)零件材料的工艺性及零件对材料组织和性能要求;(2)零件结构及形状;(3)生产批量大小;(4)现场生产条件。根据以上选择原则,并考虑零件在机床运行过程中所受巨大冲击偏心轴的材料选为 40Cr。因为零件结构又比较简单 ,故确定毛坯为锻件(模锻)。毛坯的零件图如图 2所示。

图 2 毛坯图

2.3定位基准的选择

正确选择定位基准是设计工艺过程的一项重要内容。在最初的工序中只能选择未加工过的毛坯面为定位基准,称为粗基准,用加工过的表面作定位基准称为精基准。在加工过程中,必须相应的以一个或几个面为依据来加工其他表面,以达到零件图上的要求。所以在机械加工中要确定正确的定位基准。

偏心轴粗基准的选择主要遵循粗基准选择的一般原则。粗基准的选择将会影响各加工面的余量分配和位置精度。在选择偏心轴的粗基准时,应该考虑以毛坯件自身作为粗基准,工件外表面不用加工。仍然保持为毛坯面。

对于本工件来说,先铣端面,然后将毛坏外圆作为粗基准来加工,这样加工使制造基准和设计基准保持一致。中心孔的精度要求较高,位子精度要求也较高,一次加工可能难以保证其精度,而对加工余量不均与引起的误差,采用多走一刀来修正。粗基准最好只使用一次,不要重复使用,以免产生较大的位置误差。

2.4加工方法的选择

零件的加工方法的选择主要取决于加工表面的技术要求,如粗糙度、尺寸精度,公差等级等,再有,就是和被加工材料、生产类型,技术条件等也有关系。当明确了上述因素后,就可以根据此来选择加工方法,来满足零件质量、较好的经济性和较高的生产率的要求。参考《机械制造工艺设计简明手册》,其加工方法选择如下:

(1)检查工件毛坯是否有影响质量缺陷,夹紧毛坏外圆后车小端面。

(2)先加工小的外圆端面,然后依次加工轴面,从粗到细加工。(3)先加工大的外圆端面,然后依次加工轴面,从粗到细加工。(4)先加工偏心轴侧面,然后依次加工外圆面,从直径大到小加工,精度达到图上要求。

2.5加工顺序的安排

偏心轴的加工方法选择完毕后,就要安排加工顺序。一般来说,零件的加工顺序可划分为粗加工阶段、半精加工阶段、精加工阶段以及光整加工阶段,并依次进行。但由于本工件毛坏是采用模锻,且工件的要求不是太高,所以本工件是采用粗车,精加工就可以达到这些要求。为了达到这些要求,工件的各个加工面的加工顺序就不能随意安排,必须遵照一定的原则。即“先粗后精、先主后次、先面后孔、先基准后其他”。

2.6加工工艺过程的确定

综合以上的分析,制订以下工艺过程如下:

工序1:检查毛坏; 工序2:铣端面; 工序3:粗车大端外圆; 工序4:粗车小端外圆; 工序5:粗车偏心轴大端外圆; 工序6:粗车偏心轴小端外圆; 工序7:热处理; 工序8:精铣端面; 工序9:精车大端外圆; 工序10:精车小端外圆; 工序11:精车偏心轴大端外圆; 工序11:精车偏心轴小端外圆; 工序12:去锐边,毛刺; 工序13:终检。

2.7加工余量及工序尺寸的确定

偏心轴零件材料是40Cr,毛坯采用模锻制造。⑴ 粗铣小端面,保证总长度尺寸78mm;

⑵ 粗加工小端外圆。首先加工偏心圆侧面在保证垂直度的情况下使尺寸为14mm。

⑶ 粗加工大端外圆。使之尺寸在Φ41mm,粗车时,留加工余量1mm;

0.02⑷ 车削偏心外圆面。调整中心距为30.02mm 及外圆直径为Φ

26mm。

0.016⑸ 精铣小端面。保证端面到大端侧面为130.016mm。

⑹ 精车小端外圆。保证外圆工序尺寸Φ8h6 mm,表面粗糙度为Ra3.2μm。

⑺ 精车大端外圆。保证外圆工序尺寸Φ40m6 mm,表面粗糙度为Ra3.2μm。

0.0330.05⑻ 精加工偏心外圆表面。与断面距离分别为630.033和760.05,保证外圆工序尺寸Φ26m6和Φ8h6。

3夹具设计

3.1 偏心轴装配

机床夹具是机械制造中一项重要的工艺装备。工件在机床上加工时,为了保证加工精度和提高生产率,必须使工件在机床上相对刀具的切削或成形运动处于准确的位置。当用夹具加工一批工件时,是通过夹具来实现上述要求的。专用夹具是专门为工件的某道工序专门设计和制造的,由于采用了专门的元件,可以方便、简单地操作,并且易于保证加工精度的稳定,减轻了劳动强度,保证安全生产。

本设计中夹具的设计任务是:偏心工件偏心外圆车组合夹具设计 在本设计中,车削偏心工件外圆表面选用的是CA6140机床。该机床主要参数是:

床身上最大回转直径 Φ400 mm 最大工件长度(二顶尖间距离)920mm

最大车削长度(最大加工长度)920 mm 最大车削直径 400 mm 滑板上最大回转直径 210 mm 主轴转速级数为了夹紧的需要 ,设计卡罐来进行设计

图 7 螺钉

定位误差分析:

⑴ 主轴各外圆面的定位误差

工序基准为各端外圆面,定位基准也是各端外圆面,两个基准重合,所以由基准不重合引起的误差为0。

又因为是平面定位,所以由于基准位移引起的误差为0。所以定位误差为0。

0.05⑵ 尺寸760.05mm的定位误差

工作轴线与弯板工件面A的平行度公差0.02mm,安装后的轴线与机床主轴间平行度公差0.03mm,而两偏心工件线间的公差为0.2mm △DW=△BC±△JW △JW =0.707TD

所以定位误差是0.25.结 语

该文设计了一个偏心轴车削专用夹具 ,使用起来非常方便 ,只需一边夹在机床三角或四角卡盘上 ,另一端用顶针顶住即可 ,通过调节螺钉就可以加工出不同偏心量的轴段。本夹具结构简便 ,结实耐用 ,合适大批量的偏心轴生产。

本课题为偏心工件零件工艺规程设计及车削夹具设计。通过对偏心工件零件的工艺分析,结合有关的资料手册,我基本完成了零件的工艺规程编制和专用夹具的设计,并进行了有关的评估,所做的设计能够满足零件的加工要求。

通过毕业设计,我将几年来所学到得知识整体的运用在设计上,不管是整体的设计理念,还是局部的工艺过程,都是经过多次思考,反复琢磨,最后才决定下来的。即便如此,毕竟是第一做这么复杂和较正规的设计,而且本人知识水平有限,所做出来的设计难免会有不足之处。毕业论文是对设计的说明书,这次撰写翻阅很多资料,咨询老师,同学而后完成这篇论文。通过毕业论文的写作,不仅强化了我的学习素质、研究素质和创业素质,而且培养了我的创新意识,激发了我探求新知的欲望。在毕业设计中,我的专业技能得到了锻炼,提高了设计和计算机绘图的能力,初步掌握了解决本专业工程技术问题的手段和方法,为以后走向工作岗位打下了坚实的基础。

在这次毕业设计当中,我领会到了一种系统的设计思想,就是首

先对零件进行工艺分析,确定生产类型;然后选择合理的加工和工装设备,按一定的原则安排加工顺序,并尽可能设计多种方案,进行比较,选出最好的;最后确定切削用量,机床转速等具体参量,完成工艺规程的设计。毕业设计是对大学生知识水平的一次很好的检验,让我更深刻的明白学以至用的道理。

致 谢

军训的情景还历历在目,大学生活已近尾声,五年来的努力与付出,随着本次论文的完成,大学学习也快要结束,但这里的一切会伴随一生。

本论文设计在XXX老师的悉心指导和严格要求下完成,从课题选择到具体的写作过程,论文初稿与定稿无不凝聚着XXX老师的心血和汗水。在我的毕业设计期间,XXX老师为我提供了种种专业知识上的指导和一些富于创造性的建议,她的循循善诱的教导和不拘一格的思路给予我无尽的启迪,她的渊博的专业知识,精益求精的工作作风,严以律己、宽以待人的崇高风范,将一直是我工作、学习中的榜样。宋老师一丝不苟的作风,严谨求实的态度使我深受感动,没有这样的帮助和关怀和熏陶,我不会这么顺利的完成毕业设计。在此向宋雪萍老师表示深深的感谢和崇高的敬意!

在此还要感谢教研室其他老师们的帮助和支持,是他们指导我们完成毕业设计,是他们一直陪伴在我们身边,细心指导我们,他们是我毕业设计路上的导航灯,给了我们很多帮助。在此向他们表示深深 的谢意和崇高的敬意。

我还要感谢同组的各位同学,在毕业设计的这段时间里,你们给了我很多的启发,提出了很多宝贵的意见,对于你们帮助和支持,在此我表示深深地感谢。在论文写作过程中,我还参考了有关的书籍和论文,在这里一并向有关的作者表示谢意。

毕业将至,我借此机会向在这五年中给予了我帮助和指导的所有老师表示由衷的谢意,感谢他们五年来的辛勤栽培。各位任课老师认真负责,在他们的悉心帮助和支持下,我能够很好的掌握和运用专业知识,并在设计中得以体现,顺利完成毕业论文。

在这次的毕业设计中,机械工程学院里也做了大量的工作,衷心感谢学院为我们毕业设计提供了良好的工作设计环境,并对我们设计工作的指导和帮助。

最后我还要感谢母校镇江高等职业技术学校四年来对我的栽培。

参考文献

篇3:齿轮轴参数化设计

在本例中, 采用Aceess数据库建立齿轮轴的参数表, 表中分为5个类型A-E, 分别代表1~5阶, 轴长、半径、键槽所在轴由数据库自动调入, 或由界面输入。

轴的键槽结构尺寸要同键完全匹配, 除了考虑实际需求之外, 还须严格遵守国家标准, 系统专门设置了相关的检测功能, 根据所在轴段的参数来验证是否合法。本参数化共分为两部分, 既可实现阶梯轴参数化, 又可实现齿轮轴的参数化。

2 阶梯轴参数化设计功能实现

2.1 功能介绍

在阶梯轴参数化程序中, 标识类型A-E代表由一阶到五阶, 可随便选择。而且, 对常用的阶梯轴参数, 可将其输入后添加到数据库中去, 下次直接调用既可, 不需重新输入。

在参数化主界面选择了任何一个类型后, 阶梯轴参数会发生相应的变化, 系统会调用数据库相应参数, 如选择类型C, 即要绘制3阶轴, 右侧会出现轴1、轴2、轴3的半径和长度的输入选项, 默认值与参数表的值相同。选择键槽面也会在所选范围之内, 其它参数均为用户手工输入, 其默认值为参数表中相应值。

2.2 凸台拉伸法实现阶梯轴参数化

轴向剖面图是以YOZ面为基准面, 原点为基点, 沿着Z轴负向, 依次根据轴长和半径来确定各个点, 再利用ICreateLine2函数连接各个点, 形成相应的凸台, 最后利用FeatureRevolve函数对凸台进行旋转, 实现动态绘制阶梯轴。

由于本系统可能有1~5阶选项, 设计将界面参数作为实参, 自定义了5个函数,

每次调用对应函数即可。比如, 绘制五阶阶梯轴的函数为MycreateZhou5 (r1, d1, r2, d2, r3, d3, r4, d4, r5, d5) 。

3 齿轮轴参数化设计功能实现

齿轮轴的段数系统设置了最大为5, 选择类型后, 依次输入各段阶梯轴的参数以及齿轮的参数, 或者默认数据库参数, 动态生成齿轮轴。当齿轮参数全为0时, 系统自动生成阶梯轴。

3.1 齿轮轴的参数化设计

齿轮选用的是直齿渐开线绘制法, 自定义函数MycreateChi (double Rb, int z, double thick) , 三个参数分别传递界面中的分度圆半径、齿数和厚度, 利用渐近线绘制方法, 每个齿只取特殊的六个点, 把它们用样条曲线连接起来, 齿根和齿顶用近似直线来代替, 利用FeatureBoss函数沿着Z轴拉伸, 从而成功的实现了齿轮的参数化设计。

3.2 齿轮轴参数化设计

在上述阶梯轴的基础上, 选择一个槽面、齿轮所在轴面, 齿轮的分度圆半径为所在轴的半径, 齿轮的厚度为所在轴的长度, 这两个参数都是根据数据库中各个阶的轴参数而定的, 组合框选择发生变化时, 齿轮的参数会自动发生相应的变化, 齿轮数目为自定义, 系统默认为20。

由于齿轮只能在X O Y面绘制后沿着Z轴正向拉伸, 所以给动态绘制阶梯轴时加大了难度。绘制时, 采用了分段绘制法。以五阶齿轮轴为例, 当齿轮位于第四段时, 自定义三个函数, 第一个函数用来绘制第五段轴, 参数有三个, 为对应轴长、半径及齿厚 (第四段轴长) , 第二个函数MycreateChi, 绘制齿轮, 有三个参数,

第三个函数用来绘制三段凸台形成的三阶轴。

关于键槽的绘制也要相应的作出调整:之前位于轴一的键槽绘制函数只需要键槽的参数和轴一的半径和长度, 因为当时是最靠近基准面的, 但是现在轴一是最远离基准面的, 以五阶阶梯轴、齿轮在轴四部分为例, 轴二上的键槽绘制函数参数明显就变多了, 不仅包含以前函数的那些参数, 还必须要包含轴三的长度。

4 结语

通过对阶梯轴和齿轮以及结合两者设计齿轮轴的参数化设计过程, 深入了解了SolidWorks二次开发的原理与方法。但齿轮轴参数化设计还有以下需要改进。

齿轮的绘制参数不够细化, 仅仅设计到齿数、模数和齿厚三个参数, 也只是针对直齿渐开线齿轮而言, 其余类型的齿轮和绘制方法等模块还有待添加到此系统中来;齿轮轴被分割为了三部分来实现参数化。

参考文献

[1]江洪, 魏峥, 王涛威, 等.SolidWorks二次开发实例解析[M].北京:机械工业出版社, 2004, 2.

[2]王卫荣, 孙金升, 汪国海.参数化设计方法及其在齿轮设计上的应用[J].制造业信息化, 2006 (3) :112~113.

[3]宋率展, 高荣慧.基于VC的SolidWoks键联接模块二次开发[J].制造业信息化, 2006 (3) :118~119.

篇4:齿轮轴温遥测系统的设计

【关键词】遥测系统;温度测量;非接触供电;无线通信

0.引言

连接齿轮的轴承在旋转过程中由于摩擦力等因素将会随着转速升高出现温度提升的现象,齿轮轴承温度的测量对于轴承使用、轴承设计以及轴承寿命分析具有重大意义,其在不同转速下的温度是轴承设计中很有价值的参考数据。

在某些特殊的应用环境下,物理量的测量可采用遥测系统来完成。如,测试设备无法进行安装的高温、高压环境、旋转体测量等。对于齿轮轴承温度的测量,可归为旋转体测量,可以通过遥测系统来实现。

1.工作原理

轴承温度的测量通过6个带冷端补偿的热电偶来实现,整个系统主要分为两个部分,即信号采集发射一体机和接收机。信号采集发射一体机中包含信号调理和采集模块以及无线发射机;接收机包含无线接收机、数据处理器以及模拟/数字输出模块。

信号采集发射一体机中的信号调理和采集模块包含7个模拟通道,其中前6个通道可接热电偶,第7通道用作热电偶的冷端补偿。每个热电偶通道都有独立的信号调理电路,以保证信号的信号质量及数据采集器的采集精度。

2.系统设计

2.1双热电偶传感器设计

为了保证双热电偶传感器工作的可靠性,在设计传感器时采用双热电偶方式,由两个热电极材料相同的有效热电偶组成。这样的冗余设计可以保证当其中一个热电偶失效时,另一个热电偶仍然能够正常工作,而不会导致整个遥测系统失效。

2.2非接触式供电系统设计

本文设计的非接触式供电系统基于ICPT原理,其组成包含初级变换器、非接触变压器以及次级变换器。

图1 非接触式供电系统组成

非接触式供电系统工作时,初级变换器将交流电压经过整流、逆变转换成高频交流电流供给初级绕组。初级绕组通过空间耦合的方式把能量耦合到次级绕组,次级绕组输出的是高频电流,根据后级负载特性以及电路系统的工作要求,次级变换器将接收到的信号进行整流、滤波等处理,最终输出直流电压给负载供电。齿轮轴承温度遥测系统中非接触式供电系统原理见图2。

图2 非接触式供电系统原理图

2.3信号采集发射一体机设计

信号采集发射一体机分为电源模块、传感器、信号放大模块、信号滤波模块、数据采集模块、调制器和遥测发射机7个模块,它们共同完成温度信号的拾取、调理、采集、数字调制和无线发射,完成温度信号到无线数据的转换。

信号采集发射一体机通过信号放大、滤波、多路复用及采集、数字调制和无线发射5个步骤将温度信号通过无线信道发送给无线信号接收机,无线信号接收机通过对无线信号进行接收、数字解调、数据输出以及信号调理完成电压信号的输出,最终完成温度信号的遥测功能。

2.4无线信号接收机设计

无线信号接收机包含遥测接收机、数字解调器、数据分配模块、输出基准、数据输出模块以及输出滤波器模块6种功能模块。这些模块共同完成无线信号的接收、解码和数据拆分、数据分配、数据输出以及滤波整型,完成温度数据到标准电压信号转换。

3.性能测试与轴承温度遥测试验

3.1非接触供电电压试验

齿轮轴承温度遥测系统中的无线信号发射机的正常工作需要一定的工作电压,该电压由非接触供电电源提供。为保证小型感应供电电源的能量供应满足无线信号发射机的需求,应对非接触供电电压进行试验。

试验结果表明,非接触供电电压可达到供电电压(峰峰值)22V左右,由于满足10V即可保证信号采集发射一体机正常工作,因此本文中的非接触式感应供电系统设计合理,可满足实际需求。

3.2轴承温度遥测试验

将齿轮轴承温度遥测系统中的信号采集发射一体机安装在待测轴承上,将接收机接好并连接计算机,将系统和计算机显示软件开启,进行轴承温度的测量。

图3 试验连接示意图

试验圆满完成,验证了系统的可靠性与设计的合理性,通过对比齿轮油膜温度,该轴承温度数据与另一系统测得的油膜温度变化趋势相符,证明测量结果真实有效。

4.结论

篇5:齿轮泵主动轴课程设计说明书..

序言

一、零件的分析-----------------------3

二、工艺规程的设计-----------------4

(一)确定毛坯的制造形式--------4

(二)基准的选择--------------------8

(三)工艺路线的拟订及工艺方案的分析---------------------9

(四)机械加工余量及毛坯尺寸的确定------------------------------11

(五)各工序的定位夹紧方案、切削用量选择及基本工-----------12

三、总结28

四、主要参考资料-------------------29

序言

机械制造工艺学课程设计,是我们在学完了大学的全部基础课和大部分专业课后进行的。这也是我们在进行毕业设计之前对所学各课程做一次综合性的复习,也是一次理论联系实际的训练,它在我们四年的学习中有着很重要的地位。

通过此次此次设计,应该得到下述各方面的锻炼: 1)能熟练运用机械制造工艺设计中的基本理论以及在生产实习中学到的实践知识,正确地解决一个零件在加工中的定位,夹紧以及工艺路线安排,工艺尺寸确定等问题,保证零件的加工质量。2)提高结构设计的能力。通过设计夹具的训练,应当获得根据被加工零件的加工要求,设计出高效省力,经济合理,而且能保证加工质量的夹具的能力。

3)学会使用手册及图表资料,掌握与本设计有关的各种资料的名称出处,能够做到熟练使用。

由于能力有限,设计中尚有许多不足之处,请各位老师给予批评指教。本设计书包括: 1.零件图:齿轮泵主动轴 2.零件的毛坯图 3.机械加工工艺过程卡 4.机械加工工序卡 5.课程设计说明书

一、零件的分析

(一)零件的作用

轴是机械加工中常见的典型零件之一。它在机械中主要用于支撑齿轮、带轮、凸轮以及连杆等传动件,以传动扭矩。按结构形式不同,轴可以分为阶梯轴、锥度心轴、光轴、空心轴、曲轴、各种丝杠等,其中阶梯传动轴应用较广,其加工工艺能较全面的反映轴类零件的加工规律和共性。

所设计的为齿轮油泵的主动轴。其作用是:一是支撑回转零件,支撑主动齿轮使其正常转动;二是把旋转运动通过主动齿轮传递给其他部件。如在18h6mm出安装齿轮,以传递扭矩使其正常工作。在工作中主轴不仅承受扭转力矩,而且承受弯曲力矩。

(二)零件的工艺分析

通过对该零件的重新绘制知,原样图的视图正确、完整,尺寸、公差及技术要求齐全。根据零件的尺寸图,可以初步拟定零件的加工表面,其间有一定位置度要求。所设计的轴的尺寸图中下图所示: 分述如下:

1、外圆柱表面:

外圆柱加工表面包括一个18h6mm的圆柱面,要求粗糙度为0.8,以及17.8f6mm和17.8h11mm的两个圆柱面, 其中17.8h11mm的圆柱面粗糙度要求为1.6。其余粗糙度为6.3。

2、键槽、通孔:

以轴线为中心的键槽宽度为5N9mm的半圆键槽,槽的两侧面平行于基准A(φ17.8f6mm孔的轴线),其平行度公差为0.12mm。通孔为4mm的通孔无要求。

3、槽口:

左端以以轴线为中心的槽口宽度为6H9mm的槽。槽的两侧面平行于基准B(φ17.8h11mm孔的轴线),其平行度公差为0.12mm。

根据各加工方法的经济精度及一般机床所能达到的位置精度,该零件没有很难加工的表面尺寸,上述表面的技术要求采用常规加工工艺均可以保证,由以上分析可知可以先加工外圆柱面,然后借助专用夹具加工键槽、通孔及槽口,并保证它们之间的位置要求。

二、工艺规程的设计

(一)确定轴的材料及毛坯的制造形式

1、材料 机械制造中最常用的材料是钢和铸铁,其次是有色金属合金,非金属材料如塑料、橡胶等,在机械制造中也得到广泛的应用。

金属材料主要指铸铁和钢,它们都是铁碳合金,它们的区别主要在于含碳量的不同。含碳量小于2%的铁碳合金称为钢,含碳量大于2%的称为铁。

(1)、铸铁

常用的铸铁有灰铸铁、球墨铸铁、可锻铸铁、合金铸铁等。其中灰铸铁和球墨铸铁属脆性材料,不能辗压和锻造,不易焊接,但具有适当的易熔性和良好的液态流动性,因而可铸成形状复杂的零件。灰铸铁的抗压强度高,耐磨性、减振性好,对应力集中的敏感性小,价格便宜,但其抗拉强度较钢差。灰铸铁常用作机架或壳座。球墨铸铁强度较灰铸铁高且具有一定的塑性,球墨铸铁可代替铸钢和锻钢用来制造曲轴、凸轮轴、油泵齿轮、阀体等。

(2)、钢

钢的强度较高,塑性较好,可通过轧制、锻造、冲压、焊接和铸造方法加工各种机械零件,并且可以用热处理和表面处理方法提高机械性能,因此其应用极为广泛。

钢的类型很多,按用途分,钢可分为结构钢、工具钢和特殊用途钢。结构钢可用于加工机械零件和各种工程结构。工具钢可用于制造各种刀具、模具等。特殊用途钢(不锈钢、耐热钢、耐腐蚀钢)主要用于特殊的工况条件下。按化学成分钢可分为碳素 钢和合金钢。碳素钢的性能主要取决于含碳量,含碳量越多,其强度越高,但塑性越低。碳素钢包括普通碳素结构钢和优质碳素结构钢。普通碳素结构钢(如Q215、Q235)一般只保证机械强度而不保证化学成分,不宜进行热处理,通常用于不太重要的零件和机械结构中。碳素钢的性能主要取决于其含碳量。低碳钢的含碳量低于0.25%,其强度极限和屈服极限较低,塑性很高,可焊性好,通常用于制作螺钉、螺母、垫圈和焊接件等。含碳量在0.1%~0.2%的低碳钢零件可通过渗碳淬火使其表面硬而心部韧,一般用于制造齿轮、链轮等要求表面耐磨而且耐冲击的零件。中碳钢的含碳量在0.3%~0.5%之间,它的综合力学性能较好,因此可用于制造受力较大的螺栓、螺母、键、齿轮和轴等零件。含碳量在0.55%~0.7%的高碳钢具有高的强度和刚性,通常用于制作普通的板弹簧、螺旋弹簧和钢丝绳。合金结构钢是在碳钢中加入某些合金元素冶炼而成。每一种合金元素低于2%或合金元素总量低于5%的称为低合金钢。每一种合金元素含量为2%~5%或合金元素总含量为5%~10%的称为中合金钢。每一种合金元素含量高于5%或合金元素总含量高于10%的称为高合金钢。加入不同的合金元素可改变钢的机械性能并具有各种特殊性质。例如铬能提高钢的硬度,并在高温时防锈耐酸;镍使钢具有良好的淬透性和耐磨性。但合金钢零件一般都需经过热处理才能提高其机械性能;此外,合金钢较碳素钢价格高,对应力集中亦较敏感,因此只用于碳素钢难于胜任工作时才考虑采用。用碳素钢和合金钢浇铸而成的铸件称为铸钢,通常用于制造结构复杂、体积较大的零件,但铸钢的液态流动性比铸铁差,且其收缩率的铸铁件大,故铸钢的壁厚常大于10mm,其圆角和不同壁厚的过渡部分应比铸铁件大。

2、材料选用原则

从各种各样的材料中选择出合用的材料是一项受到多方面因素制约的工作,通常应考虑下面的原则:

(1)载荷的大小和性质,应力的大小、性质及其分布状况

对于承受拉伸载荷为主的零件宜选用钢材,承受压缩载荷的零件应选铸铁。脆性材料原则上只适用于制造承受静载荷的零件,承受冲击载荷时应选择塑性材料。(2)零件的工作条件

在腐蚀介质中工作的零件应选用耐腐蚀材料,在高温下工作的零件应选耐热材料,在湿热环境下工作的零件,应选防锈能力好的材料,如不锈钢、铜合金等。零件在工作中有可能发生磨损之处,要提高其表面硬度,以增强耐磨性,应选择适于进行表面处理的淬火钢、渗碳钢、氮化钢。金属材料的性能可通过热处理和表面强化(如喷丸、滚压等)来提高和改善,因此要充分利用热处理和表面处理的手段来发挥材料的潜力。(3)零件的尺寸及质量

零件尺寸的大小及质量的好坏与材料的品种及毛坯制取方法有关,对外形复杂、尺寸较大的零件,若考虑用铸造毛坯,则 应选用适合铸造的材料;若考虑用焊接毛坯,则应选用焊接性能较好的材料;尺寸小、外形简单、批量大的零件,适于冲压和模锻,所选材料就应具有较好的塑性。(4)经济性

选择零件材料时,当用价格低廉的材料能满足使用要求时,就不应选择价格高的材料,这对于大批量制造的零件尤为重要。此外还应考虑加工成本及维修费用。为了简化供应和储存的材料品种,对于小批制造的零件,应尽可能减少同一部设备上使用材料的品种和规格,使综合经济效益最高。

3、确定轴的材料

由以上分析可以选择轴的材料,35钢、45钢、T10、40Cr等都可以满足要求,因为45钢的硬度在220HBS~250HBS之间,其综合力学性能好、承受交变弯曲载荷或交变扭转荷。结合以上两点以及其经济性选用45钢。

4、确定毛坯的制造形式

零件材料为45钢,本可以先用模锻,其精度高加工余量小又可以用与形状复杂、大批量生产,但其设备昂贵。又考虑到轴的应用场合在齿轮泵中其受力不大强度要求不高生产纲领又不是太大。结合生产条件以及经济性故选取型钢又因为其最大直径处为Ф18mm故选取直径为Ф23mm的型钢为毛坯。

(二)、基准的选择 基面选择是工艺规程设计中的重要工作之一。基面选择得正确与合理可以使加工质量得到保证,生产率得以提高。

1、粗基准的选择:对于零件而言,尽可能选择不加工表面为粗基准。而对有若干个不加工表面的工件,则应以与加工表面要求相对位置精度较高的不加工表面作粗基准。根据这个基准选择原则,选取零件的上面和右面的直角平面为粗基准。

2、精基准的选择:主要应该考虑基准重合的问题。当设计基准与工序基准不重合时,应该进行尺寸链换算。

(三)工艺路线的拟定及工艺方案的分析

1、工艺路线的拟定

为保证达到零件的几何形状、尺寸精度、位置精度及各项技术要求,必须制定合理的工艺路线。

由于生产纲领为成批生产,所以采用通用机床配以专用的工、夹、量具,并考虑工序集中,以提高生产率和减少机床数量,使生产成本下降。该轴材料为45钢且为Ф23mm的形钢,此主动轴应首先车削成形,对于精度较高在车削之后还应磨削。车削和磨削时以两端的中心孔作为定位精基准,中心孔可在粗车之前加工。因此,该传动轴的工艺过程主要有

加工中心孔、粗车、半精车和磨削四个阶段。结合以上几点制定加工工艺路线如下:

工艺路线如下: 工序1 车端面、钻中心孔,表面粗糙度6.3,; 工序2 加工21退刀槽;

工序3 粗车Ф18mm及两端Ф17.8mm的外圆柱面直径余1mm,采用一夹一顶,表面粗糙度6.3、尺寸公差14级。工序4 半精车各阶梯轴,直径余量0.5mm;

工序5 精加工各阶梯部分表面,粗糙度1.6、尺寸公差6级;

工序6 钻φ4孔

工序7 加工槽口宽度为6H9mm的槽 根据此工艺方案制定出详细的工序划分如下所示:

工序1:车端面,以Ф23mm的外圆轮廓为定位基准,选CA6140卧式车床;

工序2:车21退刀槽,车后直径为Ф16mm;工序3:粗车左端Ф17.8mm,直径余量1mm,表面粗糙度6.3、尺寸公差14级;

工序4:粗车右端Ф17.8mm、Ф18mm,直径余量1mm,定位基准都用左端Ф17.8mm采用一次装夹减少定位误差采用一夹一顶,表面粗糙度

16、尺寸公差14级;

工序5:半精车各阶梯轴,直径余量0.5mm,并车倒角,表面粗糙度3.2、尺寸公差9级,倒圆角1×45°;

工序6:淬火;工序7:钻Ф4mm的通孔,采用专用夹具立式钻床加工, 麻花 钻;

工序8:铣6H9mm的槽口,采用专用夹具,卧式铣床,盘形槽铣刀,表面粗糙度3.2;

工序9:精加工整个轴的各阶梯部分,直径余量0.2mm,表面粗糙度1.6、尺寸公差8级;

工序10:磨Φ18mm外圆,表面粗糙度0.8;

工序11:划线铣半圆键槽,采用专用夹具卧式铣床加工表面粗糙度3.2,采用是宽度为5mm的半圆键槽铣刀;

工序12:质检。

根据此工序安排,编出机械加工工艺过程卡及工序卡片。见附表1:机械加工工艺过程卡;附表2:机械加工工序卡。

(四)机械加工余量及毛坯尺寸的确定

齿轮油泵主动轴零件材料为45钢,硬度为220~250HBS毛坯重量约为10Kg,生产类型为中小批量生产,结合生产条件及其经济性选用Ф23mm的型钢作为毛坯。

根据上述原始资料及加工工艺,分别确定各加工表面的机械加工余量、工序尺寸及毛坯尺寸如下(机械加工余量及其工序尺寸可用反求法计算即从零件的最后一道工序向前推算):

1.磨削余量查《简明手册》可预留0.3mm~0.4mm,表2.3-4; 2.精加工余量0.5mm-0.6mm(表2.3-3);3.半精加工余量0.9 mm~1mm(表2.3-2);4.粗加工余量2.5 mm~3.5mm;从毛坯到成品总的加工余量为4.2 mm~5.5mm,轴的最大直径处为Ф18 mm。

18(4.2 mm~5.5mm)=22.2mm~23.5mm 故选用Ф23 mm的棒料作为毛坯。

(五)、各工序的定位夹紧方案、切削用量选择及基本工时

工序

1、车削端面。1.加工条件

工件材料:45钢正火,硬度220HBS~250HBS,毛坯为Ф23mm的形钢。

加工要求:车端面,表面粗糙度值为6.3um。

机床:CA6140卧式车床。刀具、刀片材料为YT5,刀杆尺寸为16mm×25mm,刀具几何角度:Kr=90°、r=15°、a=8°、r=0.5mm。

2.计算切削用量

(1)确定端面最大加工余量:已知毛坯总长129mm,两端面都应切削且应平均分配,一端面切除2.5mm,即a=2.5mm,长度

poo公差IT=13。

(2)确定进给量f:根据《切削用量简明手册》(以下简称《切削手册》)表1.4,当刀杆尺寸为16mm×25mm,a≤3 mm以

p及工件直径为16 mm时 f=0.3-0.4mm/r 按CA6140车床说明书取f=0.4mm/r(3)计算切削速度:按《切削手册》表1.27,切削速度的计算公式为(寿命选T=60min)

vc=cvxvTmapfyvkv

式中cv=242,xv0.15,yv0.35,m=0.2 kV见《切削用量简明手册》表1.28即

kmv1.44,ksv0.8,kkv0.83,kkrv0.81

所以

vc600.22421.440.80.810.8399mm/min

2.50.150.40.35(4)确定机床主轴转速

ns1000vcdw100099r/min1371r/min

3.1423按机床说明书,与1371r/min相近的有1400r/min,现选取1400r/min。所以实际切削速度

vdn318101.26mm/min

(5)切削工时

按《金属切削原理与刀具》1-5公式

tmDLA3.1423382.5r/min0.08min

1000apfvc10002.50.4101(6)校验机床功率 查《金属切削原理与刀具》由表2-1查得得当比切削功率puc32.76KW/mm3/min)由表2-8查得Kr75时,KKFv1。故切削功率为

pc1000pucvcafKfFvKkFv10006 CA6140型车床电动机功率为7.8kw,转速为1400r/min时传递的最大功率为7.2kw故可以满足使用要求.(7)校验机床进给机构的强度

查《金属切削原理与刀具》表2-1可知比切削力ks1962N/mm2

故主切削力为: FvksafkfFvKkFv1962

查表2-7当Kr=75°时F/FPV=0.35,Ff/FV=0.4

因此Ff0.443081507N

Fr0.3543081507N

若机床进给导轨与溜板磨擦系数为0.1,进给机构在纵向进给方向受力为: Ffu(FvFr)15070.1(26931507)1927N

由机床的说明书可知机床允许的最大进给力不低于3000N.因此可以满足要求.工序2:车21退刀槽,车后直径为Ф16mm;1.加工条件

工件材料:45钢正火,硬度220HBS~250HBS,毛坯为Ф23mm的形钢。

加工要求:车2X1退刀槽。

机床:CA6140卧式车床。刀具、刀片材料为YT5,刀杆尺寸为16mm×25mm,刀刃宽度为2mm的切断刀

2.计算切削用量

(1)确定端面最大加工余量:1mm(2)确定进给量f:根据《切削用量简明手册》(以下简称《切削手册》)表1.4,当刀杆尺寸为16mm×25mm,a≤3 mm以

p及工件直径为Ф16mm时

f=0.3-0.4mm/r 按CA6140车床说明书取f=0.4mm/r(3)计算切削速度:按《切削手册》表1.27,切削速度的计算公式为(寿命选T=60min)

vc=cvxvTmapfyvkv

式中cv=242,xv0.15,yv0.35,m=0.2 kV见《切削用量简明手册》表1.28即

kmv1.44,ksv0.8,kkv0.83,kkrv0.81

所以

vc600.22421.440.80.810.8399mm/min 0.150.3510.4(4)确定机床主轴转速

ns1000vcdw100099r/min1371r/min

3.1423按机床说明书,与1371r/min相近的有1400r/min,现选取1400r/min。所以实际切削速度

vdn318101.26mm/min

(5)切削工时

按《金属切削原理与刀具》1-5公式

tmDLA3.1423382.5r/min0.08min

1000apfvc10002.50.4101(6)校验机床功率

查《金属切削原理与刀具》由表2-1查得得当比切削功率puc32.76KW/mm3/min)由表2-8查得Kr75时,KKFv1。故切削功率为

pc1000pucvcafKfFvKkFv10006 CA6140型车床电动机功率为7.8kw,转速为1400r/min时传递的最大功率为7.2kw故可以满足使用要求.(7)校验机床进给机构的强度

查《金属切削原理与刀具》表2-1可知比切削力ks1962N/mm2

故主切削力为: FvksafkfFvKkFv1962

查表2-7当Kr=75°时F/FPV=0.35,Ff/FV=0.4

因此Ff0.443081507N

Fr0.3543081507N

若机床进给导轨与溜板磨擦系数为0.1,进给机构在纵向进给方向受力为: Ffu(FvFr)15070.1(26931507)1927N

由机床的说明书可知机床允许的最大进给力不低于3000N.因此可以满足要求.工序

3、粗车左端Ф17.8mm的外圆柱面直径余1mm 1.加工条件

工件材料:45钢正火,硬度220HBS~250HBS,毛坯为Ф23mm的形钢。

加工要求:粗车左端Ф17.8mm的外圆柱面,直径余量1mm,表面粗糙度值为6.3um。尺寸公差14级。

机床:CA6140卧式车床。

刀具:刀片材料为YT5刀杆尺寸为20mm×30mm,Kr=75°,α0=6°γ0=8°。

2.计算切削用量

(1)粗车Ф17.8mm的切削用量 A.切削深度

按加工余量计算的结果粗加工应加工到Ф19mm,查《机械制造工艺与机床夹具课程设计指导》

Ф23mm-Ф19mm=4mm 故可分为二次切削加工即ap4mm B.进给量

查《机械设计指导》表2-19取f合机床说明书取f0.4mm/r。

0.3mm/r0.5mm/r之间并结C.切削速度

工件材料45钢正火查《机械设计指导》表2-20,并考虑已选vc的600.2切24220.15削

0.35深度和进给量得0.41.440.80.810.83102.64mm/min,刀具寿命T60min。

D.确定机床主轴转速 机床主轴转速的计算值为

n1000vcdw102.6410001421r/min

3.1423/min。故实际切削对照机床主轴转速表取实际转速为1400r速度为 vcdwn10003.14231400101.1mm/min

1000 E.计算切削工时

tmdlA3.142338min0.04min

1000apfvc100040.4101.1 F.校验机床功率

查《金属切削原理与刀具》由表2-1查得得当比切削功率puc32.76KW/mm3/min)由表2-8查得Kr75时,KKFv1。故切削功率为

pc1000pucvcafKfFvKkFv10006

CA6140型车床电动机功率为7.8kw,转速为560r/min时传递的最大功率为6.2kw故可以满足使用要求.G.校验机床进给机构的强度

查《金属切削原理与刀具》表2-1可知比切削力ks1962N/mm2

故主切削力为: FvksafkfFvKkFv1962

查表2-7当Kr=75°时F/FPV=0.35,Ff/FV=0.4

因此Ff0.443081507N

Fr0.3543081507N

若机床进给导轨与溜板磨擦系数为0.1,进给机构在纵向进给方向受力为: Ffu(FvFr)17220.1(43081507)2303.5N

由机床的说明书可知机床允许的最大进给力不低于3000N.因此可以满足要求.工序4:粗车右端Ф17.8mm、Ф18mm

各步骤及参数与工序2相同。工序5:半精车各阶梯轴,直径余量0.5mm;

1.加工条件

工件材料:45钢正火,硬度220HBS~250HBS,毛坯为Ф23mm的形钢。

加工要求:半精车阶梯轴外圆柱面,直径余量0.5mm,表面粗糙度值为6.3um。尺寸公差9级,倒圆角145。

机床:CA6140卧式车床。

刀具:刀片材料为YT5刀杆尺寸为20mm×30mm,Kr=90°,a06,ls0°。

2.计算切削用量

(1)半精车Ф17.8的切削用量 A.切削深度

按加工余量计算的结果粗加工应加工到19mm

19-18.5=0.5mm 查《机械制造设计指导》表2-15可知应分为一次切削加工即ap0.5mm

B.进给量

查《金属切削》表4-9切削深度小于2mm并结合机床说明书取f0.41mm/r。

C.切削速度

工件材料45钢调质查《金属切削》表4-9,并考虑已选的切削深度和进给量得vc110mm/min,刀具寿命T=60min。

D.确定机床主轴转速 机床主轴转速的计算值为

n1000vc1000110660r/min

dw对照机床主轴转速表取实际转速为710r/min。故实际切削速vcpdwn3.1417710116m/min 10001000E.计算切削工时

tmdLA1000apfvc0.17min

(2)半精车Ф18mm的切削用量以及Ф17.8mm等各处与Ф17.8mm处大同小异故此不在重复叙述,只是削切工时不同。详见工序卡片2-2。工序6:淬火

工序7:钻Ф4mm的通孔,采用专用夹具立式钻床加工, 麻花钻; 1.加工条件

工件材料:45钢正火,硬度220HBS~250HBS,毛坯为Ф23mm的形钢。

加工要求:钻Ф4mm的通孔 机床:Z525型立式钻床。刀具:选用标准高速钢麻花钻头,其直径为Ф4mm。2.计算切削用量(1)、决定进给量

1)、根据加工要求,及表2.7,进给量f=0.14~018mm/r。由于L/d=4.5,故应该乘以孔深修正系数0.95 进给量f=(0.14~0.18)×0.95mm/r==0.133~0.171mm/r 2)、按钻头强度决定进给量:根据表2.8,可知钻头允许进给量为f=0.46mm/r。

根据Z525型立式钻床说明书,选择进给量f=0.1mm/r 由于是加工通孔,为了防止在即将钻穿时钻头折断,应该在即将钻穿是停止自动进给改为手动进给。

(2)、根据表2.12,刀具最大磨损量为0.4mm,寿命T=15min。(3)、切削速度,由表2.14知道加工性属5类。

由表2.13,当加工性为第5类时,切削速度为vc22m/min 切削速度修正系数Kv110.8510.85

n1000vcdw1000220.851488r/min

3.1441360r/min。根据Z525立式钻床说明书,选择n(4)、检验机床扭矩及功率 根据表2.20

3、计算基本工时 TmL nf其中L=入切量+超切量+切削量=30mm TmL300.22min nf0.11360工序8:铣6H9mm的槽口

1、加工条件

工件材料:#45 加工要求:以轴线为基准,铣6H9mm的槽口 机床:铣床,XA6132 卧式万能铣床。

刀具:高速钢盘形铣刀。铣削深度ap=38mm,宽度ae=6mm。根据《切削手册》表3-1取刀具外径d=100mm, 选择刀具前角γo=10°,后角αo=16°,副后角αo’=8°,主刃Kr=60°,过渡刃Krε=30°,副刃Kr’=5°,z=12。由于其表面粗糙度值为3.2um,故进行一次铣削即可达到要求。

2、切削用量(1)确定切削进给量

根据参考文献[2]表5-13,XA6132型卧式万能铣床的功率为7.5kW,工艺系统刚性为中等,细齿盘形铣刀加工45刚,查表3.14得每齿的进给量af=0.012~0.008mm/z,现取af=0.010mm/z。(2)铣刀磨钝标准及寿命

根据参考文献[2]表3.7及3.8,用高速钢盘铣刀粗加工45刚,铣刀刀齿后刀面最大磨损量为0.2mm,铣刀直径d=100mm,耐用度T=120min。

(3)确定切削速度和工作台每分钟进给量ν

f 铣削速度可以通过计算得出,但是其计算公式比较复杂,实际生产中使用并不多,这里通过查表确定。查表5-30知,高速钢铣刀铣削速度为15~20m/min,则所需铣床主轴转速范围是 n1000v47.863.7r/min(式5.2)100根据XA6132机床的标准主轴转速,由表5-13选取n=60r/min,则实际铣削速度为v=18.84m/min,工作台每分钟的进给量

vf=0.1×12×60=72mm/min(式5.3)

根据参考文献[2]XA6132型卧式万能铣床工作台进给量表5-13,选择vf=75mm/min,则实际每齿的进给量

af750.104mm/z 1260(4)校验机床功率

根据参考文献[2]表5-31和表5-32中的计算公式,铣削是的功率(kW)为

Pc FcFcv(式5.4)1000wFxFuFCFapfzyFaezdnqFkFc(N)(式5.5)

式中CF=30,xF=1.0,yF=0.65,uF=0.83,qF=0.83,ap=90mm,ae=4mm,fz=0.264,z=12,d=80mm,n=60r/min,kFC=0.63。将上述数据带入公式可得Fc=744.96N V=18.84m/min,则Pc=5.614kW XA6132型卧式万能铣床主电动机功率为7.5kW,故所选用切削用量可以采用,所确定的切削用量为af=0.104mm/z,vf=75mm/min,n=60r/min,v=18.84m/min。

3、基本时间

根据参考文献[2]表5-33,盘形铣刀铣槽口的基本时间为 Till1l2(式5.7)vf 式中,l260mm,l1ae(dae)(1~3),ae4mm,d100mm。则l1=20mm,l2=4mm,vf=75mm/min,;

Ti=3.79min 工序9:精加工整个轴

同工序5:精车轴各部位只是切削时各主要参数不同,详见 工序10:磨Φ18mm外圆

加工要求:磨Φ18mm外圆,表面粗糙度值为0.8um。机床:M1432万能外圆磨床。

(1)选择砂轮

查《机械加工工艺设计手册》选砂轮选择结果为:A46KV6P 300×50×230。查《金属工艺人员手册》砂轮耐用度为1800s。(2)确定切削用量

砂轮转速 =1500r/min(查《机械制造工艺设计手册》),V=27.5m/min

砂fa=(0.5~0.6)B=20~32 fa=20mm Vw=18m/min fr=0.0056mm/st(3)计算基本工时t12LbZbk2x74x37.68x0.2x1.10.609min

1000vfafr1000x18x20x0.0056工序11:铣键槽

按铣削用量的选择原则为保证表面质量增加切削速度减小进给量。

1.查《切削手册》表3.13确定切削用量。A.铣削深度为4.5mm B.进给量0.25mm/z C.铣削速度vc23mm/min

采用高速钢半圆键槽铣刀铣刀d=16mm齿数Z=3则主轴转速为

n1000vc100023810r/min pdw3.145现选用X6132万能铣床,根据机床使用说明书取n=750r/min,故实际切削速度为:

vdn10003.1424.6m/min

1000当n=800r/min时工作台每分钟进给量f应为:

fmfzzn0.25380092.5

查机床说明书fn65mm/min D.铣削工时

tlm1f4.50.07min n65升降进给选60mm/min,在高度行程为8 tm28600.13min 则ttm1tm20.070.130.20min 验证切削功率

pFcVccxpFfVZFaufaeFzc1000 Fcdq oFnwF查《切削手册》表3.28 F651.00.720.86c160.86125.45N

p125.4524.6c10003.086KW

而X6132万能铣床铣床电机功率为4.5KW,800r/min时传递功率为3.8KW,故可以满足要求。

而转速为

三、总结

通过这次课程设计,我深深体会到,干任何事都必须耐心、细致。毕业设计过程中,许多计算有时不免令我感到有些心烦意乱;但一想起老师平时对我们耐心的教导,想到今后自己应当承担的社会责任,我不禁时刻提醒自己,一定要养成一种高度负责、一丝不苟的良好习惯。这次课程设计使我在工作作风上得到一次难得的磨练。

从熟悉零件的结构特点、绘制零件三维图和平面二维图,到为零件各个待加工表面制定合理可行的工序、有机组合完成工序卡片的制定,再到工序定位方案的设计和专用夹具的设计绘制,整个课程设计充实而有条不紊地进行。

在此过程中遇到很多问题,如制定工序时面临多种加工方案可供选择,需要综合考虑加工经济型、基准重合性等因素合理选择;填写工序卡片时如何简洁而正确地表达定位夹紧及加工面、加工余量的各种信息,工序卡片的各种规定等;分析每一道工序、计算其定位误差时很容易出现概念性错误导致理解错误;绘制夹具图时待加工零件要透明化处理、兼顾各项设计原则……

遇到问题,想方设法解决问题,这就是一个锻炼和进步的过程。除了熟知了机械制造工艺制定流程之外,课设中我对很多书本上的概念(如定位误差、基准等)有了深层次的理解。只靠书本上的简单讲解和一两个例题来学习是远远不够的,实践出真知,的确如此!

另一个收获,各种应用软件在工程科学中的重要性在此次课设中 得到很彻底的体现,广泛了解各类应用软件并精于本专业某些软件,是作为一名合格的大学生需要努力的方向。

总之,在这次设计过程中使我收益不小,为我今后的学习和工作打下一个坚实而良好的基础。在此,我感谢各位老师对我的帮助和指导。

四、主要参考资料

篇6:轴设计

机载光电系统中四轴陀螺稳定平台设计

在长距离和高可靠的机载光电系统中,高精密的稳定平台承担极其重要的作用.提出使用四轴复合粗精组合的.控制系统实现微弧级稳定精度.建立稳定平台机电系统的仿真模型.对两种不同结构的复合轴控制系统进行仿真设计,从仿真结果看,复合轴控制比单轴控制在动静态特性上均有较大的改善.

作 者:武斌 作者单位:华中光电技术研究所,武汉,430074刊 名:中国仪器仪表英文刊名:CHINA INSTRUMENTATION年,卷(期):2009“”(4)分类号:V2关键词:激光通信系统 伺服系统 四轴稳定平台 仿真

上一篇:排球赛备赛新闻稿下一篇:九月份训练安排