砌体结构设计设计

2022-07-12

第一篇:砌体结构设计设计

砌体结构课程设计

砌体结构课程设计

I砌体结构课程设计任务.....................................................................................2II、

砌体结构课程设计计算书......................................................................................4

一、结构方案........................................................................................................4

二、荷载资料............................................................................................................5

三、墙体高厚比验算................................................................................................6

四、结构承载力计算................................................................................................7

五、过梁,圈梁,挑梁,悬梁,板等构件布置及构造措施......................................18

六、基础设计..........................................................................................................22

一、设计题目:多层混合结构房屋设计

某多层办公楼,建筑条件图见附图,对其进行结构设计。

二、设计内容

1、结构平面布置图:柱、主梁、圈梁、构造柱及板的布置

2、墙体的承载力的计算

3、墙体局部受压承载力的计算

4、挑梁、雨蓬的计算

5、墙下条形基础的设计

6、绘制各层结构平面布置图(1:200)

7、完成计算书

三、设计资料

1、题号及楼面荷载取值

2、其它荷载取值(全部为标准荷载值)

(1)、屋面活荷载取2.0kN/m2,恒荷载取5.0kN/m2 (2)、卫生间活荷载取2.5kN/m2,恒荷载取7.0kN/m2 (3)、楼梯间活荷载取2.0kN/m2,恒荷载取4.5kN/m2 (4)、钢筋混凝土容重γ=25kN/m3 (5)、平顶粉刷:0.40kN/m2 (6)、基本风压:0.40kN/m2 (7)、铝合金门窗:0.25kN/m2 (8)、墙及粉刷:240mm厚:5.24kN/m2

3、地质条件

本工程建设场地地质条件较好,持力层为粘土层,持力层厚度4.0米,上部杂填土厚度1.2米,持力层下无软弱下卧层。粘土层地耐力特征值为230kpa。

4、材料

(1)、混凝土:C20或C25 (2)、砖采用页岩砖,砂浆采用混合砂浆或水泥砂浆,强度等级根据计算选定。

注:恒载、活载指的是楼面恒载、活载标准值,单位为kN/m2,要求同学按学号选择每题的楼面恒载、活载值。

一、结构方案

1.主体结构设计方案

该建筑物层数为五层,总高度为16.5m,层高3.3m<4m;体形简单,室内要求空间小,横墙较多,所以采用砖混结构能基本符合规范要求。

2.墙体方案及布置

(1)变形缝:由建筑设计知道该建筑物的总长度32.4m<60m,可不设伸缩缝。

工程地质资料表明:场地土质比较均匀,领近无建筑物,没有较大差异的荷载等,可不设沉降缝;根据《建筑抗震设计规范》可不设防震缝。

(2)墙体布置:应当优先考虑横墙承重方案,以增强结构的横向刚度。大房 间梁支撑在内外纵墙上,为纵墙承重。纵墙布置较为对称,平面上前后左右拉通;竖向上下连续对齐,减少偏心;同一轴线上的窗间墙都比较均匀。个别不满足要求的局部尺寸,以设置构造拄后,可适当放宽。根据上述分析,本结构采用纵横墙混合承重体系。

(3)墙厚为240mm。

(4)

一、二层层采用MU15烧结页岩砖,Mb10混合砂浆;三至五层采用MU10 烧结页岩砖,Mb7.5混合砂浆。

(5)梁的布置:梁尺寸为250mm*600mm,伸入墙内240mm。梁布置见附图。

(6)板布置:雨篷,楼梯间板和卫生间楼面采用现浇板,其余楼面均采用预

制装配式楼面,预制板型号为YKB3652,走廊采用YKB2452。具体布置见附图。

3.静力计算方案

由建筑图可知,最大横墙间距s=10.8m,屋盖、楼盖类别属于第一类,s<32m,

查表可知,本房屋采用刚性计算方案。计算简图如下所示。 4.多层砖混房屋的构造措施

(1)构造柱的设置:构造柱的根部与地圈梁连接,不再另设基础。在柱的上

下端500mm范围内加密箍筋为φ6@150。构造柱的做法是:将墙先砌成大马牙槎(五皮砖设一槎),后浇构造柱的混凝土。混凝土强度等级采用C25。

(2)圈梁设置:各层、屋面、基础上面均设置圈梁。横墙圈梁设在板底,纵墙圈梁下表面与横墙圈梁底表面齐平,上表面与板面齐平或与横墙表面齐平。当圈梁遇窗洞口时,可兼过梁,但需另设置过梁所需要的钢筋。

二、荷载资料(均为标准值) 根据设计要求,荷载资料如下:

21、屋面恒荷载:3.4kN/m2+0.4kN/m(平顶粉刷)=5.4kN/m2, 屋面活荷载:2.0kN/m2。

22、楼面恒荷载:3.4kN/m2+0.4kN/m(平顶粉刷)=3.8kN/m2, 楼面活荷载:2.5kN/m2。

3、卫生间恒荷载:7.0kN/m2,活荷载:2.5kN/m2。

4、钢筋混凝土容重:γ=25kN/m3。

5、墙体自重标准值

240mm厚墙体自重5.24kN/m2(按墙面计) 铝合金玻璃窗自重0.25kN/m2(按墙面计)

6、基本风压0.4kN/m2,且房屋层高小于4m,房屋总高小于38米,所以设 计不考虑风荷载的影响。

7、楼梯间恒荷载4.5kN/m2,活荷载2.0kN/m2

三、墙体高厚比验算

1、外纵墙高厚比验算

室内地面距基础高度为0.7m,故底层高度H=3.3+0.7=4.0m,s=10.8m,即s>2H,计算高度H0=1.0H=4m,二层及二层以上为H0=3.3m。

墙厚0.24m,承重墙取µ 1 =1.0。

有窗户的墙允许高厚比:µ2=1−0.4bs1.5=1−0.4=0.83;s3.6 [β]允许高厚比,查表得:当砂浆强度等级为M10,M7.5时,[β]=26。底层高厚比验算:

4.0;β==16.67<μ1μ2[β]=1.0×0.83× 26=21.58(满足要求)0.24 二层及以上纵墙高厚比验算:3.3;=13.75<µ1µ2[β]=1.0×0.83× 26=21.58(满足要求)0.24

2、内纵墙高厚比验算β= 墙体的计算高度,底层:H0底=4.0m μ2=1-0.4 β=b1.0=1-0.4=0.89s3.64.0=16.67<μ1μ2[β]=1.0×0.89× 26=23.14(满足要求);0.24 二层及以上纵墙高厚比验算:

3.3;β==13.75<μ1μ2[β]=1.0×0.89× 26=23.14(满足要求)0.24

3、横墙高厚比验算

外横墙:底层:s=14.94m,H=4.0m,s>2H,H0=1.0H=4.0m β=H04.0==16.7<[β]=26h0.24 H3.3==13.75<[β]=26h0.24二层及以上:s=8.4m,H=3.3m,s>2H,H0=1.0H=3.3mβ= 内横墙:底层:s=6.3m,H=4m,H

四、结构承载力计算 (1)纵墙的承载力验算

①选定计算单元

在房屋层数、墙体所采用材料种类、材料强度、楼面(屋面)荷载均相同的情况下,在外纵墙取一开间为计算单元,有门窗洞口时,计算截面宽度取窗间墙的宽度,由于内纵墙的洞口面积较小,不起控制作用,因而不必计算。外纵墙最不利计算位置可根据墙体的负载面积与其截面面积的比值来判别。

最不利窗间墙垛的选择

墙垛长度l/mm3600 负载面积A/m23.6×6.3/2=11.34 ②荷载计算 屋面梁支座反力 屋面恒荷载标准值屋面活荷载标准值5.0kNm22.0kNm2梁及梁上抹灰:25×0.6×0.25×6.3/2+(0.25+0.6×2)×6.3/2×0.4 =13.64kN 基本风压为0.4kNm2<0.7kNm2,故不考虑风荷载影响。 设计值:

由可变荷载控制:

N1=1.2Gk+1.4Qk=1.2×(13.64+5.4×11.34)+1.4×2.0×11.34 =121.6kN 由永久荷载控制: 13.64+5.4×11.34+2.0×1.4×0.7×11.34N1=1.35Gk+0.7×1.4Qk=1.35×(

=123.311kN 楼面梁支座反力

屋面恒荷载梁及梁上抹灰 活载设计值:

由可变荷载控制:3.8kNm213.64kN2.4kNm2 N1=1.2Gk+1.4Qk=1.2×(13.64+3.8×11.34)+1.4×2.4×11.34 =106.18kN。 由永久荷载控制:

13.64+3.8×11.34N1=1.35Gk+0.7×1.4Qk=1.35×( =103.26kN。 墙体自重

女儿墙及粉刷重(厚240mm,高300mm),两面抹灰40mm。 其标准值为:N=5.24×3.6×(0.3+0.12+0.6)=19.24kN 设计值:由可变荷载控制:19.24×1.2=23.09kN。 由永久荷载控制:19.24×1.35=26kN。

)计算每层墙体自重时,应扣除窗口面积,加上窗自重,考虑抹灰

对2,3,4,5层,墙体厚度均为240mm,计算高度(3.6×3.3-1.5×1.5)×5.24+1.5×1.5×0.25=设计值:由可变荷载控制:51.02×1.2=61.22kN 由永久荷载控制:51.02×1.35=68.88kN 对1层,墙体厚度为240mm,首层室内地面距基础0.7m,底层楼层高度为3.3+0.7-0.12-0.6=3.28m,其自重标准值为:

(3.6×3.28-1.5×1.5)×5.24+1.5×1.5×0.25=50.65kN设计值:由可变荷载控制:50.65×1.2=60.78kN 由永久荷载控制:50.65×1.3568.38kN ③内力计算

屋面及楼面梁的有效支承长度a0=10f一,二层MU15,Mb10,f=2.31N/mm2 a0=10×2.31=161.16mm<240mm,取a0=161mm三,四,五层MU10,Mb7.5,f=1.69N/mm2 a0=10×.69=188.42mm<240mm,取a0纵墙的计算简图

④墙体承载力计算

该建筑物的静力计算方案为刚性方案,因此静力计算可以不考虑风荷载的影响,仅考虑竖向荷载。在进行墙体强度验算时,应该对危险截面进行计算,即内力较大的截面;断面削弱的截面;材料强度改变的截面。所以应对荷载最大的底层墙体进行验算(240mm墙);二层荷载虽比底层小;三层与二层比较,荷载更小,但砌体强度较小(一,二层用M10砂浆,三层用M7.5砂砌筑);四,五层的荷载比三层小,截面及砌体强度与三层相同。所以应对一,三层的墙体进行强度验算。

由可变荷载控制的纵向墙体内力计算表

上层传荷截面Ⅱ—Ⅱ本层楼盖荷载截面Ⅰ—Ⅰ

e2(mm)楼层

Nu(kN)Nl(kN)a0(mm)el(mm)MNINⅡ31 373.31708.11 00 106.18106.18 188161 44.855.6 4.765.74 479.49811.37 540.71872.15 上层传荷楼层31 由永久荷载控制的纵向墙体内力计算表 本层楼盖荷载截面Ⅰ—Ⅰ e2(mm) 截面Ⅱ—Ⅱ NⅡ562.47906.25 Nu(kN)390.33734.61 Nl(kN)a0(mm)el(mm)103.26103.26 188161 44.855.6 M4.6 35.74 NI493.59837.87 00 表中:NI=Nu+NlM=Nu·e2+Nl·e1(负值表示方向相反) N =NI+Nw(墙重)el=h−0.4a0(h为支承墙的厚度)

对于每层墙体,纵墙应取墙顶Ⅰ-Ⅰ截面以及墙底Ⅱ-Ⅱ截面进行强度验算。

纵向墙体由可变荷载控制时的承载力计算表

第五层 计算项目 Ⅰ-Ⅰ

截7.05144.6948.72400.2033.313.750.423504000107.51.69360.29>1 第三层 Ⅰ

-

截4.76479.499.932400.0413.313.750.668504000107.51.69590.3>1 Ⅱ-Ⅱ截面

0540.71024003.313.750.776504000107.51.69660.97>1 第一层 Ⅰ

-

截5.74811.377.072400.0293.2813.670.7650400015102.31884.82>1 Ⅱ-Ⅱ截面

0872.15024003.2813.670.77850400015102.31905.78>1 M(kN⋅m)N(kN)e=MN(mm) h(mm)ehH0β=H0h ϕA(mm2)砖Mu砂浆Mf(mm2) ϕAf(kN)ϕAfN 计算项目

纵向墙体由永久荷载控制时的承载力计算表第五层 第三层Ⅰ-Ⅰ截面 Ⅰ-Ⅰ截面4.63 Ⅱ-Ⅱ截面 第一层 Ⅱ-Ⅱ截面 Ⅰ-Ⅰ截面5.74

面M(kN⋅m) 7.15 N(kN)e=MN(mm) h(mm)ehH0β=H0h ϕA(mm2)砖Mu砂浆Mf(mm2) 149.31482400.23.313.750.423504000107.51.69360.29>1 493.599.382400.0393.313.750.692504000107.51.69589.42>1 541.33024003.313.750.776504000107.51.69660.97>1 837.876.852400.0293.2813.670.76050400015102.31884.82>1 906.25024003.2813.670.77850400015102.31905.78>1 ϕAf(kN)ϕAfN ⑤砌体局部受压计算

以上述窗间墙第一层为例,窗间墙截面为240mm×2100mm,混凝土梁截面为600mm×250mm,支承长度240mm.. 根据内力计算,当由可变荷载控制时,本层梁的支座反力为Nl=106.18kN, Nu=708.11kN 当由永久荷载控制时,本层梁的支座反力为Nl=103.26kN,Nu=734.61kN a0=161mm<240mm Al=a0b=161×250=40250mm2 A0=h(2h+b)=240×(2×240+250)=175200mm2 A0175200-1=1+0.35×-1=1.64<2.0Al40250 A0175200==4.35>3,所以ΨN0+Nl≤ηγAlf

Ψ=0

;Al40250r=1+0.3

5验证不考虑上部荷载

压应力图形完整系数η=0.7 ηγAlf=0.7×1.64×40250×2.31=106.74kN>Nl=106.18kN(安全)。 再选一内纵墙计算单元: ①

内纵墙墙垛的选择

墙垛长度l/mm7200-2×1000-240-240=4720 负载面积A/m2 ②荷载计算 屋盖荷载

屋面恒荷载标准值屋面活荷载标准值梁及梁上抹灰5.4KNm22KN225×0.6×0.25×6/2+0.4×6.3/2(0.25+0.6×2) =13.64kN(6.3+2.4)/2×5.72=24.88 基本风压为0.40KNm2<0.7KNm2,故不考虑风荷载影响。设计值: 由可变荷载控制:

N1=1.2Gk+1.4Qk=1.2×(13.64+5.4×24.88)+1.4×2.0×24.88 =247.25kN 由永久荷载控制:

N1=1.35Gk+0.7×1.4Qk=1.35×+0.7×1.4×2.0×24.88 =248.55kN 楼面梁支座反力

屋面恒荷载梁及梁上抹灰 活载3.8kNm213.64kN2.4kNm2 设计值:

由可变荷载控制: N1=1.2Gk+1.4Qk=1.2×

(

13.64+3.8×24.88

)

(

13.64+5.4×24.88

)+1.4×2.4×24.88=213.42kN由永久荷载控制:

N1=1.35Gk+0.7×1.4Qk=1.35×

(

13.64+3.8×24.88

)+0.7×1.4×2.4×24.88 =197.25kN 墙体自重

该墙上部无女儿墙,所以无需计算女儿强自重。计算该墙体自重时,有门窗自重,及需考虑抹灰重量

对2,3,4,5层,墙体厚度均为240mm,计算高度3.3m,其自重标准值为: (3.3×5.72-2.4×1)×5.24+2.4×1×0.25=88.43kN 设计值:由可变荷载控制:88.43×1.2=106.12kN由永久荷载控制:88.43×1.35=119.38kN 对1层,墙体厚度为240mm,首层室内地面距基础0.7m,底层楼层高度为3.3+0.7-0.12-0.6=3.28,其自重标准值为:

(3.28×5.72-2.4×1)×5.24+1×2.4×0.25=87.83kN 设计值:由可变荷载控制:87.83×1.2=105.4kN 由永久荷载控制:87.83×1.35=118.57kN ③内力计算

屋面及楼面梁的有效支承长度a0=10f

一、二层MU15,Mb10,f=2.31N/mm2 a0=10×2.31=161.16mm<240mm,取a0=161mm

三、

四、五层MU10,Mb7.5,f=1.89N/mm2 a0=10×.89=188.42mm<240mm,取a0=188mm 纵向墙体的计算简图

由可变荷载控制的纵向墙体内力计算表 上层传荷本层楼盖荷载截面Ⅰ—Ⅰ楼层31 截面Ⅱ-Ⅱ

Nu(kN)672.911311.99 e2(mmNl(kN)213.42213.42 a0(mmel(mm)188161 44.855.6 M9.5611.87 NI886.331525.42 NIV 992.451630.82 00 由永久荷载控制的纵向墙体内力计算表 本层楼盖荷载截面Ⅰ—Ⅰ e2() 上层传荷楼层3 1 截面Ⅱ-Ⅱ

Nu(kN)684.561317.82 Nl(kN)197.25197.25 a0(mmel(mm)188161 44.855.6 M8.8410.97 NI881.811515.07 NIV 1001.191633.64 00 ④墙体承载力计算

纵向墙体由可变荷载控制时的承载力计算表第五层 计算项目 Ⅰ-Ⅰ

截面14.34247.25582400.2423.313.750.351132800107.51.69670.1>1 第三层 Ⅰ

-

面9.56886.3310.792400.0453.313.750.6781132800107.51.691297.98>1 Ⅱ-Ⅱ截面

0992.45024003.313.750.7761132800107.51.691486.08>1 第一层 Ⅰ

-

面11.871525.427.782400.0323.2813.670.711113280015102.311860.52>1 Ⅱ-Ⅱ截面

01630.82024003.2813.670.778113280015102.312035.85>1 M(kN⋅m)N(kN)e=MN(mm) h(mm)ehH0β=H0h ϕA(mm2)砖Mu砂浆Mf(mm2) ϕAf(kN)ϕAfN 计算项目

纵向墙体由永久荷载控制时的承载力计算表第五层第三层第一层Ⅰ-Ⅰ截Ⅰ-Ⅰ截Ⅱ-Ⅱ截面Ⅰ-Ⅰ截Ⅱ-Ⅱ截面面面面14.42248.55582400.2423.313.750.351132800107.51.69670.1>1 8.84881.8110.022400.0423.313.750.6851132800107.51.691311.39>1 01001.19024003.313.750.7761132800107.51.691485.60>1 10.971515.077.242400.0303.2813.670.722113280015102.311889.30>1 01633.64024003.2813.670.778113280015102.312035.8>1 M(kN⋅m)N(kN)e=MN(mm) h(mm)ehH0β=H0h ϕA(mm2)砖Mu砂浆Mf(mm2) ϕAf(kN)ϕAfN 由上表可以看出,计算墙体在各层都满足承载力要求,说明本设计的墙体截面安

全。

⑤砌体局部受压计算

以上述窗间墙第一层为例,窗间墙截面为240mm×2100mm,混凝土梁截面为600mm×250mm,支承长度240mm..根据内力计算,当由可变荷载控制时,本层梁的支座反力为Nl=213.42kN Nu=1311.99kN 当由永久荷载控制时,本层梁的支座反力为Nl=197.25kN,Nu=1317.82kN a0=161mm<240mm Al=a0b=161×250=40250mm2 A0=h(2h+b)=240×(2×240+250)=175200mm2 r=1+0.35A0 Al1=1+0.35×1752001=1.64<2.040250 验证ΨN0+Nl≤ηγAlf A0175200==4.35>3,所以Ψ=0故不需考虑上部荷载;Al40250 压应力图形完整系数η=0.7 ηγAlf=0.7×1.64×42500×2.31=112.7kN

①荷载计算

对于楼面荷载较小,横墙的计算不考虑一侧无活荷载时的偏心受力情况按两侧均匀布置活荷载的轴心受压构件取1m宽横墙进行承载力验算。取卫生间之间的横墙计算。

屋面梁支座反力设计值: 由可变荷载控制:

N1=1.2Gk+1.4Qk=1.2×5.4×3.6×1.0+1.4×2.0×3.6×1.0=33.41kN由永久荷载控制的组合:

N1=1.35Gk+0.7×1.4Qk=1.35×5.4×3.6×1.0+0.7×1.4×2.0×3.6×1.0 =36.32kN 楼面梁支座反力: 由可变荷载控制

N1=1.2Gk+1.4Qk=1.2×6×3.6×1.0+1.4×2.0×3.6×1.0=36kN 由永久荷载控制的组合:

N1=1.35Gk+0.7×1.4Qk=1.35×6×3.6×1.0+0.7×1.4×2.0×3.6×1.0 =36.22kN对2,3,4,5层,墙厚240mm,两侧采用40mm抹灰,计算高度3.3m自重标准值为:

5.24×3.3×1.0+0.04×20×3.3×1.0=19.93kN 设计值由可变荷载控制的组合:19.93×1.2=23.92kN 由永久荷载控制的组合:19.93×1.35=26.91kN 对一层,墙厚为240mm,计算高度4.0m,两侧采用40mm抹灰 自重标准值为:

5.24×4.0×1.0+0.04×20×4×1.0=24.16kN 设计值由可变荷载控制的组合:24.16×1.2=29kN 由永久荷载控制的组合:24.16×1.35=32.4kN 可变荷载控制的组合内力,第三层N=153.25kN第一层N=273.09kN永久荷载控制的组合内力第三层N=162.58kN第一层N=288.84kN 永久荷载控制的组合内力大于可变荷载控制的组合内力,故验算永久荷载控制的组合内力;

②承载力验算横向墙体由永久荷载控制时的承载力计算表 计算项目第三层第一层

N(kN) h(mm) H0 β=H0h A(mm) f(Nmm2) ϕAf(kN) ϕAfN162.582403.313.750.7762400001.69314.751288.842404.016.670.703240002.31389.74>1 上述承载力计算表明,墙体的承载力满足要求。 取楼梯间的横墙计算。 屋面梁支座反力设计值: 由可变荷载控制:

N1=1.2Gk+1.4Qk=1.2×(5.4×1.8×1.0+5.4×3.6×1.0)+1.4×(2×1.8×

1.0+2×3.6×1.0)=50.11kN 由永久荷载控制的组合:N1=1.35Gk+0.7×1.4Qk=1.35×(5.4×1.8×1.0+5.4×3.6×1.0

)

+0.7×1.4×

>(2.0×1.8×1.0+2.0×3.6×1.0)=49.95kN 楼面梁支座反力: 由可变荷载控制:

N1=1.2Gk+1.4Qk=1.2×(4.5×1.8×1.0+3.8×3.6×1.0)+1.4×(2.0×1.8×1.0+2.4×3.6×1.0)=41.98kN 由永久荷载控制的组合:

N1=1.35Gk+0.7×1.4×Qk=1.35×(4.5×1.8×1.0+3.8×3.6×1.0)+0.7×1.4×(2.0×1.8×1.0+2.4×3.6×1.0)=39.94kN 墙体及抹灰自重:

对2,3,4,5层,墙厚240mm,两侧采用40mm抹灰,计算高度3.3m自重标准值为:

5.24×3.3×1.0=17.29kN 设计值由可变荷载控制的组合:17.29×1.2=23.45kN 由永久荷载控制的组合:17.29×1.35=26.04kN 对一层,墙厚为240mm,计算高度4.0m,两侧采用40mm抹灰 自重标准值为:

5.24×4.0×1.0=20.96kN 设计值由可变荷载控制的组合:20.96×1.2=25.15kN 由永久荷载控制的组合:20.96×1.35=28.3kN 可变荷载控制的组合内力,第三层N=180.37kN第一层N=310.63kN 永久荷载控制的组合内力第三层N=181.93kN第一层N=313.91kN 永久荷载控制的组合内力大于可变荷载控制的组合内力,故验算永久荷载控制的组合内力;

②承载力验算横向墙体由永久荷载控制时的承载力计算表 计算项目第三层

181.93 240 3.3 13.75 0.776 240000

第一

层313.912404.016.670.703240000N(kN)h(mm)H0β=H0hϕA(mm) f(Nmm2) ϕAf(kN) ϕAfN1.69314.75>12.31389.74>1 上述承载力计算表明,墙体的承载力满足要求。

四、过梁,圈梁,挑梁,悬梁,板等构件布置及构造措施 1.窗过梁

根据本建筑的使用要求,采用钢筋砖过梁,故拱的跨度取1.5m,砖强度取Mu10,砂浆强度取M10.高度取240mm,钢筋砖地面砂浆层处的钢筋直径为6mm,间距为100mm,钢筋伸入支座砌体内的长度取240mm,砂浆层的厚度取35mm。过梁示意图如图3 所示: 图3.过梁示意图

作用在过梁上的荷载,因hw=0.6m>ln/3=1.5/3=0.5m 荷载设计值计算: (1)第一种组合

q=1.2×5.24×1.5/3=3.44kN/m (2)第二种组合

q=1.35×5.24×1.5/3=3.84kN/m 因此取q=3.84kN/m 弯矩M=1/8qln2=1/8×3.84×1.52=0.996kN.m 剪力V=1/2qln2=1/2×3.84×1.5=2.655kN 钢筋计算As=取hw=0.5mM996000==11.63mm2 0.85fyh00.85×210×480 选用3φ6(As=85mm2) 抗剪承载力验算

查表得弯曲抗拉,烧结普通砖fvo=0.17Mpa=170kN/m,则受弯构件的受剪承载V≤fv⋅b⋅z z——内力臂,当截面为矩形时,z=h h——过梁截面高度,取0.5m23 b⋅z⋅fv=0.24×2/3×0.5×170=13.6kN>V=2.655kN 2.门洞口过梁满足要求。

因hw=0.6m>ln/3=1.5/3=0.5m,取hw=0.5m,应计入由板传来的荷载荷载设计值计算:

梯形荷载化为等效均匀荷载 办公室楼面荷载:

g′=(1−2α2+α3)g a=6.3=3.152α=a3.15==0.438l7.2g=3.1kN⋅m2g1=(1−0.4382×2+0.4383)×3.4=2.38kN/m q1=(1−0.4382×2+0.4383)×2.4=1.68kN/m 走廊楼面荷载:

2.4a1.2a==1.2α===0.1672l7.2 g2=(1−0.1672×2+0.1673)×3.4=3.22kN/m q2=(1−0.1672×2+0.1673)×2.4=2.29kN/m g=g1+g2=2.38+3.22=5.60kN/m q=q1+q2=1.68+2.29=3.97kN/m (1)第一种组合

q=1.2×(5.24×0.5+5.60)+1.4×3.97=15.42kN/m (2)第二种组合

q=1.35×(5.24×0.5+5.60)+1.4×0.7×3.97=14.99kN/m因此取q=15.42kN/m 弯矩M=1/8qln2=1/8×15.42×1.02=1.93kN⋅m 剪力V=1/2qln=1/2×15.42×1.0=7.71kN

算As=M1930000==23.93mm2 0.85fyh00.85×210×480 选用3φ6(As=85mm2) 抗剪承载力验算

查表得fvo=0.17Mpa=170kN/m,则

b⋅z⋅fvo=0.24×2/3×0.5×170=13.6kN>V=7.07kN满足要求。 3.圈梁

为了满足建筑的整体稳定性,故应设置圈梁。

圈梁的设置位置:由于本建筑为多层办公楼建筑,且层数为5层,故应在底层和檐口标高处设置现浇钢筋混凝土圈梁,且至少应在所有纵横墙上隔层设置一道圈梁,圈梁设置时应符合现行的国家标准《建筑地基基础设计规范》(GB-50007-2002)的有关规定。

4.雨篷挑梁抗倾覆验算

雨篷的抗倾覆验算,挑出1.8m。挑梁选250mm×400mm。挑出1.8m.埋入2.45m。l1=2.15m≻2.2hb=2.2×0.4=0.88m x0=0.3h0=0.3×0.4=0.12m 雨篷以两根挑梁加雨篷板构成。

挑梁自重线荷载标准值gk=25×0.25×0.4=2.5kN/m 楼面均布荷载标准值:

3.61.8a==1.8α==0.3g2k′=3.4×3.6=12.24kN/m26 转化

载g2k=(1−2×α2+α3)g2k′=0.847×12.24=10.36kN/m楼面活荷载偏于安全考虑,不计入抗倾覆力矩。

雨篷板的恒荷载为4.0kN/m2,活荷载为3.0kN/m2 则雨篷作用在挑梁上的线荷载为: g1k=4×3.6=14.4kN/m 倾覆力矩:q1k=3×3.6=10.8kN/m Mov=1.2×[挑梁自重弯矩+雨篷板重弯矩]+1.4×雨篷活荷载弯矩 ⎡(1.8+0.12)2(1.8+0.12)2⎤(1.8+0.12)2 =1.2×⎢2.5×+14.4×⎥+1.4×10.8×222⎣⎦ =37.38+27.87=65.25kN⋅m 由于挑梁与砌体的共同工作,挑梁倾覆时将在其埋入端脚部砌体形成阶梯形斜裂缝。斜裂缝以上的砌体及作用在上面的楼(屋)盖荷载均可起到抗倾覆的作用。斜裂缝与竖轴夹角称为扩散角,可偏于安全地取45o。

这样,墙体的抗倾覆弯矩计算如下

墙体自重产生的抗倾覆弯矩分为三部分。 墙体净高取h=3.3−0.6−0.12=2.58m 第一部分挑梁上部墙体产生的弯矩 5.24×2.15×2.58×( 第二部分2.15−0.12)=27.76kN⋅m245o角范围内的矩形墙体产生的弯矩 2.15+2.15−0.12)=90.25kN⋅m25.24×2.15×2.58×( 第三部分45o以下的三角墙体产生的负弯矩

12−5.24××2.15×2.15×(×2.15+2.15−0.12)=−42.03kN⋅m23 综上墙体产生的抗倾覆弯矩

Mr=0.8∑Gr(l2−x0)=27.76+90.25−42.03=75.98kN⋅m 抗倾覆力矩:

Mr=0.8[楼面恒载的弯矩+挑梁自重的弯矩+墙体自重的弯矩] 22⎡⎤(2.15-0.12)(2.15-0.12)=0.8⎢9.45×+2.5×+75.98⎥22⎣⎦ =80.48kN⋅m Mr≻Mov,满足要求。

挑梁下砌体局部受压承载力验算 η=0.7,γ=1.25,f=2.31MPa,

A1=1.2bhb=1.2×240×300=86400mm2, 取Nl=2×R, R为挑梁的倾覆荷载设计值。

Nl=2×[1.2×(挑梁自重+雨篷板恒载)+1.4×雨篷板活载] 11⎤=73.73kN=2×⎡1.2×(25×0.25×0.4×1.92+×4×3.6×1.92)+1.4××3×1.92×3.6⎢⎥22⎣⎦

<ηγfAl=0.7×1.25×2.31×86400=174.64kN,满足要求。

五、基础设计

根据地质资料,取-1.100处作为基础底部标高,此时持力层经修正后的容许承载力q=240kN/m2。γ=20kN/m3。采用砖砌刚性条形基础,在砖砌基础下做250mm厚灰土垫层,灰土垫层抗压承载力qcs=250kN/m2。当不考虑风荷载作

用时,砌体结构的基础均为轴心受压基础。

(1)计算单元

对于纵墙基础,可取一个1m为计算单元,将屋盖、楼盖传来的荷载及墙体、门窗自重的总和,折算为沿纵墙每米长的均布荷载进行计算。由于永久组合的荷载值较大,起控制作用,故按永久组合来考虑。

1、基础尺寸的确定

基础顶面单位长度内轴压取楼梯间的首层Ⅱ截面荷载永久值F=313.91kN标准值Fk=261.59kN弯矩Mk=0 b≥F261.59==1.21m2 fa-γGd240-20×1.2 取该基础承重墙下条形基础宽度b=1.3m

2、验算地基承载力 Gk=γGAd=20×1.3×1.1=28.6kN Fk+Gk261.59+28.6==239.63kpaA1.2

11313.63pn•a12=××(0.6−0.12)2=27.82kN⋅m221.3 313.63V=Pnb=×(0.6−0.12)=125.56kN,1.3 确定基础高度h=400mm V125.56确定基础高度:h===163mm。0.7βhft0.7×1.0×1.10M= 20=350mm>163mm,满足2 配筋计算:AS=M/0.9fyh0=27.82×106/(0.9×210×350)=421mm2,实际基础有效高度h0=400−40−

选用φ10@150,AS=628mm2,分布钢筋选用φ8@250. 由于楼梯间荷载最大,故楼梯间基础尺寸能满足其他部位墙体的承载力要求,此房屋的基础均取b=1.3m,埋深1.1m的基础

参考文献:

1、刘立新.砌体结构(第3版).武汉理工大学出版社.2007

2、中华人民共和国国家标准.建筑抗震设计规范(GB50011-2001).中国建筑工业出版社.2001

3、中华人民共和国国家标准.混凝土结构设计规范(GB50010-2002).中国建筑工业出版社.2002

4、中华人民共和国国家标准.砌体结构设计规范(GB50003-2001).中国建筑工业出版社.2002

5、中南地区建筑标准设计协作组办公室.中南地区建筑标准设计建筑图集.中国建筑工业出版社.2005

墙体自重:

第二篇:砌体结构设计总结

砌体结构设计应注意的问题 1. 砌体结构应注明施工质量控制等级。

2. 多层砌体结构,在抗震设防地区,楼板面有高差时,其高差不应超过一个梁高(当错层楼盖高差不大于1/4层高且不大于700mm),超过时,应将错层当两个楼层计入房屋的总层数中。 当错层楼盖高差不大于1/4层高且不大于700mm,错层交界的墙体,除两侧楼盖处圈梁照常设置外,还应沿墙长每隔不大于2m增设一根墙中构造柱。 3. 在抗震设防区,多层砌体房屋墙上不应设转角窗。(对于剪力墙结构,b级高度的高层建筑不应在角部剪力墙上开设转角窗。抗震设计时,8度及8度以上设防区的高层建筑不宜在角部剪力墙上开设转角窗;必须设置时,应进行专门研究,并采取措施。见《全国民用建筑工程设计技术措施-结构》p220)

4. 底框(底部框架-抗震墙房屋)设计中要特别注意:a.上部的砌体抗震墙与底部的框架梁或抗震墙应对齐或基本对齐;b. 底框房屋的框架和抗震墙的抗震等级,

6、7度可

分别按

三、二级采用。

5. 托墙梁侧向腰筋不满足 《建筑抗震设计规范》gb50011-2001 7.5.4(3)条。即:沿梁高应设腰筋,数量不应少于2ф14,间距不应大于200mm。 6. 对小墙垛的强度和梁端支承处砌体的局压的计算重视不够。

7. 阳台挑梁有时与墙中的烟道矛盾。

8. 顶层挑梁有时为两层板荷载,不能选用标准层的挑梁。

9. 挑梁外露部分与墙内部分标高不同时应注意梁在折角处的宽度及钢筋的锚固。

10. 构造柱设计不符合《建筑抗震设计规范》的要求,较大洞口(内纵墙、横墙>=2m,外纵墙>=2.4m)两侧应设构造柱,特别要注意:(《建筑抗震设计规范》gb500011?2001第7.3.2.5条)房屋高度和层数接近限值时,纵、横墙内构造柱尚应符合下列要求:a.横墙内的构造柱间距不宜大于层高的二倍;下部1/3楼层的构造柱间距适当减小。b.当外纵墙开间大于3.9m时,应另设加强措施。内纵墙的构造柱间距不宜大于4.2m。(规范地7.3.2.5的“接近”是指达到《抗规》第7.1.2条表中限制的层数或差一层。) 11. 砌体房屋伸缩缝的间距超过《砌体结构设计规范》(gb50003?2001)的规定要求(特别还应注意蒸压灰砂砖、蒸压粉煤灰砖和混凝土砌块房屋应按表中数值乘以0.8的系数),且未采取有效措施。《砌体结构设计规范》第6.3.1-6.3.9条有许多防止或减轻

墙体开裂的措施。

12. 多层砌体住宅应设置不少于三道承重纵墙,每道纵墙还应沿各自轴线对齐、贯通。同一轴线上的窗间墙宜等宽,且房屋的局部尺寸宜满足《建筑抗震设计规范》(gb

50011?2001)第7.1.6条的要求。

13. 在冻胀地区,地面以下或防潮层以下的砌体,不宜采用多孔砖,如采用时,其孔洞应用水泥砂浆灌实。当采用混凝土砌块砌体时,其孔洞应采用强度等级不低于cb20的混凝土灌实。(《砌体结构设计规范》第6.2.2条 强条)。

14. 砌体结构挑梁埋入砌体的长度不满足规范要求。《砌体结构设计规范》gb50003?2001,既挑梁埋入砌体长度l1与挑出长度l之比宜大于1.2,当挑梁上无砌体

时,l1/l之比宜大于2。

15. 圈梁兼过梁时,过梁部分的钢筋应按计算用量另行增配。(《砌体结构设计规范》

gb50003?2001第7.1.5.4条。) 16. 采用已禁用的实心粘土砖。

17. 楼板计算时,砖混结构房间外墙(包括楼梯间墙)按固接计算不对,此处楼板边支

座应按铰接计算。

18. 砌体结构的大梁,应根据《砌体结构设计规范》gb50003?2001第6.2.5条设计。既: 当梁跨度大于或等于下列数值时,其支承处宜加设壁柱,或采用其他加强措施。

对240mm厚的砖墙为6m,对180mm厚的砖墙为4.8m;

对砌块、料石墙为4.8m。 19. 外凸窗台板抗倾覆不够问题:

20. 突出屋面的屋顶房间何时可按突出屋面的屋顶计算而不算做一层。

一般认为当出屋面的屋顶房间面积小于楼层总面积的30%时,该部分可按突出屋面的屋

顶间计算而不算做一层。

21. 多层砌体房屋不应采用砌体墙与现浇钢筋混凝土墙混合承重,如采用这种做法,属

于超规。

22. 若多层砌体房屋的层数低于《建筑抗震设计规范》gb 50011?2001表7.3.1的最低层数,如6度区层数为三层及以下的房屋,对于构造柱的设置规范不做要求。此时是否设置构造柱可由设计人员根据实际情况掌握。 23. 坡地上多层砌体房屋的层数和总高度计算有何要求?

高度、层数也应从低处算起,

第三篇:砌体结构设计任务书

一、 设计题目:

五层办公楼

二、 设计任务

1、办公楼的建筑设计

2、结方案选择

3、结构计算

4、抗震计算

5、楼梯设计

6、雨蓬设计

7、挑檐]设计

8、过梁设计

三、设计资料:

1、水文地质条件

地形:拟建场地地形平坦,其绝对标高546.67—547.43m,

地下水:根据钻孔实测结果,最高地下水位:538.12m,对水质进行取样分析表明,谁对混凝土无侵蚀作用 土层情况:

在该场地勘测深度内,均属第四系地层,地基不具有湿陷性.可不考虑地基土的液化问题地基土的承载力设计值如下: f=200kn/m2 ;

2、 气象条件:

该地区主导风向为东北风,基本风压W0=0.3kn/m2;基本雪压S0=0.3kn/m

3、 地震设防烈度8度近震

4、 其他条件:该工程说需预制构件及其他材料均可保证供应.水电供应有保

证.且有较强的施工力量及各种施工机械.可进行砖混、框架等结构施工

四、建筑设计要求: (1)、该办公楼面积不超过2400㎡,办公室一般开间3.6m,进深6m,走廊宽2.4m 层高3.6m,室内外高差0.45m ,(大会议室一间,不小于40m2,小会议室一间,不小于20m2。 (2)、材料及作法(由建筑设计确定) (3)、要求有平面图、立面图、剖面图、大样图。 (4)、明确办公室、卫生间、楼梯的位置,尺寸。

五、结构设计要求: (1)、墙体布置:结合建筑设计进行墙体布置,确定采用的承重方案,确定隔墙体厚度。 (2)、进行圈梁,构造柱布置。 (3)、进行结构平面布置。 (4)、墙体的强度验算。内墙厚240毫米,外墙厚370毫米,常采用双面抹灰。砖用MU10;砂浆用M5, (5)、墙高厚比验算。 (6)、抗震验算 (7)、楼梯的建筑结构设计 (8)、雨蓬设计 (9)、过梁设计

五、设计成果: (1)、计算书一份

计算书是记录学生计算过程的书面材料,能够判定学生课程设计正确与否。 (2)、图纸一套

图纸包括:平面布置图,结构图。

第四篇:砌体结构课程设计任务书

一、设计任务

学生先做出住宅楼或学生宿舍的建筑施工图,然后完成如下任务: 1.确定房屋的结构承重方案; 2.确定房屋的静力计算方案; 3.刚性方案多层房屋墙体设计; 4.墙或柱高厚比验算;

5.梁端下砌体的局部受压承载力验算; 6.过梁.挑梁设计计算;

7.掌握墙体设计中的构造要求,确定构造柱和圈梁的布置; 8.绘制结构平面布置图。

二、设计资料

某四层砖混结构住宅,各层建筑平面图依次见后图,层高均为3m。楼板除走廊及卫生间采用现浇钢筋混凝土板外,其余均采用预应力空心板,屋面采用现浇钢筋混凝土屋面。室内外高差0.45m,基础顶面距室内地面1.5m。砌体采用MU10粘土砖,M5混合砂浆砌筑。(见附图)

门窗洞口尺寸为:

M-1 1000×2400 M-2 1500×2700 C-1 1500×1800 C-2 1000×1800 1.地形:根据建筑设计部分提供的资料;

2.工程地质及水文资料:地层自上而下为: (1)填土层:厚度约为0.5m;

(2)粉质粘土:厚度约为 0.8m内为(fa130kPa); (3)其下为1.2m厚为粘土(fa220kPa);

(4)再下面是砾石层(fa355kPa)。

(5)基岩:表层中度风化。

(6)建筑区地层的承载力较高,地下水位埋深在地表下-8.00 m, 地下水对一般建筑材料无侵蚀作用;不考虑土的液化。

3.气象条件:主导风向为西南风,基本风压W0=0.40kN/m,地面粗糙度为B类;

4.抗震设防烈度:按7度设防,设计地震分组为第一组,建筑场地土类别为Ⅱ类,场地特征周期为0.35S,设计基本地震加速度值为0.10g; 5.材料供应及施工能力均能得到保证;

26.不上人屋面活荷载:0.5kN/m;上人屋面活荷载:2.0kN/m (标准值)。

(学生也可根据自己的实际资料进行设计)

三、设计要求

完成以上设计任务。最终成果为计算书一份,设计图纸(包括结构平面布置图、过梁、挑梁配筋图等)一套。

四、参考资料

1.《土木工程专业钢筋混凝土及砌体结构课程设计指南》.周俐俐,陈小川.北京:中国水利水电出版社、知识产权出版社,2006 2.《混凝土结构疑难释义附解题指导(第三版)》.沈蒲生、罗国强编著,中国建筑工业出版社,2003 3.《混凝土结构设计规范》(GB50010-2010).中国建筑工业出版社,2010; 4.《建筑结构荷载规范》(GB50009-2012).中国建筑工业出版社,2012; 5.《砌体结构设计规范》(GB50003-2012).中国建筑工业出版社,2012; 6.《建筑地基基础设计规范》(GB50007-2011).中国建筑工业出版社,2011; 7.《建筑抗震设计规范》(GB50011-2010).中国建筑工业出版社,2010; 8.《建筑制图标准》(GB/T 50104-2010).北京:中国建筑工业出版社,2010。

五、课程设计时间

理论课修完后进行,时间为一周。

六、成绩评分依据及标准

1、课程设计成果: (1)设计计算书 (2)设计图纸

2、课程设计评分依据和标准: (1)设计计算书,占总分的50%。 ① 优(90-100)

设计思路清晰,结构方案良好。设计参数选择正确,选择依据充分,设计计算内容完整,正确无误。设计计算书规范、完整,语言表达逻辑性强,书写清晰,有条理。设计态度端正。

② 良(80-89)

设计思路清晰,结构方案合理。设计参数选择正确,选择依据较充分,设计计算内容完整、正确。设计计算书规范、完整。语言表达逻辑性较强,书写清晰,有条理。设计态度端正。 ③ 中(70-79)

设计思路较清晰,结构方案基本合理。设计参数选择基本正确,主要参数的选择有依据。设计计算内容完整,有少量错误。设计计算书较规范,内容完整。语言表达有一定的逻辑22性,书写整齐。设计态度基本端正。 ④ 及格(60-69)

设计思路基本清晰,结构方案基本合理。主要设计参数选择正确。设计计算内容基本完整,有一些错误。设计计算书基本规范,内容基本完整,语言表达有一定的逻辑性,书写整齐。设计态度基本端正。 ⑤ 不及格(60以下)

设计思路不清晰,结构方案不合理。关键设计参数选择有错误。设计计算内容不完整,计算有明显错误。设计计算书不规范,内容不完整。设计态度不端正。 (2)设计图纸,占总分的50%。 ① 优(90-100)

设计图纸满足工程制图要求,表达内容满足课程设计要求,正确无误。图面整洁,布局合理。

② 良(80-89)

设计图纸能满足工程制图要求,表达内容能满足课程设计要求。图面较整洁,布局较好。 ③ 中(70-79)

设计图纸主要内容满足工程制图要求,表达内容满足课程设计要求。图面基本整洁。 ④ 及格(60-69)

设计图纸基本满足工程制图要求,表达内容基本满足课程设计要求。图画基本整洁。 ⑤ 不及格(60以下)

设计图纸基本满足工程制图要求,设计图纸表达内容不满足课程设计要求。

第五篇:四层建筑砌体结构课程设计实例

目录

一.结构方案

1. 主体结构设计方案 2. 墙体方案及布置

3. 多层砖混房屋的构造措施 二.

结构计算

1. 预制板的荷载计算与选型 2. 梁的计算与设计

(1) 计算单元及梁截面尺寸的确定 (2) 计算简图的确定 (3) 荷载设计值 (4) 内力计算 (5) 截面配筋计算

(6) 斜截面承载力计算 3. 墙体验算

(1) 墙体高厚比验算

① 静力计算方案的确定 ② 外纵墙高厚比验算 ③ 内纵墙高厚比验算 ④ 外纵墙高厚比验算 (2) 纵墙承载力计算

① 选定计算单元 ② 荷载计算 ③ 内力计算

④ 墙体承载力计算 ⑤ 砌体局部受压计算 (3) 横墙承载力计算

① 荷载计算 ② 承载力计算

4. 基础设计

(1) 计算单元

(2) 确定基础底面宽度

(3) 确定灰土垫层上砖基础底面宽度 (4) 根据容许宽高比确定基础高度

课程设计计算书

一、 结构方案

1.主体结构设计方案

该建筑物层数为四层,总高度为13.5m,层高3.6m<4m;房屋的高宽比13.5/13.5=1<2;体形简单,室内要求空间小,横墙较多,所以采用砖混结构能基本符合规范要求。

2.

墙体方案及布置

(1) 变形缝:由建筑设计知道该建筑物的总长度32.64m<60m,可不设伸缩缝。工程地质资料表明:场地土质比较均匀,领近无建筑物,没有较大差异的荷载等,可不设沉降缝;根据《建筑抗震设计规范》可不设防震缝。

(2) 墙体布置:应当优先考虑横墙承重方案,以增强结构的横向刚度。大房间梁支撑在内外纵墙上,为纵墙承重。纵墙布置较为对称,平面上前后左右拉通;竖向上下连续对齐,减少偏心;同一轴线上的窗间墙都比较均匀。个别不满足要求的局部尺寸,以设置构造拄后,可适当放宽。根据上述分析,采用以横墙承重为主的结构布置方案是合理的。

(3) 墙厚(初拟底层外墙厚为370mm,其余墙厚为240mm)。

3. 多层砖混房屋的构造措施

(1) 构造柱的设置:构造柱的设置见图。除此以外,构造柱的根部与地圈梁连接,不再另设基础。在柱的上下端500mm范围内加密箍筋为φ6@150。构造柱的做法是:将墙先砌成大马牙槎(五皮砖设一槎),后浇构造柱的混凝土。混凝土强度等级采用C20。具体做法见详图。

(2) 圈梁设置:各层、屋面、基础上面均设置圈梁。横墙圈梁设在板底,纵墙圈梁下表面与横墙圈梁底表面齐平,上表面与板面齐平或与横墙表面齐平。当圈梁遇窗洞口时,可兼过梁,但需另设置过梁所需要的钢筋。

二、结构计算

1. 预制板的荷载计算与选型

楼面地砖:20×0.04=0.8KN/m

2板自重:2 .0kN/m2 (D=80mm)

15mm混合砂浆天棚抹灰:0.15×2=0.3 KN/m

2 Gk= 0.8+2.0+0.3 = 3.1 KN/m2,

Qk=2.00 KN/m2

6YKB36—2=3.46>3.1

5YKB36—2=3.61>3.1 6YKB30—2=5.52>3.1

5YKB30—2=5.74>3.1 6YKB24—1=5.30>3.1

5YKB324—1=5.22>3.1 楼盖布置见详图

2. 梁的计算与设计

混凝土采用

C20,fc= 9.6 N/mm

2;钢材采用Ⅱ级钢,fy300N/mm2fy

⑴ 计算单元及梁截面尺寸的确定

1111h(—)l= (—)×6000=750—500mm 812812取h=500mm。 11b=(—)h=250~167mm 23取b=250mm。 ⑵ 计算简图的确定

计算跨度:

60l = l0+a=(6000-240)+240=6000mm

l= 1.05l0=1.05×(6000-240)=6048mm

取小值 l= 6000mm。 ⑶ 荷载设计值

板传来的恒载标准值:3.1×3.6=11.16KN/m

板传来的活载标准值:2.0×3.6=7.2 KN/m

梁自重标准值:0.25×0.5×25+0.02×0.25×20+0.02×0.5×20×2=3.625 KN/m

设计值:(11.16+3.625)×1.2+7.2×1.4=27.822 KN/m ⑷ 内力计算

1

1 Mmax(pq)l2×27.822×62=125.20KNm

8811

Vmax(pq)l×27.822×5.76=80.13KN 22

⑸ 截面配筋计算

HRB335, fy=300N/mm2,asas35mm

M125. 20106

s0.241〈smax0.399

1fcbh01.09.62504652按单筋底面计算:

ξ=1-12s1120.2410.28

由 1fcbξh0= fyAs

As1fcbh0fy1.09.62500.284651041.6mm2

300选筋3Φ21(1039mm2)

As1039。 0.9%min0.2%(满足要求)bh0250465⑹ 斜截面承载能力计算

HRB335, fc= 9.6 N/mm2,ft=1.10 N/mm2 ①复核截面尺寸:

h04651.864.0,属一般梁 b2500.25cfcbh00.251.09.6250465279000N279KN80KN

∴截面尺寸符合要求。 ② 判断是否按计算配置腹筋

Vc0.7ftbh00.71.1025046589.512KNVmax80.13KN ∴不需配置腹筋

配置箍筋 Φ6,s=300mm; 架立筋 2Φ10 配箍率:svnAsv1bs250.30.134%svmin0.125%

250300所以箍筋间距符合要求。 设置架立筋 2Φ10 3. 墙体验算

(1)墙体高厚比验算

① 静力计算方案的确定:因横墙间距s=2×3.6=7.2m,楼(屋)盖为装配式钢筋砼楼(屋)盖,故房屋的静力计算方案为刚性方案。

② 外纵墙高厚比验算

墙体的计算高度,底层:H0底4.9m 。其他楼层,墙计算高度H03.0m,墙厚0.24m,承重墙取 1 1.0。

有窗户的墙允许高厚比 :210.4bs1.810.40.76 ; s3.0[β]允许高厚比,查表得:M10, M7.5时,[β]=26。

底层高厚比验算:

4.913.212[]1.00.76 2619.76(满足);

0.37

三层高厚比验算:

3.61512[]1.00.76 2619.76(满足);

0.24③ 内纵墙高厚比验算

墙体的计算高度,底层:H0底3.60.54.1m

4.111.0812[]1.00.76 2619.76(满足); 0.37④横墙高厚比验算

内横墙:一层 H04.1017.08[]26 h0.24H03.6012.5[]26 h0.2

4三层 

外横墙:一层 H04.913.2[]26

h0.37H03.6012.5[]26

h0.24

三层 

故满足要求。

(2)纵墙的承载力验算

①选定计算单元

在房屋层数、墙体所采用材料种类、材料强度、楼面(屋面)荷载均相同的情况下,外纵墙最不利计算位置可根据墙体的负载面积与其截面面积的比值来判别。

最不利窗间墙垛的选择

墙垛长度l/mm 1800 负载面积A/m2

A/l

3.6×2.85

② 荷载计算

屋盖荷载

35mm厚配筋细石混凝土板

0.88KNm

2顺水方向砌120mm厚180mm高的条砖

0.82KNm2

三毡四油沥青防水卷材,铺撒绿豆砂

0.4KNm2

40mm厚防水珍珠岩

0.16KNm2

20mm厚1:2:5水泥砂浆找平层

0.40KNm2

预应力混凝土空心板110mm

2.0KNm2

15mm厚板底抹灰

0.3KNm2

4.96KNm2

屋面活荷载标准值

2.0KNm2

梁及梁上抹灰:25×0.5×0.25×2.85+20×(0.02×0.25+2×0.5×0.02)×2.85=10.331KN

基本风压为0.45KNm2< 0.7KNm2,故不考虑风荷载影响。

由《荷载规范》,雪荷载1.0

SkSv1.00.30.7KNm2, 故取0.7KNm2。

设计值: 由可变荷载控制:

N11.2Gk1.4Qk=1.2×(10.331+4.96×3.6×3.0)+1.4×2×3.6×2.85 =102.19KN

由永久荷载控制:

N11.35Gk1.0Qk= 1.35×(10.331+4.96×3.6×3.0)+1.0×2×3.6×2.85 =103.17KN 楼面荷载

大理石面层

0.42KNm2

20mm厚水泥砂浆找平层

0.40KNm2

预应力混凝土空心板110mm

1.8KNm2

15mm厚板底抹灰

0.3KNm2

3.12KNm2

梁及梁上抹灰

10.331KN

活载

2.0KNm2

设计值:

由可变荷载控制:N11.2Gk1.4Qk=1.2×(10.331+3.12×3.6×2.85) +1.4×2×3.6×2.85 =79.54KN。

由永久荷载控制:N11.35Gk1.0Qk= 1.35×(10.331+3.12×3.6×2.85) +1.0×2×3.6×2.85=77.68KN。

墙体自重

女儿墙重(厚240mm,高900mm),两面抹灰40mm。

其标准值为:

N= 19×3.6×0.24×0.9+20×3.6×0.04×0.9 = 17.4KN 设计值: 由可变荷载控制:

17.4×1.2 = 20.9KN。

由永久荷载控制:

17.4×1.35=23.5KN。

计算每层墙体自重时,应扣除窗口面积,加上窗自重,考虑抹灰

对2,3,4层,墙体厚度为240mm,计算高度3.6m,其自重标准值为:

0.24×(3.0×3.0-1.8×1.8)×19+0.04×(3.0×3.0-1.8×1.8)×20+1.8×1.8×0.3=31.8KN 设计值: 由可变荷载控制: 31.8×1.2=38.2KN 由永久荷载控制: 31.8×1.35=42.93KN 对1层,墙体厚度为370mm,底层楼层高度为4.9m, 其自重标准值为: 0.37×(3.6×3.6-1.8×1.8)×19+0.04×(4.9×3.6-1.8×1.8)×20+1.8×1.8×0.3=80.82KN 设计值: 由可变荷载控制:

80.82×1.2 =96.98KN

由永久荷载控制:

80.82×1.35=109.11KN ③内力计算

屋面及楼面梁的有效支承长度a010bf 一, 二层M10,f=1.89N/mm2

a0105001.89162.65mm240mm,取a0=163mm。 三,四层 M7.5 f=1.69 N/mm2

a0105001.69172.01mm240mm,取a0=172mm

纵向墙体的计算简图

由可变荷载控制的纵向墙体内力计算表

楼上层传荷

本层楼盖荷载

截面Ⅰ—Ⅰ

NM u(KN) e2(mm) Nl(KN) a0(mm) e1(mm)

(KNm) NⅠ(KN) 3 306.86 0 83.47 172 51.2 4.3 390.33 2 454.03 0 83.47 163 54.8 4.6 537.5 1 601.2 65

83.47

163

119.8

49.1

684.67 表中

NⅠ=Nu+Nl

M =Nu·e2+Nl·e1(负值表示方向相反)

NⅣ=NⅠ+Nw(墙重)

截面Ⅳ—Ⅳ

NⅣ(KN)

454.03 601.2 809.27 eh0.4a0(h为支承墙的厚度) 2

由永久荷载控制的纵向墙体内力计算表

上层传荷

楼层 3 2 1

本层楼盖荷载

截面Ⅰ-Ⅰ M

NⅠ(KN)

(KNm) 4.2 4.5 51.3

410.00 563.18 716.36

截面Ⅳ—Ⅳ

Nu(KN) e2(mm) Nl(KN) a0(mm) e1(mm) 328.52 481.7 601.2 0 0 65

81.48 81.48 81.48

172 163 163

51.2 54.8 119.8

NⅣ(KN)

481.70 634.88 856.56

④ 墙体承载力计算

该建筑物的静力计算方案为刚性方案,因此静力计算可以不考虑风荷载的影响,仅考虑竖向荷载。在进行墙体强度验算时,应该对危险截面进行计算,即内力较大的截面;断面削弱的截面;材料强度改变的截面。所以应对荷载最大的底层墙体进行验算(370mm墙);二层荷载虽比底层小,但截面变小(240mm墙);三层与二层比较,荷载更小,但砌体强度较小(一,二层用M10砂浆,三层用M7.5砂砌筑);四层的荷载比三层小,截面及砌体强度与三层相同。所以应对一,二,三层的墙体进行强度验算。

对于每层墙体,纵墙应取墙顶Ⅰ-Ⅰ截面以及墙底Ⅳ—Ⅳ截面进行强度验算。

纵向墙体由可变荷载控制时的承载力计算表

计算项目 M(KNm) N(KN)

第三层

Ⅰ-Ⅰ截Ⅳ—Ⅳ截面 面 4.3 0 390.33 454.03 11.0 240 0.046 3.6 15 0.6446 432000 10

0 240 0 3.6 15 0.745 432000 10

第二层

Ⅰ-Ⅰ截Ⅳ—Ⅳ截

面 面 4.6 0 537.5 601.2 8.6 240 0.036 3.6 15 0.6686 432000 10

0 240 0 3.6 15 0.745 432000 10

第一层

Ⅰ-Ⅰ截Ⅳ—Ⅳ截面 面 49.1 0 684.67 809.27 71.7 370 0.194 4.9 20.42 0.4347 666000 10

0 370 0 4.9 20.42 0.8125 666000 10 eM(mm) Nh(mm) e hH0

H0h

φ A(mm) 砖MU 2砂浆 M f(N/mm) φA f(KN) 27.5 1.69 490.6 >1

7.5 1.69 543.9 >1

10 1.89 545.9 ≈1

10 1.89 608.3 ≈1

10 1.89 547.2 <1

10 1.89 1022.7 >1 φA fN

计算项目 M(KNm) N(KN) 纵向墙体由永久荷载控制时的承载力计算表

第三层

Ⅳ—Ⅳ截Ⅰ-Ⅰ截面

4.2 0 410.00 481.7 10.2 240 0.043 3.6 15 0.6518 432000 10 7.5 1.69 475.9 >1

0 240 0 3.6 15 0.745 432000 10 7.5 1.69 543.9 >1

第二层

Ⅰ-Ⅰ截Ⅳ—Ⅳ截面 面 4.5 0 563.18 634.88 8.0 240 0.033 3.6 15 0.6758 432000 10 10 1.89 551.8 ≈1

0 240 0 3.6 15 0.745 432000 10 10 1.89 608.3 ≈1

第一层

Ⅰ-Ⅰ截Ⅳ—Ⅳ截面 面 51.3 0 716.36 856.56 71.6 370 0.194 4.9 20.42 0.4347 666000 10 10 1.89 547.2 <1

0 370 0 4.9 20.42 0.8125 666000 10 10 1.89 1022.7 >1 eM(mm) Nh(mm) e hH0

H0h

φ A(mm) 砖MU 砂浆 M f(N/mm) φA f(KN) 22φA fN

由上表可以看出,计算墙体在房屋的底层不满足承载力要求,说明本设计的墙体截面偏小或选用的材料强度等级过低。所以可以提高墙体的材料等级或采用网状配筋来提高局部墙体的承载力。 ⑤ 砌体局部受压计算

以上述窗间墙第一层墙垛为例,墙垛截面为370mm×1800mm,混凝土梁截面为250mm×500mm,支承长度240mm..

根据内力计算,当由可变荷载控制时,本层梁的支座反力为Nl=83.47KN,Nu=454.03KN

当由永久荷载控制时,本层梁的支座反力为Nl=81.48KN,Nu=481.7KN a0= 163mm<240mm Al=a0b =163×250=40750mm2

A0h(2hb)=370×(2×370+250)=366300 mm2 r10.35A0366300110.3511.9892.0Al40750

0Nu4817000.72MPa;N00Al=0.72×40750 = 29.47KN A1800370验证 ΨN0+Nl≤ηγAlf

A03663009.03, 所以Ψ=0; Al40750压应力图形完整系数η=0.7 ηγAlf=0.7×1.989×40750×1.89 = 107.23KN>Nl=83.47KN(安全)。

(3) 横墙的承载力验算

① 荷载计算

对于楼面荷载较小,横墙的计算不考虑一侧无活荷载时的偏心受力情况,按两侧均匀布置活荷载的轴心受压构件取1m宽横墙进行承载力验算。计算单元见详图。 屋盖荷载设计值: 由可变荷载控制:

N11.2Gk1.4Qk=1.2×4.96×3.6×1.0+1.4×2×3.6×1.0=52.93KN 由永久荷载控制的组合:

N11.35Gk1.0Qk=1.35×4.96×3.6×1.0+1.0×2×3.6×1.0=30.41KN 楼面荷载:

由可变荷载控制

N11.2Gk1.4Qk=1.2×3.12×3.6×1.0+1.4×2×3.6×1.0=44.99KN 由永久荷载控制的组合:

N11.35Gk1.0Qk=1.35×3.12×3.6×1.0+1.0×2×3.6×1.0=22.36KN 墙体自重:

对2,3,4层,墙厚240mm,两侧采用20mm抹灰,计算高度3.6m 自重标准值为:

0.24×19×3.0×1.0+0.04×20×.6×1.0=18.48KN 设计值

由可变荷载控制的组合:18.48×1.2=22.18KN

由永久荷载控制的组合:18.48×1.35=24.95KN 对一层,墙厚为370mm,计算高度4.9m, 两侧采用20mm抹灰 自重标准值为:

0.37×19×4.9×1.0+0.04×20×4.9×1.0=38.367KN 设计值

由可变荷载控制的组合:38.367×1.2=46.04KN

由永久荷载控制的组合:38.367×1.35=51.80KN ②承载力验算

横向墙体由可变荷载控制时的承载力计算表

计算项目 N(KN) h (mm)

第三层 137.1 240 3.6 15 0.745 240000 1.69 302.2 >1

第一层 230.36 240 4.9 20.42 0.6475 240000 1.89 293.7 >1 H0

H0h

φ A(mm) 2f (N/mm) φA f(KN) 2φA fN

横向墙体由永久荷载控制时的承载力计算表

计算项目 N(KN) h (mm)

第三层 144.5 240 3.6 15 0.745 240000 1.69 302.2

第一层 241.14 240 4.9 20.42 0.6475 240000 1.89 293.7 H0

H0h

φ A(mm) 2f (N/mm) φA f(KN) 2φA fN

>1 >1 上述承载力计算表明,墙体的承载力满足要求。

4. 基础设计

根据地质资料,取-2.000处作为基础底部标高,此时持力层经修正后的容许承载力q=200 kN/m2。r=20kN/m3。采用砖砌刚性条形基础,在砖砌基础下做250mm厚灰土垫层,灰土垫层抗压承载力qcs=250 kN/m2。当不考虑风荷载作用时,砌体结构的基础均为轴心受压基础。 (1)计算单元

对于纵墙基础,可取一个开间s1为计算单元,将屋盖、楼盖传来的荷载及墙体、门窗自重的总和,折算为沿纵墙每米长的均布荷载进行计算。由于永久组合的荷载值较大,起控制作用,故按永久组合来考虑。 Nk=691.64kN÷3.0m=230.55 kN/m (2)确定基础底面宽度

b≥ =(198.68kN/m)/(200 kN/m2)-(20 kN/m2)×2.0m=1.24m 取b=1.30m (3)确定灰土垫层上砖基础底面宽度

b≥ =(198.68kN/m)/(250 kN/m2)-(20 kN/m2)×2.0m=0.946m 取b=0.96m (4)根据容许宽高比确定基础高度

查表得砖砌基础的宽高比为1:1.5,考虑砖的规格确定基础高度。 砖砌基础高度b/h=1:1.5,h=(960-240)/2×1.5=540mm。

参考文献

(1)《混凝土结构设计规范》(GB 50010—2002),中国建筑工业出版社,2002。 (2)《建筑结构荷载规范》(GB 50009—2001),中国建筑工业出版社,2002。 (3)《砌体结构设计规范》(GB 50003—2001),中国建筑工业出版社,2002。 (4)《建筑地基基础设计规范》(GB 50007—2002),中国建筑工业出版社,2002。 (5)《建筑抗震设计规范》(GB 50011—2001),中国建筑工业出版社,2002。 (6)《建筑结构制图标准》(GB/T 50105—2001),中国建筑工业出版社,2002。

附录

附:

1. 建筑平面施工图2. 建筑剖面图 3. 基础施工图

两张 一张 一张

致谢

感谢敬爱的刘嫄春老师,她循循善诱的教导和不拘一格的思路给予我前进的方向。

感谢我的室友们,是我们之间的共同努力造就了我们的今天的成果。

在这个时候,我很高兴,从开始进入课题到课程设计的顺利完成,有多少可敬的师长、同学给了我无言的帮助,在这里请接受我诚挚的谢意!谢谢你们!

上一篇:墙体砌筑进度措施下一篇:浅谈会展营销策略