城市轨道交通发展特点

2024-05-07

城市轨道交通发展特点(共6篇)

篇1:城市轨道交通发展特点

城市轨道交通轨道结构特点有什么?

(1)为保护城市环境,对噪声控制要求较高,除了车辆结构采取减振措施,必要时修筑声屏障外,轨道也应采用相应的减振轨道结构,

(2)轨道交通行车密度大,运营时间长,留给轨道维修作业的时间很短,因而一般采用较强的轨道部件,

近年新建轨道交通系统的浅埋隧道和高架桥结构,基本采用无碴道床等少维修轨道结构。

(3)轨道交通车辆一般采用电力牵引,以走行轨作为供电回路。为减小因漏泄电流而造成周围金属设施的腐蚀,要求钢轨与轨下基础有较高的绝缘性能。

(4)受原有街道和建筑物所限,城市轨道交通曲线区段占很大比重,曲线半径一般比常规铁路小得多。在正线半径小于400m的曲线地段,应采用全长淬火钢轨或耐磨钢轨。钢轨铺设前应进行预弯,运营时钢轨应进行涂油以减少磨耗。

篇2:城市轨道交通发展特点

我国城市轨道交通才刚起步, 它是一项事关重大的系统工程, 所以必须提到战略高度, 超常规发展。

1.首先应有明确的战略目标, 国外许多城市的轨道交通已成为城市交通的骨干, 承担的客运量占到整个城市客运量的50 %~80 % , 已成为人们上下班、上下学甚至购物的主要交通工具。据专家建议, 我国大城市轨道交通发展的战略目标为, 用30 年到50 年时间, 建成覆盖我国主要大城市现代化轨道交通网。包括地铁、轻轨在内的轨道交通里程争取达到2000 公里以上。使城市人口500 万以上的特大城市轨道交通承担的客运量达到城市总客运量的50 % 以上, 个别争取达到80 % 左右。为此, 我国每年需建成40~70 公里的地铁或轻轨。

2.实现轨道交通技术装备国产化对轨道交通发展至关重要,它可以大幅度降低轨道交通的造价,有利于制定统一的技术规范和产品标准,同时,轨道交通这个新产业也将会增加许多就业机会,成为我国一个新的经济增长点。

3.与此同时, 应充分发挥市郊铁路在城市交通中的重要作用。大城市的市郊铁路不但具有城市地铁、轻轨交通的所有优势, 而且其工程造价相对比较低廉, 对其进行技术改造后, 对发展大城市轨道交通更具有现实的意义。

4.此外, 轨道交通应与城市道路交通协调发展。轨道交通是城市交通的骨干, 但必须与城市公共交通, 私人交通相配合, 形成城市现代化立体交通体系, 才能解决城市交通问题。

篇3:城市轨道交通发展特点

轨道交通系统具有运量大、速度快、安全、准点、保护环境、节约能源和用地等特点。世界各国普遍认识到:解决城市的交通问题的根本出路在于优先发展以轨道交通为骨干的城市公共交通系统。国内轨道交通近年来发展迅速, 截止2013年末, 我国累计有19个城市建成投运城市轨道线路87条, 运营里程2 539 km。贵阳市作为西南山区典型城市, 受到地形的制约, 城市拥堵情况相当严重, 对于修建该城市的第一条轨道交通线路的要求也就更为迫切。笔者参与了贵阳市轨道交通1号线的各设计阶段及配合施工, 本文通过1号线桥梁的设计、施工特点的分析, 为今后贵阳地区轨道交通桥梁提供参考经验。

1 工程概况

贵阳市轨道交通1号线工程起自观山湖区, 沿线经林城路、210国道、贵阳北站、雅关、蛮坡、安云路、合群路、公园路、贵阳火车站、朝阳洞路、珠江路, 止于经济开发区场坝村站, 全长33.6 km。线路总体呈南北走向, 沿线共设置车站24座。其中, 高架桥分布于全线的6个区间, 高架段总长3.13 km, 占全线总长的9.31%。

2 桥梁形式的选择

1) 梁型的选择。区间桥梁标准梁型的选择, 应结合城市规划、地形、水文地质、施工方式、地下管线、景观, 按照安全、经济、美观的原则而确定。国内已建和在建的轨道交通高架线中, 部分主要城市的轨道交通高架桥梁梁部结构形式见表1。

从表1中可以看出, 国内轨道交通桥梁的跨径通常在25~35 m, 梁部截面以箱型截面为主, 少数采用槽型梁, 结构体系多采用简支梁。

(1) 桥梁跨度的经济性分析:贵阳市轨道交通采用B型车, 按照此标准以深圳3号线一段长1 km的高架线段落, 分别布置25、30、35 m简支梁, 并做同精度的上、下部结构及基础的设计, 统计其工程量, 并作经济比较分析, 见表2。

从表2可见, 25 m跨度梁部较30 m梁部小一些, 但下部结构和基础比30 m梁部要大;35 m跨度下部结构和基础比30 m要小一些, 但梁部较30 m梁部要大。因此, 贵阳轨道交通1号线区间采用30 m作为典型桥跨最为经济。

(2) 桥梁截面的选择:由表1可知, 国内轨道交通高架梁部大多采用箱型截面。箱型梁为封闭式截面, 具有受力性能好、整体抗扭刚度大、动力稳定性能好的特点, 在经常受到偏载作用的轨道交通高架桥上尤为突出。其次, 箱梁外观简洁, 广泛使用于区间直线、曲线段、道岔区。T型梁抗弯性能好, 梁圬工方量较少, 便于预制吊装;但T梁横向间需要采用横隔板、横向预应力筋和湿接缝将梁体连接为整体, 施工相对繁琐, 整体性能较差, 且景观效果不如箱梁。槽型梁为下承式结构, 该类梁体最大的优势在于轨顶至梁底的高度小, 在高架跨越城市道路时, 可以最大限度地减小桥梁尺寸以增加桥下净空, 同时, 槽型梁梁体有隔音作用, 对于穿越居民区的桥梁可以兼有声屏障作用;但槽型梁为开口截面, 抗扭性能较差, 且混凝土大多集中在受拉区域, 经济性能较差。

可见, 贵阳市轨道交通1号线高架桥中采用箱型梁, 在施工、经济性及景观效果上均有一定优势。

(3) 结构体系的选择:简支梁受力简单明确, 被国内轨道交通广泛采用。简支梁的设计和施工经验比较成熟, 适用于现浇、整孔预制吊装及预制拼装等施工方式, 可标准化、工厂化、机械化施工, 易控制质量, 缩短施工工期, 建成后维护相对简单统一。从结构体系上看, 简支梁也对无缝线路长钢轨纵向力适应性更好。

连续梁与简支梁相比, 具有更好的动力性能, 可改善行车的舒适性和降低噪音;由于连续梁受到纵向力的影响, 固定墩尺寸需适当加大, 从而对整个桥梁景观有所影响, 若一般桥墩均按照固定墩设计, 往往又造成工程的浪费。

连续梁构造上较为复杂, 施工难度较大, 施工时往往采用现浇施工, 对城市交通也有一定的影响, 建成后支座维护和更换相对较为困难。

在贵阳轨道交通1号线, 一般区间采用简支梁, 受到道路、地形控制地段及道岔区采用连续梁结构。

2) 墩型的选择。轨道交通高架桥大多位于市区, 沿线有大型商业区及规划的大型住宅区, 对景观要求都比较高, 不适合做尺寸较大的圬工构件, 但是现行GB50157-2013《地铁设计规范》中对高架桥梁的桥墩墩顶纵向水平线刚度有一定要求。因此, 在桥墩设计时结合景观及规范要求共同确定桥墩类型及尺寸。国内轨道交通高架线中, 桥墩类型多采用单柱墩和双柱式桥墩。单柱式桥墩外形简洁, 墩顶以下一定长度设置圆弧变化段, 可形成花瓣形, 与城市环境较为匹配;双柱式桥墩相比单柱式桥墩墩身尺寸较小, 具有经济性能优势, 但桥墩横向占地较大, 墩顶需要设置盖梁连接, 景观性也不如单柱式墩通透。

3) 基础形式的选择。贵阳市轨道交通1号线桥梁所处地区地质情况复杂, 高架段分布于线路起点、中段及终点。其中, 工程起点附近高架位于于城区北面观山湖区, 该段岩溶发育极为强烈, 地下水位高, 部分地段下伏较厚层的软基, 桥梁采用了钻孔桩基础, 桩端嵌入完成中风化岩层, 成孔时遇到较大溶洞时采用钢套筒下底处理。城区中段及工程终点附近高架区段地质条件相对起点段好, 但是桥基下伏持力层多为软质泥岩, 且中风化岩层以上覆盖土层或强风化岩层较厚, 一般在5 m以上, 综合考虑泥岩遇水易软化, 桩端极限抗压强度值小的特点, 该段桥梁基础采用了钻孔桩, 为充分利用桩周摩阻, 尽量采用小桩径桩基。

3 上部结构施工方式的选择

1) 支架现浇法。国内外轨道交通桥梁施工中广泛运用此法, 支架现浇法最大优势在于能在全线各个工作面内开展, 施工进度快。此法的缺点也比较明显, 即现场占地大, 对现在繁忙的城市交通和环境有较大的影响, 另外, 对于较高的桥梁 (h≥25 m) 此法也不适用。

2) 移动模架法。移动模架造桥机是一种自带模板, 利用墩台作为支承, 对桥梁进行现场浇筑的施工机械。该工法施工质量好, 施工操作简便, 在桥梁较长时施工成本较低, 适应于一般区间标准梁。此法的缺点有:对于较大跨度的连续梁此法的经济性较差, 当桥梁进出车站桥宽变化较大时, 需要拆除和重新安装模架, 比较费时费工, 另外, 移动模架法不适用于位于小半径曲线 (R≤500 m) 的桥梁。

3) 节段拼装法。节段预制拼装法是桥梁梁体先分节段预制, 然后分节段拼装的施工方法。这种工法具有节省工期, 不需要支架, 外观质量优良, 现场运送架设方便等诸多优点。该工法对工厂预制节段精度要求极高, 在国际上该法已普遍采用, 但在国内大范围采用还需进一步发展。

4) 整孔预制法。整孔预制梁在国内外轨道交通桥梁中也是被广泛运用, 该工法梁部工厂预制, 能最大限度地保证梁部施工质量, 在施工工期也有很大的优势。缺点在于:需要较大的制梁场地, 对桥梁所处平面线型要求较高。

贵阳轨道交通1号线高架梁部共计102孔, 桥梁梁型众多且分布范围广, 绝大部分桥梁位于人员较少的郊区。因此, 区间一般桥梁梁部施工均采用满堂支架现浇法, 部分连续梁和刚构采用悬臂挂篮法施工。

4 与各专业接口问题

轨道交通桥梁与各专业的接口较多, 设计和施工都需予以足够重视, 以避免运营过程中的各类问题。主要的接口有:

1) 防雷接地。桥梁桥墩主筋、桩基主筋分别与承台顶、底缘主筋进行焊接。地面以上50 cm引出接地端子板用以接地, 墩顶以上50 cm引出接地端子板用以与梁体主筋做可靠连接。

2) 轨道承轨台。轨道交通区间全线采用无碴道床, 高架桥梁部浇筑前应按照轨道专业要求于桥面埋设承轨台预埋钢筋。

3) 接触网基础。全线高架按照桥跨布置要求于桥面设置了接触网中间柱、锚柱、拉线基础和硬横跨支柱。结合全线接触网的形式, 支柱位置又分为了设于桥面中央和桥面两侧两种类别。

4) 疏散平台和声屏障。区间高架全段内均设置疏散平台, 疏散平台需于桥面内预埋钢板和钢筋。高架经过环境敏感带需设置全封闭式声屏障, 声屏障需预埋U型螺栓于梁体内。

篇4:城市轨道交通发展特点

本论文以城市轨道交通项目的免税政策变化和国产化率发展为研究目标,通过研究国家免税政策的不同变化阶段、不同办理方法,以及各阶段国产化率的变化,探讨城市轨道交通发展(以国产化率为指标)与免税政策变化之间的关系,以了解城市轨道交通行业免税政策的发展方向,以及存在的意义,以及对于国产化率的影响。结论:国产化率的提高必然导致进口设备的减少,需要享受免税进口设备范围也相应减小;而免税进口设备范围的减少同样促进国内城市轨道交通项目业主使用国内自主生产的产品,有助于国产化率的提高。但是由于现阶段国内生产企业的技术尚未达到能够完全国产化的能力,部分核心设备仍需进口,因而免税政策在一段时间内仍然需要存在。但在不久的将来,国内生产企业将会完全消化吸收国外先进技术并研发出自有的先进技术设备,则对城市轨道交通行业的免税扶植政策会取消。

【关键词】城市轨道交通;国产化率;免税政策

一、绪论

20世纪90年代以来,为了改善城市环境,减少空气污染,提高人民生活质量,大中型城市相继提出建设轨道交通项目。但城市轨道交通项目建设周期长、投资大,很多设备主要依靠进口,价格昂贵,致使建设造价畸高,地方财力难以承受,严重地制约了城市轨道交通产业的发展。在此背景下,国家计委会同铁道部、建设部、信息产业部、国家机械工业局等进行调查研究,结合城市经济发展水平、国内制造业的现状以及部分拟建设轨道交通项目城市的具体情况,提出城市轨道交通设备国产化实施意见,即“城市轨道交通项目,无论使用何种建设资金,其全部轨道车辆和机电设备的平均国产化率要确保不低于70%”,从生产研发、技术转让、国家鼓励等各个层面上促进城市轨道交通项目的国产化,以降低城市轨道交通项目的成本,促进国内企业的生产制造。基于国产化政策的支持,随着国内制造企业对于进口设备的技术转让消化吸收以及融合创新,城市轨道交通的国产化水平不断提高,从刚开始的能够达到70%的国产化率要求逐渐增加,已经有很多新建的城市轨道交通项目的国产化率水平超过90%甚至达到95%。

由于国内企业对于很多核心設备以及技术无法掌握,为了引进先进的技术设备,国家鼓励城市轨道交通项目对于必要的设备进行进口,并对此部分进口设备予以免税。随着城市轨道交通行业的发展,国产化水平不断提高,在此过程中,国家对于城市轨道交通项目的免税政策也不断发生变化,从原来的只要确保国产化率的前提条件下全部进口设备和零部件均可以享受免税,到需要按照重大技术装备确定的进口关键零部件及原材料才能享受免税,再到重大技术装备免税范围调整缩小;城市轨道交通项目的免税依据从根据立项即可办理税款担保,待国家发改委审批项目确认书后再办理进口货物的免税,转变为根据国家发改委审批重大技术装备进口税收优惠申请受理通知书现行办理税款担保,待财政部下发每年的免税告知单后再办理进口货物免税。

免税政策和范围的变化体现着城市轨道交通的发展情况:在城市轨道交通项目国产化率不断提高的情况下,国家免税政策从只要满足国产化率要求条件下全部进口设备和零部件均可以享受免税,到必须进口的关键零部件及原材料享受重大技术装备政策免税的变化,无论从免税范围还是免税程序都随着城市轨道交通行业的发展发生变化。在城市轨道交通项目国产化率不断提高的情况下,进口免税范围必然会不断的缩小,进而更加促进国产化率的提升。鉴于少部分核心设备还无法实现真正国产或还不能达到稳定运营的能力,进口免税政策仍需存在,但免税范围会不断缩小并向高精尖的核心设备和原材料倾斜。

二、城市轨道交通行业国产化率的变化过程

1.国产化率的计算

国产化率是指设备国产部件的价值占总价值的百分比(设备价值以人民币为单位,外汇价按合同签订时的汇率折合人民币),国产化率是考核我国消化吸收外国技术和产品的一个硬性指标。

国产化率计算根据中华人民共和国国务院 ( [1999] 20号文) 和国家计委 ( [1999] 428号文、计产业[2001]564号文) 的规定执行,以建设项目档期内的全部轨道车辆和机电设备价格作为国产化率的计算基数,进口机电设备和零部件以进口到按价格为计算基础。国产化率按以下公式计算:

C=(A-B)/A ×100% (1-1)

其中:

C:国产化率;

A:设备(含软件)和材料+备品备件价格+专用工具及测试设备价格+技术服务的费用(国内部分的出厂价、或国外提供部分的CIF价,不含安装费);

B:A中的进口部分的CIF价格。

2.国产化的必要性

(1) 降低造价,减少成本

城市轨道交通项目初期建设时,碍于我国自身生产企业能力限制,很多设备主要依靠进口,价格昂贵,致使建设造价畸高,地方财力难以承受,严重地制约了城市轨道交通产业的发展。为减少环境污染,加快城市轨道交通行业的发展势在必行,因此降低造价、减少成本成为最重要的建设投资要素。而国产化是将能国内生产的设备全部国产,在保证安全质量的前提条件下不断创新,以取代对进口设备的依赖。这样一来,无论从成本还是生产周期上都大大降低。

(2) 鼓励国内企业发展,提高国内企业生产水平

提高了国内车辆与机电装备生产技术水平:由于国产化政策的支持,国内车辆制造企业通过技贸结合、技术转让、消化吸收、自主创新,完全掌握了铝合金车体和不锈钢车体、车内装修、转向架、车钩缓冲装置、基础制动、车门、贯通道、空调、广播、旅客信息和系统集成等设计和知道技术。截至2006年底,我国车辆企业已经成城轨车辆年生产能力1750辆,其中铝合金车辆1100辆,不锈钢车辆650辆。此外,国内众多厂家能为城市轨道交通车辆、供电、通信、信号、自动售检票、电扶梯、综合监控、环控通风、防灾报警、给排水、车辆段设备等系统批量提供配套产品,初步形成了比较完备的轨道交通设备制造体系,促进了城市轨道交通产业发展。

3.国产化率的变化

(1) 城市轨道交通建设项目初期

中国城市轨道交通建设项目初期,基本依靠进口设备,造价昂贵,地方财力难以承受,基本上不存在国产设备,国产化率极低。1999年国务院办公厅发布《国务院办公厅转发国家计委关于城市轨道交通设备国产化试试意见的通知》(国办发(1999)20号),“确定城市轨道交通项目,无论使用何种建设资金,其全部轨道车辆和机电设备的平均国产化率要确保不低于70%”,“并以国产化率目标作为审批立项的首要条件”后,国产化率必须不低于70%成为城市轨道交通建设项目的硬性条件,否则项目不予以审批。此阶段,满足国产化率成为很对城市轨道交通项目的一个难点。

(2)城市轨道交通建设项目发展阶段

1999年-2007年,自提出国产化率要求之后,各地城市轨道交通项目均以满足国产化率作为一个硬性评价指标,对于不能满足国产化率的项目,国家发改委将对不再审批该城市的任何新项目。因此,满足70%的国产化率成为各地城市轨道交通项目的追求目标,但国产化率的水平也基本上只能够达标。

(3)城市轨道交通建设全面加速阶段

自2007年之后,全国各地城市轨道交通建设项目热潮再起。在宽松的银根环境下,融资不再是难事,而且国家宏观政策扩大内需、增投资着重向市政民生工程倾斜。在此条件下,城市轨道交通项目大批建设,国产化率也不断再新高。从2010年沈阳二号线达到国产化率85%,到2011年青岛地铁的90%国产化率,再到2013年无锡一号线90%国产化率,2014年北京地铁7号线的 95%国产化率,至最新的天津二号线机场延长线接近100%的国产化率,国产化率的最高值不断刷新,城市轨道交通项目的国产化水平越来越高。

三、 城市轨道交通免税政策及其变化过程

1.增值税转型改革前的阶段(2008年12月31日以前)

增值税转型改革前,也就是城市轨道交通建设项目初期和发展阶段,在此阶段的基本政策是“城市轨道交通建设项目在设备国产化率达到70%时,不论采用何种资金进口其余30%的设备或零部件,免征关税和进口环节增值税”,具体办理的程序和内容是:

(1)免税类别为“国内投资鼓励项目”,海关征免税代码为“鼓励项目/789”;

(2)申请免税的前提是项目通过国产化率审核;

(3)免税批准文件为国家发展和改革委发展规划司出具的《国家鼓励发展的内外资项目确认书》(简称“项目确认书”);

(4)免税申请没有限制时间范围,取决于国产化率何时通过审核;

(5)免税的范围为在项目批准的免税额度内,免税确认书后附进口合同设备清单所列的进口设备基本全部免税。

此阶段免税政策的重点在于:在申请免税批准文件《项目确认书》前,项目要达到通过国产化率70%的要求并通过国产化率审核;进口合同中设备清单中的设备基本均可以享受免税(除不予免税目录明确规定不能免税的货物之外)。

2.增值税转型改革后的阶段(2009年1月1日至今)

2008底年国家实行增值税转型改革后,根据财政部、海关总署、国家税务总局2008年第43号公告和海关总署2008年第103号公告指出,对享受进口税收优惠政策的企业(城市轨道交通项目在内)进口的自用设备以及按照合同随上述设备进口的技术及配套件、备件,回复征收进口环节增值税,但继续免征关税。此政策自2009年1月1日开始执行至2009年7月1日之后不再作为免税主要政策执行,其执行期较短,因此不做主要免税政策详细讨论。

现行免税政策的主要阶段(2009年7月1日至今):

“自2009年7月1日起,对国内企业为生产国家支持发展的重大技术装备和产品而确有必要进口的关键零部件及原材料,免征进口关税和进口环节增值税。同时,取消相应整机和成套设备的进口免税政策”,“对于城市轨道交通领域的承担重大技术装备自主化依托项目业主以及开发自用生产设备的企业也可申请享受本规定的进口税收优惠政策”,城市轨道交通项目开始进入“重大技术装备”的免税阶段。具体办理的程序和内容是:

(1)免税类别为“重大技术装备”,海关征免税代码为“重大技术装备/408”;

(2)申请免税的前提是承担项目的企业通过免税资格认定;

(3)免税批准文件为财政部关税司出具的《城市轨道交通装备自主化依托项目业主免税通知单》(简称“免税通知单”);

(4)免税申请有每年固定的申报时效,过期不予受理;

(5)免税的原则是符合《重大技术装备和产品进口关鍵零部件、原材料商品清单》(简称“目录清单”)的进口设备免征关税和进口环节的增值税;

(6)免税的范围为在项目批准的免税额度内,进口合同设备清单所列的进口设备符合“目录清单”的免税,不符合的不能免税(设备清单不是100%免税);

(7)原来的整机和成套设备的进口政策取消,变为确有必要进口的关键零部件及原材料,同时原配套零配件不再享受免税。

此阶段免税政策的重点在于:能否免税关键看进口的设备是否符合“目录清单”:只有符合“目录清单”的设备可以免税,不符合的不能免税,进口合同设备清单所列进口设备不能全部免税;免税申请时间也增加了时效,不再是什么时候审批过国产化评审之后均可以免税,而是每年上报免税额度,超期不予受理。同时,重大技术装备的《进口关键零部件、原材料商品清单》根据国产化情况逐年调整,范围从原来的绝大多数进口设备逐渐缩减至必要核心零部件设备,也就是意味着能够享受免税的进口零部件越来越少。

3.国产化率变化和城市轨道交通免税政策变化的关系

国产化率和免税政策的力度和范围呈逆向发展:

2007年前,城市轨道交通处于初期以及发展阶段,国产化率较低,基本上仅能完成到70%的国产化要求。此时的免税政策力度和范围为:只要批准项目要达到通过国产化率70%的要求并通过国产化率审核,进口合同中设备清单中的设备基本均可以享受免税,且没有任何必须在多长时间申请并办理完毕免税工作的硬性要求;政策扶植力度很大,免税政策非常宽松。

2007年后,城市轨道交通步入加速发展阶段,国产化率也大幅度攀升。免税政策尤其是2009年之后明显收窄:2009年7月1日起,城市轨道交通项目归入重大技术装备免税政策,确有必要进口的零部件和原材料,在满足国产化率的要求、必须符合关于调整重大技术装备进口税收政策的通知所附《重大技术装备和产品进口关键零部件、原材料产品清单》(重大技术装备免税清单)范围的名称以及单机用量才可以免税,随设备进口的配套件以及备件恢复征收进口税收。根据重大技術装备免税清单办理与之前只要满足国产化评审即可享受免税的进口货物明显范围减少。与此同时,重大技术装备免税清单也在每年进行调整,并且范围逐年递减:

财关税2009年55号文免税范围为:城市轨道交通设备(待定)包括新型地铁车辆及其信号系统、列车网络控制系统、制动系统、主辅逆变器,只要能够归为城市轨道交通设备基本可以免税;

财关税2010年17号文详细明确为:城市轨道交通车辆、信号系统、直流供电牵引设备、火灾自动报警及气体灭火系统、自动售检票系统,并详细列明以上系统中可以免税的零部件名称;

财关税2012年14号文调整后,免税设备系统没有变化,但是每个设备系统项下的一级部件和二级部件减少;并且增加每年必须固定向财政部申报上一年的重大技术情况落实报告,否则第二年不予办理免税申请;

财关税2014年2号文调整后,仅保留城市轨道交通车辆、信号系统和自动售检票系统下13个设备系统,其他全部取消免税;

财关税2015年51号文是最新一次也是最大一次的调整:调整后轨道交通车辆、信号系统和自动售检票系统只剩余7个设备系统、18项一级部件名称可以免税,其余全部取消。

以上每次免税范围的调整都是结合国产化水平和能力制定的,说明国内生产企业对进口设备的消化吸收和国产能力逐年提高,并且生产能力稳定增长。但在一段时间内,免税政策仍需存在,原因在于我国部分车辆与机电设备关键技术尚未完全国产化。一些高精尖涉及到核心安全技术的零部件,比如制动系统中制动电控单元(网关阀和智能阀)以及合成闸瓦等,因为技术以及原材料的问题,尚不能完全国产化,仍旧需要从国外进口才能满足使用需求;信号系统中的ATP/ATO计算机,也有部分仍旧需要进口设备以满足安装调试的精度和准确性。尽管如此,绝大多数设备的国产化已经充分说明我国生产企业已经逐渐具备国际先进生产制造能力。

四、结论

随着城市轨道交通行业的进一步发展,国产化率的不断提高,必然导致城市轨道交通的进口零部件比率不断降低。国家对于城市轨道交通行业更加倾向于鼓励国内制造企业创新突破,学习国外的核心技术和设备,与自身生产制造能力进行融合,不断创新产品和完善生产能力,以摆脱国外先进设备技术和设备的制约,因此进口优惠政策范围不断减小,能够享受免税的设备项目不断减少。尽管能够免税的进口零部件进一步降低,能够免税的税金金额也在逐步减少,但是由于国产化率的不断提高,城市轨道交通项目的整体造价成本在逐步降低。由于城市轨道交通行业现阶段还无法实现全部国产化,因此免税政策还需要扶植一段时间,但一定是向高精尖的核心设备和技术倾斜,以便于国内生产企业不断突破技术壁垒,学到核心技术并作出研发创新,真正实现全自主研发最新技术的城市轨道交通。在不远的将来,中国企业将完全具备生产全部零部件(包括核心零部件)的生产能力并保证生产设备稳定运营的能力,届时,城市轨道交通项目将可以实现完全国产化,不再需要享受免税优惠政策。

参考文献:

[1] 国务院办公厅转发国家计委关于城市轨道交通设备国产化实施意见的通知 国办发(1999)20号 国务院办公厅 1999年2月28日.

[2] 《浅析西安地铁二号线车辆及机电设备国产化率核算》 闫晓萍西安地下铁道有限责任公司机电设备处 科技创新导报2013 No.08 文章编号:1674-098X(2013)01(c)-0142-02.

[3] 《城市轨道交通车辆和机电设备国产化发展现状分析》 李照星:中国铁道科学研究院(北京)工程咨询有限公司,工程师;孙宁 中国铁道科学研究院(北京)工程咨询有限公司,副总经理,研究员;杨润栋 中国铁道科学研究院(北京)工程咨询有限公司,研究员 中国铁路 2008/06 P56.

[4] 国家计委关于印发城市轨道交通设备国产化实施方案的通知计预测(1999)428号 中华人民共和国国家发展计划委员会 1999年3月19日.

篇5:中国城市轨道交通发展前景

目前中国已成为世界上城市轨道交通发展最快的国家。截至2008年底,中国已有10个城市拥有共29条城市轨道交通运营线路(其中北京、上海各8条、广州4条、天津2条、大连、长春、南京、重庆、武汉、深圳各1条),运营里程达到771公里,年客运总量达22.1亿人次。2008年,中国在世界地铁排行榜(按地铁运营里程排名)中位列第三位,仅在美国和日本之后。并且上海、北京进入世界城市轨道交通运营里程前十位,分别以237公里和200公里列在第七位和第十位。截止到2009年5月底,上海市轨道交通线路日均客运量为341万人次,承担了24%的公共交通客流量。而据北京交通委透露,目前北京市轨道运营线路日均运营380万人次,承担了19.24%的公共交通客运量。

自2008年下半年爆发全球金融经济危机以来,政府加大基础设施建设力度,各地方政府也纷纷开始筹建轨道交通,在中国各大城市掀起了一股“地铁热”。截至目前,约有27个城市正在筹备建设城市轨道交通,其中22个城市的轨道交通建设规划已获得国务院批复。据不完全统计,北京、上海、广州等15个城市共有约50条,1154公里轨道交通线路在建。至2015年前后,北京、上海、广州等22个城市将建设79条轨道交通线路,总长2,259.84公里,总投资8,820.03亿元。

二、中国城市轨道交通面临巨大的挑战

事实上,这并非第一次在全国出现地铁热。为防止全国地铁建设“一哄而上”的局面,历史上国务院曾两次叫停地铁立项。而促成此次地铁项目大量获批的机遇显然与金融危机不无关系。发展城市轨道交通从短期看能拉动固定资产投资,有利于克服国际金融危机对中国实体经济的影响,保证中国在“后金融危机”时代经济平稳快速的发展。

然而轨道交通由于自身特点,使得其建设和运营的难度大于其它公共交通项目。再加上中国轨道交通起步晚,经验不足。因此在建设和运营过程中面临着巨大的挑战:

资金不足

众所周知,被称为“天价工程”轨道交通建设投资巨大,通常建设一公里的地铁线路隧道方式需要投资近5-6亿元人民币,高架方式需要投资约3.5亿元人民币。目前中国大部分城市的轨道交通建设,主要采用政府主导的负债融资方式,建设资金来源于财政投资和国内外贷款。

在实际运作中,这种轨道交通负债融资模式面临越来越大的财政压力。因后续资金缺乏而中途下马的地方轨道交通建设项目不乏案例——上世纪90年代中期立项的青岛地铁、重庆一号地铁因缺乏资金,使工程半途而废。

缺乏好的盈利模式

发展轨道交通不仅仅在轨道建设上是一个“无底洞”,其盈利模式更是世界性难题,往往会给当地财政造成巨大负担。以上海为例,目前上海已运营的轨道交通在2008年收入35个亿。但是需要返还的利息就高达28亿,收入仅够支付利息。银行贷款的本金如何归还,还是个未知数。目前上海地铁没有一条地铁线真正实现盈利。而北京地铁自2007年10月7日票价下调为全线统一票价2元后,平均每人次亏损额约1.25元,其亏损完全由政府埋单。

客运量比例不高

目前,世界上发达国家城市大多有比较成熟与完整的轨道交通系统,并且其轨道交通所承担的客运量占城市公交运量的比重达50%以上,有的高达80%。

东京大都市圈有280多公里地铁线,轨道交通系统每天运送旅客3000多万人次,担当了东京全部客运量的86%。再看纽约,其市区地铁共27条,长443公里,提供通宵服务,到内城的客运有80%采用包括地铁、市郊铁路在内的大容量交通工具。

而在中国轨道交通最发达的两座城市——北京、上海,分别承担了24%、19.24%的公共交通客流量,远低于世界发达国家水平。运营效率低下

目前国内的大多数轨道交通企业已经按公司法建立了现代企业制度。但由于轨道交通运营企业诸多建设和经营运作性事务仍需要政府参与决策处理,政府部门往往倾向于管的过于细致、具体。因此在实际运作中仍存在政企不分的现象。这种直接的行政管理方式将大量精力耗费在内部管理事务上,导致运营效率的低下。

此外,由于轨道交通具有准公益性,没有经营业绩的压力。因此在实际建设过程中企业没有依照审慎的商业原则,对技术、设备的选用更多侧重安全、技术先进性等方面考虑,对后期的运营费用以及投资回收等方面关注度不够。轨道交通投入运营后,对成本费用控制、运营效率提升等方面也显得动力不足。

管理能力不足

国内的轨道交通建设企业目前的管理现状大多还停留在完成政府交办的任务,企业自主经营的意识和理念相对薄弱,内部的资源分配更多是依赖习惯和经验,对于资源投入的领域与公司长远发展的关联性以及投入回报收益等方面关注相对较少。因此,企业化的运作方式是国内的轨道交通企业未来建立可持续发展模式需要重点改善的领域。

三、世界上轨道交通运营模式

从全球来看,轨道交通建设和运营由于其投资巨大,但又具有一定的经营性,各国政府为了解决融资压力以及后续持续经营问题,进行了各种各样的探索。总的来说,各国实践存在着“国有国营”、“公私合伙”、“国有民营”以及“民有民营”四种模式。

国有国营

由政府负责轨道交通投资建设,所有权归政府(主要是地方政府而非中央政府)所有,建成后的运营。该模式对财政补贴的依赖程度较高,政府负担较重。但目前仍有不少欧美发达国家城市(如:纽约、巴黎、汉城)仍采用该种模式。

公私合伙(Public-Private Partnerships, PPP)

PPP模式泛指任何一种公共部门和私人部门之间为提供产品或服务而建立合作关系的统称。这种模式下,由政府与民间资本共同出资设立轨道交通运营公司,建成后公司按照市场化原则运作。香港地铁是广为人知的公私合伙的成功案例。在中国PPP形式主要为BOT(Build-Operate-Transfer)。深圳四号线地铁和北京四号线地铁均采用了BOT形式。

国有民营

该模式是指轨道交通线路完全由政府投资建设,建成后委托私人企业负责运营管理。该模式下政府具有资产所有权,不干涉企业运营,同时负责监督、规范公司的运营,以确保轨道交通的公共福利性质。运营公司只有使用管理权,承担专业化的运营职能,采取商业化的运营模式实现公司盈利。新加坡地铁则为这一模式下的成功案例。

民有民营

该模式则是指由私人集团投资兴建,并由私人集团经营,政府监管的投资模式。在这种模式下,政府没有财政压力和风险,可以解决轨道交通投资领域资金短缺的问题,同时也可以激发私人投资者严格控制建设和运营成本。由于地铁建设营运的独有特点和土地归政府所有的属性,“民有民营”模式仍处于探索的阶段。

四、企业化运作是可持续发展的关键

港铁启示

港铁“物业+地铁”的业务模式的成功运营引起了业界的广泛关注,我国众多城市在建设轨道交通时表示要借鉴香港地铁运作模式。然而埃森哲通过对港铁运营的深入分析和研究发现,“物业+地铁”的业务模式只为港铁提供了成功运作的可能性,而不是必然性。也就是说并不是具备了“物业+地铁”的业务模式就能确保轨道交通的可持续发展,也并不是具备了地铁票价的制定权就能保证地铁运营的盈利。

事实上,港铁总收入中,以2009年上半年为例,车费收入占据64.04%,车站商务及铁路相关收入占19.15%,租务、管业及其他收入仅占16.80%。而且其车费收入高的原因也并非港铁对自主定价权的滥用。作为香港公交的主力军,香港地铁承担了40%以上的香港公共交通出行量,而票价一直偏低。2007年12月还因“两铁”合并带来的协同效应宣布减价优惠,每年为市民节省车费约6亿元,单程线路票价最多下降8.2元,降幅达35%之多。

因此内地的轨道交通建设和运营企业应该认识到,企业化运作的方式和理念才是港铁模式成功的精髓。企业化的内涵是追求效率,通过精细化管理在保证公众的服务水平的前提下提升企业运作绩效。

埃森哲观点

埃森哲认为,中国轨道交通发展的关键在于轨道交通企业应具备企业化运作的方式和理念。由于轨道交通的准公益性,使其在建设和运营过程中不可能与政府完全分离。如何理顺政府与企业的关系,充分发挥企业自身的主观能动性和积极性,建立企业可持续发展的运作模式是下一步发展的重点和必然趋势。

宏观层面:

理顺轨道交通建设和运营企业与政府的管理界面。也就是说政府要减少对企业日常运作的干预,从大包大揽的管理方式转向通过合理的治理结构以及激励机制充分调动企业自身的主观能动性。

具体来说,政府与轨道交通企业之间的管控关系应按照《公司法》和国有资产管理相关法律、法规要求,在公司治理结构下界定、明晰双方的权利和义务。政府首先应履行宏观管理的责任,负责审订本地区轨道交通行业的相关政策法规。其次,政府仍需继续保持支持力度,有针对性地制定相关扶持政策,为轨道交通的发展创造相对稳定的政策环境。再者,通过任命轨道交通企业的董事会成员,并委派外部董事和监事,实现对轨道交通企业的管理及其资产运营状况的监督。

此外,政府还应建立高效的激励机制。政府的国有资产监管部门应与轨道交通企业签订经营目标责任书,明确约定相关业绩评价的考核指标。在绩效考核体系建立的基础上,政府通过董事会建立相应的激励约束机制,真正做到出资人(政府)的利益、企业的利益以及企业员工的利益结为共同体,从而有效激发企业和员工的积极性、主动性和创造性。

最后,各城市政府可以考虑放开站台和地下通道沿线商业开发。这样不但充分利用了城市地下空间,减少地面拥挤,方便数量众多的乘客,也有助于地铁公司实现盈利。

微观层面:

有了合理的政企分工及激励机制,轨道交通企业是否能够承担自身职责并发挥主体作用是其可持续发展的关键。基于埃森哲在这一领域的经验,我们认为,国内的轨道交通企业应从优化业务模式,提升自身造血功能,建立自我发展的良性循环;提升自身的内部管理能力,提升服务水平和客户满意度等方面着手进行变革。

·从建设转向运营管理

随着地铁建设的进程,北京、上海、广州等地铁已经形成一定规模。可以预见未来的十到二十年之内,多数轨道交通企业工作重点将逐渐从建设转向运营管理,如何实现轨道交通运营的网络化、规模化、集成化是上述企业面临的主要挑战。2005年上海地铁成立了申通咨询公司,专门研究线路网络化之后组织、管理、运营的基础工作的标准化与专业化的规范建立。随着标准化规范体系的建立,上海地铁原有运营公司体制机制得到整合,并将运营公司消耗成本最大的维修部门单独从运营公司分离出来。

运营公司不再承担维修与更新设备等生产作业环节,只需专注于客运业务本身,实现了前后台分离。此后前台专注于提供高效优质的客户体验,而后台则专注于维护、更新设备、控制成本费用等总体营运系统的运作效率。前台和后台的分离有助于各自绩效责任的界定。不同的绩效目标导向则引导前台和后台关注提升自身绩效的关键成功因素、并通过合理的指标设计促进前后台的合作。

·增加客运量、开发新业务

要解决地铁票务收入与地铁运营费用的差距,可以通过提高地铁票务收入,逐步提升其在企业经营业绩中的比例。与发达国家相比,中国轨道交通所承担的客运量比例偏低,轨道交通在客流量方面仍有较大的提升空间。企业与政府应共同携手,通过与地面交通更好的无缝衔接,城市整体交通线路的合理规划,以及地铁站点多功能化来探索增加流量的途径。

另一方面,可以借鉴香港地铁“物业+地铁”的模式,在地铁线路设计阶段则应考虑配套的地铁沿线地产开发、地铁商业等业务的开展,从而进一步提高地铁配套资源的开发利用效率和经济回报。这样一来,不仅可以成功的将乘客转换为顾客,开辟新的收入来源,还能吸引更多的乘客,进一步提高票务收入。

·提高管理水平

目前对于国内的轨道交通企业而言,其专长更多是地铁建设和地铁运营的本业。虽然国内很多城市轨道交通主体在建设和运营核心业务方面都积累了一定经验,但其对商业资源运作模式的了解、商业运作的技能、专业团队的建立等方面都存在较大的差距。国内的轨道交通企业对于如何以企业化的方式运作,对于管理出效益的理念和认识还需进一步提高。

·建立内部激励机制

企业化的运作方式需要轨道交通建设企业首先明确自身的发展诉求和经营目标,并以此为源头,建立起从公司的发展战略到每年的经营计划、预算并最终落实到每个单位、部门、员工绩效管理体系的闭环,从而确保所有的部门及员工都是围绕公司的共同目标在努力,并辅之以有别于传统事业单位的用人机制和奖惩、分配体系以充分激励员工。

篇6:城际轨道交通与城市经济发展

【关键词】:城际轨道交通、客流预测、竞争分配

伴随着经济的快速发展,城市化进程加快,我国逐渐形成了以北京、上海、广州为中心的三大都市群。在都市群内部,城市与城市之间的巨大交通需求,使得常规的交通运输方式难以负荷。同时,由于常规运输方式速度慢,换乘不便,也造成了城市间的出行不便,影响了都市群城镇体系的合理布局。因此规划建设城际间快速轨道交通已经成为城市群城镇体系和经济发展的迫切需求。

城际轨道交通的客流预测是指在一定的社会经济发展条件下科学预测城市各目标轨道交通线路的断面流量、站点乘降量以及站间OD、平均运距等反映轨道交通客流需求特征的指标。上述指标是城际轨道交通可行性研究和设计的重要依据。

一、城际轨道交通及其客流需求特点

城际轨道交通沿途所经区域既有城市的建成区,也有非建成区或未完全城市化的区域。它不仅承担着城际间的旅客运输任务,同时也服务于城市内部的居民出行需求。城际轨道交通不仅对于满足城际间巨大的交通需求起着重要的作用,同时它对都市群区域经济结构的改变、城镇体系的形成以及城市群产业结构的调整均有着重要的影响。对缺少大运量交通系统的中等城市来说,城际轨道交通穿越其客运主通道,也将对解决城市内部交通拥挤问题起着积极的作用。

其次,城际轨道交通与城市内部的轨道交通系统、公共交通系统以及都市群区域的公路、铁路、水运网络甚至航空网络紧密联系在一起,使得城际间客流利用城际轨道交通的方式有更多的选择可能性。同时,城际轨道交通系统和区域以及城市内部的其它交通系统一起构成了区域综合交通运输网络。城际轨道交通系统和其它交通系统存在着一定的竞争关系,但更重要的是相互衔接、相互补充的关系。只有多种交通方式相互补充、有效衔接,才能充分发挥综合交通运输系统的综合效益。这其中城际轨道交通起着骨干的、快速便捷的交通通道作用。另外,由于城际轨道交通系统与城市内部的轨道交通相互衔接,而城市轨道交通系统隶属于各个城市,城际轨道交通系统又隶属于其它部门,在线路上统一运营管理存在着相当大的困难。为兼顾城际间客流快速通过和城市内部客流的需求,需要同时开通大站快车和一般快车。由于城际轨道交通线路可能较长,旅客服务需求也较城市轨道交通的旅客服务需求复杂。

二、客流预测的基本思路

根据以上城际轨道交通的基本特点,我们提出将城际轨道交通的客流预测分为城际间客流和城市内客流两部分分别进行预测,然后进行迭加的方法进行。提出这一思路的基本考虑有如下两点。一是因为城市内部交通产生、分布、方式划分的预测方法和城际间的交通需求预测方法不尽相同。二是即便用同样的预测方法,其参数也不相同。此外,城市内部轨道交通和城际间轨道交通吸引客流的费用、方式等也不相同。

1.城际轨道交通城市内客流预测

城市内部客流预测方法有多种,在许多城市的轨道交通线网规划中也已充

分运用,本文不再详细探讨。本文采取以下方法进行城市内部的客流预测:应用四阶段法进行城市客运需求预测,得到公交类OD。将公交类OD在综合公交网(常规公交+轨道交通)上进行竞争分配,计算得到轨道网上各断面的客流量、各站点的乘降量和站间OD,同时给出相应的常规公交的分担状况以及对常规公交的疏散效果等。

2.城际轨道交通城际间的客流预测

首先,将全方式居民出行分为公路出行和铁路、水运等出行,由OD反推、同时通过相关城市居民出行调查获取的有关参数,利用部分公路交通流量进行校核的方法获得公路出行的现状OD分布,从现有铁路、水运等客运统计数据计算得到铁路、水运等出行OD分布,将上述二者加和便得到全方式OD,同时标定重力模型,得到相关参数和K系数矩阵。然后预测目标年各小区的交通发生与吸引量,再根据重力模型计算OD分布,最后在公路网、轨道网、铁路网上进行联合分配。

3.客流预测的总体技术路线

总结以上思路,城际轨道交通客流预测总体技术路线见下图:

4.几点说明

1)研究区域

由于城际轨道交通网络与区域交通系统网络紧密相连,城际轨道交通的某条或某段线路不仅承担这段线路途经区域(称为A区域)的客流,而且可能承担都市群区域间的过境客流或A区域与A区域外之间的客流。因此无论研究整个城际轨道交通线网的客流预测,还是研究城际轨道交通线网某条或某段线路的客流预测,都必须将整个城际轨道交通线网涉及的都市群区域作为研究对象区域。当然在具体操作上,这条线路途径的区域需要重点考虑,在小区划分上进行细化,其它研究区域则可以以大的行政区划来进行小区划分。

2)城际间客流与城市内客流

本城际轨道交通客流预测方法从交通需求预测开始,分为城际间客流和城市内客流两条技术路线分别进行预测。城市内客流是指城际轨道交通承担的城市内部的客流。城市内不是以城市的行政区划划分的,而是根据实际情况而定。例如在进行珠江三角洲经济区快速轨道交通一期工程即广佛地铁项目的客流预测时,由于广佛地铁途经的佛山市区和南海市区联连成一片,我们将佛山市区和南海市区一起做为城市内部,其居民出行调查时也是同时进行的。即将广佛地铁承担的佛山市区内部客流、南海市区内部客流以及佛山市区与南海市区的之间的客流都认为是城市内部的客流。本文着重探讨城际间的客运需求预测和城际轨道交通城际间客流的预测方法。

三、城际间客运需求预测

1.客流生成预测

在客流生成阶段,主要解决各交通小区发生量与吸引量的问题。城际间交通的发生与吸引量的增长主要与各城市的经济、人口、机动车的增长以及土地利

用等密切相关。目标年交通发生与吸引量的预测,可以以各城市基年交通发生或吸引量作为因变量,以基年GDP、人口、机动车保有量、土地利用等作为自变量,来标定各参数,然后根据目标年各城市GDP、人口、机动车保有量、土地利用等进行预测。

由于都市群区域各城市出行特点的差别较大,用函数法进行预测时,可能有较大误差。可以考虑使用调整系数。

需要说明的是,现状发生吸引量可以从现状全方式OD中获得。现状全方式OD可以由公路OD、铁路OD、水运OD、水运OD、海运OD、航空OD相加获得。公路OD可以通过调查获得的公路交通流量反推并经校核后得到,铁路OD、水运OD、海运OD、航空OD可以通过相应的客流统计数据获得。如果水运、海运和航空在都市群和城际轨道交通线路沿线的总客运量中所占比例较小,可以不予考虑。

2.客流分布预测

客流分布类似城市的客流分布预测,采用修正重力模型。用基年OD进行标定,获得反映小区间特殊联系的K矩阵和相应参数,由此建立居民出行分布模型,并预测未来特征年居民城际间全方式出行OD表。

3.方式分担预测

城际间的交通方式有公路、铁路、城际轨道交通、航空、海运和水运。其中公路交通中又可以分为小汽车、长途客车以及摩托车。考虑城际间的出行运用的交通方式较为复杂,而且采用何种交通方式和各种交通方式的运输网络密切相关,因此,我们考虑运用交通方式分担与交通分配的联合模型进行分析预测,即在公路、铁路和城际轨道交通以及航空、海运、水运网络组成的综合交通运输网络上,通过公路上的小汽车、长途汽车、摩托车以及铁路和城际轨道交通、航空、海运、水运的行程时间、换乘时间、票价、舒适度等综合费用之间的竞争来吸引客流,从而确定城际轨道交通承担的客运量。

四、城际间客流预测方法

1.路网设定

将由研究区域公路网、铁路网、城际轨道交通网、水运网、航空网、海运网组成的综合交通运输网络作为客流预测基础网络。下图举例说明了一个城际轨道交通线网在换乘站与公路网的衔接方法。

城际轨道交通网络与公路网的衔接

在图2中,R1和R2两条城际轨道交通线路在站点S1换乘,同时和公路B1换乘。通过设定如图所示的换乘线段,可以方便的设定换乘费用,记录统计站点换乘和上下客流。

2.交通分配基本参数的确定

1)路段走行时间函数

公路网上小汽车、长途公共汽车和摩托车的路段走行时间函数采用美国道路局开发的BPR函数,即: 其中,为路段自由流走行时间,为路段交通量,为路段通行能力。城际轨道线路网、铁路网、水运网、海运网和航空网的走行时间不考虑拥挤影响,只有最大运送能力的限制。

2)运营速度

公路网上小汽车的和摩托车的自由流速度可以取公路的设计车速,而公路网上长途公共汽车以及城际轨道交通、铁路、水运、海运、航空等的速度根据实际情况确定。

3)公交费率与换乘费用

长途公共交通和城际轨道交通的费率一般采用距离费率,也可以采用固定费用或距离分段费用制。在考虑换乘费用时,需要考虑铁路、航空、水运、海运的发车(或起飞、发船)频率问题。

3.运用组合模型的竞争分配方法

在城际轨道交通的客流预测中,当获得城际间全方式OD之后,有两种做法可得到城际轨道客流量。一是利用方式划分模型直接划分出城际轨道交通OD,再利用路网分配技术将轨道交通OD在轨道网上进行分配;二是利用方式划分和交通分配联合模型将全方式公交OD在联合网络中进行分配。

第一种方法在工程实际中会遇到许多问题:城际轨道交通OD的方式划分是一次性完成的,划分时参数标定依据的基础数据是通过实际调查或者意向调查得来的,不能够反映出综合交通运输网络对客流的影响;城际轨道交通属于干线交通,需要大量的接驳交通线路与各交通小区相连,这给轨道交通OD在轨道网上的分配带来困难。

利用方式划分和路网分配联合模型实现在城际间全方式OD下轨道客流量的预测可以方便地解决上述问题,取得很好的预测效果。

1)交通方式的竞争选择

居民出行时对交通方式的选择主要取决于交通方式的服务水平(效用U),体现在交通方式的旅行时间,费用以及舒适度等。其中对中国城市的居民出行来说,旅行时间和费用是最为敏感的两个因素,也是我们进行客流分析与预测时须着重考虑的因素。

选择是交通出行过程中的重要组成部分,交通选择的模型模拟在交通需求分析中十分重要而且常常是成功的交通规划的先决条件,由于进行受控制下的实验的可能性非常有限,所以经验性的公式非常少。我们可以通过一些简化处理来对居民出行的选择行为用定量化的模型进行分析,通常有以下两种选择模型。确定性选择模型

这种模型假设人们的选择是确定性的,当居民在常规公交和轨道交通之间进行选择时,居民要选择效用最大的交通方式。即在,当 时,出行者选择轨道交通,否则选择常规公交。

随机选择模型

这种模型认为人们的选择要受到各种随机因素的影响而具有一定的不确定性,效用大的选择枝只具有较大的被选择概率,而不是100%的被选中概率。随机选择模型中,较有代表性的为Logit模型,将Logit模型应用于交通的选择,轨道交通和常规公交被选中的概率分别为:

2)效用函数

效用函数一般用费用(负数)来表示。除旅行费用、停车费用外,其它如旅行时间、换乘等均需换算为费用。需要说明的是,由于城际间的出行可能距离较远,在一定距离之外,须将摩托车强迫性转移走,即摩托车不参与竞争分配。

3)交通量的分配

在处理每一个OD对间的交通量时,更新每条路段的客流量和旅行时间,搜索比较所有的有效出行路线,选择最短路(出行效用最高)进行确定性路网分配或在所有有效出行路线中进行概率性分配,如此进行下去,当处理完最后一对OD后,便得到每一条路段的交通量。由此获得城际轨道交通城际间客流预测的结果。

参考文献:

[1] 陈庆琳.城市轨道交通线网规划与客流预测方法与模型研究.清华大学硕士论文,1999

[2] 陆化普.交通规划理论与方法.北京:清华大学出版社,1998

上一篇:放风筝550字三年级作文下一篇:君子之交淡淡如水情感散文