初中几何证明题分类

2024-05-23

初中几何证明题分类(精选8篇)

篇1:初中几何证明题分类

初中几何证明题

初中几何证明题

己知M是△ABC边BC上的中点,,D,E分别为AB,AC上的点,且DM⊥EM。

求证:BD+CE≥DE。

1.

延长EM至F,使MF=EM,连BF.

∵BM=CM,∠BMF=∠CME,

∴△BFM≌△CEM(SAS),

∴BF=CE,

又DM⊥EM,MF=EM,

∴DE=DF

而∠DBF=∠ABC+∠MBF=∠ABC+∠ACB<180°,

∴BD+BF>DF,

∴BD+CE>DE。

2.

己知M是△ABC边BC上的中点,,D,E分别为AB,AC上的点,且DM⊥EM。

求证:BD+CE≥DE

如图

过点C作AB的平行线,交DM的延长线于点F;连接EF

因为CF//AB

所以,∠B=∠FCM

已知M为BC中点,所以BM=CM

又,∠BMD=∠CMF

所以,△BMD≌△CMF(ASA)

所以,BD=CF

那么,BD+CE=CF+CE……………………………………………(1)

且,DM=FM

而,EM⊥DM

所以,EM为线段DF的中垂线

所以,DE=EF

在△CEF中,很明显有CE+CF>EF………………………………(2)

所以,BD+CE>DE

当点D与点B重合,或者点E与点C重合时,仍然采用上述方法,可以得到BD+CE=DE

综上就有:BD+CE≥DE。

3.

证明 因为∠DME=90°,∠BMD<90°,过M作∠BMD=∠FMD,则∠CME=∠FME。

截取BF=BC/2=BM=CM。连结DF,EF。

易证△BMD≌△FMD,△CME≌△FME

所以BD=DF,CE=EF。

在△DFE中,DF+EF≥DE,即BD+CE≥DE。

当F点落在DE时取等号。

另证

延长EM到F使MF=ME,连结DF,BF。

∵MB=MC,∠BMF=∠CME,

∴△MBF≌△MCE,∴BF=CE,DF=DE,

在三角形BDF中,BD+BF≥DF,

即BD+CE≥DE。

分析已知、求证与图形,探索证明的思路。

对于证明题,有三种思考方式:

(1)正向思维。对于一般简单的题目,我们正向思考,轻而易举可以做出,这里就不详细讲述了。

(2)逆向思维。顾名思义,就是从相反的方向思考问题。运用逆向思维解题,能使学生从不同角度,不同方向思考问题,探索解题方法,从而拓宽学生的解题思路。这种方法是推荐学生一定要掌握的。在初中数学中,逆向思维是非常重要的思维方式,在证明题中体现的更加明显,数学这门学科知识点很少,关键是怎样运用,对于初中几何证明题,最好用的`方法就是用逆向思维法。如果你已经上初三了,几何学的不好,做题没有思路,那你一定要注意了:从现在开始,总结做题方法。同学们认真读完一道题的题干后,不知道从何入手,建议你从结论出发。例如:可以有这样的思考过程:要证明某两条边相等,那么结合图形可以看出,只要证出某两个三角形相等即可;要证三角形全等,结合所给的条件,看还缺少什么条件需要证明,证明这个条件又需要怎样做辅助线,这样思考下去……这样我们就找到了解题的思路,然后把过程正着写出来就可以了。这是非常好用的方法,同学们一定要试一试。

(3)正逆结合。对于从结论很难分析出思路的题目,同学们可以结合结论和已知条件认真的分析,初中数学中,一般所给的已知条件都是解题过程中要用到的,所以可以从已知条件中寻找思路,比如给我们三角形某边中点,我们就要想到是否要连出中位线,或者是否要用到中点倍长法。给我们梯形,我们就要想到是否要做高,或平移腰,或平移对角线,或补形等等。正逆结合,战无不胜。

篇2:初中几何证明题分类

求证:BD+CE≥DE。

1.延长EM至F,使MF=EM,连BF.∵BM=CM,∠BMF=∠CME,∴△BFM≌△CEM(SAS),∴BF=CE,又DM⊥EM,MF=EM,∴DE=DF

而∠DBF=∠ABC+∠MBF=∠ABC+∠ACB<180°,∴BD+BF>DF,∴BD+CE>DE。

2.己知M是△ABC边BC上的中点,,D,E分别为AB,AC上的点,且DM⊥EM。

求证:BD+CE≥DE

如图

过点C作AB的平行线,交DM的延长线于点F;连接EF

因为CF//AB

所以,∠B=∠FCM

已知M为BC中点,所以BM=CM

又,∠BMD=∠CMF

所以,△BMD≌△CMF(ASA)

所以,BD=CF

那么,BD+CE=CF+CE……………………………………………(1)

且,DM=FM

而,EM⊥DM

所以,EM为线段DF的中垂线

所以,DE=EF

在△CEF中,很明显有CE+CF>EF………………………………(2)

所以,BD+CE>DE

当点D与点B重合,或者点E与点C重合时,仍然采用上述方法,可以得到BD+CE=DE

综上就有:BD+CE≥DE。

3.证明因为∠DME=90°,∠BMD<90°,过M作∠BMD=∠FMD,则∠CME=∠FME。

截取BF=BC/2=BM=CM。连结DF,EF。

易证△BMD≌△FMD,△CME≌△FME

所以BD=DF,CE=EF。

在△DFE中,DF+EF≥DE,即BD+CE≥DE。

当F点落在DE时取等号。

另证

延长EM到F使MF=ME,连结DF,BF。

∵MB=MC,∠BMF=∠CME,∴△MBF≌△MCE,∴BF=CE,DF=DE,在三角形BDF中,BD+BF≥DF,即BD+CE≥DE。

分析已知、求证与图形,探索证明的思路。

对于证明题,有三种思考方式:

(1)正向思维。对于一般简单的题目,我们正向思考,轻而易举可以做出,这里就不详细讲述了。

(2)逆向思维。顾名思义,就是从相反的方向思考问题。运用逆向思维解题,能使学生从不同角度,不同方向思考问题,探索解题方法,从而拓宽学生的解题思路。这种方法是推荐学生一定要掌握的。在初中数学中,逆向思维是非常重要的思维方式,在证明题中体现的更加明显,数学这门学科知识点很少,关键是怎样运用,对于初中几何证明题,最好用的方法就是用逆向思维法。如果你已经上初三了,几何学的不好,做题没有思路,那你一定要注意了:从现在开始,总结做题方法。同学们认真读完一道题的题干后,不知道从何入手,建议你从结论出发。例如:可以有这样的思考过程:要证明某两条边相等,那么结合图形可以看出,只要证出某两个三角形相等即可;要证三角形全等,结合所给的条件,看还缺少什么条件需要证明,证明这个条件又需要怎样做辅助线,这样思考下去……这样我们就找到了解题的思路,然后把过程正着写出来就可以了。这是非常好用的方法,同学们一定要试一试。

篇3:几何证明题教学五步骤

【题目】如图1, 已知, 在△ABC中, AB=AC, E是AC延长线的一点, 点F在AB上, 并且BF=CE, 连接FE交BC于D, 求证:FD=DE.

在教学时, 按以下五个步骤进行.

一、首先引导学生认真审题

要求学生根据题意、对照图形把题目中的已知条件和求证的结论, 用自己的语言说出来, 明确这道题已经告诉了什么, 将要求我们干什么, 这是解题的基础.

学生在说的过程中, 有可能叙述不流畅、不完整, 或者照本宣读, 此时教师要适时引导, 逐步培养学生善于抓住重点和关键词, 力争做到简明扼要.

二、引导学生认真分析题目结论成立的条件

根据已有的知识, 组织学生讨论两条线段在什么情形下才能相等, 通过学生陈述, 把所有可能的情况都罗列出来, 并加以归纳总结.这样不但使学生更加明确判断两条线段相等的先决条件, 而且也使学生对已学过的相关知识得到了进一步的巩固.

三、引导学生针对具体问题进行具体分析, 把解题的思路和方法准确地叙述出来

在解答这道题时, 根据线段FD和DE在图形中所在的具体位置, 虽然直接找不出判断这两条线段相等的条件, 但可以通过添加辅助线的方法进行铺垫, 把FD和DE设置到一定的图形中, 创造出解决问题的条件.例如以下四种不同添加辅助线的方法, 就有不同的解题思路和方法.

方法一是过F点作FH∥AE交BC于点H;方法二是过E点作EP∥AB交BC的延长线于点P, 两者都是把所求证的两条线段设置在一组三角形中, 利用全等三角形的性质来证明.

方法三是过F点作FM∥BC交AC于点M;方法四是过E点作EN∥BC交AB的延长线于点N, 两者都是把所求证的两条线段设置在同一个三角形中, 利用三角形中位线的性质来证明.

理清解题思路, 设计最佳解题方案, 这是解决问题的关键.因此, 教师在要求学生巩固好已学知识的前提下, 指导学生掌握解题程序, 善于挖掘和创设条件, 通过转化、推理, 把复杂的、生疏的问题转化为简单的、熟悉的, 有的放矢地寻求正确的解题途径, 理清思路, 确定方案, 解决问题.

四、引导学生陈述并写出题目的解答过程

解题思路确定后, 无论选择哪种方法, 都要求学生从添加辅助元素开始, 利用已知条件, 正确、合理、简捷、清楚、完整地表达出问题的解决过程.这就要求理顺思路, 有理有据地按照逻辑规律, 由已知条件出发, 逐步推演、转化, 进行有序、合理、正确的推理, 建立起已知到结论的清楚、简明、完善的道路, 以实现问题的解决, 过程陈述力争达到完美.在此基础上, 再让学生把证明过程完整地书写出来, 每一步都要做到有根有据、有条有理、规范有序、严谨详尽无遗漏.

五、指导学生检查和反思题目解答的全过程

检查和反思是学生对自身活动进行回顾、思考、总结、评价、调节的过程, 对巩固所学知识、提高分析和解决问题的能力有着不可忽视的作用.教学反思意在通过对题目解答过程的回顾, 组织学生认真思考我们所确定选择的思路和方法是否可行, 推理是否合乎逻辑, 是否还有其他的解法, 对解题过程陈述是否做到了尽善尽美, 书写是否严谨完整, 进而再总结出解题的一般规律并加以推广, 使学生进一步掌握解题的方法和技巧, 养成良好习惯, 提高学习能力.

篇4:初中数学几何证明题教学探讨

关键词:初中数学;几何证明题;提高质效

提及初中数学几何证明题,不少学生就头皮发麻,找不到思路,面对各种各样的图形和线条就犯晕,几乎束手无策,更不用说作出精确的辅助线了;有的学生则是风风火火地写了满满一张纸,仔细一看,逻辑混乱,不知所云;还有的学生步骤简单,跳跃幅度大,因果关系没有整理清晰,关键步骤没有写清楚便匆匆得到要证明的结论,多多少少有些滥竽充数的嫌疑,自然也就拿不到证明题的完整分数了。 对于数学教师来讲,初中几何证明题也是教学上的一大难点,似乎在教学中花了不少的力气,但还是有不少的学生对几何证明题的掌握程度无法令人满意,达不到新一轮课程改革的基本要求。 如何針对初中数学几何证明题的特点,调动学生的主观能动性,提高几何证明题的教学效果,我结合个人教学实际,谈几点粗浅看法。

一、尊重教材

苏教版初中数学几何教材中,有几个重点环节,如平行线、轴对称图形、中心对称图形、相似图形等,这些章节的知识几乎无一例外都有证明题可供考查。 与这些知识点相关的证明题,一般来说难度不小,对于刚刚接触几何知识的初中生来讲,是一个很大的挑战。 要抓好这部分证明题的教学,我认为首先就是要尊重教材。

教材是一切教学工作的根源。 教材中有很多经典的例题,这些例题几乎可以涵盖初中几何所有的知识点,可以说,把教材上的例题讲通讲透,学生能完全消化教材的例题,应该说学生就可以解决百分之八十的基本证明题。 现实状况下,有些几何教师对证明题的讲解存在认识的误区,认为没有什么值得仔细讲、反复讲的,尽快讲完直接进入课后练习。 这种教学方式是不科学的,也是不合理的,我认为教材上的例题,至少要到边到角地讲三遍,每一遍都有不同的任务,第一遍是让学生大致了解题目要求证明的结论和题目提供的条件;第二遍是让学生明白如何通过给定的条件和现有的定理逐步得到要证明的结论,第三遍则是让学生做好细节上的处理工作。

二、做好细节的规范书写

初中几何证明题有着严谨的格式要求,证明题的书写还需要思路明确、步骤清晰、过程精练,这样的证明过程才能得到更高的评价。 教学实际中,通常遇到学生证明步骤烦琐,证明格式不规范,箭头指来指去,看得头晕眼花,不少数学老师对此大为光火。 其实,更多的时候,我们要反思自己在教学中是否做得到位,做得细心。

有的数学教师对于证明题示例的细节上把握不够,他们认为只要我能把证明思路、关键的步骤给学生演示一下就够了,至于其他的地方,没有必要过于苛求。 比如在板书的过程中,有的为了赶进度,图简单省事,一些看似不重要的证明步骤一笔带过,有的书写不够规范,有的字迹过于潦草,黑板上箭头指来指去,如同一幅军事作战指挥图,学生看起来很累,也很容易产生歧义。

如果教师是这种教学心态,那么也无法搞好几何证明题教学工作的,首先几何证明题本身就是一个严谨、严密的逻辑推理过程,没有做好细节自然就漏洞百出,所以,要充分认识到细节的重要性,为学生做好细节示范。 其次,学高为师,身正为范,这也是对教师教学工作的一个基本要求。 如果教学时间不是很充足,宁愿放弃示范也不能匆匆了事,一定要把握细节,注意火候,只有我们自己做得足够好,才能理直气壮对学生提要求。

三、抓好强化训练

初中几何证明题的教学,离不开强化训练。 这种强化训练既要训练学生的逻辑思维,还要训练学生的答题规范性。 比如,在三角形、多边形和圆这些章节的几何证明题中,有不少的题目要求学生作辅助线,不然难以解答。

要能准确作出辅助线,并熟练地运用各种定理来证明几何题,就需要平时进行一定量的强化训练。 这种强化训练一定不能走入了题海的误区,训练的题目最好是由老师提前把关,量不能太大、太复杂让学生产生畏难的心理,也不能过于简单,我认为以书本上的例题为参考,适当提高点难度为宜。 比如,我们可以在一堂课专门训练如何作辅助线,只要作出了辅助线,我们不要求学生完完整整地书写出整个证明过程,但要注意作出辅助线后续的工作,防止学生误打误撞,只要求他们说出证明的思路就可以进入下一题了。

通过一定量的题目进行强化训练,学生面对各种看似复杂的图形问题,能凭着直觉作出精确的辅助线,作出了辅助线之后解题的思路也就渐渐呈现出来,能较大幅度提高证明题的解题效率。

总而言之,初中数学几何证明题是整个初中数学教学的一大难点,作为数学教师要抓好教材例题的讲解,教学上遇到困难及时带领学生回归教材,多多少少能获得启发和提示。 同时也要端正教学心态,在板书和示范上尽量做细做实,切忌一笔带过,草草了事。最后要以一定量的题目及时强化训练,帮助学生牢固掌握知识点和定理的运用,这样才能提高几何证明题的教学质效。

篇5:初中数学几何证明题

多边形平面几何有两种基本入手方式:从边入手、从角入手

注意哪些角相等哪些边相等,用标记。进而看出哪些三角形全等。平行四边形所有的判断方式?

篇6:初中几何基础证明题(初一)

1.如图,AD∥BC,∠B=∠D,求证:AB∥CD。

A

D

C

2.如图CD⊥AB,EF⊥AB,∠1=∠2,求证:∠AGD=∠ACB。

A

D

/

F

2BG BE

3.已知∠1=∠2,∠1=∠3,求证:CD∥OB。

A

PC 3D /2 BO

4.如图,已知∠1=∠2,∠C=∠CDO,求证:CD∥OP。

D P

/2

CBO

3C

5.已知∠1=∠2,∠2=∠3,求证:CD∥EB。

C3D / BOE6.如图∠1=∠2,求证:∠3=∠4。

/3BA

DC42

7.已知∠A=∠E,FG∥DE,求证:∠CFG=∠B。

AB

CG F ED

8.已知,如图,∠1=∠2,∠2+∠3=1800,求证:a∥b,c∥d。

cd a

b32

9.如图,AC∥DE,DC∥EF,CD平分∠BCA,求证:EF平分∠BED。

A

D

F

EBC

10、已知,如图,∠1=450,∠2=1450,∠3=450,∠4=1350,求证:l1∥l2,l3∥l5,l3l2∥l4。

l11

l22

344 l5

11、如图,∠1=∠2,∠3=∠4,∠E=900,求证:AB∥CD。

BA 12

E CD

12、如图,∠A=2∠B,∠D=2∠C,求证:AB∥CD。

CD

O

AB

13、如图,EF∥GH,AB、AD、CB、CD是∠EAC、∠FAC、∠GCA、∠HCA的平分线,求证:∠BAD=∠B=∠C=∠D。

A

FE

BD

GHC

14、已知,如图,B、E、C在同一直线上,∠A=∠DEC,∠D=∠BEA,∠A+∠D=900,求证:AE⊥DE,AB∥CD。

A

D

CEB

15、如图,已知,BE平分∠ABC,∠CBF=∠CFB=650,∠EDF=500,求证:BC∥AE。

E

CD

BA

16、已知,∠D=900,∠1=∠2,EF⊥CD,求证:∠3=∠B。

AD1

E3F

BC17、如图,AB∥CD,∠1=∠2,∠B=∠3,AC∥DE,求证:AD∥BC。

DA 312

篇7:例谈初中几何证明题教学

论文摘要:新课标下,打破传统教法,探析几何证明题教学的突破口,是每一个师生共同关心的话题。本文从九年级人教版一道期考题的学生答卷出发引起了笔者的思考,归纳总结出数学课堂教学的四个步骤,并由此引申出校本科研的命题。

关键词:数学教学;几何证明;学生

众所周知,几何证明是初等数学学习的难点之一,其难就难在如何寻找证明思路,追根究底还是因为几何证明题的本质不易把握。为此,在初等几何的学习中融入数学思想方法,具有重要意义,而且切实可行。

通过平时的学习、探索和积累,笔者发现其中的“结构思想”,即“数学是一个有机的整体,观察数学问题要着眼于结构的整体性。从宏观上对数学问题进行整体研究,抓住问题的框架结构和本质关系,把一些貌似独立而实质又紧密联系的特征视为系统中的整体”对探寻几何的证明思路,把握问题的本质,培养观察能力有一定的指导意义。

新一轮课程改革立足于“改变课程过于注重知识传授的倾向,强调形成积极主动的学习态度,使获得基础知识与基本技能的过程同时成为学会学习和形成正确价值观的过程。”在这样的指导思想下,初中几何发生了较大的变化。

初中几何一直就是中学数学的重要内容,秉承“深化教育改革,全面推进素质教育”的指导思想,在这次新课程改革中,初中几何部分有了较大的调整。对比新课程改革后初中几何的变化,深入理解教改的初衷,全面贯彻教改的思想,不但有利于更好地完成教改的任务,而且有利于利用新教材创造性地提高学生的数学素养。

考题:如图,在Rt●ABC中∠C=90°以AC为直接径,作⊙O,交AB于D,过O作OE∥AB,交BC于E,连接ED。

⑴求证:ED是⊙O的切线。

⑵E为BC的中点,如果⊙O的半径为1.5, ED=2,求AB的长。

这是某市九年级人教版秋季学期一道期考试题,从题型看这是一道再普通不过的圆有关证明和计算的几何考题,而我校作为一所比较有名的初中,全校九年级约500个考生的答卷中,第问“求AB的.长”尚有80%左右的考生能正确的解答出来,而第(1)“求证:ED是⊙O的切线”只有约10%的考生能正确地写出证明解答过程。究其原因何在?笔者认为,其主要原因是教师在平时的课堂教学中,对几何证明的指导不到位、引导方法不够灵活,措施不到位造成的直接后果。

怎样指导学生对几何证明题进行有效正确的证明分析解答,并简单地写出证明过程,笔者通过对本考题学生答卷出现的各种错误情况,结合本校使用新课改教材突出的特点,归纳总结出以下4个步骤,进行指导,收到良好的效果。

1.读

读就是阅读题目和题图的过程中,做到逐个条件,逐个问题地对号入座地进行审题、读图。

2.记

记就是在“读”的过程中,对题目中给出的条件和问题作简要的浓缩并作划记,并用①、②……和“?”作标记。如本考题问可作标记为:已知①∠C=90°;②AC为直径;③OE∥AB求证ED是⊙O的切线?

3.选

“选”就是选定解题思路,确定解题方法,即根据读题和标记的结果,结合自己所掌握的数学知识。选定解题思路,最终确定解题方法,并写出简要解答过程。如本题中,要证明DE为⊙O的切线,得作辅助线:连结OD,则点D就是⊙O的外端,只须再证明OD⊥DE(即∠ODE=90°)就可

以了,从而选定证明∠ODE=90°;而要达到这个∠ODE=90°这个结果,只有通过证明●EOC≌●EOD从而也就确定了解题方法。

4.返

就是选定了解题思路、确定了解题方法,并写出解答的过程中,特别是遇到解答的过程受阻时,不断地返回到题目中已作的标记和题图的标记和已知条件中去,检查是否漏用或误用已知条件,及时调整解题方案。

可以看出,“读、记、选、返”四个步骤通俗易懂、浅显具体,只要始终坚持渗透课程数学课堂教学之中,并要求学生始终运用到平时的练习之中,善于积累,逐渐养成“见其型,通其路,套其法”的良好习惯,就能很好纠正学生不良的解题思维习惯和学习习惯!

初中数学,广西崇左市从秋季学期启用人教版新课改教材至今,恰好经历了两个周期。五年来,课改的新理念、新思维、新评价如风暴袭来,我们有过欣喜和期盼,教学实践中,没有石头照样过河。

评价考试后,我们充满困惑与无奈,却不知路在何方。长期以来,我们数学课堂教学关注的是大量繁杂的公式,陷入了题的海洋。中学数学课堂教学最应该关注什么?既不是单纯的方法总结,也不是数学知识技能的简单积聚。数学教育的发展方向应与教育发展的大方向相一致,数学教育更应该关注思考:上完一节数学课,在学生颔首的同时还是有那么多的学生仍在质疑,到底学到了什么?他们对自己在数学学科上付出那么多的时间和精力感到惋惜,对自己在数学上的天赋和能力产生怀疑与反思。

而教师本身是否也反省过自己,一节课下来我们到底教给了学生什么?方法、过程,还是答案?所谓“点石成金”我们到底教给学生“点石”的手指还是“点成”的金子?我们不能武断地归结于学生的不努力,我们的数学教育有没有问题。就目前的状况,中学数学教育仍旧可以用“纸上谈兵”这句成语简单概括之。

课堂是教师演练阵容的战场,解题成为操起的刀戈,忽略了解题思路、解题方法,一味追求解题结果,将会逐渐迷失自我,丧失自我思考的能力!我们是否思考过:路就在自己的脚下,路就在自己的每一节课中,让校本科研走进我们每一个数学教师的每一节课中吧!

当今世界,反思意识已成为学术界的重要特征。要使基础教育课程改革向纵深推进,就必须提高教师的素质,尤其是提高教师的反思特质。

开展校本教育科研活动,有利于学校引导教师理性反思教学,唤醒教师的自觉能动性和创造性,促使教师不断追求教育实践的合理性,让教师学会“教”,学生学会“学”。

篇8:一道几何证明题的思路剖析

关键词:思路剖析,一题多解,思维突破,通性通法

对试题的研究是教师在教学和复习中经常做的一件事,通过研究把蕴含其中的数学思想方法揭露出来,挖掘出问题的本质属性.这样可以提高学生的空间想象、逻辑思维能力,分析和解决问题的思维技能,优化数学的思维品质,而且还可以培养学生探索创新的能力.下面,笔者通过实例进行探讨.

一、试题呈现

题目:如图1,在△ABC中,∠C=90°,将△ABC绕顶点B旋转至△A′BC′,设旋转过程中直线CC′和AA′相交于点D.

(1)求证:AD=A′D;

(2)若AC=4,BC=3,AD∥BC,求∠CBC′的正切值.

这是某地区几所联盟学校初三模拟考试的一道试题.经了解,只有极少数学生能证明,有的学校甚至全军覆没.是什么原因导致这样的结局呢?这可从命题者提供的参考解答里找到原因.以下是命题者提供的解答过程.

(1)证明:连结BD,如图2,由旋转可得:BC=BC′,BA=BA′,∠CBC′=∠ABA′,所以,所以△BCC′∽△BAA′,所以∠BCC′=∠BAA′.因为∠BOC=∠DOA,所以△BOC∽△DOA.所以∠ADO=∠OBC,.因为∠BOD=∠COA,所以△BOD∽△COA,所以∠BDO=∠CAO.因为∠ACB=90°,所以∠CAB+∠ABC=90°,所以∠BDO+∠ADO=90°,即∠ADB=90°.又因为BA=BA′,∠ADB=90°,所以AD=A′D.

(2)略.

二、解法探究

从命题者提供的解答过程来看,是由条件BA=BA′联想到等腰三角形,进而想到证明BD为底边AA′的高.思路是顺畅的,也无可厚非,但证明用了3次三角形相似,显然超过了课程标准要求.这促使笔者深思、细研,思索着有没有其他解法.

结合本题,结论是证明D为AA′的中点,那么,遇到中点问题(已知中点或证明中点),我们还可以想到什么呢?从另一角度考虑,是否可以构造“8”字型或“A”字型或其他思路,这难道不是通性通法呢?沿着这样的思路试探.

思路1:构造“8”字型,证三角形全等.

因为点D不是已知的中点,而是要证明的中点,加倍CD不能奏效,故考虑过点A作AG∥AC′与C′D的延长线交于点G(如图3).只要在△AGD与△A′C′D中,证明AG=A′C′或GD=C′D即可.因为A′C′=AC,只要证明AG=AC,即证明∠G=∠ACG.显然∠G=∠A′C′D,而∠DC′A′+∠CC′B=90°,∠ACG+∠C′CB=90°,又∠BCC′=∠BC′C,所以∠G=∠ACG,进而可证△ADG≌△A′C′D(AAS),所以AD=A′D成立.

思路2:构造等腰三角形,证三角形全等.

因为点D不是已知的中点,而是要证明的中点,加倍CD不能奏效,故考虑以点A′为圆心,A′C′长为半径画弧,交CD的延长线于点G(如图4).显然△A′C′G是等腰三角形,即A′C′=AG,∠G=∠A′C′G.由思路1分析可知,∠A′C′G=∠ACD,又A′C′=AC,所以易证△ACD≌△A′GD(AAS),所以AD=A′D成立.

思路3:构造三角形全等,证等腰三角形.

因为点D不是已知的中点,而是要证明的中点,加倍CD不能奏效,故考虑在CC′上找一点G,使CG=C′D(如图5).由思路1分析可知,∠A′C′D=∠ACG,所以△ACG≌△A′C′D(SAS),所以AG=A′D,∠AGC=∠A′DC′.进而可知∠AGD=∠ADG,所以△AGD是等腰三角形,所以AG=AD,所以AD=A′D成立.

思路4:添两条垂线,构造三角形全等.

因为点D不是已知的中点,而是要证明的中点,加倍CD不能奏效,故考虑过点A,A′分别作CD的垂线,交CD(或延长线)于点M,N(如图6).由思路1分析可知,∠ACM=∠A′C′N,所以Rt△ACM≌Rt△A′C′N(AAS),所以AM=A′N,进而证得Rt△AMD≌Rt△AND(AAS),所以AD=A′D成立.

思路5:构造“四点共圆”,利用对角互补证垂直.

由旋转可知CB=C′B,AB=A′B,∠CBC′=∠ABA′,所以易知∠C′CB=∠A′AB,进而可知点A,C,B,D四点共圆(如图7).所以∠ADB+∠ACB=180°,而∠ACB=90°,所以∠ADB=90°,即BD为等腰△BAA′底边上的高,所以AD=A′D成立.

三、解题反思

(一)关注解题通法增强学生的解题能力

优秀的几何题一般存在多种解法,而辅助线通常是解决问题的桥梁.巧妙的辅助线常能“柳暗花明又一村”,与标准答案不同的上述几种解法,其巧妙之处在于添加了辅助线,辅助线使未知与已知有了更紧密的联系,无须通过证明3次相似,证明过程大为简洁,体现了数学方法的多样性.同时也从侧面说明这是一道难得的好题,是训练学生数学思维的好素材.由此可见,通过一题多解,可以加深和巩固学生所学知识,充分运用学过的知识,从不同的角度思考问题,采用多种方法解决问题,这有利于学生加深理解各部分知识横向和纵向的内在联系,掌握各部分知识的转化关系,从而达到培养思维广阔性的目的.

(二)重视学会解题拓展学生的思维空间

在解题教学中,题目是载体,解题是过程,方法和规律的揭示、策略和思想的形成是目的,因此,解题教学切忌就题论题,片面追求容量,忽视教学功能的发掘与开发.引导学生学会解题层面的回顾与反思:如解题中用到了哪些知识?解题中用到了哪些方法?这些知识和方法是怎样联系起来的?自己是怎么想到它们的?困难在哪里?关键是什么?遇到什么障碍?后来是怎么解决的?是否还有别的解决方法、更一般的方法或更特殊的方法、沟通其他学科的方法、更简单的方法?这些方法体现了什么样的数学思想?调动这些知识和方法体现了什么样的解题策略?

(三)关注模型思想强化学生的识模能力

上一篇:国旗下讲话稿-善待地球、爱我校园、保护环境下一篇:钢琴演奏论文