城镇生活污水处理方案

2022-10-25

方案具有明确的格式和内容规范,要求其具有很强的实践性和可操作性,避免抽象和假大空的内容,那么具体如何制定方案呢?下面是小编为大家整理的《城镇生活污水处理方案》,希望对大家有所帮助。

第一篇:城镇生活污水处理方案

某城镇生活污水处理工程设计方案-氧化沟工艺设计

某城镇生活污水处理工程设计

摘 要:XX市XX镇生活污水处理厂设计处理规模12000m3/d,采用氧化沟工艺作为废水脱氮除磷阶段核心处理工艺,该工艺流程简单、构筑物少、处理效率高、投资省。经处理后出水水质达到城镇污水处理厂污染物排放标准(GB18918-2002)的一级B标,总投资约1600万元。

关键词:生活废水;氧化沟工艺;

前言

XX镇位于四川XX市境内中部平原地区。东邻XX镇、XX乡,南接XX乡、XX镇,西连XX镇,北靠XX镇。1985年并乡入镇,仍名XX镇。幅员面积50.7平方公里,耕地面积3975亩。

XX镇历来是XX市商贸重镇,享有"大蒜之乡"、"川剧之乡"和"兰花之乡"的美誉。1992年被XX市列为优先发展经济"一条线"乡镇,1995年被列为成都市小城镇建设试点镇,同时被评为四川省文化先进乡镇,并首批被命名为成都市特色文化之乡,连续4年被列为国家级农业综合开发区。隆丰镇基础设施完备,初步形成了工业、农业和第三产业综合发展的格局,已由农业经济向城乡型经济发展。

基于新农村建设的要求,基础配套设施的完善,新建污水处理站是必须的也是必备的。为改善该城镇及下游地区的环境质量,保障人民身体健康,建立污水处理厂是完全必要的,也是十分迫切的;该污水处理站将收集该镇八成以上的生活污水,处理后出水水质达到城镇污水处理厂污染物排放标准(GB18918-2002)的一级B标,满足排水和环保的要求[1]。同时与农民居住区环境的改善和新农村建设的总体思路完全吻合。 1.1设计任务及依据 1.1.1设计任务

12000 m3/d乡镇生活污水站初步设计。 1.1.2设计依据及原则 1.1.2.1 设计依据

《地表水环境质量标准》(GB3838-2002) 《污水综合排放标准》 (GB8978-1996) 《生活饮用水卫生标准》 (GB5749-2006) 《污水排入城市下水道水质标准》 (CJ3082-1999) 《城市污水处理厂污水污泥排放标准》 (CJ3025-93) 《中华人民共和国环境保护法》;

《建设项目环境保护设计规定》;

《彭州市建设项目环境管理》;

《水污染物排放限值》(DB44/26-2001)中的一级标准; 《污水综合排排放标准》(GB8978-1996)中的一级标准;

《建筑给水排水设计规范》(GBJ 15-88);

1.1.2.2 设计原则

(1)选用运行安全可靠、经济合理的工艺流程。

(2)采用先进的技术和设备,合理利用资金,提高污水处理站的自动化程度和管理水平。

(3)根据基础设施统一规划、分步实施的方针,在方案设计中充分考虑远、近期结合,为发展留有余地。

(4)污水处理厂的位置,应符合城市规划要求,位于城市下游,与周边有一定的卫生防护带,靠近受纳水体,少占农田。

(5)严格执行国家和地方现行有关标准、规范和规定。 1.1.3 设计范围

本方案设计范围为:通过对类似生活污水水质情况的综合分析,提出可行性方案,最终推荐最优方案;内容主要包括污水处理工艺流程、设备选型、污水构筑物及附属工程等进行综合规划设计。

1.2 设计水量及水质 1.2.1 设计人口

根据统计,隆丰镇2005年人口共43000人,结合当地70/00的人口年增长速度,以等比数列推算法[2]预计到2020年人口总数达48000人左右。

1.2.2 设计水量

根据居民生活污水定额[2]145 L /(人·d),设计水量平均总流量为6525m3/d,平均时流量272m3/h,即75 L/s。所以时变化系数Kz=1.7,小时最大流量Qmax=12000m3/d。

1.2.3 设计水质

根据本地城镇污水的原始资料,和该污水处理厂出水直接排放到河流内,而该河流是饮用水源保护区,所以,处理出水应该达到城镇污水处理厂污染物排放标准(GB18918-2002)的一级B标。

表1 设计水质

进水水质(mg/L) 出水水质(mg/L) 处理程度(%) BOD5 200 20 90 CODcr 350 60 82.8

SS 300 20 93.3

T-N 40 20 50

NH3-N 30 15 50

TP 8 1 87

高25℃ 低12℃

6~9

水温

pH 2处理工艺方案选择 2.1工艺方案选择原则

作为乡镇基础设施的重要组成部分和水污染控制的关键环节,乡镇污水处理厂工程的建设和运行意义重大。由于乡镇污水处理厂的建设和运行不但耗资较大,而且受多种因素的制约和影响,其中处理工艺方案的优化选择对确保处理厂的运行性能和降低费用最为关键,因此有必要根据确定的标准和一般原则,从整体优化的观念出发,结合设计规模、污水水质特性以及当地的实际条件和要求,选择切实可行且经济合理的处理工艺方案,经全面技术经济比较后优选出最佳的总体工艺方案和实施方式[3]。在污水处理厂工艺方案确定中,将遵循以下原则:

(1)技术成熟,处理效果稳定,保证出水水质达到国家规定的排放要求。 (2)基建投资和运行费用低,以尽可能少的投入取得尽可能多的效益。

(3)运行管理方便,运转灵活,并可根据不同的进水水质和出水水质要求调整运行方式和工艺参数,最大限度的发挥处理装置和处埋构筑物的处理能力。

(4)选定工艺的技术及设备先进、可靠。

(5)便于实现工艺过程的自动控制,提高管理水平,降低劳动强度和人工费用。 本工程要求的污水处理程度较高,对污水处理工艺选择应十分慎重。本方案设计的污水处理工艺选择针对该城镇污水量和污水水质以及经济条件考虑适应力强、调节灵活、低能耗、低投入、少占地和操作管理方便的成熟先进工艺[4]。下面将对各种工艺的特点进行论述,以便选择切实可行的方案。

2.2污水处理工艺流程的确定 2.2.1 厂址及地形资料

XX镇污水处理站选址应综合考虑管网布置和现有人口分布特点,将其分别布置在龟背型场镇的两边。

2.2.2气象及水文资料 2.2.2.1水文地质资料

该地区地处成都平原。地形复杂,有低山、丘陵和平原,多条河流直贯其中,地势北高南低。

2.2.2.2气象资料

(1) 风向及风速:常风向为北风,最大风速1.2m/s; (2) 气温:月平均最高气温37.3℃,最低气温-2.7℃ 2.2.3可行性方案的确定 本项目污水处理的特点为:

① 污水以有机污染为主,BOD/COD=0.5,可生化性较好,重金属及其他难以生物降解的有毒物一般不超标;

② 污水中主要污染物指标BOD

5、CODcr、SS值比国内一般城市污水高;

针对以上特点,以及出水要求,现有城市污水处理技术的特点,以采用生化处理最为经济。

生活污水的生物处理技术是以污水中含有的污染物作为营养源,利用微生物的代谢作用使污染物降解,它是生活污水处理的主要手段,是水资源可持续发展的重要保证[5]。

根据国内外已运行的大、中型污水处理厂的调查,要达到确定的治理目标,可采用:普通活性污泥法、氧化沟法、A/O工艺法、AB法、SBR法等等。

a.普通活性污泥法方案

普通活性污泥法,也称传统活性污泥法,推广年限长,具有成熟的设计及运行经验,处理效果可靠。自20世纪70年代以来,随着污水处理技术的发展,本方法在艺及设备等方面又有了很大改进。在工艺方面,通过增加工艺构筑物可以成为“A/O”或“A2/O”工艺,从面实现脱N和除P。在设备方面,开发了各种微孔曝气池,使氧转移效率提高到20%以上,从面节省了运行费用。

国内已运行的大中型污水处理厂,如西安邓家村(12万m3/d)、天津纪庄子(26万m3/d)、北京高碑店(50万m3/d)、成都三瓦窑(20万m3/d)

普通活性污泥法如设计合理、运行管理得当,出水BOD5可达10~20mg/L。它的缺点是工艺路线长,工艺构筑物及设备多而复杂,运行管理管理困难,基建投资及运行费均较高。国内已建的此类污水处理厂,单方基建投资一般为1000~1300元/(m3/d),运行费为0.2~0.4元/(m3/d)或更高。

b.氧化沟方案

氧化沟污水处理技术,是20世纪50年代由荷兰人首创。60年代以来,这项技术在欧洲、北美、南非、澳大利亚等国已被广泛采用,工艺及构造有了很大的发展和进步。随着对该技术缺点(占地面积大)的克服和对其优点(基建投资及运行费用相对较低,运行效果高且稳定,维护管理简单等)的逐步深入认识,目前已成为普遍采用的一项污水处理技术。目前常用的几种商业性氧化沟有荷兰DHV公司60年代开发的Carrousel氧化沟,美国Envirex公司开发的Orbal氧化沟,丹麦Kruger公司发明的DE氧化沟等。在我国,氧化沟工艺是使用较多的工艺[4]。

氧化沟工艺一般可不设初沉池,在不增加构筑物及设备的情况下,氧化沟内不仅可完成碳源的氧化,还可实现硝化和脱硝,成为A/O工艺;氧化沟前增加厌氧池可成为A2/O(A-A-O)工艺,实现除磷。由于氧化沟内活性污泥已经好氧稳定,可直接浓缩脱水,不必厌氧消化。

氧化沟污水处理技术已被公认为一种较成功的革新的活性污泥法工艺,与传统活性污泥系统相比,它在技术、经济等方面具有一系列独特的优点。

① 工艺流程简单、构筑物少,运行管理方便。一般情况下,氧化沟工艺可比传统活性污泥法少建初沉池和污泥厌氧消化系统,基建投资少。另外,由于不采用鼓风曝气的空气扩散器,不建厌氧消化系统,运行管理要方便。

② 处理效果稳定,出水水质好。实际运行效果表明,氧化沟在去除BOD5和SS方面均可取得比传统活性污泥法更高质量的出水,运行也更稳定可靠。同时,在不增加曝气池容积时,能方便地实现硝化和一定的反硝化处理,且只要适当扩大曝气池容积,能更方便地实现完全脱氮的深度处理。

③ 基建投资省,运行费用低。实际运行证明,由于氧化沟工艺省去初沉池和污泥厌氧消化系统,且比较容易实现硝化和反硝化,当处理要求脱氮时,氧化沟工艺在基建投资方面比传统活性污泥法节省很多(当只需去除BOD5时,可能节省不多)。同样,当仅要求去除BOD5时,对于大规模污水厂采用氧化沟工艺运行费用比传统活性污泥法略低或相当,而要求去除BOD5且去除NH3-N时,氧化沟工艺运行费用就比传统活性污泥法节省较多。

④ 污泥量少,污泥性质稳定。由于氧化沟所采用的污泥龄一般长达20~30d,污泥在沟内得到了好氧稳定,污泥生成量就少,因此使污泥后处理大大简化,节省处理厂运行费用,且便于管理。

⑤ 具有一定承受水量、水质冲击负荷的能力。水流在氧化沟中流速为0.3~0.4m/s,氧化沟的总长为L,则水流完成一个循环所需时间t=L/S,当L=90~600m时,t=5~20min。由于废水在氧化沟中设计水力停留时间T为10~24h,因此可计算出废水在整个停留时间内要完成的循环次数为30~280次不等。可见原污水一进入氧化沟,就会被几十倍甚至上百倍的循环量所稀释,因此具有一定承受冲击负荷的能力。

⑥ 占地面积少。由于氧化沟工艺所采用的污泥负荷较小、水力停留时间较长,使氧化沟容积会大于传统活性污泥法曝气池容积,占地面积可能会大些,但因为省去了初沉池和污泥厌氧消化池,占地面积总的来说会少于传统活性污泥法。

c. A/O和A2/O法

A/O工艺自被开发以来,就因为其特有的经济技术优势和环境效益,愈来愈受到人们的广泛重视.通常称为A/O工艺的实际上可分为两类,一类是厌氧/好氧工艺,另一类是缺氧/好

氧工艺.厌氧状态和缺氧状态之间存在着根本的差别:在厌氧状态下既有无分子态氧,也没有化合态氧,而在缺氧状态下则存在微量的分子态氧(DO浓度<0.5mg/L),同时还存在化合态的氧,如硝酸盐.。

A2/O法的特点有:

①A2/O法在去除有机碳污染物的同时,还能去除污水中的氮磷,与传统活性污泥法二级处理后再进行深度处理相比,不仅投资少、运行费用低,而且没有大量的化学污泥,具有良好的环境效益。

②A2/O法厌氧、缺氧、好氧交替进行,有利于抑制丝状菌的膨胀,改善污泥沉降性能。 ③A2/O法工艺流程简单,总水力停留时间少于其他同样功能的工艺,节省基建投资。 ④A2/O法缺点是受泥龄、回流污泥中溶解氧和硝酸盐氮的限制,不可能同时取得脱氮和除磷都好的双重效果。

d. A-B法工艺

AB工艺是一种生物吸附―降解两段活性污泥工艺,A段负荷高,曝气时间短,0.5h左右,污泥负荷高2~6 kgBOD5/(kgMLSS·d),B段污泥负荷较低,为0.15~0.30 kgBOD5/(kgMLSS·d),该段工艺有机物、氮和磷都有一定的去除率,适用于处理浓度较高,水质水量较大的污水,通常要求进水BOD5≥250mg/L,AB工艺才有明显优势[4]。

AB工艺的优点:

具有优良的污染物去除效果,较强的抗冲击负荷能力,良好的脱氮除磷效果和投资及运转费用较低等。

① 对有机底物去除效率高。

② 系统运行稳定。主要表现在:出水水质波动小,有极强的耐冲击负荷能力,有良好的污泥沉降性能。

③ 有较好的脱氮除磷效果。

④ 节能。运行费用低,耗电量低,可回收沼气能源。经试验证明,AB法工艺较传统的一段法工艺节省运行费用20%~25%. AB工艺的缺点

① A段在运行中如果控制不好,很容易产生臭气,影响附近的环境卫生,这主要是由于A段在超高有机负荷下工作,使A段曝气池运行于厌氧工况下,导致产生硫化氢、大粪素等恶臭气体。

② 当对除磷脱氮要求很高时,A段不宜按AB法的原来去处有机物的分配比去除BOD5 5%~60%,因为这样B段曝气池的进水含碳有机物含量的碳/氮比偏低,不能有效的脱氮。

③ 污泥产率高,A段产生的污泥量较大,约占整个处理系统污泥产量的80%左右,且剩余污泥中的有机物含量高,这给污泥的最终稳定化处置带来了较大压力。

e. SBR工艺

SBR实际上是最早出现的活性污泥法,早期局限于实验研究阶段,但近十年来,由于自动控制、生物选择器、机械制造方面的技术突破才使得这一工艺真正应用于生产实践,目前该工艺的应用正在我国逐步兴起[5]。

它是一个完整的操作过程,包括进水、反应、沉淀、排水排泥和闲置5个阶段。 SBR工艺有以下特点:

① 生物反应和沉淀池在一个构筑物内完成,节省占地,土建造价低。

② 具有完全混合式和推流式曝气池的优势,承受水量,水质冲击负荷能力强。 ③ 污泥沉降性能好,不易发生污泥膨胀。 ④ 对有机物和氮的去除效果好。

但传统的SBR工艺除磷的效果不理想,主要表现在:对脱氮除磷处理要求而言,传统SBR工艺的基本运行方式虽充分考虑了进水基质浓度及有毒有害物质对处理效果的影响而采取了灵活的进水方式,但由于这种考虑与脱氮或除磷所需要的环境条件相背,因而在实际运行中往往削弱脱氮除磷效果。就除磷而言,采用非限量或半限量曝气进水方式,将影响磷的释放;对脱氮而言,则将影响硝化态氮的反硝化作用而影响脱氮效果。

表2 生物处理方案技术经济比较

方 案 A/O 氧化沟 AB法 SBR法 技术 指标 BOD5去 除率% 85~95 90~95 85~95 90~99 经济指标 基建 费 >100 <100 <100 <100

能 耗 >100 >100 <100 100

占 地 >100 >100 约100 <100

运行情况 运行 稳定 一般 稳定 一般 稳定

管理 情况 一般 简便 简便 简便

适应负荷波动 一般 适应 适应 适应

备 注

需脱氮除磷的污水处理厂

适用于中小型污水厂,需要脱氮除磷地区

适应可分期建设达到不同的要求 适用于中、小型污水处理厂

注:*将传统活性污泥法100作为相对经济指标基准。

从上面的对比中我们可以得到如下结论:根据综合分析,为使该废水达到排放标准则应考虑使用具有脱氮除磷功能的生物处理工艺。

由以上内容知,处理工艺上优先选择A/O法和氧化沟法,两种工艺都能达到预期的处理效果,且都为成熟工艺,但经分析比较,氧化沟法工艺方案在以下方面具有明显优势。

① 氧化沟法方案在达到与传统活性污泥法同样的去除BOD5效果时,还能有更充分的硝化和一定的反硝化效果;

② 氧化沟法管理较简单,适合该污水处理管理技术水平现状;

③ 氧化沟法相对A/O法具有更强的适应符合波动能力[6]。

综合以上对比分析,本工程以氧化沟法污水处理厂工艺方案作为推荐方案,如图1所示。 9

程渣包外运栅渣打包机农灌格栅砂外运提升泵沉砂池厌氧池氧化沟二沉池接触池分水井至回用水深度处理系统原污水砂水分离器砂泵回流泵集泥井加氯机泥饼外运污泥脱水机贮泥池浓缩池污泥泵液氯 10

3 污水处理工艺设计计算 3.1污水处理系统 3.1.1格栅

格栅主要是为了拦截废水中的较大颗粒和漂浮物,以确保后续处理的顺利进行。主要是对水泵起保护作用,拟采用中格栅,格栅栅条选用圆钢,栅条宽度S=0.01m,间隙拟定为0.02m[2]。

设计参数:栅条间隙e=20.00mm,栅前水深h=0.4m,过栅流速υ=0.9m/s, 安装倾角δ=60°,φ10圆钢为栅条阻力系数 =1.79。

图2 格栅示意图

① 栅条间隙数n

Qmaxsinaneh

式中: n——栅条间隙数,个;

Qmax——最大设计流量,Qmax =0.129 m3/s;

a——格栅倾角,取60; b——栅条间隙,m ,取0.02 m; h——栅前水深,m,取0.4 m; v——过栅流速,m/s,取0.9 m/s;

则:

nQmaxsina0.129sin60=16.67 条

取17条 ehv0.020.40.9② 栅槽宽度 B B=S(n-1)+bn 式中: S——栅条宽度,m ,取0.01 m 。 则:

B=S(n-1)+bn=0.01×(17-1)+0.02×17=0.5m ③ 通过格栅的水头损失h1=h0k v

2 h0sina

2gs



b43 式中: h1——设计水头损失,m ;

h0——计算水头损失,m ;

G ——重力加速度, m/s2 ,取g=9.8 m/s2;

K ——系数,格栅受污物堵塞时水头损失增大倍数,一般采用 =3;

——阻力系数,其值与栅条断面形状有关;

——形状系数,取 =1.79(由于选用断面为锐边矩形的栅条)。

s0.01则: 1.790.71

b0.024343 12

0.92v2sin60=0.03 m

h0sina=0.7129.82g

h1=h0k=0.03×3=0.09m ④ 栅后槽总高度

H H=h+h1+h2

式中:h2——栅前渠道超高,取 =0.3 m。 则:

H=h+h1+h2 =0.4+0.09+0.3=0.79 。 ⑤ 栅槽总长度

L Ll1l21.00.5H1tan

BB1l12tan1

l12 l2H1hh1 式中:

l1——进水渠道渐宽部分的长度,m ;

B1——进水渠宽,m ,取B1=0.35m ;

a1——进水渠道渐宽部分的展开角度,取a1=20 ;

l2——栅槽与进水渠道连接处的渐窄部分长度,m ;

H1——栅前渠道深, m. 则:

l1BB10.50.350.22m 2tana12tan20l1=0.11 m 213

l2H1=h+h2=0.4+0.3=0.7 m

L=l1+l2+0.5+1.0+⑥ 每日栅渣量 W

H10.7=0.22+0.11+0.5+1.0+=2.23m tantan60W

86400QmaxW11000K总

式中:W1——栅渣量,m3/(103m3)污水,取W1=0.07 m3/(103m3)污水。 则:

W=86400QmaxW1864000.1290.07=0.45 m3/d>0.2 m3/d , 宜采用机械清渣 1000KZ10001.73.1.2污水提升泵池 设计计算

① 设计流量:Q=301L/s,泵房工程结构按远期流量设计 ② 泵房设计计算

采用氧化沟工艺方案,污水处理系统简单,对于新建污水处理厂,工艺管线可以充分优化,故污水只考虑一次提升。污水经提升后入平流沉砂池,然后自流通过厌氧池、氧化沟、二沉池及接触池,最后由出水管道排入关渠堰。

根据最大流量设计,选用4台150QW-180-6-5.5潜污泵(3用1备)[7],Q=180m3/h,H=6m;采用高、中、低水位分别启动水泵,通过液位计来实现自动控制;出水管上设置管式流量计,对出水流量进行监测和控制。

污水提升泵池尺寸:1000mm×900mm×1500mm 数量:1座 材质:钢筋混凝土 构造:全地埋 3.1.3平流式沉砂池

① 设计说明

污水经提升泵提升后进入平流沉砂池,共两组对称于提升泵房中轴线布置,每组分为两格[4]。每格宽度B1=0.65m 沉砂池池底采用多斗集砂,沉砂由螺旋离心泵自斗底抽送至高架砂水分离器,砂水分离通入压缩空气洗砂,污水回至提升泵前,净砂直接卸入自卸汽车外运。

设计流量为Qmax=464 m3/h=0.129 m3/s,设计水力停留时间t=30s,水平最大流速υ=0.25m/s,城市污水沉砂量X=30 m3/(106m3),清除沉砂的间隔时间T=2d。

每格池平面面积为A=

Qmax0.1290.516m2 v0.25② 沉砂池水流部分的长度(L)

LVt

式中:

L——沉砂池水流部分的长度,L;

V——曝气沉砂池有效容积,m3 ;

t ——设计水力停留时间t=40s 则:

LVt0.25307.5m ③

池宽度

B

B=n×B1=2×0.65=1.3m

式中:

B——沉砂池总宽度;

B1——单个沉砂池宽度;

n——沉砂池个数。

则:

B=n×B1=2×0.65=1.3m

④ 有效水深 h

2 h2=A B式中:

h2——有效水深;

A——池平面面积;

B——沉砂池总宽。 则:

h2=A0.5160.4 m B1.3⑤ 沉砂斗所需容积 (V)

V =QmaxXT86400

KZ106式中:

V——沉砂斗所需容积;

Qmax——最大设计流量,Qmax =0.129 m3/s;

X——城市污水沉砂量,m3/(106m3);

T——清除沉砂的间隔时间,d。

KZ——水流量变化系数, 取1.7。 则:

V=QmaxXT864000.129302864000.3990.4m3 66KZ101.710⑥ 池总高度 (H)

H= h1+h2+h3

式中:h1——沉砂池超高,取0.3m;

h2——有效深度,

h2=0.4m;

h3——沉砂室高度,取0.5m 则:

H= h1+ h2+ h3=0.3+0.4+0.5=1.2m 3.1.4厌氧池 a.设计参数

设计流量:最大日平均时流量为Qmax= 129L/s 水力停留时间:T=2.5h 污泥浓度:X=3000mg/L 污泥回流液浓度:Xr=10000mg/L 考虑到厌氧池与氧化沟为一个处理单元,总的水力停留时间超过15h,所以设计水量按

最大日平均时考虑[8]。

b.设计计算 ① 厌氧池容积:

V= Q1′ T=129×10-3×2.5×3600=1161m

3② 厌氧池尺寸:水深取为h=4.0m。

则厌氧池面积: A=V1161290m2 h

4厌氧池直径:

D=4A4290m (取D=20m) 3.14

考虑0.3m的超高,故池总高为H=h+0.3=4+0.3=4.3m。

③ 污泥回流量计算:

回流比计算

R =X31030.43

XrX103

污泥回流量

QR =0.43×129=55.47L/s=4792m3/d 3.1.5氧化沟

3.1.5.1 设计参数(进水水质如表1所示)

进水BOD5 =200mg/L

出水BOD5 =20mg/L 进水NH3-N=30mg/L

出水NH3-N=15mg/L 污泥负荷Ns=0.14 KgBOD5/(KgVSS·d) 污泥浓度MLVSS=5000mg/L 污泥f=0.6,MLSS=3000mg/L。

拟用卡罗塞(Carrousel)氧化沟,去除BOD5与COD之外,还具备硝化和一定的脱氮

除磷作用,使出水NH3-N低于排放标准。氧化沟按设计分2座,按最大日平均时流量设计Qmax=11092 m3/d= 129 m3/s,每座氧化沟设计流量为

Q1=Qmax= 65L/s。 2总污泥龄:20d MLSS=3600mg/L,MLVSS/MLSS=0.75 则MLSS=2700 曝气池:DO=2mg/L NOD=4.6mgO2/mgNH3-N氧化,可利用氧2.6mgO2/NO3-N还原 α=0.9

β=0.98 其他参数:a=0.6kgVSS/kgBOD

5 b=0.07d-1 脱氮速率:qdn=0.0312kgNO3-N/kgMLVSS·d K1=0.23d-1 Ko2=1.3mg/L 剩余碱度100mg/L(保持PH≥7.2): 所需碱度7.1mg碱度/mgNH3-N氧化;产生碱度3.0mg碱度/mgNO3-N还原 硝化安全系数:2.5 脱硝温度修正系数:1.08 3.1.5.2 设计计算 ①.碱度平衡计算:

出水处理水中非溶解性BOD5值

BOD5f;

BOD5f =0.7×Ce×1.42(1-e-0.23×5)

式中:BOD5f——出水处理水中非溶解性BOD5值,mg/L;

Ce——出水中BOD5的浓度,mg/L; 则:BOD5f =0.7×20×1.42(1- e-0.23×5)=13.6 mg/L 则出水处理水中溶解性BOD5值,BOD5=20- BOD5f =6.4 mg/L ②.设采用污泥龄20d,日产污泥量 Xc

Xc =aQLr

1bc式中:Q——为氧化沟设计流量,11092 m3/d;

a——为污泥增长系数,取0.6 kg/kg;

b——污泥自身氧化率,取0.05 L/d;

Lr——为(L0-Le) 去除的BOD5浓度,mg/L;

L0——进水BOD5浓度,mg/L;

Le——出水BOD5浓度,mg/L;

c——污泥龄,d。

Xc =aQLr0.6110922006.4644 kg/d 1bc100010.0520根据一般情况,设其中有12.4%为氮,近似等于总凯式氮(TKN)中用于合成部分[9],即:

0.124644=79.8 kg/d

即:TKN中有79.810007.19 mg/L用于合成。

11092

需用于氧化的NH3-N =34-7.19-2=24.81 mg/L

需用于还原的NO3-N =24.81-11.1=13.71 mg/L ③.碱度平衡计算

一般去除BOD5所产生的碱度(以CaCO3计)约为0.1mg/L碱度去除1mgBOD5,设进水中碱度为250mg/L。

所需碱度为7.1 mg碱度/mg NH3-N氧化,即 7.1×24.81=176.15 mg/L 氮产生碱度3.0 mg碱度/ mg NO3-N还原,即 3.0×13.71=41.1 mg/L 计算所得的剩余碱度=250-176.15+41.1+0.1×Lr=32.75+0.1×193.6=133.9 mg/L

计算所得剩余碱度以CaCO3计,此值可使PH≥7.2 mg/L ④.硝化区容积计算:

曝气池:DO=2mg/L 硝化所需的氧量NOD=4.6 mg/mg NH3-N氧化,可利用氧2.6 mg/mg /NO3-N还原 α=0.9

β=0.98 其他参数:a=0.6kgVSS/kgBOD5

b=0.07d-1 脱氮速率: qdn=0.0312kgNO3-N/(kgMLVSS·d) K1=0.23d-

1Ko2=1.3mg/L 剩余碱度100mg/L(保持PH≥7.2): 所需碱度7.1mg碱度/mgNH3-N氧化;产生碱度3.0mg碱度/mgNO3-N还原 硝化安全系数:2.5 脱硝温度修正系数:1.08

硝化速率为

n0.47e0.098T15

NO20.05T1.158KON102O2

220.47e0.09815150.05151.1581.32210



=0.204 d-1

故泥龄: tw114.9d 0.204n

采用安全系数为2.5,故设计污泥龄为:2.54.9=12.5 d

原假定污泥龄为20d,则硝化速率为:

n

单位基质利用率:

u10.05L/d 20nba0.050.050.167

kgBOD5/kgMLVSS.d

0.6

式中: a——污泥增长系数,0.6;

b——污泥自身氧化率,0.051/d。

在一般情况下,MLVSS与MLSS的比值是比较固定的,这里取为0.75

则:

MLVSS=f×MLSS=0.753600=2700 mg/L

所需的MLVSS总量=

2006.4100000.167100011000Kg

硝化容积: Vn1100010004074m3 2700

水力停留时间: tn⑤.反硝化区容积:

4074248.81h 11092

12℃时,反硝化速率为:

Fqdn0.03()0.029T20M

式中: F——有机物降解量,即BOD5的浓度,mg/L

M——微生物量,mg/L;

——脱硝温度修正系数,取 1.08 。

T——温度,12℃。

则:

2000.0291.081220

qdn0.0336001624

=0.017kg NO3-N /kgMLVSS.d 还原NO3-N的总量=

13.7111092152kg/d 1000

脱氮所需MLVSS=

1528000kg 0.019800010002962.9m3 270021

脱氮所需池容: Vdn

水力停留时间: tdn⑥.氧化沟的总容积:

总水力停留时间:

2962.9246.4h 11092t=tn+tdn=8.81+6.4=15.2h

总容积:

V=Vn+Vdn=4074+2962.9=7036.9m3

⑦.氧化沟的尺寸:

氧化沟采用4廊道式卡鲁塞尔氧化沟,取池深3.5m,宽7m,则氧化沟总长:7036.940742962.9287.2 m。其中好氧段长度为166.2m,缺氧段长度为121m。 3.573.573.57弯道处长度: 3722122166m

则单个直道长: 287.26655.3m (取54m) 4

故氧化沟总池长=54+7+14=75m,总池宽=74=28m(未计池壁厚)。 ⑧需氧量计算:

采用如下经验公式计算:

氧量O2(kg/d)ALrBMLSS4.6Nr2.6NO3

式中:A——经验系数,取0.5;

Lr——去除的BOD5浓度,mg/L;

B——经验系数,取0.1;

Nr——需要硝化的氧量,24.8111092103=275.2 kg/d

其中:第一项为合成污泥需氧量,第二项为活性污泥内源呼吸需氧量,第三项为硝化污泥需氧量,第四项为反硝化污泥需氧量。

需要硝化的氧量:

22

Nr=24.811109210-3=275.2 kg/d R02=0.511092(0.19-0.0064)+0.140742.7+4.6275.2-2.6152 =2988.95 kg/d=124.54 kg/h 30℃时, 采用表面机械曝气时脱氮的充氧量为:

R0Cs(T)C1.024T20

RCs(20)

式中:α——经验系数,取0.8;

β——经验系数,取0.9

——相对密度,取1.0;

Cs(20)Cs(30)——20℃时水中溶解氧饱和度,取9.17 mg/L; ——30℃时水中溶解氧饱和度,取7.63 mg/L;

C——混合液中溶解氧的浓度,取2mg/L;

T——温度,30℃。

则:

R0CsTC1.024(T20)RCs(20)= 124.549.17 (3020)0.80.917.6321.024

=231.4 kg/h 查手册,选用DY325型倒伞型叶轮表面曝气机[10],直径Ф=3.5m,电机功率N=55kW,单台每小时最大充氧能力为125kgO2/h,每座氧化沟所需数量为n,则

nR0231.41.85125125

取n=2台

⑨回流污泥量:

可由公式RX求得。

XrX式中:X——MLSS=3.6g/L,

Xr——回流污泥浓度,取10g/L。

23

则:

R3.60.56(50%~100%,实际取60%)

103.6考虑到回流至厌氧池的污泥为11%,则回流到氧化沟的污泥总量为49%Q。 ⑩剩余污泥量:

Qw6442400.25110921524.1kg/d0.751000

如由池底排除,二沉池排泥浓度为10g/L,则每个氧化沟产泥量为:

1524.1152.41m3/d

10

3.1.5.3 氧化沟计算草草图如下:

备用曝气机栏杆可暂不安装图3 氧化沟设计草图(1)

上走道板进水管接自提升泵房及沉砂池走道板上出水管至流量计井及二沉池钢梯图4 氧化沟设计草图(2)

3.1.6 二沉池

该沉淀池采用中心进水,周边出水的幅流式沉淀池,采用刮泥机[11]。 3.1.6.1设计参数

设计进水量:Q=11092 m3/d=463.2 m3/h

表面负荷:qb范围为1.0—1.5 m3/ m2.h ,取q=1.0 m3/ m2.h

24

固体负荷:qs 一般范围为120 =140 kg/ m2.d 水力停留时间(沉淀时间):T=2.5 h 堰负荷:取值范围为1.5—2.9L/s.m,取2.0 L/(s.m) 3.1.6.2.设计计算 ① 沉淀池面积: 按表面负荷算: AQ463.2463.2m2 qb1② 沉淀池直径:D4A4463.224.2m16m3.14

QT=qbT=1.02.5=2.5m<4m A③ 沉淀部分有效水深为

h2 =④ 沉淀部分有效容积

3.1424.322.5=1150m3 h2=

V=

44D2⑤ 沉淀池底坡落差,设池底坡度

i=0.05

D24.3

则:

h4=i20.0520.5075m

22⑥ 沉淀池周边水深

其中缓冲层高度取h3=0.5 m

刮泥板高度取h5=0.5 m

H0=h2+h3+h5=2.5+0.5+0.5=3.5mm ⑦ 沉淀池总高度 H 设沉淀池超高h1=0.3m

H=H0+h4+h1=3.5+0.51+0.3=4.31m 3.1.6.3 校核堰负荷:

径深比

25

D24.38.1h1h32.50.5

D24.36.94hhh2.50.50.5

123

堰负荷

Q11092145m3/(d.m)1.67L/(s.m)2L/(s.m)D3.1424.3

以上各项均符合要求

3.1.6.4 辐流式二沉池计算草图如下:

出水进水图5 辐流式沉淀池排泥出水进水图6 辐流式沉淀池计算草图3.1.7 接触消毒池与加氯间

采用隔板式接触反应池[10]

3.1.7.1.设计参数

设计流量:Q′=11092 m3/d =129 L/s(设一座) 水力停留时间:T=0.5h=30min 设计投氯量为:max=4.0mg/L

26

平均水深:h=2.0m

隔板间隔:b=3.5m 3.1.7.2.设计计算 ①

接触池容积:

V=Q′T=0.1293060=232m3

V232116m2

表面积A=h2

隔板数采用2个,

则廊道总宽为B=(2+1)3.5=10.5m 取11m

接触池长度LA11611m B10.5

长宽比L113.14 b3.5

实际消毒池容积为V′=BLh=11112=242m3

池深取2+0.3=2.3m (0.3m为超高) 经校核均满足有效停留时间的要求 ② 加氯量计算:

设计最大加氯量为max=4.0mg/L,每日投氯量为

ω=maxQ=41109210-3=44.3kg/d=1.85kg/h

选用贮氯量为120kg的液氯钢瓶,每日加氯量为3/8瓶,共贮用10瓶,每日加氯机一台,投氯量为1.5~2.5kg/h。

配置注水泵两台,一用一备,要求注水量Q=1—3m3/h,扬程不小于10mH2O ③ 混合装置

在接触消毒池第一格和第二格起端设置混合搅拌机2台(立式)。混合搅拌机动率N0为

27

N0QTG2102

式中:QT——混合池容积,m3;

——水力粘度,20℃时, =1.06×10-4Kg·s/m2;

G——搅拌速度梯度,对于机械混合G=500s-1。

1.060.1293050020.068KW

N035102

实际选用JBK-2200框式调速搅拌机,搅拌器直径φ2200,高度H=2000mm,电动机功率为4.0KW。

接触消毒池设计为纵向折流反应池。在第一格,每隔3.8m设纵向垂直折流板,第二格每隔6.33m设垂直折流板,第三格不设。

④ 接触消毒池计算草图如下:

图7 接触消毒池工艺计算图

3.2污泥处理系统 3.2.1污泥回流泵房 3.2.1.1.设计说明

二沉池活性污泥由吸泥管吸入,由池中心落泥管及排泥管排入池外套筒阀井中,然后由管道输送至回流泵房,其他污泥由刮泥板刮入污泥井中,再由排泥管排入剩余污泥泵房集泥井中。

28

设计回流污泥量为QR=RQ,污泥回流比R=50%-100%。 按最大考虑,即QR=100%Q=129 L/s=11145.6m3/d 回流污泥泵设计选型 3.2.1.2 扬程:

二沉池水面相对地面标高为0.6m,套筒阀井泥面相对标高为0.2m,回流污泥泵房泥面相对标高为-0.2-0.2=-0.4m,氧化沟水面相对标高为1.5m,则污泥回流泵所需提升高度为:1.5-(-0.4)=1.9m 3.2.1.3 流量:

两座氧化沟设一座回流污泥泵房,泵房回流污泥量为11145.6 m3/d=464.4 m3/h 3.2.1.4 选泵:

选用LXB-900螺旋泵2台(1用1备),单台提升能力为480 m3/h,提升高度为2.0m-2.5m,电动机转速n=48r/min,功率N=5.5kW.[11]

回流污泥泵房占地面积为9m×5.5m 3.2.2 剩余污泥泵房 3.2.2.1 设计说明

二沉池产生的剩余活性污泥及其它处理构筑物排出污泥由地下管道自流入集泥井,剩余污泥泵(地下式)将其提升至污泥浓缩池中。

处理厂设一座剩余污泥泵房(两座二沉池共用)

污水处理系统每日排出污泥干重为2×1524.1kg/d,即为按含水率为99%计的污泥流量2Qw=2×152.4 m3/d=304.8 m3/d=12.7 m3/h 3.2.2.2.设计选型 ① 污泥泵扬程: 辐流式浓缩池最高泥位(相对地面为)-0.4m,剩余污泥泵房最低泥位为-4.53m,则污泥泵静扬程为H0=4.53-0.4=4.13m,污泥输送管道压力损失为4.0m,自由水头为1.0m,则污泥泵所需扬程为H=H0+4+1=9.13m。

② 污泥泵选型:

29

选两台,1用1备,单泵流量Q>H=14-12m, N=3kW ③ 剩余污泥泵房:

2Qw=6.35 m3/h。选用1PN污泥泵Q= 7.2-16 m3/h, 21

占地面积L×B=4m×3m,集泥井占地面积3.0mH3.0m

23.2.3 污泥浓缩池

采用两座幅流式圆形重力连续式污泥浓缩池,用带栅条的刮泥机刮泥,采用静压排泥,剩余污泥泵房将污泥送至浓缩池。

3.2.3.1设计参数

进泥浓度:10g/L

污泥含水率P1=99.0%,每座污泥总流量: Qw=1524.1kg/d=152.4 m3/d=6.35 m3/h

设计浓缩后含水率P2 =96.0%

污泥固体负荷:qs =45kgSS/( m2.d)

污泥浓缩时间:T=13h

贮泥时间:t=4h 3.2.3.2 设计计算 ① 浓缩池池体计算: 每座浓缩池所需表面积

AQw1524.133.86m2 qs45

 浓缩池直径

D

u4A433.866.5m3.14

水力负荷

Qw152.45.05m3/(m2.d)0.21m3/(m2.h)2A3.1

30

 有效水深h1=uT=0.2113=2.73m

取h1=2.8m 浓缩池有效容积V1=A h1=33.862.8=94.8m3 ② 排泥量与存泥容积: 浓缩后排出含水率P2=96.0%的污泥,则

Qw′=

100P100991Qw152.4138.1m3/d1.54m3/h

100P210096

按4h贮泥时间计泥量,则贮泥区所需容积

V2=4Qw′=41.54=6.16 m3

泥斗容积

V3h43

(r1r1r2r2)22

=

式中: 3.141.21.121.10.60.622.8m3 3h4——泥斗的垂直高度,取1.2m

r1——泥斗的上口半径,取1.1m

r2——泥斗的下口半径,取0.6m

设池底坡度为0.08,池底坡降为:

h5=0.08D2r10.086.521.10.172m

22

故池底可贮泥容积:

V4h53

(R1R1r1r1)22

=

3.140.172(3.2523.251.11.12)2.28m3 3

式中:

R1——浓缩池半径, m;

r1——泥斗的上口半径,m。

31

因此,总贮泥容积为

VwV3V42.82.855.68m3V26.16m3

(满足要求) ③ 浓缩池总高度:

浓缩池的超高h2取0.30m,缓冲层高度h3取0.30m,则浓缩池的总高度H为

Hh1h2h3h4h5

=2.8+0.30+0.30+1.2+0.17=4.77m ④ 浓缩池排水量:

Q=Qw-Qw’ =6.35-1.54=4.81m3/h ⑤ 浓缩池计算草图:

上清液出泥进泥图7 浓缩池计算草图

3.2.4 贮泥池及污泥泵 3.2.4.1设计参数

进泥量:经浓缩排出含水率P2=96%的污泥2Q w′=238.1=76.2m3/d,设贮泥池1座,贮泥时间T=0.5d=12h 3.2.4.2 设计计算

池容为

32

V=2Qw′T=76.20.5=38.1 m3

贮泥池尺寸(将贮泥池设计为正方形)

LBH=3.63.63.6m

有效容积V=46.66m3

浓缩污泥输送至泵房

剩余污泥经浓缩处理后用泵输送至处理厂南面的苗圃作肥料之用

污泥提升泵

泥量Q=76.2m3/d=3.17 m3/h

扬程H=2.3-(-1.5)+4+1=7.8m

选用1PN污泥泵两台[11],一用一备,单台流量Q=7.2~16 m3/h,扬程H=14~12mH2O,功率N=3kW

泵房平面尺寸L×B=4m×3m 4 厂区平面及高程设计 4.1厂区平面布置

4.1.1各处理单元构筑物的平面布置:

处理构筑物是污水处理厂的主体建筑物,在对它们进行平面布置时,应根据各构筑物的功能和水力要求结合当地地形地质条件,确定它们在厂区内的平面布置应考虑[13]:

① 贯通,连接各处理构筑物之间管道应直通,应避免迂回曲折,造成管理不便。 ② 土方量做到基本平衡,避免劣质土壤地段

④ 在各处理构筑物之间应保持一定产间距,以满足放工要求,一般间距要求5~10m,如有特殊要求构筑物其间距按有关规定执行。

④ 各处理构筑物之间在平面上应尽量紧凑,在减少占地面积。 4.1.2平面布置

本着尽量节约用地,并考虑发展预留用地的原则,进行厂区的总平面布置,本期工程总占地面积约4.5亩,包括污水处理构筑物、建筑物、附属构筑物、道路绿化,按功能分为污水预处理区、污水主处理区、污泥处理区、生活管理区、预留的回用水处理区。

33

4.1.3管线布置

厂区内还应有给水管,生活水管,雨水管,消化气管管线。 辅助建筑物:

污水处理厂的辅助建筑物有泵房,鼓风机房,办公室,集中控制室,水质分析化验室,变电所,存储间,其建筑面积按具体情况而定,辅助建筑物之间往返距离应短而方便,安全,变电所应设于耗电量大的构筑物附近,化验室应机器间和污泥干化场,以保证良好的工作条件,化验室应与处理构筑物保持适当距离,并应位于处理构筑物夏季主风向所在的上风中处。

在污水厂内主干道应尽量成环,方便运输。主干宽6~9m次干道宽3~4m,人行道宽1.5m~2.0m曲率半径9m,有30%以上的绿化。

4.2高程设计 4.2.1高程布置原则

①保证处理水在常年绝大多数时间里能自流排放水体,同时考虑污水厂扩建时的预留储备水头。

②应考虑某一构筑物发生故障,其余构筑物须担负全部流量的情况,还应考虑管路的迂回,阻力增大的可能。因此,必须留有充分的余地。

③处理构筑物避免跌水等浪费水头的现象,充分利用地形高差,实现自流。 ④在仔细计算预留余量的前提下,全部水头损失及原污水提升泵站的全扬程都应力求缩小。

⑤应考虑土方平衡,并考虑有利排水。 4.2.2 高程布置时的注意事项

在对污水处理厂污水处理流程的高程布置时,应考虑下列事项。

①选择一条距离最长、水头损失最大的流程进行水力计算,并应适当 留有余地,以保证在任何情况下处理系统能够正常运行。

②污水尽量经一次提升就应能靠重力通过处理构筑物,而中间不应再经加压提升。 ③计算水头损失时,一般应以近期最大流量作为处理构筑物和管(渠)的设计流量。

34

④污水处理后应能自流排入下水道或者水体。 4.2.3污水污泥处理系统高程布置 ①厂区设计地面标高

暂定厂区自然地平标高为地面标高,可根据厂区现场实际情况对土方适当平衡。 ②工艺流程竖向设计

处理厂进水管道管底标高暂定为-2.500m,以此为依据,进行污水处理流程的竖向设计。 4.2.4高程确定

计算污水厂处关渠堰的设计水面标高

根据式设计资料,关渠堰自本镇西南方向流向东北方向,关渠堰底标高为-3.75m,河床水位控制在0.5-1.0m。

而污水厂厂址处的地坪标高基本上在2.25m左右(2.10-2.40),大于关渠堰最高水位1.0m(相对污水厂地面标高为-1.25)。污水经提升泵后自流排出,由于不设污水厂终点泵站,从而布置高程时,确保接触池的水面标高大于0.8m【即关渠堰最高水位(-1.25+0.154+0.3)=-0.796≈0.8m】,同时考虑挖土埋深。

各处理构筑物的高程确定

设计氧化沟处的地坪标高为2.25m(并作为相对标高±0.00),按结构稳定的原则确定池底埋深-2.0m,再计算出设计水面标高为3.5-2.0=1.5m,然后根据各处理构筑物的之间的水头损失,推求其它构筑物的设计水面标高。经过计算各污水处理构筑物的设计水面标高见下表。再根据各处理构筑物的水面标高、结构稳定的原理推求各构筑物地面标高及池底标高。具体结果见污水、污泥处理流程图。

表3 各污水处理构筑物的设计水面标高及池底标高

构筑物名称 进水管 中格栅 泵房吸水井 接触池 水面标高(m) -0.19 -0.39 -1.00 -0.67

池底标高(m)

-0.79 -1.30 -2.97

构筑物名称 沉砂池 厌氧池 氧化沟 二沉池

水面标高(m)

3.00 2.00 1.5 0.60

池底标高(m)

2.10 -2.00 -2.00 -4.53

35

4.3厂区给排水设计 4.3.1给水设计

厂址在规划区内,自来水直接接入厂区内供全厂的消防、生活和部分生产用水。消防、生产、生活水管道共用,管道在厂区内布置成环状。

4.3.2厂区排水设计

厂区排水按雨污分流设计[2]。生产、生活污水经厂区污水管道收集后排入粗格栅前的进水井,与原污水一并处理。厂区雨水经雨水管道,汇集排至厂外河道。

5 技术经济分析 5.1 工程投资估算 5.1.1 土建工程造价 土建工程造价见表4。

表4 土建部分投资估算

号 1 2 3 4 5 5 6 7 8 9 10 11 12 13 工

称 格栅井 提升泵房 平流沉砂池 厌氧池 氧化沟沟体 二沉池 集泥井 污泥回流泵房 污泥泵房 污泥浓缩池 加氯间 变配电间 中心控制室 土建工程造价合计

数量 1座 1座 1座 1座 2座 1座 1间 1间 1间 1间 1间 1间 64.00 m3

单 价/万元 10000元/座 600元/ m3 400元/ m3 500元/ m3 400元/ m3 400元/ m3 5000元/间 10000元/间 10000元/间 5000元/间 3000元/间 64500元/间 400元/ m3

一期价/万元 1.0 2.42 4.8 4.25 960 4.06 0.5 1.0 1.0 0.5 0.3 4.45 3.56 987.84 5.1.2 设备工程造价 主要设备投资估算见表5。

表5 主要设备投资估算

1 2 名

称 格

栅 提升泵 规格、型号 中格栅、不锈钢 150QW-180-6-5.5

36

单 位 座 台 数 量 1 4

价格/万元

3.5 3.0

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 污泥泵 回流污泥泵 污泥输送机 脱水机 刮泥机 自动化控制系统 电控部分 管道及附件 工程管道、阀门 曝气转盘 变压器 电缆 自动加药装置 配电箱 其他配件 LXB-900 3 台 LXB1400 1 台

1 套

1 台

2GC型支座式中心驱1 台

1 套

1 套

1 套

1 套

D=1000mm,L=900mm 24个 每池3用

11 备 QZB自藕变压器 台

840 米

国产TP2660 1套

GGD 2 套

3.3

0.6 1.5 1.4 2.2 23 8 5 4 2.4 0.8 12 2 0.2 85.2 由于一些设备以及设备附件资料不全并且所需数量有所波动,还包括一部分不可遇见费用无法确定,所以无法给出明确细节,根据经验参数并参见同水量同工艺污水厂基本设备费,故在此设备总投资粗略估计在450万元左右[14]。

5.1.3 其他投资及工程总价估算 其他投资及工程造价估算见表6。

表6 其他投资及工程总价估算

序号 1 2 3 4 5 6 7 8

名称 土建工程造价 设备工程造价

小记 设计费 运输管理费 安装调试费 税金

取费标准

(1)+(2) (3)×5% (2)×3% (2)×8% (3+4+5+6)×6%

价格(万元)

987.14 450 1537.14 71.85 41.11 44 84 1581.37 5.2运行成本概算(单座污水处理站) 5.2.1基础资料 电费:0.80元/(kw.h) ClO2生产成本费:3元/kg 人工费:900元/月 5.2.2运行成本概算 成本估算见表7。

37

表7成本估算表

序号 1 2 3 4 5 6 7 8 9 10 11 费用名单 电费 药剂费 工资福利费 固定资产折旧 大修费 检修维护费 管理和其他费用 年经营成本 年总成本 单位水成本 单位水经营成本

单位 万元/年 万元/年 万元/年 万元/年 万元/年 万元/年 万元/年 万元/年 万元/年 元/t 元/t

计算公式 E1=519×0.5/1.42 E2=8.0t×30000元/t×10-4 E3=12000元/(人·年)×38人×10-4

E4=1781×4.8% E5=1781×1.7% E6=1781×1.0%

E7=(E1+E2+„„+E6)×10% Ec=E1+E2+E3+E5+E6+E7

Yc= Ec+E4 T1=Yc/365Q T2=Ec/365Q

费用价格 182.7 24.0 45.6 84.48 30.2 17.81 43.08 347.74 391.74 0.53 0.34 由于氧化沟工艺的特点,本次设计没有设计初沉池,但是在不增加构筑物及设备的情况下,氧化沟内不仅可完成碳源的氧化,还可实现硝化和脱硝,由于氧化沟活性污泥已经好氧稳定,可直接浓缩脱水,不必厌氧消化。

本次设计工艺流程简单、构筑物少,运行管理方便。而且处理效果稳定,出水水质好。基建投资省总投资控制在2000万以内,运行费用低,单位水成本为0.53元/m3。

6.环境保护和安全生产 6.1 环境保护

环境保护不仅要提供合理利用、保护自然资源的一整套技术途径和技术措施,而且还要研究开发废物资源化技术、改革生产工艺、发展无废或少废的闭路生产系统,其主要任务为:

①保护自然资源和能源,消除资源的浪费,控制和减少污染。

②研究防治环境污染的机理和有效途径,保护和改善环境,保护人们自身健康。 ③综合利用废水、废物、废渣,促进工农业生产的发展。

水污染控制的主要任务是从技术和工程上解决预防和控制污染的问题,还要提供保护水环境质量、合理利用水资源的方法。以及满足不同用途和要求的用水工艺技术和工程措施。

6.1.1 气味控制

污水处理厂处理过程中产生对环境的影响主要在气味和噪声这两方面。采取的主要措施是隔离。

38

处理厂会产生各种气味,特别是原生污水,栅渣及污泥气味更为严重,其中硫化氢气味尤为敏感。本工程在污泥泵房,污泥脱水机房等室内部分,考虑采用机械通风的方式,减少气味危害,在露天的水池及采用自然通风清除气味,在总平面布置图中,充分考虑把易产生恶臭的处理机构布置在下风向,远离生活区,厂区空地充分绿化,并栽种对污染气体有吸收作用的植物。

6.1.2 厂区废水、废渣处置

①污水处理厂厂内的排水体制采用量污分流制。厂内的生活污水经厂区管道收集,输送到污水处理系统中间和原污水一起处理,达标排放。

②厂内格栅、沉砂池和脱水机房均有固体废物产生,对此,在运行管理中要按要求在指定的场所堆放,外运时要用半封闭式子卸专用车辆,运送到指定区域外置,栅渣、沉渣应榨干后打包,污泥脱水后的泥饼含水率应小于80%。

6.1.3 防止事故性排放[15]

①采用二类负荷的供电等级,双回路供电,以防止污水处理厂因停电而造 成处理厂丧失处理能力。

②构筑物应考虑维修清理,设备应要有备份。

③加强处理设施的维护管理,确保设备正常运转,减少事故性排放的机率。 6.2 安全生产 6.2.1 劳动保护

按照《中华人民共和国劳动法》的要求,对操作人员安全卫生设施必须符合国家的规定标准。

①在污水处理厂运转之前,须对操作人员,管理人员进行安全教育,制定必要的安全操作规程和管理制度,操作人员必须持证上岗。

②各处理构筑物走道和临空天桥的位置均要设置保护栏杆,且采用不锈钢制作,其走道宽度和栏杆高度及它们的强度均要符合国家劳动保护规定。

③在生产有毒气体的工段,要设置硫化氢测定仪器,报警仪和通风系统,并配有防毒面具。

39

④对于结构密封,通风条件差的场所,采用机械通风。

⑤厂区各构筑物边应配置救生衣、救生圈、安全带、安全帽等劳动防护品。 6)厂区管道,闸阀均须考虑阀门井,或采用操作杆至地面,以便操作。 ⑦易燃、易爆及有毒物品,须设专用仓库、专人保管。满足劳动保护规定。 ⑧所有电气设备的安装、防护,均须满足电器的有关安全规定,必须有接地措施和安全操作距离。

⑨机械设备的危险部分,如传送带、明齿轮、砂轮等必须安装防护装置。 6.2.2 消防 6.2.2.1 防火等级

①变电站根据国家规定,丙类防火标准。 ②其他厂区建筑设计均按国家建筑防火规范规定。 6.2.2.2 防水措施

①厂区设置消防系统,有消防水泵和室外消火组成,采用高压给水系统, ②主要建筑物每层室内消火栓及消防通道,仪表控制室设有自动喷水灭火装置。 ③变电所、污泥泵房内设置干粉灭火器。中控室、档案室、自料室、打字间等要配置KYZ 型灭火器。

6.3结论和建议 6.3.1 结论

为改善该城镇及下游地区的环境质量,保障人民身体健康,建立污水处理厂是完全必要的,也是十分迫切的;

根据总体规划和水量调查分析,将兴建12000 m3/d的污水处理厂(不含厂外截流管道); 经技术经济比较,采用卡式氧化沟工艺,具有运行稳定、投资省、管理方便等优点,故推荐采用;

根据综合分析,单座污水处理站的主要技术经济指标如下: ①单座工程总投资:1600万元 ②单位投资:1333元/ m3

40

③单位运行费:0.53元/m3 ④占地面积:14.5亩 6.3.2建议

为保证拟建的污水处理厂能正常运转,达到预期的处理程度,建议有关部门对工业废水的排放加强监测和控制,严格执行国家颁布的《污水综合排放标准》(GB8978-1996)和《污水排放城市下水道水质标准》(CJ3082-1999)。

参考文献

[1]高廷耀等.水污染控制工程(第二版)[M].北京:高等教育出版社,1999 [2] 陶俊杰,于军亭编. 城市污水处理技术及工程实例[M].北京:化学工业出版社2005 [3] 杨岳平等.废水处理工程及实例分析[M].北京:化学工业出版社,2002 [4]高峻发,王社平编. 污水处理厂工艺设计手册[M]. 北京:化学工业出版社.2003 [5]Fkunaga, Masami. Treatment of wastewater containing starch[P]. Japan patent, JP05096281A2, 1993. [6]张希衡主编. 水污染控制工程(第2版)[M]. 北京:冶金工业出版社. 2002 [7] 闪红光主编. 环境保护设备选用手册-水处理设备[M]. 北京:化学工业出版社.2002 [8]魏先勋等.环境工程设计手册[M].长沙:湖南科技出版社,2002 [9] 王兴康,李亚新 .Carrousel氧化沟理论与设计计算[J].科技情报开发与经济.2005.15(17);3-5 [10] 娄金生,王宇 编.水污染治理新工艺与设计[M]. 北京:化学工业出版社.2002 [11]史忠祥主编. 实用环境工程手册-污水处理设备[M]. 北京:化学工业出版社.2002 [12]丁尔捷,张杰主编. 给排水工程快速设计手册2-排水工程[M]. 北京:中国建筑工业出版社,1998 [13]高峻发,王彤 编. 城镇污水处理及回用技术[M]. 北京:化学工业出版社.2003 [14]王海山等.给水与排水常用数据手册[M].北京:化学工业出版社,1994 [15]黄柏,马金虎编 安全技术基础[M].北京:化学工业出版社 2005

41

第二篇:福建省城镇生活污水处理厂污泥处理处置工作实施方案

福建省人民政府办公厅转发省住房和城乡建设厅

省环境保护厅关于福建省城镇生活污水处理厂

污泥处理处置工作实施方案的通知

闽政办〔2011〕166 号

各市、县(区)人民政府,平潭综合实验区管委会, 省人民政府各部门、各直属机构,各大企业、各高等院校:

省住房和城乡建设厅、环境保护厅制定的《福建省城镇生活污水处理厂污泥处理处置工作实施方案》已经省政府同意,现予以转发,请认真组织实施。

二〇一一年七月十四日

福建省城镇生活污水处理厂污泥

处理处置工作实施方案

省住房和城乡建设厅 省环境保护厅

(二〇一一年七月)

污泥处理处置作为污水处理的重要环节,是衡量污水处理成效的重要标准。随着我省污水处理厂的全面建成和污水处理率的不断提高,污泥产生量也急剧增加,成为困扰城镇环境的难题之一。为进一步保护和改善生态环境,促进节能减排,加快推进城镇生活污水处理厂污泥处理处置和资源化利用,根据国家有关规定,结合我省实际,现就污泥处理处置工作提出如下意见:

一、明确推进污泥处理处置的目标任务

全省城镇生活污水处理厂新建、改建和扩建时,污泥处理处置设施应与污水处理厂同时规划、同时建设、同时投入运行。目前已建污水处理厂的污泥处理处置尚未满足要求的,应加快整改、建设,确保污泥安全处置。2012年底前,设市城市和规模5万吨/日以上城镇生活污水处理厂要实现污泥安全处理处置;2013年底前,3万吨/日~5万吨/日污水处理厂要实现污泥安全处理处置;2014年底前,全省所有城镇生活污水处理厂污泥实现安全处理处置。

各市、县(区)政府要组织发改、建设、环保等部门,开展辖区内生活污水处理厂污泥量、泥质特征、环境条件、污泥综合利用条件等调查,近期要以23个设市城市和规模5万吨/日以上污水处理厂为重点,明确实施的具体建设项目、资金筹措和进度安排等,加快污泥处理处置项目的建设。

二、合理选择污泥处理处置技术

全省城镇生活污水处理厂污泥处理处置要坚持“资源化、无害化、低碳节能、安全环保、因地制宜”的原则;坚持污泥用于土地利用为主,污泥焚烧、污泥填埋、建材利用等其他处置方式为辅。各地要结合当地实际,学习借鉴成功经验,选择最佳可行的技术路线。

(一)污泥用于土地利用。污泥中有机质含量较高且重金属等含量满足有关使用标准的,经处理处置后可用于园林绿化用肥、盐碱地、沙化地和废弃矿场的改良用土及农业土地利用。污泥用于土地利用应符合国家相关产品质量标准,主要技术工艺有:

一是污泥生物干化处理技术。污泥加入辅料(如秸杆、木屑、锯末、蘑菇土等)及适当比例的生物菌剂,进行高温好氧发酵,可用于园林绿化用肥和农用肥,鼓励有条件的污水处理厂在厂内建设污泥堆肥设施。

二是污泥深度脱水处理技术。污泥加入三氯化铁和石灰等药剂进行调理和深度脱水后,可用于土地改良用土及园林绿化用肥。

(二)污泥焚烧。利用垃圾焚烧厂、水泥厂、热电厂等设施,采用掺烧、混烧等技术协同处理处置污泥。

(三)污泥填埋。污泥采用深度脱水处理技术或石灰稳定技术,含水率低于60%,可运至垃圾填埋场进行混合填埋;深度脱水后的污泥,自然搁置一段时间后,含水率进一步下降至40%及以下,可作为垃圾填埋场的覆盖土使用。

(四)污泥建材利用。污泥中含有一定量的无机矿物组分和热值,经脱水处理后的污泥可以作为建筑材料的原材料,用于制陶粒和制砖等,其产品必须符合相关行业的标准。

三、推进污泥处理处置的政策措施

(一)完善补偿机制。

鼓励现有污水处理厂或社会资本投资建设污泥处理处置设施,推进污泥处理处置产业化运作。要将污泥贮存、运输、处理处置纳入污水处理成本,合理调整污水处理厂运营费用,通过提高污水处理费标准或加大财政投入等措施,落实污水、污泥处理处置费用并及时拨付,保障污水、污泥处理处置设施的正常运行。

(二)落实扶持政策。

污泥处理处置项目享受国家、省的污水处理产业化和循环经济的相关优惠政策。一是税收方面。对以污泥为原料比例不低于30%生产特定建材产品,可免征增值税;对利用污泥为燃料生产的电力或者热力,增值税即征即退;污泥处理处置企业从事符合国家财政部、税务总局、发改委颁布的《环境保护、节能节水项目企业所得税优惠目录(试行)》(财税〔2009〕166号)规定条件下的城镇污泥处理处置项目的所得,自取得第一笔生产经营收入所属纳税年度起,第一至第三年免征企业所得税,第四至第六年减半征收企业所得税。二是用地方面。污泥处理处置项目用地采用行政划拨。三是用电方面。采用大工业用电价格,在峰谷时段不上浮,低谷时段按基价下浮60%。四是产品推广方面。地方政府优先采购污泥资源化产品,交通、林业、园林等部门优先采购使用污泥制肥产品用于“四绿工程”等,污泥农用肥应取得农业部门的肥料证审批。

四、推进污泥处理处置工作的保障措施

(一)加强组织领导。

各地要把污泥处理处置工作作为城镇基础设施建设的重点,列入地方政府年度工作计划,加强组织领导,制定工作方案,强化统筹协调,加大工作力度,加快项目实施。要将污泥处理处置工作列入各级地方政府环保工作目标任务考核内容,完善考核机制,督促工作任务落实,对未按要求进行污泥安全处理处置的市、县,实行卫生城市(县城)、文明城市(县城)、园林城市(县城)、环保模范城市“一票否决”,并从严扣减市(县)长环保目标责任书考核、城市(县城)环境综合整治定量考核分数。

(二)明确工作责任。

各有关部门要在各级政府的统一领导下,密切配合,各司其职,协同推进污泥处理处置工作。住房和城乡建设、发改、经贸、财政、环保、国土、税务、科技、交通、农业等部门在污泥处理处置项目审批、用电、用地、环评、资金补助、税收优惠政策落实和污泥资源化产品的科研、市场准入审批、运输、推广应用等方面给予指导和扶持,加强污泥处理处置各环节监管,切实推进污泥处理处置工作。

(三)加强全程监管。

污水处理厂要严格按照国家标准和《福建省城镇污水处理厂运行管理标准》规定开展污泥处理和相关检测,建立污泥处理处置台帐制度;污水处理厂、污泥运输单位和各污泥接收单位应建立污泥转运联单制度,确保污泥产生、运输、处理量相符;污泥处理处置相关单位要建立信息上报制度,定期将台帐、报表、运转联单上报地方建设、环保等相关部门;禁止污泥运输、处理处置单位接收无转运联单的污泥,禁止污泥处理处置单位超处理处置能力接收污泥。各有关部门要加强监管,定期检查监测,确保污泥处理处置设施规范运行;严格工业企业环保执法,确保工业废水达标排入污水处理厂;对污泥处理处置不符合相关标准规范要求的,要扣减运营费用,有关主管部门依法进行处理。

第三篇:城镇污水处理方案

1 小城镇污水的特点及处理要求

1.1小城镇污水的特点

小城镇污水的特点是由各方面因素决定的。由于小城镇的人口规模小、自来水普及率低,因此一般情况下小城镇的污水排放量在3000~30000m3/d。而小城镇的工农业发展水平决定了污水的50%以上是生活污水,且工业废水以农产品加工的废水为主。因此,水中氮和磷的含量高,水中基本不含有重金属和有毒有害物质,污水的水质和水量波动比较大。大部分小城镇的污水性质相差不大,其中BOD5在100~150mg/L,COD一般为250~300mg/L,SS在200mg/L左右。

1.2小城镇污水对处理工艺的要求

小城镇污水处理的要求是由其污水的特点和小城镇自身的条件决定的。一是由于小城镇污水的水质水量波动比较大,污水处理厂的规模也小,时变化系数大,因此小城镇的污水处理工艺抗冲击负荷能力要强。二是由于小城镇的经济实力薄弱,所选用的污水处理工艺应尽量做到运行费用少、造价低,基本上不投加药剂或者投加药剂少。同时,工艺的污泥产量尽量少,以减少二次污染,降低污泥的处理费用。三是小城镇缺乏专业的污水处理工作者,因此处理工艺应简便易行、维护管理方便。

2 适合小城镇污水处理的工艺

我国大城市的污水处理工艺已经发展的比较成熟,同大城市相比,小城镇受到经济实力和自身地域的限制,在污水处理工艺的发展方面比较缓慢。由上述情况可知,小城镇污水处理的核心要点是:工艺流程操作简单、便于维护。现介绍几种适合小城镇污水处理的工艺,并提出我国小城镇污水处理工艺的发展趋势。

2.1污水自然净化处理系统

常见的污水自然净化处理系统包括稳定塘、土地处理系统以及湿地处理系统。

2.1.1稳定塘。稳定塘又称为氧化塘或者生物塘,是一种天然的或经一定人工构筑的污水净化系统,具有投资少、运行管理简便、节省能耗的特点。世界各国从20世纪初开始了对稳定塘的研究,在20世纪50年代以后迅速发展。我国对稳定塘的研究始于20世纪50年代末,到目前为止,已经建成并投入运行的稳定塘几乎遍布全国各个地区。稳定塘按照塘水中微生物类型可以分为:好氧塘、兼性塘、厌氧塘、曝气塘、深度处理塘。与其他工艺相比,稳定塘具有以下几个优点:一是处理成本低。稳定塘的结构简单、施工周期短、处理耗能低、运行维护方便且成本低,因稳定塘的污水处理成本低。二是由于稳定塘的容积大,因此能够承受污水水量的波动,适应能力和抗冲击负荷强。适合小城镇污水处理的工艺要求。三是稳定塘能够充分地利用当地现有的湖泊、池塘等。因此,可以因地制宜,达到污水处理的目的。四是稳定塘的污泥产量少,从而减少二次污染,降低了污泥的处理处置费用。由于氧化塘具有以上优点,所以氧化塘工艺得到了广泛的应用。但是氧化塘也有一些缺点和局限性:占地面积大,处理的效率相对来说比较低,可能产生臭味滋生蚊蝇,不宜建在居民区的附近。

2.1.2土地处理系统。污水土地处理系统[4]是指利用农田、林地等土壤―微生物―植物构成的陆地生态系统对污染物进行综合净化处理的生态工程,它能够在处理城镇污水的同时,实现污水的资源化与无害化。目前,常用的工艺有慢速渗滤系统、快速渗滤系统、地表漫流系统、湿地处理系统和地下渗滤系统。而在土地处理系统中应用最广泛、研究最成熟的就是人工湿地处理系统。

人工湿地系统不可缺少的5个部分分别是具有透水性的基质、在饱和水和厌氧基质中能够生长的植物、水体、无脊椎或者脊椎动物以及好氧或厌氧的微生物种群。土地处理系统便是利用这些部分通过物理过滤、物理吸附与沉积、物理化学吸附、化学反应与沉淀、微生物代谢与有机物的生物降解等过程来处理污染物质。污水土地处理系统的优点有:一是污水土地处理系统可以促进污水中植物营养素的循环,污水中的有用物质通过作物的生长而获得再利用。二是污水土地处理系统的基建费用少,能够充分地利用土地和洼地等。三是污水土地处理系统的运行管理方便,而且能耗低。四是污泥得到充分地利用,二次污染少。污水土地处理系统有以上一些有点,同时,也有一些缺点,如果设计不当,会污染土壤和地下水,特别是造成重金属污染、有机毒物污染,导致农产品质量下降。也会散发臭味、滋生蚊蝇,甚至会影响人体的健康。

2.1.3湿地处理系统。与上述的自然净化处理系统类似,人工湿地的主要优点就是操作简单、投资省、能耗低。但是,其占地面积相对来说比较大。因此,人工湿地处理系统比较适用于用地不太紧张的农业区小城镇。

2.2氧化沟工艺

氧化沟是20世纪50年代荷兰工程师在延时曝气活性污泥法的基础上发明的一种新型活性污泥法。根据氧化沟的构造特征以及发明者和专利情况,可以将氧化沟分为不同的类型。常见的主要有Carrousel氧化沟、交替式氧化沟、除磷脱氮双沟式氧化沟、三沟式氧化沟、ObraI氧化沟以及一体化氧化沟。在传统的氧化沟用于去除COD和BOD的基础上,第2代氧化沟还具有脱氮除磷的功能,这在很大程度上提升了氧化沟的应用前景。氧化沟工艺具备以下几个优点:一是由于氧化沟的构筑物少,可不建初沉池以及污泥消化池,因此处理流程简单,操作管理方便。二是氧化沟适用于高浓度工业废水,能够承受水质水量的冲击负荷,克服了高浓度工业废水抑制活性污泥菌活性的缺点。三是当需要进行脱氮除磷时,相对传统的脱氮除磷工艺,氧化沟具有降低运行费用以及能耗的优点。四是出水水质好,运行稳定。但是,由于一般不建初沉池和污泥消化池,所以氧化沟工艺增加了反应池的负荷,这在一定程度上会增加部分能耗,同时由于氧化沟的曝气装置比如表面曝气器或者曝气转刷等机械部件需定期维修,因此检修工作量较大。

2.3SBR工艺

序批式活性污泥法简称SBR,又叫序列间歇式活性污泥法。SBR反应池是该工艺的核心系统,均化、初次沉淀、生物降解以及二次沉淀过程都在SBR反应池发生。它通过在运行上的间歇操作,实现了对有机物的有效降解。作为活性污泥处理技术,SBR的主要优点有:一是工艺处理设备少,无二沉池和污泥回流系统,因此运行操作简单、管理方便。二是不受污泥膨胀的困扰。三是抗冲击负荷能力强。四是可以实现好氧、缺氧、厌氧状态交替出现,脱氮除磷的效果好。由于以上特点,SBR系统更适合水量小、分散点源、污染物间歇排放的农村小城镇污水处理。但同时,SBR工艺也有一些不可忽略的缺点,由于滗水深度一般是1~2m,因此污水提升的说水头损失比较大。设备对自动化控制要求严格,因此对管理人员的要求也比较高。同时由于SBR工艺不设初沉池,在一定程度上容易产生浮渣。

2.4生物接触氧化工艺

生物接触氧化法就是由浸没在污水中的填料和人工曝气系统构成的生物处理工艺。在有氧的条件下,污水与填料表面的生物膜反复接触,使污水获得净化。生物接触氧化法的优点[2]是:一是工艺耐冲击负荷的能力强,不需污泥回流设备,同时也不受污泥膨胀的影响,产泥量也少。二是其单位容积的生物量大,因此处理能力比较高。三是由于工艺的设备较少,操作运行简单,便于维护。但是,对小城镇来说,该工艺的造价比较高,而且布水和布气时不易均匀。虽然设备少,但是构筑物构造比较复杂,这就增加了设计施工的难度。因此,选用时需要酌情考虑小城镇的现实情况。

2.5厌氧水解―高负荷生物滤池

厌氧水解―高负荷生物滤池是近年来为了适应小城镇污水处理的特点而产生的处理工艺。该工艺主要是将预处理工艺由传统的初沉池改为厌氧水解滤池,同时在传统高负荷生物滤池的基础上对其工艺构造进行了重要的技术创新。改造后的工艺既具有高负荷、高效率的优点,又通过采用具有高空隙率、高附着面积和高二次布水性能的新型塑料模块填料,取消了滤池出水回流系统,从而大幅度的降低了操作运行的能耗以及建设投资费用。作为新型工艺,厌氧水解―高负荷生物滤池有以下几个突出的优点:一是与普通的活性污泥法相比,该工艺的产泥量大大减少,这就在一定程度上降低了污泥处理、处置费用,也降低了二次污染。二是由于该工艺处理系统集初沉池、曝气池、污泥回流设施以及供氧设施等与一身,因此污水处理流程简单,管理运行简单。三是工艺的抗冲击负荷能力比较强。这些优点都决定了厌氧水解―高负荷生物滤池能够适应我国小城镇污水的要求。

3 结语

通过对上述几种小城镇污水处理工艺的比较,可以得出以下几个结论:小城镇污水处理应从节约成本和管理方便入手来选择污水处理工艺,将经济、环境、社会效益达到最大化。因此,不同的城镇应该根据自身的特点来选择合适的工艺。对于用地不紧张的城镇,可以选择人工湿地处理系统。实践证明,人工湿地处理系统不仅投资省、处理效果好,而且有助于美化生态环境,是小城镇污水处理工艺的最优方案之一。从成本出发,氧化沟工艺以及SBR工艺设备简单,基建投资省且占地面的小,因此对于小城镇污水处理,应优先考虑这些工艺。从近年来的发展趋势看,小城镇污水处理的技术要求投资省、耗能低、运行管理方便、效率高。这些已经成为小城镇污水处理技术发展的必然趋势。比如近年来开发的新工艺,比如厌氧水解―高负荷生物滤池便是成功的代表。

第四篇:201*年城镇生活垃圾无害化处理工作总结

年城镇生活垃圾处理工作按照《关于印发2012年创建国家级生态区任务的通知》(xx[2012]59号)文件的要求,紧密结合“两化互动、统筹城乡”的工作部署。通过增添措施,加大环卫基础设施的建设力度,圆满完成了区委、区政府下达的工作任务,现总结如下。

一、强化领导、提升认识

结合前期各乡镇生活垃圾处理的情况和今年的工作要求,调整了xxx市容管理局生态区建设领导班子成员,成立了生态区建设工作组领导小组,市容管理局局长为组长主要抓,分管环卫工作领导具体抓。多次召开专题会议,分析讨论存在的问题,提出解决的方法,组织全局班干部职工开展学习,分组讨论,全面提升对该项工作的认识。

二、健全制度、明确职责

进一步健全了任务目标的考核细则,制定了印发了《xxx镇村环卫工作意见》《xxx镇村环卫工作考核细则》,做到了任务准确,责任明确。指导各乡镇制定了自己的环卫工作管理制度。通过一系列的制度建设,要求各乡镇细化措施,明确责任,落实人员,做到有人抓,有人管。按照工作进度开始月考、季考相结合,发现问题及时整改。三、具体措施及成效

(一)加强工作保障。局机关调整了对各乡镇的联系人员,同时抽出业务过硬人员负责此项工作,通过调整使该项工作从人力上得到保障;积极的争取资金,添置环卫设施,修建垃圾屋投入30万元,添置果皮箱投入5万元,环卫车辆投入50.79万元,通过几项的投入加大了财力保障;制定工作方案,与相关乡镇签订目标责任书,细化任务,明确职责,为工作的开展提供了纪律保障。

(二)组建环卫队伍。在去年的环卫队伍基础上,按照《四川省城乡道路清扫保洁人员配置标准(试行)》进一步健全环卫队伍人员,环卫作业经费由乡镇按“社会融资、居民自筹”的原则自行解决。基本上做到每村每社都配备了保洁人员,对生活垃圾的收集增强力量,提升了生活垃圾的收集率。

(三)建设垃圾屋。2012年对乡镇增建100座垃圾屋,重点是场镇和新村聚居点,主要交通干线进行了补充,确保农村生活垃圾就近收集,便捷清运,现已经建设完成并全部投入作用。垃圾屋建设完成后部分城镇的生活垃圾收集率可达95%以上。

(四)果皮箱添置。结合今年江南片“高粱红了”旅游活动,对江南片果皮箱进行添置,共计123个,其余乡镇77个,共投入200个。主要设置在新村集居点,交通要道。为与高粱文化相结合,对果皮箱进行了美化,充分体现高粱文化特色。通过果皮箱的添置,

增加了江南片的环卫设施,有利于环卫保洁人员工作的开展,减少了工作量,进一步便于垃圾的收集和清运。

(五)配备环卫车辆。对江南片三个乡镇配备了东风牌5吨垃圾清运车,其余各乡镇配备环卫正三轮。通过垃圾清运车辆的配备,改变过去人力三轮清运方式,大大的增加了垃圾的清运速度,使垃圾清运逐步走上了机械化作业的轨道。通过以上一系列的工作举措,目前我区城镇生活垃圾无害化处理率达平均超过了92%,部分城镇生活无害化无害化处理率达到了100%。

四、存在的不足和下一步工作打算在上半年工作中虽说取得一定的成绩,但也存在一定的不足。思想认识有待进一步加强,充分认识到这是一项缩小城乡差异,实现城乡一体化,同时也是按《四川省城乡环境综合治理条例》加强农村环卫设施建设的有效工程;资金投入有待进一步加大,因为以前的一些原因,导致今年的工作进度相对滞后;整体规划有待进一步商榷,环卫建设应该严格按三同时的要求,按要地发展的长远规划要求。下一步的打算:一是进一步提升认识,从思想上、行动上全面统一;二是积极争取资金,与相关部门协调对接,争取就地解决垃圾的无害化处理问题,减少清运成本;三是与规划建设部门搞好对接,特别新村集居点,环卫设施真正实现“三同时”;四是加大对在建环卫设施的督促检查力度,在区政府组织初检时全面完成,对已建环卫设施使用情况进行检查,确保建好、用好。

二〇一二年十二月二十六日

第五篇:2015年污水处理中央预算内投资备选项目-城镇生活污水处理设施项目资金申请报告

国投华研信息技术研究院

2015年污水处理中央预算内投资备选项目-城镇生活污水处理设施

项目资金申请报告

《规划》范围包括全国所有地区的设市城市、县城及建制镇(港澳台地区除外)。

党中央、国务院高度重视城镇生活污水处理设施等环境公共基础设施建设,将其作为提升基本环境公共服务、改善水环境质量的重大环保民生工程和建设资源节约型、环境友好型社会的重要工作任务。“十一五”期间,地方各级人民政府积极落实国家部署,不断加大污水处理设施建设力度。截至2010年底,我国城镇生活污水设施处理能力已达到1.25亿立方米/日,设市城市污水处理率已达77.5%,设施建设超额完成“十一五”专项规划的要求,化学需氧量(COD)污染减排贡献率占“十一五”期间全国COD新增削减总量的70%以上。

与此同时,我国仍存在污水配套管网建设相对滞后、设施建设不平衡、部分处理设施不能完全满足环保新要求、多数污泥尚未得到无害化处理处置、污水再生利用程度低、设施建设和运营资金不足、运营监管不到位等问题。为进一步做好城镇污水处理工作,应在“十一五”取得积极成效的基础上,紧紧抓住当前资金投入力度不断加大、激励约束机制日益完善、装备支撑显著增强、节能环保产业加快发展的有利时机,精心组织、科学谋划,加快推进处理设施建设,不断提高设施运营水平。

第一章

城镇生活污水处理设施项目概况 .......................... 错误!未定义书签。

1.1城镇生活污水处理设施项目概况 ............................. 错误!未定义书签。

国投华研信息技术研究院

1.1.1城镇生活污水处理设施项目名称 ................... 错误!未定义书签。 1.1.2建设性质 ....................................................... 错误!未定义书签。 1.1.3城镇生活污水处理设施项目承办单位 ............ 错误!未定义书签。 1.1.4城镇生活污水处理设施项目负责人 ................ 错误!未定义书签。 1.1.5城镇生活污水处理设施项目建设地点 ............ 错误!未定义书签。 1.1.6城镇生活污水处理设施项目目标及主要建设内容错误!未定义书签。

1.1.7投资估算和资金筹措 ..................................... 错误!未定义书签。 1.2.8城镇生活污水处理设施项目财务和经济评论 .. 错误!未定义书签。 1.2城镇生活污水处理设施项目建设背景 ..................... 错误!未定义书签。 1.3城镇生活污水处理设施项目编制依据以及研究范围 错误!未定义书签。

1.3.1国家政策、行业发展规划、地区发展规划 ..... 错误!未定义书签。 1.3.2项目单位提供的基础资料 .............................. 错误!未定义书签。 1.3.3研究工作范围 ................................................ 错误!未定义书签。 1.4申请专项资金支持的理由和政策依据 ..................... 错误!未定义书签。 第二章

承办企业的基本情况 ............................................ 错误!未定义书签。

2.1 概况 ....................................................................... 错误!未定义书签。 2.2 财务状况 ............................................................... 错误!未定义书签。 2.3单位组织架构 ......................................................... 错误!未定义书签。 第三章

城镇生活污水处理设施产品市场需求及建设规模 . 错误!未定义书签。

3.1市场发展方向 ......................................................... 错误!未定义书签。 3.2城镇生活污水处理设施项目产品市场需求分析 ....... 错误!未定义书签。

国投华研信息技术研究院

3.3市场前景预测 ......................................................... 错误!未定义书签。 3.4城镇生活污水处理设施项目产品应用领域及推广 .... 错误!未定义书签。

3.4.1产品生产纲领 ................................................ 错误!未定义书签。 3.4.2产品技术性能指标。 ..................................... 错误!未定义书签。 3.4.3产品的优良特点及先进性 .............................. 错误!未定义书签。 3.4.4城镇生活污水处理设施产品应用领域 ............ 错误!未定义书签。 3.4.5城镇生活污水处理设施应用推广情况 ............ 错误!未定义书签。

第四章

城镇生活污水处理设施项目建设方案 ................... 错误!未定义书签。

4.1城镇生活污水处理设施项目建设内容 ..................... 错误!未定义书签。 4.2城镇生活污水处理设施项目建设条件 ..................... 错误!未定义书签。

4.2.1建设地点 ....................................................... 错误!未定义书签。 4.2.2原辅材料供应 ................................................ 错误!未定义书签。 4.2.3水电动力供应 ................................................ 错误!未定义书签。 4.2.4交通运输 ....................................................... 错误!未定义书签。 4.2.5自然环境 ....................................................... 错误!未定义书签。 4.3工程技术方案 ......................................................... 错误!未定义书签。

4.3.1指导思想和设计原则 ..................................... 错误!未定义书签。 4.3.2产品技术成果与技术规范 .............................. 错误!未定义书签。 4.3.3生产工艺技术方案 ......................................... 错误!未定义书签。 4.3.4生产线工艺技术方案 ..................................... 错误!未定义书签。 4.3.5生产工艺 ....................................................... 错误!未定义书签。 4.3.5安装工艺 ....................................................... 错误!未定义书签。

国投华研信息技术研究院

4.4设备方案 ................................................................ 错误!未定义书签。 4.5工程方案 ................................................................ 错误!未定义书签。

4.5.1土建 .............................................................. 错误!未定义书签。 4.5.2厂区防护设施及绿化 ..................................... 错误!未定义书签。 4.5.3道路停车场 .................................................... 错误!未定义书签。 4.6公用辅助工程 ......................................................... 错误!未定义书签。

4.6.1给排水工程 .................................................... 错误!未定义书签。 4.6.2电气工程 ....................................................... 错误!未定义书签。 4.6.3采暖、通风 .................................................... 错误!未定义书签。 4.6.4维修 .............................................................. 错误!未定义书签。 4.6.5通讯设施 ....................................................... 错误!未定义书签。 4.6.6蒸汽系统 ....................................................... 错误!未定义书签。 4.6.7消防系统 ....................................................... 错误!未定义书签。

第五章

城镇生活污水处理设施项目建设进度 ................... 错误!未定义书签。 第六章

城镇生活污水处理设施项目建设条件落实情况 ..... 错误!未定义书签。

6.1环保 ....................................................................... 错误!未定义书签。 6.2节能 ....................................................................... 错误!未定义书签。

6.2.1能耗情况 ....................................................... 错误!未定义书签。 6.2.2节能效果分析 ................................................ 错误!未定义书签。 6.3招投标 .................................................................... 错误!未定义书签。

6.3.1总则 .............................................................. 错误!未定义书签。 6.3.2项目采用的招标程序 ..................................... 错误!未定义书签。

国投华研信息技术研究院

6.3.3招标内容 ....................................................... 错误!未定义书签。

第七章

资金筹措及投资估算 ............................................ 错误!未定义书签。

7.1投资估算 ................................................................ 错误!未定义书签。

7.1.1编制依据 ....................................................... 错误!未定义书签。 7.1.2编制方法 ....................................................... 错误!未定义书签。 7.1.3固定资产投资总额 ......................................... 错误!未定义书签。 7.1.4建设期利息估算 ............................................ 错误!未定义书签。 7.1.5流动资金估算 ................................................ 错误!未定义书签。 7.2资金筹措 ................................................................ 错误!未定义书签。 7.3投资使用计划 ......................................................... 错误!未定义书签。 第八章

财务经济效益测算 ................................................ 错误!未定义书签。

8.1财务评价依据及范围 .............................................. 错误!未定义书签。 8.2基础数据及参数选取 .............................................. 错误!未定义书签。 8.3财务效益与费用估算 .............................................. 错误!未定义书签。

8.3.1年销售收入估算 ............................................ 错误!未定义书签。 8.3.2产品总成本及费用估算 .................................. 错误!未定义书签。 8.3.3利润及利润分配 ............................................ 错误!未定义书签。 8.4财务分析 ................................................................ 错误!未定义书签。

8.4.1财务盈利能力分析 ......................................... 错误!未定义书签。 8.4.2财务清偿能力分析 ......................................... 错误!未定义书签。 8.4.3财务生存能力分析 ......................................... 错误!未定义书签。 8.5不确定性分析 ......................................................... 错误!未定义书签。

国投华研信息技术研究院

8.5.1盈亏平衡分析 ................................................ 错误!未定义书签。 8.5.2敏感性分析 .................................................... 错误!未定义书签。 8.6财务评价结论 ......................................................... 错误!未定义书签。 第九章

城镇生活污水处理设施项目风险分析及控制 ......... 错误!未定义书签。

9.1风险因素的识别 ...................................................... 错误!未定义书签。 9.2风险评估 ................................................................ 错误!未定义书签。 9.3风险对策研究 ......................................................... 错误!未定义书签。 第十章

附件 ..................................................................... 错误!未定义书签。

上一篇:初中历史教师个人总结下一篇:初中数学期末复习计划