城镇污水处理厂工艺

2022-08-06

第一篇:城镇污水处理厂工艺

城镇污水处理厂工艺的设计研究大全

城 镇 污 水 处 理 厂 工 艺 设 计 研 究

1 污水特点

本处理厂的污水为城镇污水,水量是30000m/d,进水水质见表 1

处理后排水水质应执行“城市污水处理厂污染物排放标准”(GB18919—2002)中水污染物排放标准二级标准要求,见表2。

2 工艺概况

2.1 工艺流程

综合考虑该城镇污水处理规模较小,生化性较好,且需要脱氮等特点,选择奥贝尔氧化沟工艺。其工艺流程见图 1

2.2 工艺特点

奥贝尔氧化沟有 3 个沟道组成,污水由外沟进入池内,然后依次进入中间沟和内沟道,最后经中心岛存储水质二沉池。外沟道容积占整个氧化沟容积的50%—55%,主要生物氧化过程和80%的脱氮过程在外沟道完成。

主要有以下优点: (1)处理流程简单,构筑物少;

(2)处理效果好且稳定,不仅对一般污染物质有较高去除效果,而且因为氧化沟中能进行充分的消化作用和在缺氧区的反硝化作用,所以有较好的脱氮功能; (3)设备少,运行管理容易,不要求高技术管理人员; (4)缓冲能力强,承受水量水质的冲击负荷高;

(5)能耗低,投资小。

3 构筑物和建筑物主要设计参数

该城镇污水处理工艺构筑物和建筑物及其技术参数详见表3,表中包括独立露天设置的设备。综合楼的功能包括办公与值班、化验、配电、控制机房。

构筑物平面尺寸指平面外形尺寸,建筑物平面尺寸为轴线尺寸。

4 运行效果

本污水处理厂对各种污染物的去除率见表4:

5 结语

本工艺设计主要是对城镇污水进行一级处理与二级处理。其中一级处理采用粗格栅和细格栅,此级处理是对较大颗粒物处理。二级处理主要构筑物为奥贝尔(Orbal)型氧化沟,此为较新的工艺,特别适合中小型的污水处理厂选用。该工艺具有以下优点,脱氧率高,可同时进行硝化和反硝化,达到脱氮要求,出水水质较好。工艺简单,节能,运行稳定,抗冲击负荷能力强。二次沉淀池为中心进水周边出水的普通辐流式沉淀池,该类型沉淀池占地面积小,处理效果较好。该工艺产生污泥性质稳定,不需要消化处理,可直接进行浓缩脱水,节省投资。出水达到《城镇污水处理厂污染物排放标准》(GB18918—2002)中二级标准。

第二篇:城镇污水处理工艺优化方案探讨[大全]

城镇污水处理工艺优化方案探讨 - 水处理工艺

【摘 要】本文结合工程实例对城镇污水处理工艺优化方案进行了阐述,以供同仁参考。

【关键词】污水处理工艺;优化方案;实例论证

0.前言

城镇污水处理工艺的优化,是环保工作者面临的首要问题。目前我国城市污水处理厂设计采用的工艺,基本涵盖世界各国的先进工艺,工艺技术水平与国外同类技术水平比较接近。总体上讲,我国城市污水处理仍以A/O、A2/O及其变形工艺、氧化沟、SBR及其变形工艺为主,其它工艺也正在不断发展和完善。本文结合工程实例对城镇污水处理工艺优化方案进行了阐述,以供同仁参考。

1.污水处理工艺方案选择原则

(1)论证方案的先进性和可行性。一方面应当重视工艺所具备的技术指标的先进性,另一方面必须充分考虑适合中国的国情和工程的性质。城市污水处理工程不同于一般点源治理项目,它作为城市基础设施工程,具有规模大、投资高的特点,且是百年大计,必须确保百分之百的成功,工艺的选择更注重成熟性和可靠性。因此,我们强调技术的合理,而不简单提倡技术先进,必须把技术的风险降到最小程度。

(2)合理确定处理标准,节省工程投资。选择简捷紧凑的处理工艺,尽可能地减少占地,力求降低地基处理和土建造价。同时,必须充分考虑节省电耗和药耗,把运行费用减至最低。对于我国现有的经济承受能力来说,这一点尤为重要。

(3)充分考虑到我国现有的运行管理水平。城市污水处理是我国的新兴行业,专业人才相对缺乏。在工艺选择过程中,必须充分考虑到我国现有的运行管理水平,尽可能做到设备简单,维护方便,适当采用可靠实用的自动化技术。应特别注重工艺本身对水质变化的适应性及处理出水的稳定性。

2.工程优化实例分析

2.1工程概况

某污水处理厂原有处理工艺为脱氮除磷效果较为稳定的水解酸化+倒A2/O-Galaxy工艺,总规模80000m3/d,预处理部分按40000m3/d建设,生化部分先按20000m3/d进行建设,出水水质达到《城镇污水处理厂污染物排放标准》(GB18918―2002)的一级B标准。

2.2工艺流程图和进出水水质

2.3存在的问题

2.3.1可生化性差、快速生物降解有机物少

一般BOD/COD在0.3~0.5之间,表明污水的可生化性好,利于微生物生化降解。污水生物脱氮除磷系统中反硝化菌和聚磷菌所需要的碳源主要为快速生物降解有机物(VFA),去除lmg磷一般需要7~9mg的VFA,反硝化过程的需要量更多。该污水进水工业废水70%以上,生活污水仅占23%~30%,BOD/COD远远小于0.3,该污水中颗粒性有机物占有机物总量的70%以上,而可利用的快速生物降解碳源仅占有机物含量的10%~20%,不能满足脱氮除磷所需。

2.3.2 A2/O工艺难以同时得到氮、磷的高去除率

在A2/O工艺同一系统中硝化菌、反硝化菌、聚磷菌在有机负荷、泥龄以及碳源需求上存在着竞争性矛盾,难以同时获得氮、磷的高效去除。同时倒置缺氧池还存在碳源的争夺问题。原污水先进入缺氧池再进人厌氧池,污水中的易生物降解有机物将优先被反硝化菌利用,聚磷菌将得不到足够碳源,达不到除磷的目的。

2.3.3进水水质不稳定

该污水处理厂进水主要为工业废水,废水排放不规律,水质和水量直接冲击系统,导致运行不稳定。

2.4工艺优化方案

污水处理厂的优化工艺包括水力改造、设备改造和工艺升级改造等,其中污水处理工艺升级改造是提高出水水质的关键。与新建污水处理厂不同,污水处理厂升级改造的工艺选择问题相对复杂,通常情况下要考虑三个问题:①尽量利用原有构筑物,投资少;②工艺运行可靠,灵活性强;③处理效率高,能耗低。本优化工程就是在原有处理工艺的基础上,综合考虑本工程的建设规模、进水特性、处理要求、工程投资、运行费用和维护管理,以及充分利用原有设施等情况,结合原有工艺问题,参照国内外的研究成果和各种工艺的技术经济性能等指标,设计规模80O00m3/d,选用“强化生化系统+化学除磷+滤池过滤深度处理”工艺为本工程优化处理工艺,通过生物脱氮除磷、化学除磷和深度处理完全达到一级A标准。工程内容包括新建纤维转盘滤池、活性砂滤池、加药间等建构筑物及设备安装,并对原有絮凝沉淀池等设施按工艺设计要求进行了相应改造。该工艺主要特点为:

2.4.1对原有处理系统去碳、硝化反硝化功能的强化

根据目前设计与运行状况,可以通过提高污泥浓度、延长泥龄等措施,调整部分工艺参数,强化系统的去碳和硝化反硝化功能,使出水CODcr、BOD

5、NH3-N和TN等指标达到新的排放标准。通过对原有设施的功能强化,在最大程度上节省了工程总投资。

2.4.2增加化学除磷工艺

根据本工程优化目标,出水总磷浓度要求不大于0.5mg/L,采用投加聚铝等化学药剂进行化学除磷措施,投加点为混合反应池末端,化学除磷药剂反应产生沉析,凝聚作用还可以去除部分悬浮物,减少悬浮物携带TP;化学除磷产生的污泥。可避免厌氧消化过程中磷的重新释放;出水总磷浓度降至0.5mg/L。

2.4.3增加深度过滤设施

过滤技术是污水深度处理的常用手段,是实现一级A出水标准的必需手段,也是本次升级改造的重点措施。经过对各种过滤技术方案论证,并结合污水处理厂建设用地特点、现有水力高程和建设工期要求。最终选择了占地面积小、过滤效率高、施工周期短的纤维转盘过滤工艺和活性砂过滤工艺两种技术。

①纤维转盘滤池优点。出水水质好,耐冲击负荷,占地面积小,设备闲置率低,总装机功率低,运行自动化程度高,维护简单、方便,滤前处理系统的事故对滤池的影响较小,并且恢复较快,设计周期和施工周期短。

②活性砂滤池优点:a)过滤连续运行,无需停机反冲洗,效率高,出水水质稳定.易于改扩建;b)不需要反冲洗水泵及其停机切换用电动、气动阀门,无需单设混凝、澄清池,无需混凝、澄清用机械设备;c)集混凝沉淀及过滤于一体。大大简化了工艺流程及占地空间,与常规砂过滤工艺相比,可节省30%~40%的化学药剂,可节省70%的设备空间,运行及维护费用低;d)对于高SS含量的废水不需预处理(进水SS可达150mg/L);e)深层过滤,滤床深度2000mm,滤床压头损失小,只有0.5m;f)采用单一均质滤料,无须级配层,滤料被连续清洗,过滤效果好,无初滤液问题。 3.结语

目前,我国的污水处理工艺发展趋势是流程简洁,控制灵活,单元操作简单以及节约用地的一体化工艺流程。本工程改造由于采用的技术先进可靠,使得本工艺改造工程的总投资、运行成本较其他工艺都有大幅度的节省。 [科]

【参考文献】

[1]沈耀良,王宝贞.废水生物处理新技术―理论与应用(第2版)[M].北京:中国环境科学出版社,2006.

[2]张辰,李春光.浅谈城市污水处理厂的技术改造[J].中国给水排水,2004,20(4):20~23.

第三篇:城镇污水厂的清洁生产的处理工艺与生产管理

——以昆山市锦溪污水处理厂为例

【摘要】污水处理作为一项使污水达到再次使用或排入某一水体的水质要求,对污水进行净化处理的重要工作。污水处理被广泛应用于农业、交通、能源、石化、建筑、环保、城市景观等各个领域,污水处理在人们的日常生活中将发挥越来约为重要的作用。本文以昆山市锦溪污水处理厂为例,从对污水处理工艺相关概念的说明谈起,然后对城镇污水处理厂三种污水处理工艺进行说明,并以昆山市锦溪污水处理厂所采用的工艺效果为例,最后对昆山市锦溪污水处理厂的生产管理经验进行介绍。

【关键词】清洁生产 污水处理 工艺 运行 管理

前言

所谓的污水处理就是通过采用各种物理的、化学的或生物的处理方法将污水中所含的污染物转化为无害物或将其分离出来,从而使污水得到净化的一个过程。相应的污水处理工艺就是对包括生活污水和工业污水在内的各种污水,采用经济的、科学的、行之有效的合理的处理工艺方法。

一、污水处理工艺概述

(一)污水处理分类

按污水来源分类,可将污水处理划分为生活污水处理和生产废水处理两类污水处理。其中生活污水处理就是对日常生活产生的污水的处理,这些污水主要是指各种各样的有机物和无机物及其混合物,其中包括纯溶液、悬浮和漂浮的各种各样的固体颗粒以及凝胶状和胶状扩散物等;生

产废水处理主要包括工业废水处理、农业污水处理以及医疗污水处理等。

(二)常见的污水处理方法

笔者参阅相关文献,总结以下几种常见的污水处理方法:

第一、物理处理法。这是一种通过物理或机械的分离过程的一种处理方法,包括沉淀、过滤、离心分离以及上浮等技术方法。

第二、化学处理法。这是一种通过加入化学物质与污水中有害物质发生化学反应的转化过程的处理方法,包括氧化、还原、分解、中和、混凝、化学沉淀等方法。

第三、物理化学处理法。这是一种通过物理化学的分离过程的一种处理方法,包括吸附、萃取、离子交换、电解、渗透等技术方法。

第四、生物处理法。这是一种通过微生物在污水中对有机物进行氧化和分解的新陈代谢过程的方法,包括生物滤池、活性污泥、生物转盘、厌气消化等技术方法。包括厌氧生物处理和好氧生物处理两类

(三)污水处理的一般工艺流程

现代污水处理按处理程度划分,可将污水处理的工艺流程划分为一级、二级和三级污水处理工艺流程。

第一、一级污水处理工艺流程。该流程主要净化污水中那些悬浮状态的固体污染物,大部分物理处理法可以完成这一级处理的要求。作为二级处理的预处理,经过一级处理的污水,其毒害物质一般可去除三分之一左右,还不能达到排放的标准。

第二、二级污水处理工艺流程。该流程主要去除污水中呈溶解状态的胶体等有机污染物质,通过该流程,绝大多数的有机物都得到了净化,达到了有机污染物的排放标准。

第三、三级污水处理工艺流程。该流程是用来进一步处理难降解的有机物以及容易导致水体富营养化的氮和磷等可溶性物质。该流程主要用到的方法有生物脱氮除磷法、活性炭吸附法以及离子交换法等。

概括的讲,整个过程为原污水经过通过粗格栅的污水提升泵提升后,在经过砂滤器或格栅之后进入沉砂池,将经过砂水分离的污水排放到初沉池,这一过程称为一级处理;初次沉淀池的出水通过采用活性污泥法和生物膜法进入生物处理设备,经过生物处理设备的出水进入二沉池;二次沉淀池的出水经过生物脱氮除磷法、活性炭吸附法以及离子交换法处理后进入三级处理,完成整个污水处理工艺流程。昆山市锦溪镇地处环太湖流域,污水处理厂出水水质执行《城镇污水处理厂污染物排放标准》(GB18918-2002)一级A标准。

二、城镇污水处理厂主要的污水处理工艺说明

(一) 改良型SBR生物处理技术

改良型SBR是序列间歇式活性污泥法的简称,它是一种按间歇曝气方式来运行的活性污泥污水处理技术。其工艺原理是预先培养一定量的活性污泥于反应器内,当废水进入反应器后,这些活性污泥就会与污水中的微生物混合在一起,这样的话微生物就可以利用污水中的有机物进行新陈代谢,从而可以将有机物降解,并将其沉淀分离,达到废水处理的效果。改良型SBR生物处理过程主要由初期的去除与吸附、微生物的新陈代谢以及沉淀物的形成等几个净化过程来完成污水处理的。

改良型SBR生物处理污水处理工艺流程为:进水泵房→曝气沉砂池→改良型SBR生物处理反应池→紫外消毒系统→出水。锦溪污水处理厂所辖农村污水处理站有采用该类型工艺,出水水质较稳定达标。

(二) 氧化沟生物处理技术

氧化沟又名氧化渠,其构筑物多呈封闭的环形沟渠。它是SBR生物处理技术的一种变型。由于氧化沟生物处理技术的污水和活性污泥在曝气渠道中是不断循环流动的,所以氧化沟又称为循环曝气池。其中氧化沟一般由导流和混合设备、沟体、曝气设备和进出水装置等组成,沟体一般采用的呈环形、长方形、L形、圆形或其他形,沟端的形状多为矩形和

氧化沟生物处理污水处理工艺流程为:进水泵房→初沉池→氧化沟生物处理池→二沉池→紫外消毒系统→出水。一般较大型城市污水处理厂采用该工艺,也是锦溪污水处理厂二期20000M3/D的备选工艺。

(三) 倒置A/A/O生物处理技术

倒置A/A/O工艺是是厌氧-缺氧-好氧生物脱氮除磷工艺的简称。该工艺处理效率比较高,一般适用于要求脱氮除磷的大中型城市污水厂的污水处理,与效率呈正比。倒置A/A/O工艺的基础建设费和运行费用也非常的高,而且运行管理的要求也非常高,所以倒置A/A/O生物处理技术多用于大中型城市污水厂的污水处理。

倒置A/A/O生物处理技术污水处理工艺流程为:进水泵房初沉池→倒置A/A/O生物处理池→二沉池→紫外消毒系统→出水。锦溪污水处理厂目前10000M3/D规模选用倒置A/A/O工艺,并增加深度处理工艺—化学沉淀除磷,新型有阀漏池去除SS,目前运行稳定,出水水质达到《城镇污水处理厂污染物排放标准》(GB18918-2002)一级A标准

三、污水处理工艺的管理经验

笔者作为昆山市锦溪污水处理厂的管理人员,从事污水处理厂的管理工作已有多年,积累了一些污水处理工艺的管理经验,这里总结一下,与行业的同仁一起分享。

(一)建立和健全各项管理规章制度

为了做到污水处理工艺的精细化管理,昆山市锦溪污水处理厂自运行以来,根据自身的实际情况,在借鉴其他兄弟公司成功经验的基础上,制定了各项污水处理管理的规章制度以及污水处理的操作规范流程,同时在污水处理工艺的运行中不断健全各项管理规章制度,严格各项污水处理的操作规范流程的执行情况。充分保障污水处理工艺运行管理的良

(二)加强对专业技术人员的培训

人才是做好污水处理的关键,尽管不少从事污水处理的相关人员都具有一定的专业知识,但这些专业知识往往与实际管理相脱节。鉴于这种情况,昆山市锦溪污水处理厂采用了理论讲课与实际操作相结合的培训机制,强化对专业技术人员的培训学习力度,通过对专业人员的培训,使其掌握实际条件下污水处理工艺的各项核心技术环节,熟悉污水处理的实际工艺流程,明确流程的要领,通过提高人才的专业技能来有效提高污水处理的质量和效率。

(三)做好各项技术改造

除了做好上述的工作外,还要做好各项技术改造工作,其中主要包括对沉降的处理、对设计缺陷的整改、对设施缺陷的整改、对设备缺陷方面的整改、对污泥调节池的改进以及对出泥管道的改进等。

(四)做好标准化建设认证

近两年来,锦溪污水处理厂上下一致,先后完成了清洁生产认证、ISO14001和ISO9001认证,全厂建设踏上一个全新的台阶。

结语:水作为人类的生命之源,做好生活和工业污水的处理工作,保护生态环境,是实现人类可持续发展的根本保证,因此,做好污水处理工作意义重大。污水处理的核心在于污水处理工艺流程的实施,随着科学技术的进步,各种生物、物理和化学技术的应用大大提高了污水的处理效率,然而污水处理工艺在运行时还应注意一些细节的技术问题,正所谓细节决定成败,做好细节的技术问题,将决定污水处理的质量和成效。

参考文献:

[1]翟秀芳.新农村污水处理技术及经验探讨[J].水利水电技术,

2007(20).

[2]杨学智.浅谈城市生活污水治理的新理念及策略[J].能源技术经济,2005(8).

[3]邹显信.污水治理专业人才培养体系研究[J].水利水电技术,2004(1).

[4]胡守惠. 污水处理厂生产管理、技术改造经验交流[J].能源技术经济,2010(5).

第四篇:污水处理厂工艺设计

3 污水厂设计计算书

3.1污水处理构筑物设计计算 3.1.1中格栅

3.1.1.1设计参数:

3设计流量Q=60000m/d 栅前流速v1=0.6m/s,过栅流速v2=1.0m/s 栅条宽度s=0.01m,格栅间隙e=25mm 栅前部分长度0.5m,格栅倾角α=60°

333单位栅渣量ω1=0.06m栅渣/10m污水

3.1.1.2设计计算

(1)设过栅流速v=1.0m/s,格栅安装倾角为60度则:栅前槽宽B12Qmax20.91.01.34m 栅前水深hB121.3420.67m

v2(2)栅条间隙数nQmaxehvsin20.9sin600.0250.671.055.6(取n=58) (3)栅槽有效宽度B=s(n-1)+en=0.01(58-1)+0.025×58=2m (4)进水渠道渐宽部分长度L1角)

(5)栅槽与出水渠道连接处的渐窄部分长度L2(6)过栅水头损失(h1)

因栅条边为矩形截面,取k=3,则h1kh0kv22gsin32.42(0.010.0254BB12tan121.342tan200.9m(其中α1为进水渠展开

L120.45m

)31229.81sin600.094m

(0.08~0.15)

4/3其中ε=β(s/e)

h0:计算水头损失

k:系数,格栅受污物堵塞后,水头损失增加倍数,取k=3 ε:阻力系数,与栅条断面形状有关,当为矩形断面时β=2.42 (7)栅后槽总高度(H)

取栅前渠道超高h2=4.3m,则栅前槽总高度H1=h+h2=0.67+4.3=4.97m 栅后槽总高度H=h+h1+h2=0.67+0.094+4.3=5.06m (8)格栅总长度L=L1+L2+0.5+1.0+1.1/tan=0.9+0.45+0.5+1.0+1.1*4.97/tan60°=6m (9)每日栅渣量ω=Q平均日ω1=

3600000.061000

3=3.6m/d>0.2m/d 所以宜采用机械格栅清渣 (10)计算草图如下:

图2 中格栅设计简图

3.1.1.1设计参数:

3设计流量Q=60000m/d 栅前流速v1=0.6m/s,过栅流速v2=0.8m/s 栅条宽度s=0.01m,格栅间隙e=10mm 栅前部分长度0.5m,格栅倾角α=60°

333单位栅渣量ω1=0.06m栅渣/10m污水

3.1.1.2设计计算

(1)设过栅流速v=0.8m/s,格栅安装倾角为60度则:栅前槽宽B12Qmax20.90.81.5m 栅前水深hB121.520.75m

v2(2)栅条间隙数nQmaxehvsin20.9sin600.010.750.8139.6(取n=140) 设计两组格栅,每组格栅间隙数n=70条

(3)栅槽有效宽度B=s(n-1)+en=0.01(70-1)+0.01×70=1.39m 所以总槽宽为B=1.39×2+0.15=2.93m(考虑中间隔墙厚0.15m)

L1BB12tan12.930.752tan202.99m3m(4)进水渠道渐宽部分长度(其中α1为进水渠展开角) (5)栅槽与出水渠道连接处的渐窄部分长度L2(6)过栅水头损失(h1)

因栅条边为矩形截面,取k=3,则h1kh0kv22gsin32.42(0.010.014L121.5m

)30.81229.81sin600.21m

其中ε=β(s/e)

h0:计算水头损失

k:系数,格栅受污物堵塞后,水头损失增加倍数,取k=3 ε:阻力系数,与栅条断面形状有关,当为矩形断面时β=2.42 (7)栅后槽总高度(H)

取栅前渠道超高h2=0.3m,则栅前槽总高度H1=h+h2=0.75+0.3=1.05m 栅后槽总高度H=h+h1+h2=1.05+0.21+0.3=1.26m (8)格栅总长度L=L1+L2+0.5+1.0+1.1/tan=3+1.5+0.5+1.0+1.1*1.05/tan60°=6.67m (9)每日栅渣量ω=Q平均日ω1=

34/3

600000.0810003

=4.8m/d>0.2m/d 所以宜采用机械格栅清渣 3.1.2污水提升泵房

本设计采用干式矩形半地下式合建式泵房,它具有布置紧凑、占地少、结构较省的特点。集水池和机器间由隔水墙分开,只有吸水管和叶轮浸没在水中,机器间经常保持干燥,以利于对泵房的检修和保养,也可避免对轴承、管件、仪表的腐蚀。

在自动化程度较高的泵站,较重要地区的雨水泵站、开启频繁的污水泵站中,应尽量采用自灌式泵房。自灌式泵房的优点是启动及时可靠,不需引水的辅助设备,操作简便;缺点是泵房较深,增加工程造价。采用自灌式泵房时水泵叶轮(或泵轴)低于集水池的最低水位,在高、中、低三种水位情况下都能直接启动。泵房剖面图如图2所示。

图3 污水提升泵房设计简图

3.1.2.1设计概述

选择水池与机器间合建式的方形泵站,用6台泵(2台备用),每台水泵设计流量:Q=1390L/s,泵房工程结构按远期流量设计

采用AAO工艺方案,污水处理系统简单,对于新建污水处理厂,工艺管线可以充分优化,故污水只考虑一次提升。污水经提升后入平流沉砂池,然后自流通过厌氧池、缺氧池、曝气池、二沉池及计量堰,最后由出水管道排入受纳水体。

各构筑物的水面标高和池底埋深见高程计算。

3.1.2.2集水间计算

选择水池与机器间合建的半地下式方形泵站,用6台泵(2台备用)每台泵流量为:Q0=1390/4=347.5L/s 集水间容积,相当与1台泵5分钟容量

3W=0.35560=105m

2有效水深采用h=2m,则集水池面积为F=105/2=52.5m 3.1.2.3水泵总扬程估算

(1)集水池最低工作水位与所需提升最高水位之前的高差为:

21.8(13.910.60.12.0)9.4m

(2)出水管线水头损失

每台泵单用一根出水管,共流量为Q0=1390/4=347.5L/s选用管径为600mm的铸铁管,查表得v=1.66m,1000i=5.75m,设管总厂为30m,局部损失占沿程的30%,则总损失为:

30(10.3)5.7510000.20m

(3)泵站内的管线水头损失假设为1.5m,考虑自由水头为1.0m (4)水头总扬程为H21.8-13.90.21.51.010.3m取11m 3.1.2.4校核总扬程

泵站平面布置后对水泵总扬程进行校核计算 (1)吸水管路的水头损失 每根吸水管的流量为350L/s,每根吸水管管径为600mm,流速v=1.66m/s,只管长度为1.65m。

沿

1.655.751000i0.01m

直管部分长度1.65m,进口闸阀一个(0.609)Dg600350偏心管一个(0.2) 局部损失

2

2(0.5+0.609)1.66/2g+0.24.88/2g=0.41m 吸水管路总损失为:0.01+0.41=0.42m (2)出水管路的水头损失:管路总长度取25m,渐扩管1个(0.609)90度弯头四个(1.01)

沿程损失 255.75/1000i=0.14m

22局部损失(0.3+0.609+41.01)1.7/2g+0.24.88/2g=0.94m 出水管路总损失为 0.14+0.94=1.08m (3)水泵所需总扬程为

21.8-13.9+1.5+0.42+1.08=10.9m。

取11m。采用6台长沙水泵厂制造的56LKSB-10立式斜流泵,两台备用。该泵单台提升流量340L/s,扬程11.3m,转速370r/min,功率500kW

2污水泵房设计占地面积120m(12*10)高10m,地下埋深5米。

3.1.3、沉砂池

采用平流式沉砂池 3.1.3.1 设计参数

设计流量:Q=1157L/s(设计1组,分为2格) 设计流速:v=0.25m/s 水力停留时间:t=40s 3.1.3.2设计计算

(1)沉砂池长度: L=vt=0.25×40=10.0m (2)水流断面积:

22A=Qmax/v=1.39/0.25=5.56m 取5.6m。 (3)池总宽度:

设计n=2格,每格宽取b=3.5m>0.6m,池总宽B=2b=7m (4)有效水深:

h2=A/B=5.6/7=0.8m (介于0.25~1m之间)

(5)贮泥区所需容积:设计T=2d,即考虑排泥间隔天数为2天,则每个沉砂斗容积

V1Q1TX2K1015110523521.2102.5m

3(每格沉砂池设两个沉砂斗,两格共有四个沉砂斗)

353其中X1:城市污水沉砂量3m/10m, K:污水流量总变化系数1.2 (6)沉砂斗各部分尺寸及容积:

设计斗底宽a1=2m,斗壁与水平面的倾角为60°,斗高hd=0.5m,则沉砂斗上口宽:

a2hdtan60a120.5tan6022..6m

沉砂斗容积:

Vhd6(2a22aa12a1)20.56(22.6222.6222)2.66m(略大于

23V1=2.6m3,符合要求)

(7)沉砂池高度:采用重力排砂,设计池底坡度为0.06,坡向沉砂斗长度为L2L2a210.021.123.9m

则沉泥区高度为

h3=hd+0.06L2 =0.5+0.06×3.9=0.734m 池总高度H :设超高h1=0.3m, H=h1+h2+h3=0.3+0.5+0.73=1.46m (8)进水渐宽部分长度: L1BB12tan2073.52tan205.4m

(9)出水渐窄部分长度: L3=L1=5.4m (10)校核最小流量时的流速:

最小流量即平均日流量:Q平均日=Q/K=1390/1.2=1157L/s 则vmin=Q平均日/A=1.157/5.6=0.21>0.15m/s,符合要求 (11)计算草图如下:

进水出水

图3 平流式沉沙池设计计算草图

图4 平流式沉砂池计算草图3.1.4、初沉池

3.1.4.1.设计概述

3本设计中采用中央进水幅流式沉淀池两座。则每座设计进水量:Q=25000m/d采用周边传动刮泥机。

3232表面负荷:qb范围为1.5-3.0m/ m.h ,取q=2/mh 水力停留时间(沉淀时间):T=2h 3.1.4.2.设计计算

(1)沉淀池面积: 按表面负荷计算:AQ2qb10000022241042m

2(2)沉淀池直径:D4A410423.1436m16m

有效水深为:h1=qbT=2.02=4m Dh1302.512(介于6~12)

(3)贮泥斗容积:

本污水处理厂设计服务人口数为80万人。贮泥时间采用Tw=4h,初沉池污泥区所需存泥容积:

VwSNT1000n0.50801044100022433.33m

3设池边坡度为0.05,进水头部直径为2m,则: h2=(R-r)×0.05=(18-1)×0.05=0.85m 锥体部分容积为:

V13h(R2Rrr)2130.85(1821811)96.9m333.33m3(4)

二沉池总高度:

取二沉池缓冲层高度h3=0.4m,超高为h4=0.3m 则二沉池总高度

H=h1+h2+h3+h4=4+0.85+0.4+0.3=5.55m 则池边总高度为

h=h1+h3+h4=4+0.4+0.3=4.7m (5)校核堰负荷:

径深比

Dh1h53040.46.8

介于6-12之间,符合要求。 堰负荷

QnD11573.143625.12L/(s.m)2L/(s.m)

要设双边进水的集水槽。

(6)辐流式初沉池计算草图如下:

出水进水排泥图6 辐流式沉淀池出水55004700进水850

图4 幅流式初沉池设计计算草图

3.1.5、厌氧池

3.1.5.1.设计参数

3设计流量:最大日平均时流量Q=1.39m=1390L/s 水力停留时间:T=1h 3.1.5.2.设计计算

(1)厌氧池容积:

3V= Q′T=1.39×1×3600=5004m

(2)厌氧池尺寸:水深取为h=4.5m。 则厌氧池面积:

2A=V/h=5004/4.5=1112m

池宽取50m,则池长L=F/B=1112/50=22.24。取23m。 设双廊道式厌氧池。

考虑0.5m的超高,故池总高为H=h+0.3=4.5+0.5=5.0m。 3.1.6、缺氧池计算

3.1.6.1.设计参数

3设计流量:最大日平均时流量Q=1.39m=1390L/s 水力停留时间:T=1h 3.1.6.2.设计计算

(1)缺氧池容积: V=Q′T=1.39×1×3600=5004m

(2)缺氧池尺寸:水深取为h=4.5m。 则缺氧池面积:

2A=V/h=5004/4.5=1112m

池宽取50m,则池长L=F/B=1112/50=22.24。取23m。 考虑0.5m的超高,故池总高为H=h+0.3=4.5+0.5=5.0m。

33.1.7、曝气池设计计算

本设计采用传统推流式曝气池。 3.1.7.1、污水处理程度的计算

取原污水BOD5值(S0)为250mg/L,经初次沉淀池及缺氧池、厌氧段处理,按降低25%*10考虑,则进入曝气池的污水,其BOD5值(S)为: S=250(1-25%)=187.5mg/L 计算去除率,对此,首先按式BOD5=5(1.42bXCe)=7.1XCe计算处理水中的非溶解性BOD5值,上式中

Ce——处理水中悬浮固体浓度,取用综合排放一级标准20mg/L; b-----微生物自身氧化率,一般介于0.05-0.1之间,取0.09; X---活性微生物在处理水中所占比例,取值0.4 得BOD5=7.10.090.420=5.1mg/L. 处理水中溶解性BOD5值为:20-5.1=14.9mg/L 去除率=187.514.9187.50.92

3.1.7.2、曝气池的计算与各部位尺寸的确定

曝气池按BOD污泥负荷率确定

拟定采用的BOD-污泥负荷率为0.25BOD5/(kgMLSS·kg)但为稳妥计,需加以校核,校核公式:

Ns=k2Sef

MLVSSMLSSK2值取0.0200,Se=14.9mg/L,=0.92,f=代入各值,

Ns0..75

0.020014.90.750.920.242BOD5/(kgMLSS·kg) 计算结果确证,

Ns取0.25是适宜的。

(2)确定混合液污泥浓度(X)

*11根据已确定的Ns值,查图得相应的SVI值为120-140,取值140 根据式 X=106SVIR1Rr

X----曝气池混合液污泥浓度 R----污泥回流比

取r=1.2,R=100%,代入得: X=106SVIR1Rr=10614011.2114286mg/L 取4300mg/L。

(3)确定曝气池容积,由公式VV100000187.50.25430017500m

3QSNsX代入各值得:

根据活性污泥的凝聚性能,混合液污泥浓度(X)不可能高于回流污泥浓度(Xr)。

106rSVIr1061401.28571.4mg/L X

按污泥龄进行计算,则曝气池容积为:

VQCY(SSe)XV(1Kdc)105140.5(187.514.9)4300(10.0714)0.7518900m

3其中

3Q----曝气池设计流量(m/s)

c----设计污泥龄(d)高负荷0.2-2.5,中5-15,低20-30 Xr---混合液挥发性悬浮固体平均浓度(mgVSS/L)Xv=fx=0.75*4300mg/L

3根据以上计算,取曝气池容积V=18000m (4)确定曝气池各部位尺寸 名义水力停留时间

tmvQ18000241054.32h 实际水力停留时间

tsv(1R)Q1800024(11)103

52.16h 设两组曝气池,每组容积为18000/2=9000m

2 池深H=4.5m,则每组面积 F=9000/4.5=2000m池宽取B=8m,则B/H=8/4.5=1.8 ,介于1-2之间,符合要求。 池长 L=F/B=2000/8=250m 设五廊道式曝气池,则每廊道长: L1=L/5=250/5=50m 取超高0.5m,则池总高为 H=4.5+0.5=5.0m 3.1.7.3、曝气系统的计算与设计 本设计采用鼓风曝气系统 (1)、需气量计算 每日去除的BOD值:

BOD5100000(87.520)10001.6810kg/d

4理论上,将1gNO3-N还原为N2需碳源有机物(BOD5表示)2.86g.一般认为,BOD5/TKN比*11值大于4-6时,认为碳源充足。

原污水中BOD5含量为150-250mg/L,总氮含量为45-55mg/L,取BOD5为200mg/L,氮为50mg/L,则碳氮比为4,认为碳源充足。

+-AAO法脱氮除磷的需氧量:2g/(gBOD5),3.43g/(gNH3-N),1.14g/(gNO2-N),分解1gCOD--*12需NO2-N0.58g或需NO3-N0.35g。

+-++因处理NH4-N需氧量大于NO2-N,需氧量计算均按NH4-N计算。原水中NH3-N含量为+35-45 mg/L,出水NH4-N含量为25mg/L。

+平均每日去除NOD值,取原水NH4-N含量为40 mg/L,则:

NOD=100000(4025)=1500kg/L

1000100000(4525)=2000kg/L

1000日最大去除NOD值:

NOD=日平均需氧量:

7O2=BOD+COD=2×1.68×1000+4.57×1500×1000=4.0455×10㎏/d 4取4.1×10㎏/d,即1710㎏/h。 日最大需氧量:

7O2max=BOD+COD=2×1.2×1.68×1000+4.57×2000×1000=4.946×10㎏/d 即2060㎏/h。

最大时需氧量与平均时需氧量之比:

O2(max)O2206017101.2

3.1.7.4、供气量的计算

本设计采用网状膜型中微孔空气扩散器,敷设于距池底0.3米处,淹没水深4.2米,计算温度定为30摄氏度。

*14选用Wm-180型网状膜空气扩散装置。

其特点不易堵塞,布气均匀,构造简单,便于维护和管理,氧的利用率较高。每扩散器服务面积0.5㎡,动力效率2.7-3.7㎏O2/KWh,氧利用率12%-15%。查表*得: 水中溶解氧饱和度 Cs(20)=9.17mg/L, Cs(30)=7.63mg/L. (1)空气扩散器出口的绝对压力(Pb):

3Pb=P+9.8×10H

5其中:P---大气压力 1.013×10Pa H---空气扩散装置的安装深度,m 533Pb=1.013×10Pa+9.8×10×4.2=1.425×10Pa (2)空气离开曝气池面时,氧的百分比:

Ot21(1EA)7921(1EA0)0 其中,EA---空气扩散装置的氧转移效率,一般6%-12% 对于网状膜中微孔空气扩散器,EA取12%,代入得:

Ot21(10.12)7921(10.12)0018.43%

(3)曝气池混合液中平均氧饱和度(按最不利温度条件30摄氏度),即:

Csb(T)CS(Pb2.026105Ot42)

其中,CS---大气压力下,氧的饱和度mg/L 得Csb(30)7.63(1.425102.026105518.4342)7.63(0.70340.4388)8.71mg/L (4)换算为在20摄氏度的条件下,脱氧轻水的充氧量,即:

R0RCS(20)T-20[CSB(T)-C]1.024

取值а=0.85,β=0.95,C=1.875,ρ=1.0; 代入各值,得:

R01.7109.170.85[0.951.08.71-1.875]1.02430-202236.9kg/h 取2250kg/h。

相应的最大时需氧量为:

R0(max)20609.170.85[0.951.08.71-1.875]1.02430-202694.kg/h 取2700kg/h。

(5)曝气池的平均时供氧量: GSR0A0.3E10022500.3121006.2510m/h

43(6)曝气池最大时供氧量:

GS(max)

3RmaxA0.3E10027000.3121007.510m43/h

(7)每m污水供气量:

6.251010000042415m空气/ m污水

333.1.7.5、空气管系统计算

选择一条从鼓风机房开始最长的管路作为计算管路,在空气流量变化处设设计节点,统一编号列表计算。

按曝气池平面图铺设空气管。空气管计算见图见图5。 在相邻的两廊道的隔墙上设一根干管,共5根干管,在每根干管上设5对配气竖管,共10条配气竖管,全曝气池共设50根曝气竖管,每根竖管供气量为:

362500501250m3/h

曝气池总平面面积为4000m。

3每个空气扩散装置的服务面积按0.49m计,则所需空气扩散装置的总数为:

40000.499000508164个

为安全计,本设计采用9000个空气扩散装置,则每个竖管上的空气扩散装置数目为:

180个

6250090006.95m3每个空气扩散装置的配气量为:/h

将已布置的空气管路及布设的空气扩散器绘制成空气管路计算图进行计算。 根据表4计算,得空气管道系统的总压力损失为:

(h1h2)61.609.8603.68Pa

网状膜空气扩散器的压力损失为5.88kPa,则总压力损失为:5880+603.68=6483.68Pa 为安全计,设计取值9.8kPa。

空气扩散装置安装在距曝气池底0.3米处,因此,鼓风机所需压力为:

P(4.50.31.0)9.850.96kPa

鼓风机供气量:

最大时供气量:7.1×10m/h,平均时供气量:6.25×10 m/h。

根据所需压力和供气量,决定采用RG-400型鼓风机8台,5用3备,根据以上数据设计鼓风机房。

3.1.7.6、回流污泥泵房

取回流比R=1,设三台回流污泥泵,备用一台,则每台污泥流量为

Q0*1

343

43115712578.5L/s

选用螺旋泵的型号为LXB-1000。据此设计回流污泥泵房。

3.1.8、二沉池

3.1.8.1.设计概述

3本设计中采用中央进水幅流式沉淀池六座。则每座设计进水量:Q=25000m/d采用周边传动刮泥机。

3232表面负荷:qb范围为1.0—1.5 m/ m.h ,取q=1/mh 水力停留时间(沉淀时间):T=2.5h 3.1.8.2.设计计算

(1)沉淀池面积: 按表面负荷计算:AQ4qb1000001624694m

2(2)沉淀池直径:D4A46943.1430m16m

有效水深为:h1=qbT=1.02.5=2.5m<4m Dh1302.512(介于6~12)

(3)贮泥斗容积:

为了防止磷在池中发生厌氧释放,故贮泥时间采用Tw=2h,二沉池污泥区所需存泥容积:

Vw2Tw(1R)QR(12R)n22(11)11571(12)6514m

3设池边坡度为0.05,进水头部直径为2m,则:

h4 (R-r)×0.05=(15-1)×0.05=0.7m 锥体部分容积为:

V13h(R2Rrr)2130.7(1521511)56.23m3

另需一段柱体装泥,设其高为h3,则:

h351456.231520.65m

(4)二沉池总高度:

取二沉池缓冲层高度h5=0.4m,超高为h2=0.3m 则二沉池总高度

H=h1+h2+h3+h4+h5=2.5+0.3+0.65+0.7+0.4=4.55m 则池边总高度为

h=h1+h2+h3+h5=2.5+0.3+0.65+0.4=3.85m (5)校核堰负荷: 径深比

Dh1h5Dh1h3h5302.50.4302.50.650.410.34

8.45

均在6-12之间,符合要求。 堰负荷

QnD11573.143062.05L/(s.m)2.9L/(s.m)

符合要求,单边进水即可。

(6)辐流式二沉池计算草图如下:

出水进水排泥

图6 辐流式沉淀池出水45503850进水700650

图6 幅流式二沉池设计计算简图

3.1.9计量堰设计计算

本设计采用巴氏计量槽,主要部分尺寸:

L10.5b1.2(m)

L2=0.6m L3=0.9m B1=1.2b+0.48(m) B2=b+0.3(m) 应设计在渠道直线段上,直线段长度不小于渠道宽度的8-10倍,计量槽上游直线段不小于渠宽2-3倍,下游不小于4-5倍,喉宽b一般采用上游渠道水面宽的1/2-1/3。

当W=0.25-0.3时,

HH10.70为自由流,大于为潜没流,矩形堰流量公式为QM0bH(2gH)1/2

*16其中m0取0.45,H为渠顶水深,b为堰宽,Q为流量。查表得; Q=1389L/s 则 H1=0.70m,b=1m 则 L10.5b1.2(m)=0.5×1+1.2=1.7m L2=0.6m L3=0.9m B1=1.2b+0.48(m)=1.2×1+0.48=1.68m B2=b+0.3(m)=1.3m 取H2=0.45m,则HH10.450.70.640.7为自由流。

计算简图如图7:

图7 巴氏计量堰设计计算简图

3.2 污泥处理部分构筑物计算 3.2.1污泥浓缩池设计计算:

污泥含水率高,体积大,从而对污泥的处理、利用及输送都造成困难,所以对污泥进行浓缩。重力浓缩法是利用自然的重力沉降作用,使固体中的间隙水得以分离。重力浓缩池可分为间歇式和连续式两种,我们选用间歇式重力浓缩池。如图8所示:

图8 污泥浓缩池设计简图

3.2.1.1浓缩污泥量的计算

XY(SaSe)QKdVXV

其中,X— 每日增长(排放)的挥发性污泥量(VSS),㎏/d; Q(Sa-Se)— 每日的有机污染物降解量,㎏/d;

Y— 污泥产率,生活污水0.5-0.65,城市污水0.4-0.5; VXV----曝气池内,混合液中挥发性悬浮固体总量,㎏,XV=MLVSS; Kd——衰减系数,生活污水0.05-0.1,城市污水0.07左右

4343取Y=0.5,Kd=0.07,Sa=187.5mg/L,Se=20mg/L,Q=12.01×10m/d,V=2×10m,则:

XV=f×MLSS=0.75×4300/1000=3.225㎏/L XY(SaSe)QKdVX0.5187.520100043V41050.072103.225

0.3910m/d剩余污泥量:QSXfXr

1RRXfXrXrX111390043008600mg/L

QS0.758.6

3604.65m3/d

采用间歇式排泥,剩余污泥量为604.65m/d,含水率P1=99.2%,污泥浓度为8.6㎏/ 3m;浓缩后的污泥浓度为31.2g/L,含水率P2=97%。 3.2.1.2浓缩池各部分尺寸计算

(1)浓缩池的直径

采用两个圆形间歇式污泥浓缩池。有效水深h2取2m,浓缩时间取16h。 则浓缩池面积

ATQ24H16604.65242201.42m3

则其污泥固体负荷为:

MQCA604.658600201.4225.8kg/md

3浓缩池污泥负荷取20-30之间,故以上设计符合要求。 采用两个污泥浓缩池,则每个浓缩池面积为:

A0=201.42/2=100.71㎡

则污泥池直径:

D4A04100.713.1411.33m

取D=12m。 (2)、浓缩污泥体积的计算

VQ(1P1)1P2604.65(199.2%)197%

3161.24m/d

3则排泥斗所需体积为161.24×16/24=107.5m (3)、排泥斗计算,如图,其上口半径r2D26m

其下口半径为0.5,污泥斗倾角取45度,则其高h1=2.5m。 则污泥斗容积

V13h1(r1r1r2r2)184.7m>107.5m

2233(4)、浓缩池高度计算:

H=h1+h2+h3=2.5+2+0.3=4.8m 排泥管、进泥管采用D=300mm,排上清液管采用三跟D=100mm铸铁管。浓缩池后设储泥罐一座,贮存来自除尘池的新污泥和浓缩池浓缩后的剩余活性污泥。贮存来自初沉池污泥333400m/d,来自浓缩池污泥161.24 m/d。总污泥量取600 m/d。设计污泥停留时间为16小时,池深取3m,超高0.3m,缓冲层高度0.3m。直径6.5m。

3.2.2 储泥灌与污泥脱水机房设计计算

采用带式压滤机将污泥脱水。选用两台

机房按照污泥流程分为前后两部分,前部分为投配池,用泵将絮凝剂加入污泥。后面部分选用7D—75型皮带运输机两台,带宽800毫米。采用带式压滤机将污泥脱水,设计选用两台带式压滤机,则每台处理污泥流量为:

Q60024212.5m3/h

选用DY—2000型带式压滤机两台,工作参数如下: 滤带有效宽度2000毫米; 滤带运行速度0.4-4m/min 进料污泥含水率95-98%,滤饼含水率70-80% 产泥量50-500kg/h·㎡ 用电功率2.2kW 重量5.5吨

外形尺寸(厂×宽×高):4970×2725×1895 根据以上数据设计污泥脱水机房。

第五篇:有色金属企业污水处理厂污水处理工艺

引言

某有色金属企业是集采矿、选矿、冶金、化工为一体,生产镍、铜、钴及相应的盐类产品的大型有色金属企业。该企业现有污水处理设施已处于超负荷运行 状态。为此,该企业拟新建污水处理厂处理来自该企业各生产单位排出的多种污水,污水总量为1 940 m3 / d。该项目建设目标是:一方面污水经过处理后,达到企业回用标准进行回用;另一方面对污水中重金属镍等资源进行回收利用,为企业降低运行成本。

1 废水水质分析及回用水质要求

1. 1 废水水质、水量情况

各生产单位废水水量、水质情况如表1 所示。依据废水分质处理的原则,可以将各生产单位排出的废水分为4 大类:1) 高浓度氨氮废水,包括公司1 及公司2 废水;2) 高浓度含砷废水,包括废酸处理后液及公司1 废水;3) 酸性废水,包括场面污水、废酸处理后液及电炉脱硫废水;4) 其他生产废水,包括共6 个生产单位排出的废水,这6 种废水的水质比较相似,主要污染物为镍等重金属及悬浮物( SS)。

1. 2 回用水水质、水量要求

根据各生产单位对回用水水质的要求,可将回用水分为三种。各种回用水的水质如图2所示io

2 废水处理工艺

2. 1 废水预处理工艺

2. 1. 1 高浓度氨氮废水预处理

该企业排出的废水中含高浓度氨氮污水有两种,合计废水量Q = 100 m3 / d,混合后pH 值为12. 28,ρ(NH3 -N) 为2 582 mg /L,如不进行单独脱氮预处理, 直接与该企业其他生产单位排出的含有高浓度Ni、Cd 等重金属的废水混合,重金属离子与氨氮将生成稳定的金属络合离子[1],为其处理带来一定困难。所以需对上述两个生产单位排出的废水进行单独脱氮预处理。本项目采用三级氨氮蒸汽、空气吹脱法去除废水中的氨氮,通过清水淋洗吸收吹脱出来的氨气来回收氨水。在

二、三级吹脱前采用石灰乳碱化废水,控制pH 值> 11,使水中的氨氮基本上以NH3的形式存在,同时废水中的SO2 -4与石灰乳中Ca2 + 反应生成CaSO4沉淀,去除了废水中大部分SO2 -4,以减小SO2 -4对氨氮吹脱的影响[2],提高了氨吹脱效率。在石灰乳碱化废水过程中产生的CaSO4沉渣,可用来回收石膏。 由于公司1 废水中不仅含有高浓度的氨氮,而且含有高浓度的砷(123 mg /L) ,所以经脱氨处理后的废水还需要与其他高浓度含砷废水混合进行除砷。

2. 1. 2 高浓度含砷废水预处理

砷及其化合物是毒性极强的污染物,对于有色金属冶炼行业排放的含高浓度砷的废水安全再利用,除砷是不可缺少的关键环节[3]。将高浓度含砷废水进 行单独预处理后,再与该企业其他生产废水混合进行下一步处理,可提高回收有色金属的品位,防止砷在系统中循环积累。根据石灰铁盐法的原理[4],结合本

项目中废酸后液废水中铁离子含量较高( ρ( Fe) / ρ(As) 为33) 的特点,因此采用三段中和- 铁盐混凝法处理含砷废水工艺。一段中和,加入CaCO3将废酸后液废水pH 调至2. 5,使CaCO3与原水中SO2 -4反应,生成CaSO4沉淀,去除废水中大部分SO2 -4 。在pH 值为2. 5 的条件下,废水中的铁和三价砷基本不会形成沉淀,只有少量五价砷会形成难溶性盐而进入沉渣中。所以,可以利用产生的CaSO4沉渣来回收石膏。二段中和,用石灰乳调pH 值至10. 5,鼓风搅拌,利用废水中同时含有砷和铁,且铁砷比较高的特点,使废水中的砷生成溶解度很小的砷的铁盐沉淀。另外Fe3 + 的水解产物Fe(OH)3胶体,可以吸附并与废水中的砷反应,生成难溶盐沉淀而将其除去。因此本阶段可以去除废水中全部五价砷,大部分三价砷及铁离子。三段中和,用石灰乳调pH 值至9. 5,并加入FeSO4控制ρ( Fe) / ρ(As) 为15,鼓风搅拌,进一步去除废水中的三价砷。

2. 1. 3 酸性废水预处理

需进行预处理的酸性废水包括场面污水和电炉脱硫废水,其中场面废水中含有大量的粉尘等无机颗粒杂质,因此先将其进行絮凝沉淀,然后再将其与电炉脱硫废水混合,加入CaCO3将混合废水pH 调至2. 5,使CaCO3与原水中SO2 -4反应,生成CaSO4沉淀,去除废水中大部分SO2 -4,沉渣可用于回收石膏。在pH 值为

2. 5 的条件下,废水中的镍基本不发生沉淀,可以减少本阶段预处理镍的损失,以便下一步对其进行回收处理。

2. 1. 4 其他生产废水预处理

其他生产废水在去除重金属并回收镍之前对其进行除悬浮物( SS) 预处理,以利于镍的回收。聚丙烯酰胺( PAM) 是一种有机高分子絮凝剂,由许多CH2 = CH—CONH2结构单元联结而成,通过其高分子的长链把污水中的许多细小颗粒吸附后缠在一起而形成架桥。与无机絮凝剂相比,PAM 具有用量少、絮凝能力高、效果好、絮凝体粗大、沉降速度快,废水中共存离子及pH 值影响较小等优点[5]。目前该企业废水处理站悬浮物去除率在80% 左右,并可同时去除部分COD。

2. 2 石灰法分级沉淀处理

先将经预处理的全部11 种污水混合,然后采用石灰法分级沉淀回收镍并去除重金属离子。石灰法分级沉淀是利用不同金属氢氧化物在不同pH 值下沉淀析出的特性,依次沉淀回收各种金属氢氧化物。沉淀法处理重金属废水具有流程简单,处理效果好,操作管理便利,处理成本低廉的特点[5],是目前应用最为广泛的一种处理重金属废水的方法。混合废水中主要重金属Ni、Pb、Cd 的氢氧化物溶度积(Ksp) 分别为2. 0 × 10 -

15、1. 2 × 10 -

15、2. 2 ×10 - 14 ,混合废水经PAM 絮凝处理后ρ( Ni)、ρ( Pb)、ρ(Cd) 分别为:10,0. 3,0. 15 mg /L。一级沉淀用石灰水调pH 值至8. 0,可以去除80% 以上的Ni,其他重金属离子Pb、Cd 等由于其溶度积、浓度及羟基配合作用的关系,基本不发生沉淀。二级沉淀用石灰水调pH 值至11,并加入FeSO4,鼓风搅拌,去除大部分剩余的镍及其他重金属。

2. 3 废水深度处理工艺

2. 3. 1 臭氧氧化去除有机物

臭氧氧化去除有机物的基本原理是:O3在高pH值溶液中,离解成HO -

2,该离子与O3反应诱发产生多种自由基,尤其是氧化能力强的HO·,使溶解或分 散于水中的有机物氧化成新的HO·,成为引发剂,诱发后面的链反应[6]。臭氧作为一种强氧化剂,能与废水中存在的大多数有机物和微生物以及无机物迅速发生反应,因此可用于除去水中的色度、难降解的有机物,且具有杀菌消毒的作用[5]。本项目废水经预处理及分级沉淀去除重金属后,ρ(COD) 为200 mg /L 左右,其中有毒物质及难降解有机物含量较高,且废水pH 值较高,所以适合采用臭氧氧化法处理。

2. 3. 2 活性炭吸附处理

本阶段主要是利用活性炭吸附废水中剩余的悬浮物、重金属、有机物等污染物。活性炭吸附后再经微滤设备过滤,出水可达表2 中回用水2 的水质要求。

2. 3. 3 膜过滤除盐处理

本阶段是将经过活性炭吸附的出水,利用反渗透膜进行过滤,除去Na + 、SO2 -4等离子,使出水电导率达0. 2,符合回用水1 的水质要求。分离出的浓水,符合回用水3 的水质标准。

2. 4 泥渣处理

污水处理过程中产生的污泥、镍渣、砷渣和重金属渣,分别用板框压滤机进行脱水处理,其中镍渣脱水处理后的泥饼回用冶炼。CaSO4沉渣,经浓缩机和离 心分离机脱水处理后,回收石膏。

3 工艺设计方案

3. 1 工艺流程

工艺流程如图1 所示。

3.2 工艺参数

1) 普通沉淀:沉淀表面负荷1 m3 / (m2·h)。

2) 絮凝沉淀: 混合时间1 min,絮凝反应时间30 min,沉淀表面负荷1 m3 / (m2·h)。

3)过滤:过滤设备自动控制反冲洗,反冲洗水来自回用水池,反冲洗排水至废水调节池。滤速8 m/ h。

4) 三级氨吹脱、吸收法脱氨: 一级氨吹脱,废水pH 值为12. 28;

二、三级氨吹脱,加入石灰乳通过pH计自动控制,将pH 值控制在11,气液比为2 900 ~3 600,水力负荷为6 m3 / (m2·h)。

5) 三段中和- 铁盐混凝法除砷:一段中和,加入CaCO3将原水pH 值调至2. 5;二段中和,用石灰乳调pH 值至10. 5,ρ( Fe) / ρ(As) 为30 左右,鼓风搅拌;三段中和,用石灰乳调pH 值至9. 5,并加入FeSO4控制ρ( Fe) / ρ(As) 为15,鼓风搅拌。混合时间为3 min,反应时间为30 min,沉淀表面负荷1 m3 / (m2·h)。

6) 中和沉淀: 加入CaCO3将原水pH 值调至2. 5,混合时间3 min,反应时间30 min,沉淀表面负荷1 m3 / (m2·h)。

7) 石灰法分级沉淀除重金属:一级沉淀调pH 值至8;二级沉淀调pH 值至11,加入FeSO4鼓风搅拌。混合时间3 min,反应时间30 min,沉淀表面负荷1 m3 / (m2·h)。 4 结论

1)根据废水分质处理的原则,对高浓度氨氮废水、含砷废水等进行单独预处理,降低了混合废水处理难度,并提高了镍的回收率。

2) 采用三级氨氮吹脱、吸收工艺处理高浓度氨氮废水,提高了去除氨氮的效率和稳定性。并对污水中氨及污水处理过程中产生的副产品CaSO4进行了回收利用。

3) 根据石灰铁盐法的基本工作原理,结合本项目中酸性含砷废水中铁离子含量较高的特点,设计了三段中和- 铁盐混凝法处理含砷酸性废水工艺。在投加铁盐量很少的情况下,达到了较高的除砷效率,同时去除了废水中大部分铁及SO2 -4 。

4) 采用石灰法分级沉淀处理混合废水中重金属离子,在去除大部分重金属离子的同时还可以回收金属镍,为企业降低了运行成本,并且防止了二次污染。

5) 根据各单位对回用水质的不同要求,采用了活性炭和活性炭加膜过滤两种污水末端处理方式,使污水处理后全部回用,达到了污水零排放的目的,不仅节约了大量水资源,降低了企业的运行成本,而且防止了对该地区水体及地下水的污染。

上一篇:初中生周记范文总汇下一篇:初中生如何学好语文