光学系统设计教学大纲

2022-12-05

第一篇:光学系统设计教学大纲

激光三角法测量钢板厚度光学系统设计

光学系统设计论文

目 录

摘 要….......................................................................................................................... 第一章 引言.................................................................................................................. 1.1研究的背景和意义 ........................................................................................... 1.2 国内外研究现状................................................................................................ 1.2.1 国外发展现状............................................................................................. 1.2.2 国内发展现状............................................................................................... 第二章 测量原理及方案论证..................................................................................... 2.1 设计任务分析..................................................................................................... 2.2 测厚技术简述 .................................................................................................... 2.3 激光三角法测量原理........................................................................................... 2.3.1激光三角法测量的类型和区别.................................................................... 2.3.2激光三角法测量的基本原理........................................................................ 2.4 沙姆条件…………………………………………………................................ 2.5 测量模型及方案论证…………………………………………........................... 第三章 光学系统设计.................................................................................................... 3.1总体结构布局....................................................................................................... 3.2光源...................................................................................................................... 3.3聚焦系统与成像系统........................................................................................... 第四章 误差与精度分析................................................................................................ 4.1 误差分析............................................................................................................... 4.1.1光学系统误差分析......................................................................................... 4.1.2随机误差分析................................................................................................ 4.2 精度分析 ............................................................................................................. 第五章 总结.................................................................................................................... 参考文献.........................................................................................................................

摘要

在科学技术迅速发展的今天,外形尺寸的测量一直是工业生产中的一个重要环节,厚度测量更是人们关注的焦点。在测厚领域里,采用激光三角法这一典型的非接触式测量方法对物体的厚度进行绝对测量不仅能满足测量的实时性,还能保证测量的高精确度,这种测量方法已经成为工业生产的发展趋势。本文所提出的基于激光三角法厚度在线测量技术采用双光路半导体激光技术与直射型激光三角法相结合,同时对平板物体进行厚度的在线测量。

文中主要包括总体方案的设计和由此涉及的关键技术、测量原理、精度与误差、实验等几个部分,本课题提出的基于激光三角法厚度绝对测量研究,是集机、电、光、计算机等技术于一体的精密测量方法,它的主要组成部分是:激光器、聚焦系统和成像系统、光电转换器件CCD及计算机数据处理部分。这里由于是只对光学系统进行设计,所以本文主要论述的是光学系统部分的任务分析,测量原理的理论分析和计算方法,并对光学系统可能产生的误差进行分析,并对于个别误差提出相对应的解决措施,以提高测量精度和测量速度。全文的主要内容分为四章:

第一章:引言,主要介绍了钢板测厚的重要性,由于主要采用的是激光三角法进行测量所以主要介绍以及激光三角法在非接触测量中国内外的发展现状及应用前景。

第二章:测量原理,激光三角法测量的不同类型,通过对比,进行选型;简述激光三角法的测量原理,我们所设计的光学系统的测量模型和方案论证。

第三章:首先介绍了总体结构的布局,然后对光学系统的光源、聚焦系统及成像系统进行设计。

第四章:对光学系统在测量过程中可能产生的误差进行了分析,并对一些误差提出了解决方案以提高测量的精度及速度。

第五章:总结,文章的最后进行了全文的总结,并提出了在设计过程中的不足之处,讲述了自己在设计过程中的心得体会。

第一章 引言

§1.1研究背景和意义

现如今,工业发展的水平可以近似直接代表着国民经济的整体实力水平,因此工业的生产技术水平对国民发展有着重要的意义。钢板是造船、桥梁、机械、汽车行业中不可缺少的原材料,在轧钢生产过程中钢板尺寸是很重要的参数,直接决定着钢板的成材率。传统的检测方法是采用检测头与待测钢板直接接触来测量,这种测量方法检测效率低,劳动强度大,而且会使测量仪器的检测头发生磨损,从而造成仪器的测量精度下降。因此,在现代板材生产中,不论是轧制过程中还是最终产品的调整中,为获得较高的板材命中率和最佳的轧制过程及剪切效果,板材尺寸测量系统已成为生产线上不可缺少的设备之一。宽度偏差每减少1mm,成材率就可以提高0.1%左右,因此尺寸控制技术可显著提高经济效益和产品竞争力。

目前,我国大部分企业仍在延用传统的测量方法,采用接触式的测量方式,技术相对落后,而且在处理复杂的零件时显得无从下手。这种情况严重地影响了工作的效率与工作的质量,为此应加大力度地发展测量的新技术来解决传统测量方式不能处理的问题,以适应现代生产发展的需要。随着工业生产技术的不断提高与更新,这种非接触式的测量方法能够满足对测量所要求的精确度与实时性,己经成为这一领域的发展趋势。再加上电子技术与光学技术的飞速发展,光电检测这种综合多种技术的测量方法成为非接触式测量的重要手段。本文所提出的激光三角法是光电检测技术其中的一种。这种方法在检测长度、距离以及三维形貌的用途中因其具有结构简单、响应速度快、实时处理能力强、使用灵活方便等优点显得更具优势。这种方法已经在测量位移、表面形貌等检测工作中取得了很好的效果,并且会扩展更广阔的使用空间,发挥其优势,推动工业检测技术的发展。

§1.2国内外研究现状

自上个世纪60年代激光测微仪的诞生,这种商品被大力的发展与生产,性能得到不断的改善,应用领域也被扩展的更加广泛,成为一种重要的非接触式检测仪器。国内外也有不少企业在做这方面的技术,一般分为直射式与斜射式两种形式。直射式的产品有基恩士公司生产的LS系列和LK系列,德国Micro-Epsilon

公司的optoNCDT系列,美国MT公司的MicroTRAK系列等多种型号;斜射式的激光位移传感器以日本Keyence公司的LK系列最为突出。表1-1列出了目前市场上常见的几种激光三角位移传感器的技术指标[6]。

表1-1 激光三角位移传感器的技术指标

[8]

1.2.1国外发展现状

在欧洲以及美国等发达国家很早就致力于激光三角法测量平板厚度的基础理论研究及测量仪器的研制,并且己经为此投产,生产出了一系列相对比较完善光电检测产品,尤其是在日本和德国,光电子技术的发展的速度非常快,应用也相对的更为广泛一些,所以国外在厚度检测这一方面的发展有着很迅猛的速度,拥有光源照明技术和光电检测元件的种类非常齐全,光电检测技术也很成熟。例如:日本的Mot1toshiAndo等人运用光三角方法印制线路板的线条检测,用这种方法还可以检验出工件表面的划痕和裂痕;英国剑桥大学的Roert Johnes等人将该方法用于涡轮叶片及飞机机翼断面检测,在10mm范围内精度可达2-

5;西德早已报道把激光光学三角测量技术和装置用于随线控制,它既可测量钢板的厚度,又可测量钢水的高度;日本的安立一岩通公司推出的通用型激光厚度位移计ST-370型的

1、

2、3系列。国外各大公司在光电检测技术中的突出表现代表了目前光电检测技术的一个发展程度,同时也预示着光电检测技术更广阔的发展空间。

1.2.2国内研究现状

虽然国内在光电检测技术上的起步较晚,但是鉴于传统的接触式测量技术有

着较大局限性,行内的技术人员早已注重了对于新型测量方式—非接触式测量技术的研究,使其技术在国内迅速发展,并且取得了一些相对比较好的成果。例如:1987年8月由电子工业部第二十五研究所的陈为民、卞海洋等人研制成功的激光测厚仪采用激光双三角测量原理,由激光器!视频信号处理器、微机等组成;1991年,中国科技大学的金泰义、李胜利等人开发研制出了JW—1型CCD激光测微仪,它以半导体激光器为光源,通过CCD进行信号接收,接受的数据送入计算机进行处理。这种测微仪是光、机、电一体化的典型事例,是光电检测方面研制的比较早的CCD激光测厚仪,采用光电藕合器件CCD实现,整体系统的技术水平在当时的国内己经体现了检测技术的最高水平;长春光机所研制的基于光学三角测量原理的激光非接触探头结构简单,体积小,重量轻,测量精度高,速度快;安徽工业大学电信学院的章小兵在研究了板材在线测厚时就用的激光三角法并叙述了激光三角法测厚的原理[1],对板材在线测厚系统进行了硬件设计和软件设计并给出了系统测量指标。与此同时,例如计算机视觉测试技术等新型技术都是在以激光三角法为理论基础的研究上发展起来的。

§1.3展望

通过大量的检索查新国内国外文献资料,可以发现目前我国光电检测仪器与工业发达的国家相比,我国的光电检测的仪器产业还不够成熟。我国主要报导的多,实际设计应用的少。从减小测量误差、提高测量有效速率方面与发达国家的产品设计还是存在一定的差距的。特别是本文涉及的以激光技术激光三角检测技术、光学系统设计和计算机技术相结合对平板进行绝对测厚的技术在国内鲜少报道。

第二章 测量原理和方案论证

§2.1设计任务分析

由于在生产线从加热炉出来,经轧辊机轧制的钢板,温度很高,一般在900℃左右,呈现红色或暗红色。为了更快更准确的获得钢板尺寸数据,得到最佳的轧制过程及剪切效果,需要实时在线采集钢板尺寸信息,并及时显示出来,以便于操作工人及时调整轧机或者印制尺寸标识。所以我们根据实际应用需求,要求所设计的测量系统必须可以进行非接触式的在线测量,为了简化设计难度,在设计要求中假设是在钢板冷却后再进行测量。所需测试的钢板的厚度为5±0.05mm, 精度要求为±1%。

§2.2测厚技术简述

测厚技术通常都是以非接触式检测方法为主,按照测量原理和使用的传感器类型来分,大致可分为激光三角法、电容法、射线法、超声法等。这里我们选用的是激光三角法测厚度,所以其他测量方法就不做过多的赘述。

激光三角法利用探头中的激光器发射出激光,入射到电荷藕合器件CCD或位置检测器PSD作为接收器,通过在接收面上的像点经过位移变化,再通过计算公式计算出被测面的位移。本系统就是采用这种双激光三角法进行厚度测量,其原理示意图如图2.1所示。

图2.1双激光三角法厚度测量原理示意图

激光三角法在测厚领域里已经日趋发展成熟,通过光学系统、机械系统、电路系统三者有机的结合,已经有一系列的测厚仪器问世;同时在近几年中,应用激光三角法,结合电荷耦合器件CCD,应用两个探头同时进行厚度测量,使测厚技术己经逐步向于动态、实时化测量,自动、程序化数据处理方向高速发展。

§2.3激光三角法测量原理

根据前文所述的任务分析,我们选择采用具有分辨力高、测量精度高、稳定性好、非接触测量、可实现在线检测、测量仪器体积小等特点的激光三角法,来实现位移测量的。尽管常用的微位移检测的方法有很多种,例如机械法、电学法、光学法等,但都无法与激光三角法匹敌,激光三角法是位移检测方法的发展趋势,具有广阔的应用前景。

2.3.1激光三角法测量的类型及区别

(1)反射型与投射型

激光三角法光路按检测方式分为反射型与透射型本系统采用的就是反射型的激光三角法,通过激光在被测对象的表面发生反射,接收到被测信息。而对于一些特殊材料的被测工件如透明物质,由于其表面非常光滑,用反射型会对测量产生一定的影响,则可以采用透射式激光三角法,通过激光器发出的光线透过被测工件再投射在光敏面上而获取测量信息。 (2)单束光和片光

按入射光束的形态来分,又可分为单束光和片光。顾名思义,若单束光入射的话,光斑小、光的强度高,但是广度不够,如果片光入射则需要采用激光透射光条与一个面阵探测器组成,通过光切法,也称结构光图像法,能一次获取一条扫描线上的数据。本系统采用的是单束光入射测量。 (3)直射型和斜射型

若按入射光线与被测工件表面法线的关系来分,可分为直射式和斜射式。对于直射式,就是光束垂直入射到被测物表面,采用漫反射光进行测量,当物体纵向移动时,所测的始终是同一个被测点;斜射式的入射光束则与被测物表面形成一定的角度。

斜射型:如下图2.2所示,入射光束与被测物面成一夹角,利用反射到探测器件CCD的像点位置变化测量物体的位置厚度,当物体纵向移动时,所测的被测点会随移动发生改变,当测量平滑物体如玻璃、镜面时要比直射型的测量精度高很多。斜射式入射光照射在物体的不同位置,当被测物体移动时,光点的位移不能直接得到,要通过角度计算得出。斜射式分辨率很高,但测量范围较小、体积较大、光斑较大,所以在此不符合本系统体积的要求。

图2.2斜射型示意图

直射型:如下图2.3所示,激光器发出的入射光束垂直于成像透镜光轴O,光敏面与成像物镜O平行,被测点的位移与光电探测器上光斑的位移为线性关系,可用于测量相对或绝对位移,但其光敏面要求很大,而且被测点在成像面的像并不清晰,因此测量精确度不高。光斑较小,光强集中,体积较小,并且不会因被测面不水平而扩大光斑是直射型三角法的最大优点。但由于直射型接收的是散射光,当测量到较为平滑的被测面时,散射性能较差,使光电探测器件CCD接收到的散射光光强小,对测量产生影响,令测量过程受到阻碍,测量精度受到影响。

图2.3直射型示意图

2.3.2激光三角法测量的基本原理

通过上述对激光三角法测量的类型及区别的论述,及我们设计任务需求的分析,综合考虑我们选择了单束光入射,光路检测方式为反射型,光束垂直入射到被测物表面,采用漫反射光进行测量的直射型激光三角法对钢板厚度进行测量。 (1).传统的激光三角法

传统的激光三角法基本原理如图2.4所示,采用直射型,光电探测器采用的是CCD,当散射光通过成像透镜时,如果将CCD以垂直于激光束入射的位置进行安装耦合,则成像到CCD上的光点会由于没有完全聚焦而出现弥散斑,测量并不完全。

图2.4 激光三角法的基本原理图

于是为了光点所成的像在接收器表面上每一点都清晰,则要求透镜光轴与接收面之间必须形成一定的夹角,所以我们选用CCD接收器为倾斜式的方式,即完全聚焦的激光三角法测量,如图2.5所示。

图2.5完全聚焦的激光三角法示意图

图中PO为入射光源,光线经准直透镜后垂直入射到物体表面,反射后经过成像透镜中心点M成像在CCD接收面上,入射光PO与反射光以的夹角为θ,反射光OA与CCD成像平面的夹角为,P点成像于CCD平面上的B点,O点成像于CCD平面上的A点,由图中可知,P点与O点高度不同,所成的像投射到光敏面上的位置也是不同的,设O点所在平面为基准面,A为CCD成像平面上的成像基准点,则光线PO上的点与CCD平面上的投影点是一一对应的。因此,只要知道光线PO上的任何一点在CCD成像面上的位置就可以求出该点的高度信息。由图2.5,可列出以下关系式

(2.1)

由公式(2.1)可推出

(2.2) 式中:

PO一一物点的高度信息; AB一一P点在CCD成像平面的成像点与成像基准点A的偏移量 OM一一O点成像PO物距; MA一一O点成像像距; 激光束垂直投射到被测物面,所形成的漫反射光斑作为传感信号,用透镜成像将收集到的漫反射光会聚到像平面的光接收器上形成像点。当被测物面移动时,入射光斑也会随之移动,像点也会在光接收面上做相应的移动,根据像移大小和系统结构参数可以确定被测物面的位移量,从而还可以获取其它方面信息。本系统中,为使光接收器上的像点不存在盲点,光接收器的光敏面必须与成像光轴成一夹角。这样既可以保证入射光斑与其像斑位移具有的关系精确,还可以使成像点最小,有利于提高测量精度。同时为了提高测量精度,和θ必须满足沙姆

(Seheimpflug)条件,即

,如图2.6所示[5]:

图2.6物一像位移轨迹图

图中d0为基准点的物距,di为基准点的象距,O’为O经成像透镜的像点,A、B分别为a、b经成像透镜的像点,θ为光入射角, 为成像角,l为成像透镜,焦距为F。

当激光光束照射到a点时,由图3.7可知:

由相似三角形△ao1l△l得:

令 则由式(2.3),

同理可推得,当物面由O至b时

(2.3)

(2.4)

(2.5)

(2.6)

可化简为

(2.7)

(2.8)

(2.10) (2.9)

(2.4)

综合上面可得, 式中,符号“+”对应于图2.6由o移至b,符号“─ ”对应物面由o移至a。 式中,符号“+”对应于图2.6由o移至a,符号“─ ”对应物面由o移至b。

(2.12)

(2.11) 由Z-I关系公式可得Z-I关系曲线,图2.7所示。从图中可以看出I该曲线为非线性曲线,只有当物面在O点附近较小范围移动时,上述曲线可近似按线性关系处理。

图2.7 Z-I非线性关系曲线

§2.4 Scheimpflug Condition(沙姆条件) 被测物表面,镜头平面和影像的平面在一个共同点上相交的光学状态称沙姆条件,即在直射型激光扫描测量中,当入射光斑沿激光束方向位移时,其成像点在像平面内沿直线轨迹移动,则激光束轴线!成像透镜主面及CCD像平面三者交于一点,满足高斯条件,这是激光三角测量传感器实现精密测量的前提条件。

§2.5测量模型及方案论证

本课题采用直射式三角法,测量模型的的基本组成有激光器、聚

焦物镜、成像物镜及光敏阵列线阵。CCD其测量原理为激光器发出光的轴线与聚焦物镜的主平面两者同处一个平面上,并与CCD垂直。当激光器发出一束平行光,经由聚焦物镜聚焦在待测物的表面,产生的散射光通过成像透镜成像在CCD光敏面上。CCD将像信号转换为电信号测出其像点的位置。当被测物体沿着法线方向移动时,其表面上光斑会随着聚焦物镜的位置变化而发生改变,相应地,像点在光敏器件CCD上的位置也要发生变化,精确地测量像点在CCD上的位移x,就可以得到被测物体的位移量。由于是绝对测量,所以采用激光上下表面双三角法,准确的测量运动物体的厚度。如下图5.1所示,图中a为散射光接收角,θ是成像角,d0为参考点处的物距,di为像距,d为上下两参考面之间的距离,x是物位移,x’为像位移。

图2.8 激光三角法测厚原理图[2]

(2.13) 由上图可得光学关系式: 式中 β一一成像透镜的放大倍数

上、下物面相对的移动距离为x1和x2,两CCD上的像点移动至x’11和x’21,像点移动距离

,

。根据几何关系,有

因此,

(2.14) 由于上下探头完全对称,同理可得

(2.15)

其中

在后,C1与下探测头测得像点位移量件的位移量x

1、x2,物件厚度为

探头参数确定C2为定值,当上

后,按公式(2.14)、(2.15)式计算便可得到物

第三章 光学系统设计

§3.1总体结构布局

3.1.1系统的组成

系统由以下几大部分组成:激光发射器,光三角位移检测系统,计算机数据处理系统,工作台。

图3.1 测量系统方框图

1.激光测头部分

由激光发射器组成的光源系统、聚焦光源的准直系统、接收光信号的激光成像系统构成,由于本设计测量为绝对厚度,所以我们采用两个激光探测头。 2.光三角位移检测系统

本文采用激光三角法原理设计的测厚系统,用线阵CCD作为光电接收器件,通过物面的位移由此检测出在感光面上成像点的位移,通过计算得出厚度。 3.计算机、实时数据处理与控制系统

计算机数据处理系统是将接收到的光信息转化为数据输入计算机,通过计算机的内部编程结构计算出所求厚度,并显示出测量结果、存贮及打印。 4.工作台

对所测物件进行固定,并使其可按照一定规律、方向、有速度的平稳运动。这种系统主要是由基座、滑台、导向、传动、定位与夹紧结构等组成的。

2.3.2总体结构布局

基于激光三角法原理设计的测厚系统,是通过上述的激光探头系统发出光源,照射在被测物体上,通过光三角位移系统作为信息载体,接收并反馈出所需信息,并经过计算机控制系统进行数据确定,对工件进行测量,则被测工件的绝对厚度可以确定了。根据系统组成,总体结构布局如下图3.1

图3.1总体结构布局

§3.2 光源

目前,激光作为一种新型能源[6],具有单色性好,光亮度极高,方向性强等优点,它在测量,加工等多种领域都有很广泛的应用。在众多的激光器中,氦氖气体激光器和半导体激光器应用尤为广泛。其中氦氖气体激光器具有连续输出激光的能力、结构简单,但体积较大,而半导体激光器具有体积较小、效率较高、驱动功率小等优点,尤其适用于测距。于是为了本设计要求,本文选取了半导体激光器。半导体激光器发出的激光,由于空间相干性好,投射点也相应的变得很小,辐射能量就越小,分辨率就越高,能量密度也随之增大。文中选用的是波长为688nm半导体激光器。在实验中发现,由于选用的激光器发出的激光光强较大,使投射到光电探测器CCD上像点的光斑也随之增大,影响测量系统的分辨率。解决的方法是在聚焦透镜后面放置一块偏振片,通过调节偏振片,改变其旋转方向,对激光器所发出的线偏振光进行过滤,使光束中心光强较强的光束通过过滤,滤除边缘较弱的光,使光束细化,则CCD上像点的光斑减小,提高仪器的测量精度。

§3.3聚焦系统及成像系统

在光路设计中,聚焦系统和成像系统是本设计中的关键环节。整个系统的可靠性在很大程度上取决于聚焦系统和成像系统的准确性。

3.3.1聚焦透镜

激光器光源发出的光尽管光束较细,发散角较小,但仍存在一定的直径,在CCD的光敏面上形成的是一个小光斑,测量精度会由于覆盖光敏面上的光敏元离散而受到影响。另外,当物体表面随法线方向进行移动,位移发生变化时,像点在CCD的光敏面上也作出相应的位置移动,如果像点过大,而CCD光敏面量程一定会影响测量效果,则应尽量缩小投射在CCD光敏面上的像点直径,减小孔径,使像差较小。在本系统中,聚焦透镜的设计不是本文研究的主要重点,则设计中我们采取了结构相对简单、准直效果较好的单透镜聚焦系统。

3.3.2成像透镜

本系统的成像透镜是根据测量系统的分辨率、测量范围、工作距离等要求光

电转换器件CCD本身特性进行设计的。系统测量范围很大时,要求散射光在CCD面上的成像点不能过大。如果测量范围很大,当被测物体移动到测量范围边缘时,光强会随移动而逐渐衰减,所以要根据实际情况调节放大倍率刀的大小。

第四章 误差与精度分析

§4.1误差分析

基于激光三角法的厚度绝对测量试验系统是一个由机械、光学、电子和计算机组成的一个有机的整体,因此在测量实验中所得到的结果中所包含的误差也是由多种误差因素引起的。在这些误差中,有些通过具体计算就可以得到,而有些则需要通过实验标定的方法来进行估算,并且在某些情况下只能求出误差的变动范围,这就是误差极限值。这里主要介绍光学系统的误差分析[4]。 4.1.1光学系统误差分析

在本测量系统中,光学系统的误差主要是指采用的激光器、光学透镜产生的,从测量原理上看,光源方面我们需要采用一种体积小、驱动功率小、使用方便的光源发生器,同时还需要光源的空间相干性好,这样才可以使投射到测量物体上的光斑小,光斑越小分辨率就越高,但是如果光斑非常小,辐射能量就不会很大,导致接收灵敏度就要降低。所以,为了在通过光学系统聚焦后产生较高的能量密度,系统采用了半导体激光器作为光源,这样才能使探头小型化。但是半导体激光器本身也会产生误差[7]。

(l)激光束输出功率的不稳定及噪声影响。激光的功率不稳定将造成光强分布不稳定及激光线宽;噪声影响有很多因素,直接影响测量精度。

(2)激光投影质量的影响。由于被测物体的表面特性、测量环境等因素的影响,激光投影质量也会产生误差。在光学元件方面,被测物体方向与成像系统光轴存在一定的夹角,虽然在实际装调过程中调节,但并不能达到理想角度,所以会产生各种象差(彗差、像散、畸变等轴外像差)使实际成像点偏离理想成像点而产生误差。 4.1.2随机误差分析

基于激光三角法厚度绝对测量的实验系统的随机误差可以主要归纳为以下几个方面: (l)测量装置方面的因素:测量装置采用的CCD探测器在采集信号及电信号处理时会造成随机噪声,在重复测量过程中,会产生离散化采样误差、每次测量时量块的装夹位置也不一致。

(2)测量环境方面的因素:测量主机所在的平台会有外界所带来的轻微的低频震动;仪器所在的实验室气流和温度会有波动,以及空气中尘埃的漂浮等。

(3)操作人员方面的因素:尽管仪器自动采集与处理数据,但测量标准样件是由操作人员装夹并调整操作的,会使被采集的图像分辨质量差、造成较大的离散化采样误差;以及工作人员可以被当做热源引起气流的扰动。

随机误差是一种随机变量,它具有随机变量固有的统计分布规律。设被测量值的真值为x0,各次测量值为xi,若xi中不含有系统误差,则根据对随机误差δi的定义有:

δ

i

= xi - x0

对于一组测量数据,往往用标准差来表述这组数据的分散性。如果这组数据是来自于某测量总体的一个样本,则该组数据的标准差是对

总体标准差的一个估计,称其为样本标准差。

其中该公式中的Vi = Xi−X0定义为残余物差即残差。

§4.2精度分析

本系统采用的是精度很高的传感器,但理论上,仪器的内部还会存在测量误差。这里同样主要介绍光学系统方面[3]。 1.测量系统方面

(1)光学系统的像差会使物体上任一点发出的光束通过光学系统后,不能汇聚在同一点,而是形成一个弥散斑并不能表现出原物的形状。相应的改进方法是在接受透镜的设计中要考虑像差的因素。 (2)光信号的输入与电信号的输出之间呈非线性,相应的改进方法是采取较优的标定方法,之后得到具体的物体位移值。 2.被测物体方面

(l)被测表面的粗糙会对测量精度产生影响,相应的改进方法是多选取几块标准量块进行多次测量,对于有时被测表面产生的阴影和死区,采取两个激光探头发出的激光从相对的两个方向同时对被测物进行扫面,使用单光源、双检测器,最后通过计算融合数据。

(2)由于被测物不总是标准量块,表面会有孔或者缝,使得传感器不能很好的接收反射光。相应的改进方法是采取对称性的光学三角传感器。

(3)被测表面会有材料、光学性质的差异,如透明物体,物体对光的反射或吸收程度会不同于半透明的物体,也不同于不透光的物体,反射率与折射率等因素会引起成像光斑有像差。改进的方法是使传感器的入射透镜和接收透镜的光轴所成的平面与待测表面平行,接受足够的光强,这有利于提高测量分辨率。如果是高度镜面反射则需要采用线偏振光作为光源,利用线偏振光的参数随镜面反射改变。 3.环境影响方面

在温度方面,只能人为的保持周围环境温度稳定,在使用仪器时进行预热;在气流运动方面,使用保护罩保护测量头或者使用风扇更强的搅动测量部分与工件之间的空气;同时在灰尘与污物方面,采取小心的清洁。为了减小环境对系统的影响,要在接收物镜和线阵CCD之间安置一滤光片(激光器发出的红光波长为650nm,其透过率可达百分之九十多,而其它波段的光几乎可以全部滤掉)。同时在激光器和聚光镜之间安置孔径光阑,以减小光斑直径。本系统采用上下探头同时测量,可以消除测量过程中盲区的出现。当被测面有一定的倾斜角,也可以通过两个探头对测量进行补偿,这种测量方法就可明显提高传感器的测量精度。

第五章 总结

激光三角法是本系统采用的基础方法,在现代工业发展的今天,激光三角法是非接触测量中最常用的方法,具有很广的应用范围。应用此种方法可对各种类型物体进行诸如物体表面形貌、厚度、三维等微位移的测量。由于激光三角法具有结构简单、测试速度快、实时处理能力强、使用灵活方便等优点,所以在这里我们将激光三角法作为本系统所采用的基础方法对钢板进行非接触式在线测量进行光学系统的设计,同时对光学系统在测量过程中可能产生的误差进行了表述,并对一些可能影响测量精度的问题提出了修改方法和意见。

不足之处,由于时间紧迫并没有搭建试验装置进行模拟测量,并对测量数据进行误差分析,提出改善方案。并没有通过Zemax等软件设计对光学系统的聚焦透镜和成像透镜进行模拟光路的设计。

体会:光学仪器设计在设计时需要整体的结构考虑,不能只是一味的进行光学系统的设计,在仪器的设计中通过模拟软件或装置模拟搭建来获取数据进行误差分析也是光学系统中非常重要的一部分,通过对测量数据的误差分析我们还需要进一步的对所设计的仪器装置,系统部件参数选择进行优化,以更好的实现设计任务要求。在设计时我们要因地制宜,对要设计加工的对象,作业环境,操作流程特点进行分析,这样才能使我们所设计的系统更具有实用性,高精度和高稳定性等特点。

参考文献

[1] 章小兵.激光三角法测厚研究.中国科学院安徽光学精密机械研究所硕士学位论文,1999 [2] 王晓嘉.高隽.王璐.激光三角法综述.仪器仪表学报,2004 [3] 王军红.江虹.毛久兵.一种提高激光三角法薄板在线厚度测量精度的方法,2011 [4] 黄战华.蔡怀宇.李贺桥.张以谟.三角法激光测量系统的误差分析及消除方法,2002 [5] 迟桂纯.激光三角法微位移测量技术[J].工具技术.1997 [6] 周炳昆,高以致.激光原理[M].北京:国防工业出版社,2000

[7] 黄战华,蔡怀宇,三角法激光测量系统的误差分析及消除方法,光电工程,2002 [8]汤思佳,基于激光三角法厚度绝对测厚技术研究.[硕士学位论文].长春理工大学.2010

第二篇:工程光学设计课程教学改革与创新探析论文

"工程光学设计"课程是机械电子工程专业光机电一体化方向的一门重要必修课,文章从教学现状和教学难点动身,针对教学内容、教学办法和理论教学等方面,提出和进行了一系列详细的教学变革。

随着光学技术的开展,对光学仪器和光电仪器设计的请求也越来越高,这就请求设计者具备扎实的理论根底、较高的设计技巧和现代光学系统设计计算才能。目前,社会上对光学设计的专业人才有着越发迫切的需求,为此,高校肩负着培育具有良好光学设计才能的工程型人才的重担。

为了协助学生稳固应用光学专业根底学问,控制评价光学系统的根本办法,进步学生对光学系统的应用才能和设计才能,该校在光学工程学科研讨生教学中开设了“光学工程与系统设计”课程。该课程在本科工程光学的根底上,系统、全面地解说光学工程的理论、应用和系统设计办法,协助学生进步在工程应用中处理实践问题的才能。

“光学工程与系统设计”课程针对光学工程学科研讨生开设,请求学生具有一定的光学工程根底学问,教学目的是培育光学工程的高级应用人才。授课内容除注重于根本概念的解说和根本原理的剖析外,拟经过大量丰厚的光学系统应用实例,培育和进步学生发现和处理工程问题的才能。

因而,该门课程在较短的课时内,既要有对专业根底学问的深化了解,又要结合工程消费理论,以处理实践设计问题为目的,使学生在系统、全面地控制光学设计理论和设计办法根底上,可以独立完成大多数典型光学部件和系统的设计工作。因而,要到达较好的授课效果,对授课教员提出了较高的请求。

在“光学工程与系统设计”的授课中,如何将理论与实践相结合,充沛调动学生学习兴趣,使学生逐渐顺应从习气于科学理论、理想假定的学习者到光学工程专业技术人员的转变,培育和进步学生发现和处理工程问题的才能,是重点思索的问题。该文将对教学中遇到的问题及经历进行做出总结。

1 “光学工程与系统设计”教学中面临的主要问题

在该课程的教学过程中,主要存在的问题有以下几点。

1.1 学时少,相应配套课程不完善,学生根底学问程度不平衡

“光学工程与系统设计”课程涵盖光学成像理论、典型现代光学系统的构造原理和光学特性、光学系统设计办法等等方面,触及学问内容十分普遍。在有限的学时内,要完成一切的教学内容,到达使学生系统、全面地控制光学设计理论和办法,进步学生现代光学系统设计才能,培育学生工程素质的目的,对学生的根底学问、综合才能的请求都较高。而在实践教学中,由于学生可能来自于不同的本科专业,在光学工程类根底课程方面的学问程度表现出很不平衡,相应的配套课程也不够完善。因而,如何在本课程的教学中,如何缓这些矛盾,补偿这些缺陷,到达好的授课效果,对教员提出了很大应战。

1.2 学生工程认识淡薄,入手才能差,不能将理论与实践相结合

学生对工程设计的特性仍旧缺乏认识,对工程问题较为陌生,工程认识十分淡薄,因而形成了入手才能差,不能将所学的理论学问与实践应用有机结合的问题。而本课程正是以培育具有良好光学设计才能的工程型人才为目的,因而,如何理论结合实践,在对实践问题的剖析与讨论中,培育学生学习与开展的才能和发明性处理工程问题的才能,是重点要处理的一个问题。

1.3 学生的学习积极性问题

教育学以为:兴趣是学习最好的教师。学生对所学习的课程产生了兴趣,才干愈加认真、愈加投入地吸取课程的学问,更好地发挥思想和智力的潜能,做出发明和创造。正是由于本课程触及内容普遍,学生根底学问程度不平衡,假如不可以采取合理措施,将理论与理论相结合,充沛调动起学生学习的主动性,就更容易形成局部学生对课程丧失兴趣,消极学习。因而,作为专业课程教师,怎样培育学生的学习兴趣,不使学生觉得学习过程无聊、无用而索然无味,是授课教员必需认真考虑的问题。

2 教学变革理论与探究

针对以上问题,我们在教学过程中,从教学体系、教材、课件、教学办法等多方面进行变革探究,以完善教学内容、创新教学办法为动身点,从进步学生兴趣,增强师生互动,解说深化浅出,理论结合实践,融入科研内容等多方面着手,改善教学效果,获得了较好的效果。主要采用了以下手腕后。

2.1 精心规划授课内容,留意衔接,对症下药

该课程许多内容触及到几何光学、物理光学、激光原理等根底课程学问,希望学生可以具有一定的相关根底,在授课时才干产生较好的效果。但是,如前所述,在教学中存在学生根底学问程度不平衡,配套课程不够完善的问题。为处理这一矛盾,在授课体系与授课内容方面,进行了精心的规划,力图合理。

首先,在授课内容方面,注重教材内容的科学组织,在内容的编排上留意学问自身的内在规律性、系统性及互相联络,加强课程各个局部之间的逻辑性,对症下药,从而俭省学时,处理课程容量大与学时有限的矛盾。其次,在讲授必要内容的根底上,留意与前期课程的衔接,但并不完整依赖于前期课程学问的控制,而是注重启示、引导学生自主的温习、控制、扩展原有学问,例如经过布置考虑标题、提供参考文献、课上讨论等方式,协助和鼓舞学生经过主动学习,来处理根底学问程度不平衡的问题。同时,在授课中并不简单的依照教材施教,而是及时结合科研项目,充沛应用与课程有关的最新研讨成果,补充身手域的前沿技术。 经过合理的规划授课内容,并在授课过程中,留意衔接,对症下药,鼓励学生课下主动学习的方式,进步了教学质量。

2.2 理论结合实践,重在才能培育

本课程除了具有学问的系统性、理论性强的特性外,更重要的特性是应用性强。在工程设计中,需求灵敏地运用学过的理论学问,用理论指导理论,才干使设计朝着胜利的方向行进。当设计过程呈现问题时,怎样应用理论学问和理论经历,来有效地进行修正,最终得到满足运用请求的系统设计,这种处理工程问题的才能的进步,是本课程最中心要处理的问题。

为此,我们在根底理论讲授后,经过抛出一个或几个实践工程设计问题,引导学生进行深化考虑与讨论,完成自主设计。例如在学习了像差理论及典型显微光学系统后,请求学生设计一款高倍率显微系统,针对该系统设计过程中发作的各种问题,包括怎样从低倍率系统逐渐过渡到高倍率系统,怎样完成复消色差,以及工程实践中如何完成系统装调等等问题,逐个进行讨论和剖析,经过引导学生发现问题,鼓舞学生自主剖析处理问题,进步学生的理论才能。

这样的理论与实践相结合的过程,深受学生好评,学生们分歧以为,经过这样的练习,不但加深了对理论学问的了解,更大大进步了他们发现和处理工程问题的才能。

2.3 创新授课办法,刺激学生主动学习

由于授课内容的更新以及理论与实践相结合的请求,教员在授课办法上也必需进行相应的创新,才干够到达预期的效果。学生是课堂教学的主体,只要激起学生求知的动力,课堂教学才有可能胜利。除了传统的讲授方式外,在本课程的授课过程中,愈加注重启示式教学和讨论式教学。启示式教学办法,是指经过具有启示式的发问,鼓励学生学习的兴趣,从而培育学生的发明性思想才能。讨论式教学办法,是指经过讨论问题,积极引导学生进行独立考虑,培育学生的自主学习才能。

在详细做法上,除了采用布置考虑标题,引荐参考文献的方式外,还经过将学生分为协作小组,针对某一任务进行组内协作,然后组织各小组就各自研讨成果在全班进行交流,鼓舞学生之间就技术问题进行讨论、质疑与争辩,加深了解。

经过启示式与讨论式教学办法的引入,加强了师生互动,进步了学生的学习兴趣,刺激学生主动学习的愿望。

3 结语

在“光学工程与系统设计”的教学中,针对存在的问题,从规划授课内容、理论结合实践以及创新授课办法等等方面进行了教学变革的理论与探究。经过合理地规划授课内容,理论与实践相结合,以及引入启示式和讨论式的教学办法,注重对学生发现和处理工程问题的才能的培育,刺激学生学习的主动性与积极性,进步了教学质量,收到了良好的效果。

第三篇:《工程光学课程设计》课程简介

一、课程基本信息

课程代码:0807908007

课程名称:工程光学课程设计

英文名称:Course Project of Engineering Optics

学分:1总 学 时:1周

讲课学时:实验学时: 1周上机学时: 0课外学时: 0

适用对象:光电信息科学与工程专业学生

先修课程:大学物理、高等数学 、工程光学

开课单位:通信工程学院

二、课程内容与教学目标

本课程是学完《工程光学》课程之后,让学生综合运用工程光学知识,进行光学系统的设计,以加深对工程光学基本知识的理解,对教材内容有一个系统的全面的认识。在课程实验的基础上,进一步提高综合应用知识、分析解决问题的能力,达到将理论知识和实践初步结合的目的。

三、对教学方式、实践环节、学生自主学习的基本要求

1、学习对基本的光学元件的特性和功能进行测试;

2、初步掌握简单组合光学系统的设计;

3、撰写规范的设计总结报告,培养严谨的作风和科学的态度。

四、考核方式与学习成绩评定(请注明平时成绩、考试成绩、实验成绩等各部分占比)

1、考核方式:根据考勤、设计、答辩验收、报告撰写情况综合评分

2、成绩评定:书面设计和设计总结报告的综合成绩25%;完成设计、完整的结果数据60%;创新能力 5%;态度和纪律10%

最终成绩分优秀、良好、中等、及格和不及格五档。

第四篇:光学实例与高中物理教学

摘 要:知识来源于生活,学生在生活中学习,能够有效提高学生的学习兴趣、学习效率以及解决问题的能力,实现学生学以致用的目的。对于提高学生的科学探究能力、学习自觉性、主动性有重要作用。教师可以从高中物理教学中的光学问题出发,研究和探讨学生如何运用生活中的光学实例理解和掌握物理光学知识,提高学习效率。

关键词:光学;物理教学;自主探究

中图分类号:G63 文献标识码:A 文章编号:1673-9132(2017)34-0107-02

DOI:10.16657/j.cnki.issn1673-9132.2017.34.064

一、高中生的学习习惯和思维特点

高中阶段的学生大致在15-17岁,他们精力无限,个性张扬,但是思维发展还不够完善,思考问题还不够全面,对于自己的行?椴荒芄缓芎玫脑际?,对于学习不能够全面投入,因此,对于这个阶段的学生,教师还需要注意引导他们学习的兴趣,促进他们学习能力的发展和思维的发展。就思维方式来说,这个阶段学生正处于形象思维向抽象思维发展的阶段,抽象思维还不是很完善,因此教师在教学中应该根据这一特点,注重运用学生形象思维、有效促进学生抽象思维发展。在物理学教学中,物理实验的观察和教学对于学生的学习有很大的帮助作用,而能够运用于物理实验的生活实例,又能够很好地提高学生的学习兴趣,有助于提高学生在生活中注意观察和思考的习惯。因此教师要在教学中充分利用生活现象,大量引用生活实例对学生进行教育教学,促进学生主动探究相关知识,将灌输与兴趣激发结合起来,达到最优的教学效果。

二、运用生活实例进行物理教学的基本原则

(一)科学原则

物理学是科学科目,在教学实践中,不管采用何种方法,举何种实例,必须要符合科学,同时要用科学的态度去对待所讲述的内容或者举到的实例。同时,教师在传授时无论是理论介绍还是实例说明,这种教授的方式方法必须科学,也就是尽可能让学生产生兴趣,激发学生的学习欲望,提高学习效率。教师教学过程中的科学态度也是能够影响和教育学生的具体内容,它能够帮助学生形成务实、求真的科学态度,掌握严谨、细致的科学方法,帮助他们在学习和生活中找到符合科学标准的结论。

(二)真实原则

科学性原则决定了教师在教学中运用生活实例进行教学必须坚守真实性原则,科学性原则要求在教学中采用科学的实例,运用科学的方法得出科学的结论。科学必须是严谨的,这就决定了在物理教学中,教师不能为了活跃气氛或者说明什么道理,幻想一些“完美的”科学“实例”,而是要采用一些真实的生活实例进行教学,因为“真实”是“科学”的第一要素,在不真实的素材中获得的科学结论是不可靠的,同时,只有采用来源于生活的真实实例才能真正促进学习提高学习兴趣,帮助他们在生活中观察、思考和学习,才能使学生观察生活实例的时候找到问题,探究问题,解决问题,提高自己的学习能力,提高学习主动性。

(三)有序原则

教学中要坚持从实际情况出发,按照学生的认识能力和认识水平采取循序渐进的原则,知识讲解要由浅入深,由易到难,在物理学教学中,更是要让学生在科学的安排下进行,不能让学生对知识的认知没有层次,没有台阶。有序的课堂教学和课后练习安排,更有助于学生认识所学的内容、知识。在光学知识的讲解中,学生不仅要熟悉多彩的光学实验,更加要有序安排学习过程,掌握科学、有序的学习方法。

(四)完整原则

知识的学习必须全面,在物理学教学中,学生要全面、系统地掌握知识。教师在运用光学实例进行物理教学时,要避免出现碎片化认知,合理安排、科学实施,让学生在全面掌握知识的基础上深入思考和认识所见到的光学现象,从现象看本质,从某一现象来思考和复习所有有关的物理知识,确保知识系统的完整性。

三、将光学实例运用于物理教学,促进物理教学效率提高

心理研究表明,高中学生的思维模式属于简单唯物主义阶段,教师可以充分利用这一特点,从学生的生活实际中选择一些学生熟悉的实例,例如照相机成像的原理,闪电现象的形成,潜望镜的特点及其功能实现原理等问题,这些问题的提出和思考,可以让学生的好奇心和求知欲得到很大的刺激。教师在上课时,应根据学生的反应进行发挥,让学生自己解释所看到的现象,或者讨论现象背后的物理学原理,同时教师应该鼓励学生自己举出一些与所讲知识有关的光学实例并作出理论解释,提高学生举一反三的能力,让学生能够掌握通过生活实例进一步思考和更加清晰的掌握光学知识的目的,让学生在学习中把条目化、抽象化的物理理论知识与生活趣事儿联系起来,这样学生就能够提高对于物理学知识的兴趣,学生的学习动机和学习效率都会有很大的提高,这就保证了学生学习的动力,提高了学生学习的能力。下面举一些光学实例运用与物理教学的具体事例。

(一)光波的长短变化与吸收现象

所有的学生都能够看到交通灯,知道交通灯在雨雾天气也能看的较为清楚,这又是怎么实现的呢?在物理学教学中,学生学习到了红光的光波最长,这一特点导致红光最容易发生衍射,因此,哪怕是在雨雾天气,所有交通参与者都能够很好的看清交通红灯,学生就能够理解交通灯正是利用了红光的光程远,不容易被散射的道理,有效防止了交通参与者因看不清交通指示灯而发生交通事故的可能。

(二)光的折射现象

不仅夏日雨后会出现彩虹,其实出现彩虹的还有洒水车的后面,学生都注意到了彩虹的出现与空气中的水雾有关,其实彩虹之所以是平滑的曲线,与我们的眼睛视力范围有关,那么由里到外或者由外到里的不同颜色又是怎么出现的呢?其实这就是折射造成的,太阳光是一种复合光,由不同颜色的光组成,但是当这些光发生折射的时候,由于光的波长不同所以他们对同一介质的折射率不同,导致折射后的光发生色散现象,因此太阳光便会被分解成红橙黄绿蓝锭紫的不同颜色。

另外,光的镜面反射、漫反射、光的干涉与衍射现象,光谱效应等都能够在生活中找到很有趣的实例,这些实例能够很好地提高学生对于光学知识的兴趣,也大大提高了学生自主学习的能力和运用知识解决实际问题的能力。

总之,生活是最好的老师,只要我们留意,处处都是知识。培养学生观察和分析的能力,有效提高学生对于物理知识的兴趣,是每一个物理老师不可错过的教学方式。

参考文献:

[1] 王化银,张东雨.几例有趣光学现象的定量分析[J].科教文汇,2013(8):149-150.

[2] 王文麒,乐永康.光盘结构及实验中的光学现象[J].物理实验,2013(4):44-47.

[ 责任编辑 胡雅君]

第五篇:《信息系统分析与设计课程设计》教学大纲

一、课程名称:信息系统分析与设计课程设计

课程代码:030557

二、课程类别(基础、专业基础、专业):专业课

三、设计周数:2周

四、大纲说明

(一)适用专业:信息管理与信息系统专业

(二)主要先修课程和后续课程

1、先修课程:管理信息系统、数据库系统及应用

2、后续课程:

五、课程设计目的及基本要求

围绕着信息系统开发的整个过程,结合现实开发需求,深入理解生命周期法、原型法、CASE方法、面向对象方法的基本概念,扩大学生的知识面和提高未来应对不同类型信息系统开发的能力。

六、课程设计内容及安排

1、选定调查、可行性研究,设计目标,进行信息系统规划;

2、进行用户需求分析;

3、总体设计、详细设计

4、系统实施、测试、试运行。

课程设计安排两周完成,包括具体布置课题,上机指导。

七、指导方式

集中指导与分散指导结合。 (1)集中指导

第1天:布置任务、说明题意和要求; 第7天:中期检查和指导; 第

10、11天:集中讨论。 (2)分散指导

安排学生5天在计算机房编程和调试,教师随时解答学生设计中的问题。

八、课程设计对图纸、编程、设计说明书等具体量化要求 报告中应该体现学生的设计思路、设计方法、源代码编程及试运行效果。

九、课程设计考核方法及成绩评定

课程设计的成绩评定以课程设计平时表现、设计题目完成情况和设计报告为依据综合评分,评分各占30%、30%、40%。从总体来说,所设计的程序应该全部符合要求,系统可以进行试运行,设计报告要符合规范。

十、课程设计教材及主要参考资料

[1] [美]Gary B.Shelly Thomas J.Cashman Harry J.Rosenblatt著,李芳,朱群雄,陈轶群等译.系统分析与设计教程.机械工业出版社.2004. 主要参考书:

[2] [美]Daniel R.Windle L.Rene Abreo著,韩柯等译.使用统一过程的软件需求.电子工业出版社.2003 [3] Jeffrey L. Whitten, Lonnie D. Bentley, Kevin C. Dittman著.肖刚,孙慧等译.系统分析与设计方法.机械工业出版社.2003. [4] [美]杰拉尔德温伯格著,张佐, 万起光, 董菁.系统化思维导论.清华大学出版社.2003. 十

一、其他

上一篇:关于茶产业发展讲话稿下一篇:关于爱情的朦胧现代诗