汽车文化授课电子教案

2023-01-30

在教学工作者开展教学活动前,总归要编写教案,借助教案可以提高教学质量,收到预期的教学效果。那要怎么写好教案呢?以下是小编为大家整理的《汽车文化授课电子教案》,欢迎大家借鉴与参考,希望对大家有所帮助!

第一篇:汽车文化授课电子教案

第一章 电子商务概述(授课教案)

第一章 电子商务概述(授课教案) 【教学目标与要求】

①了解电子商务的发展现状及发展趋势; ②掌握电子商务的概念; ③掌握电子商务的特点; ④掌握电子商务的分类。 【教学重点与难点】

①电子商务概念广义与狭义的理解; ②电子商务的分类。 【教学授课学时数】 4学时 【教学过程】 引言

一、扩大知识面,培养独立思考问题的能力

二、推荐书、刊、报、网站

三、电子商务的课程体系(框架)

1、两个环境:技术环境和法规环境

2、四个运用:网上贸易、网络营销、电子支付、企业信息化建设 第一章 绪论

一、什么是电子商务

1、概念:用电子工具从事商务活动。

2、构成要素:

(1)电子工具:工具,手段;-广义与狭义 (2)商务活动:目的,任务;-广义与狭义

3、本质

4、特点: (1)高效率 (2)低成本 (3)个性化 (4)交互性

二、电子商务的分类

1、按交易主体:B2B;B2C;C2C;

2、按交易对象:直接和间接电子商务;完全和不完全电子商务

3、使用网络的类型:EDI;INTERNET;INTRANET

三、现状与前景

1、发展

(1)基于EDI的电子商务(20世纪60年代—90年代);

(2)基于INTERNET的电子商务(20世纪90年代以来),电子商务的勃兴在这一时期。

2、现状

3、前景

四、学科性质

1、学科性质:一门新兴的综合性、应用性边缘学科。

2、涉及到的学科:管理科学、计算机科学、信息技术、金融等经济学

五、电子商务与经济全球化*

1、

势不可挡的经济全球化

2、

经济全球化与电子商务

3、我国的对策

六、关于我市电子商务发展的几点思考* 1、引言

2、电子商务在我市的发展现状 3、我市发展电子商务必须解决的问题

【思考题】

1、什么是电子商务?

2、电子商务按照不同的依据是如何进行分类的?

3、谈一下你对电子商务发展前景的看法。

4、请举几个你身边电子商务应用的例子。

第二篇:初三传统文化新授课教案

授课内容:

《论语·季氏》(四则之

1、2则) 执教人: 胡 江 杰 教学目标:

1.聆听圣贤关于做人处事的语重心长的教诲,明确交益友与损友的利害关系。

2.明确何谓有益的乐趣,何谓有害的乐趣。

3.结合时代的需要,培养学生道德素质,完善学生个性和人格。 教学重点: 明确交益友与损友的利害关系 教学难点: 明确何谓有益的乐趣,何谓有害的乐趣 教学方法: 采用耐心疏导、情感感染、交流研讨、实践锻炼等生动多样的教学方法

教学准备: 投 影 仪 入境生趣

好的孩子们在一起,攀比的不是梳妆打扮,吃喝玩乐,而是成绩,大家暗中较劲,你追我赶,看了就叫人舒心。且不要说恶友,即使交上一个不对路的朋友,麻烦也就接踵而至。初中的孩子,世界观尚未形成,这种年龄的孩子尤其有逆反心理,自以为自己什么都懂了,父母的话很难听进去。在这种情况下,不同家庭环境、生活习惯,不同审美观点、生活情趣,不同处世原则,不同学习态度的朋友,便会对孩子产生很大的影响。自古以来,人们一直重视交友,就是传统的文化也非常重视交友的重要。俗话说:“鱼有鱼伙,虾有虾伴。”“人以类聚,物以群分。”就是正统的儒家思想也十分重视交友的选择。孟母三迁接芳邻,是重视孩子耳濡目染的教育典故,“近朱者赤,近墨者黑。”是理学思想的重要内容。 朗读选文,自学生疑

1、孔子曰:“益者三友,损者三友①。友直,友谅②,友多闻,益矣。友便辟③,友善柔④,友便佞⑤,损矣。”

【注释】 ①损:损害。②谅:信实。③便辟:阿谀奉承。④善二次备课 柔:当面恭维,背后诽谤。⑤便佞:花言巧语。

2、孔子曰:“益者三乐,损者三乐。乐节礼乐,乐道人之善,乐多贤友,益矣。乐骄乐,乐佚游,乐晏乐,损矣。”

【注释】节礼乐:孔子主张用礼乐来节制人。骄乐:骄纵不知节制的乐。佚:同“逸”。晏乐:沉溺于宴饮取乐。 理解文意,学习释疑

1、孔子说:“有三种有益的朋友,有三种有害的朋友。同正直的人交朋友,同诚实的人交朋友,同见多识广的人交朋友们,这是有益的。同阿谀奉承的人交朋友,同当面恭维,背后诽谤的人交朋友,同花言巧语的人交朋友,这是有害的。”

2、 孔子说:“有益的喜好有三种,有害的喜好有三种。以礼乐调节自己为喜好,以称道别人的好处为喜好,以有许多贤德之友为喜好,这是有益的。喜好骄傲,喜欢闲游,喜欢大吃大喝,这就是有害的。” 师生交流,点难拨疑

1、人生不可无友,交友是很有必要的,我们该交怎样的朋友呢? “有朋自远方来,不亦乐乎!”交友问学的快乐。“主忠信,无友不如己者。”不能与忠信不好的人交朋友。交友的快乐,择友的慎重,孔子都已反复告诫。本章又告诫我们“益者三友,损者三友”,有益的朋友有三种,有害的朋友有三种。正直的朋友,帮助你成就仁德,直者能正言直谏,“以友辅仁”,谅,诚信。诚信的朋友是你的依靠,谅者能忠信不欺,“信则人任焉”。见闻广博的朋友,讨论学问帮助你获取知识和智慧,多闻者能识政治之要,“以文会友”。朱熹说:“友直则闻其过,友谅则进于诚,友多闻则进于明。”“便辟”,便,偏也;辟,偏也。偏爱,偏嗜,偏好,凡事偏颇,不公正,不正直,不能修身者。《大学》说:“所谓齐其家在修其身:人之其所亲爱而辟焉,之其所贱恶而辟焉,之其所畏敬而辟焉,之其所哀矜而辟焉,之其所敖惰而辟焉;故好而知其恶,恶而知其美者,天下鲜矣;故谚有之曰:“人莫知其子之恶,莫知其亩之硕。”因亲爱而偏私,因贱恶而偏恶,因畏敬而偏敬,因同情而偏怜,因傲慢而偏激,一言以蔽之,“便辟”之谓善柔善于柔媚,谄媚,阿谀逢承,巴结讨好,向则不若,前则谩之。“工于媚悦而不谅”。“便佞”,便言,巧言,便佞但能品辩,非有学问,与多闻相反,“习于口语而无闻见之实。”

2、人生须有快乐,人们对于快乐的理解是不一样的,我们应该养成自己的快乐观呢?有一个富翁背着许多金银财宝去寻找快乐。可越过千山万水,也未能寻找到快乐。一位农夫告诉他:“快乐也很简单,放下就是快乐。”富翁顿时开悟:自己背着这么重的珠宝,老怕别人抢,总怕别人暗害,整日忧心忡忡,当然不快乐!于是富翁用钱财接济穷人,慈悲为怀。人生的快乐在于懂得选择与放弃,如果总是抓住一些无谓的东西,只会是负担。只要你心无挂碍,心胸豁达,有一颗理解和宽容的心,什么都看得开,放得下,何愁没有快乐的春莺在啼鸣,何愁没有快乐的泉溪在歌唱,何愁没有快乐的鲜花在绽放。 共同研讨,反思学习

我们应怎样培养“道人之善”的乐趣? “乐道人之善”,喜欢讲人家的好处,优点。这是中国文化特有的一点,也很难做到的,有正反面,

暂时不去讨论它。一般人喜欢批评人家的坏处,是普遍的现象,尤其中国民族性,喜欢对人问长问短,像调查户口一样,太关心人,很多外国来的同学就不习惯,觉得你在妨碍他的自由。

这有一个故事,有个法国学生,我曾经问他,在法国是不是有许多女孩子,被劫持到中东卖作女奴?他说确实有这种事,每年都有很多女孩子被卖到中东去,都是十几岁的女孩子,他们晚上在街上走,后面常会突然跑出一个人,将女孩一掳就抢走了。我问他这情形如被别人看见怎么办,他说:老师这句话问对了,我初到中国来的时候,所不喜欢的事,现在很习惯:中国人在街头讲话多站片刻,就有第三者围拢来打听是什么事,一只死老鼠会有一大堆人围着看,西方人没有这一套,各走各的路,你们两人打架是你们的自由,与别人无关,所以女孩子被抢走,是他们两人的事,别人不知道这两人干什么,根本不管就走了。我再问他:你们的治安人员呢?他说,过去中国有句成语,什么“天下乌鸦„„”。我笑了不接他的下文。

这是真实的事,我们讲到中国人这许多习惯,人与人之间一碰到就谈论别人,这就是乐道人之恶,这就要讲到以前我们必读的两本书,一本是《太上感应篇》,一本是《文昌帝君阴文》,这两本书,中国过去读书人,为了功名,第一要隐恶扬善。朋友有错误,要关起门来劝,在外面总是替人掩盖丑恶的事,这是道德。但是只是过去争取功名的教条,人的习惯并不是这样,而是喜欢道人之恶。所以应该培养道人之善的乐趣。尤其朋友之间,谁无短处?但要多讲别人的长处,宋代的名宰相王曾就能作到。“扬善公庭,规过私室”。是必要的修养。一个成功的人物,在修养上自有他的长处,就是现在数十年来,看到各界成功的朋友,都各有他们的长处。所以这一节提出道人之善,是真正的好处。 引导实践,修养身心 孔子曰:“乐多贤友”,你是否以交了贤明朋友为快乐?读读房龙著的《与世界伟人谈心》,谈谈你是否经常与古往今来的伟人谈心?

第三篇:汽车电子控制装置教案

第一章

汽车电子技术的现状与发展

本章教学要求:

1、了解汽车电子控制技术的发展过程;

2、了解汽车电子控制技术的现状与发展趋势; 教学方法: 讲授法、启发式

一、汽车电子控制技术的发展过程

当前,电子技术在解决汽车所面临的油耗、安全、排放等方面正起着重要作用。

电子控制技术发展过程经历了机械控制、电子电路控制、模拟电路控制和数字电路控制等过程。

从汽车电子化发展进程来看,可分为四个阶段。

第一阶段,1974年前,是汽车电子控制技术发展的初级阶段。汽车上运用电子技术主要是对汽车电器产品进行电子技术改造,以改善部分性能。

如晶体管电压调节器、交流发电机及晶体管点火装置等。

第二阶段,1974-1982年,是汽车电子控制技术迅速发展阶段。在此期间,汽车广泛应用了集成电路和16位以下的微处理器。

第三个阶段,1982-1990年,是位处理器在汽车上应用日趋成熟并向智能化发展阶段。

第四个阶段,从20世纪90年代以后,是汽车电子控制技术向只能化发展的高级阶段。其特征是强调以人-车-环境为主线的系统工程整体优化,主要体现在

第页 共 77 页

智能化上。

随着人工智能技术的飞速发展,将人工智能用于汽车系统控制已成为不争的事实。

二、汽车电子控制技术的现状与发展趋势

目前,国外汽车上应用较多、较为成熟的电子控制装置大致可分为四个方面 : 1.仪表通信

仪表通信类的应用主要有电子钟、电子油耗表、电子温度计、电子车速里程表、电子转速表、旅程计算器、燃料消耗计、电子定时、电子化图示仪表盘、电话及其通信装置、各种报警(灯丝切断,排气温度,水面,液面,未关门,未系安全带等)。

仪表通信类即将采用的新技术主要有大型电子化薄式仪表盘、多路信息传输、光纤通信传输、惯性导航、卫星导航、屏幕显示街道图及交通阻塞状况图、多功能综合屏幕显示等。

2.发动机及传动系

发动机及传动系已经采用的技术主要有交流发电机的整流及集成调节器、电子点火(全晶体管式,集成式,无触点分电器式,一体化点火线圈式)、点火正时控制、废气再循环控制(氧传感器)、燃油喷射电子控制、电子控制化油器、柴油机最佳参数电子控制(喷射,进气,正时等)、发动机最佳参数电子控制(空燃比,点火,废气再循环,怠速,爆燃控制,喷射控制等)、车速自动控制、柴油机启动控制、增压器自动控制、变速器电子控制、离合器电子控制、却系电

第页 共 77 页

子控制、冷启动控制、换挡提示器、发动机停缸控制、车速感应的动力转向装置等。

发动机及传动系即将采用的新技术主要有发动机气缸电子控制、发动机和传动系综合控制、无级变速和自适应速度控制、热电变换、蓄电池容量余值显示、自动巡航系统、电子控制消声器、电子控制动力转向等。

3.安全方面

安全方面已经采用的技术主要有电子防抱制动控制、驱动防滑控制装置、电子主动悬架控制、电子控制四轮转向系统、安全气囊自控装置、刮水器自动控制、速度控制(限速与恒速)、车窗自动控制、轮胎气压报警、防盗报警、防撞车间距报警、未系安全带报警、安全带自动锁紧控制、明暗灯光控制、冲撞记录仪 、前大灯控制、后视镜控制、电子门锁等。

安全方面即将采用的技术主要有路面状态显示、防碰撞自动控制、死角处障碍物报警、安全雷达、制动管路故障应急制动、睡眠检测报警、司机突病时自控、电子操纵紧急制动、酒醉检测安全自控、后视摄像及屏幕显示、声音合成报警系统、故障预警提示系统、倒车测距系统等。

4.舒适性方面

舒适性方面已经采用的技术主要有空调自动控制、座椅自动调整、自动照明、红外线控制车门开关、车窗及车门自动开关(声控)、高级立体音响、无线电调谐自动预选、无钥匙开车、车用电视机及音响等。

舒适性方面将要采用的技术主要有全自动空调(温度、湿度、清洁度、含氧量)系统、道路交通信息指示表、行驶路线最优化选择控制、声控驾驶等。

第页 共 77 页

第二章

汽车发动机电子控制系统

本章教学要求:

1、了解汽车发动机电子控制系统的组成和分类;

2、熟练掌握燃油供给、空气供给工作原理;

3、了解电子控制系统过程;

4、掌握故障诊断系统的应用。 重点:

1.燃油供给、空气供给工作原理; 2.电子控制系统过程。 难点:

1.汽油机的进气和排放控制; 2.电子控制系统过程。 教学方法:

讲授法、讲练结合、启发式

第页 共 77 页

§2-1 汽车发动机电子控制系统的组成与分类

一、 功用

汽车发动机电子控制系统的功用是控制燃油喷射式发动机的空燃比和点火时刻。

二、电控燃油喷射系统的基本组成

电控燃油喷射系统尽管类型不少,品种繁多,但它们都具有相同的控制原则: 即以电控单元(ECU)为控制核心,以空气流量和发动机转速为控制基础,以喷油器、怠速空气调整器等为控制对象,保证获得与发动机各种工况相匹配的最佳混合气成分和点火时刻。

电控燃油喷射系统大致可分为空气供给系统、燃油供给系统和电子控制系统三个部分。

三、电控燃油喷射系统分类

1) 按喷油实现的方式分类 在发动机电子控制系统中,按喷油实现的方式进行分类,可分为机械式、机电混合式和电子控制式三种燃油喷射系统。 (1) 机械式燃油喷射系统

该系统采用连续喷射方式,可分为单点或多点喷射,其喷油量是通过空气计量板直接控制燃油流量调节柱塞来控制的,采用的是机械式计量方式,故由此得名。

(2) 机电混合式燃油喷射系统

其特点是增加了一个电子控制单元(Electric Control Unit,ECU)。ECU可

第页 共 77 页

根据水温、节气门位置等传感器的输入信号来控制电液式压差调节器的动作,以此实现对不同工况下的空燃比进行修正的目的。 (3) 电子控制式燃油喷射系统

电子控制单元通过各种传感器来检测发动机运行参数(包括发动机的进气量、转速、负荷、温度、排气中的氧含量等)的变化,再由ECU根据输入信号和数学模型来确定所需的燃油喷射量,并通过控制喷油器的开启时间来控制喷入气缸内的每循环喷油量,进而达到对气缸内可燃混合气的空燃比进行精确配制的目的。

2) 按喷油器的喷射部位分类 在发动机电子控制系统中,按喷油器的喷射部位进行分类,又可分为缸内喷射和缸外喷射两种形式。 (1) 缸内喷射

它是将喷油器安装于缸盖上直接向缸内喷油,因此需要较高的喷油压力(3到4MPa)。

由于喷油压力较高,故对供油系统的要求较高,成本也相应较高。现在已经不使用了。 (2) 缸外喷射

它是指在进气歧管内喷射或进气门前喷射。在该方式中,喷油器被安装于进气歧管内或进气门附近,故燃油在进气过程中被喷射后与空气混合形成可燃混合气再进入气缸内。

相比而言,由于缸外喷射方式燃油的喷油压力(0.1到0.5MPa)不高,且结构

第页 共 77 页

简单,成本较低,故目前应用较为广泛。

3) 按喷油器数目分类 在发动机燃油喷射控制系统中,按喷油器数目进行分类,又可分为单点喷射和多点喷射两种形式。 (1) 单点喷射

单点喷射系统是把喷油器安装在化油器所在的节气门段,通常用一个喷油器将燃油喷入进气流,形成混合气进入进气歧管,再分配到各个气缸中。 (2) 多点喷射

多点喷射系统是在每缸进气口处装有一只喷油器,由电控单元(ECU)控制顺序地进行分缸单独喷射或分组喷射,燃油直接喷射到各缸的进气门前方,再与空气一起进入气缸形成混合气。

4) 按喷油器的喷射方式分类 在发动机电子控制系统中,按喷油器的喷射方式可分为连续喷射和间歇喷射两种形式。 (1) 连续喷射

在连续喷射系统中,燃油被连续不断地喷入进气歧管内,并在进气管内蒸发后形成可燃混合气,再被吸入气缸内。 (2) 间歇喷射

又称为脉冲喷射或同步喷射。其特点是喷油频率与发动机转速同步,且喷油量只取决于喷油器的开启时间(喷油脉冲宽度)。

5) 按喷油器的喷射时序分类 第页 共 77 页

在发动机电子控制系统中,按喷油器的喷射时序可分为同时喷射、分组喷射和顺序喷射三种形式。 (1) 同时喷射

同时喷射是指发动机在运行期间,各缸喷油器同时开启、同时关闭。 (2) 分组喷射

分组喷射是将喷油器按发动机每工作循环分成若干组交替进行喷射。 (3) 顺序喷射

顺序喷射则是指喷油器按发动机各缸的工作顺序依次进行喷射。

6) 按空气量的检测方式分类 在发动机电子控制系统中,根据空气进气量的检测方式,可分为进气压力感应式和空气流量感应式两种。 (1) 进气压力感应式

进气压力感应式是通过检测进气歧管的压力(真空度)和发动机的转速,推算发动机吸入的空气量,并计算燃油流量的速度。 (2) 空气流量感应式

空气流量感应式又分为空气体积流量式和空气质量流量式。 空气体积流量式

计量进入气缸的空气的体积量,将该量转变成电信号,输送至ECU,ECU计算出与该体积的空气相适应的喷油量,以控制混合气空燃比的最佳值。 空气质量流量式

将进入气缸内空气的质量转换成电信号,输送给 ECU,由 ECU根据空气的质

第页 共 77 页

量计算出与之相适应的喷油量,以控制最佳空燃比。

四、电控燃油喷射系统的基本原理

ECU通过绝对压力传感器或空气流量计的信号计量空气质量,并根据计算出的空气质量与目标空燃比比较即可确定每次燃烧所必需的燃料质量。 根据空气质量和发动机转速计算出的喷油时间称为基本喷油持续时间。 各种传感器检测冷却水温度、进气温度、节气门开度等与发动机工况有关的参数后,对基本喷油持续时间进行修正,确定最佳喷油持续时间,使实际喷油持续时间接近由目标空燃比确定的喷油持续时间。

第页 共 77 页

§2-2 燃油供给系统

一、燃油供给系统的组成与作用

燃油供给系统由电动燃油泵、燃油滤清器、燃油压力调节器、脉动阻尼减振器、喷油总管、喷油器、冷启动喷油器及油管等组成。

燃油供给系统的作用是向发动机及时地供应各种工况下所需要的燃油量。

二、燃油供给系统的工作原理

液力传动装置的基本形式为液力偶合器与液力变矩器。

三、各部件的结构和工作原理 1. 电动燃油泵

电动燃油泵的功能是从油箱中吸入燃油,将油压提高到规定值,然后通过供给系统送到喷油器。

按结构的不同分为滚柱式、涡轮式、齿轮式和侧槽式等。 按安装位置的不同分为内装式和外装式。

内装式电动燃油泵安装在油箱内部,优点是不易产生气阻和泄漏,有利于热油输送,且工作噪声小;

外装式电动燃油泵串联在油箱外部的输油管路中,容易布置,但噪声大,且易产生气泡形成气阻,外装式一般采用滚柱式电动燃油泵。

电动燃油泵主要由永磁式驱动电动机、泵体和外壳三部分组成。 燃油泵中设有一安全阀,燃油泵工作压力升高到400kPa时,安全阀打开,燃油泵出油腔同时与吸油腔相通,燃油在泵内循环,避免供油压力过高。

为了防止发动机停转时,供油压力突然下降而引起燃油倒流,在燃油泵出

第页 共 77 页

油口安装了单向阀。

当发动机熄火时,燃油泵停止转动,单向阀关闭,这样在供油系统中仍有残余压力,有利于发动机再次启动。

2. 汽油滤清器

汽油滤清器的作用是滤除汽油中的杂质,防止污物堵塞喷油器针阀等精密机件。

它装在电动汽油泵之后的输油管路中。它由纸质滤芯再串联一个棉纤维过滤网制成,过滤能力较大,有很好的滤清效果,能滤去直径大于0.01mm的杂质。

其外壳为密封式铁壳,有一定的耐压能力。

在正常使用情况下,这种汽油滤清器的使用寿命较长,汽车每行驶40000km才需更换。

3. 汽油压力调节器

汽油压力调节器的作用是根据进气歧管压力的变化来调节进入喷油器的汽油压力,使两者保持恒定的压力差,压力调节在250kPa到300kPa范围内。

汽油压力调节器一般位于分配油管的一端,由金属壳体组成的内腔分为弹簧室和燃油室,弹簧室内有一根通气管与进气歧管相连,使供油系统中的油压不仅取决于弹簧预紧力,而且取决于进气歧管内的气体压力。

4. 汽油脉动阻尼器

汽油脉动阻尼器的作用是减小汽油管路中的压力波动,并抑制喷油器或汽油压力调节器在开启与关闭过程中产生的压力脉冲噪声。

汽油脉动阻尼器采用膜片与弹簧组成的缓冲装置,膜片将内腔分为空气室

第页 共 77 页

和燃油室,当油压脉动的汽油进入脉动阻尼器时,该脉动压力通过膜片传给弹簧而被吸收,从而起到缓冲作用。

5. 喷油器

喷油器的功能是根据ECU的控制信号向进气歧管、进气总管内喷射定量的雾化汽油。

喷油器按用途和工作条件的需要,有很多种形式,按结构形式分有针轴式、球阀式、片阀式;按驱动方式可分为电压驱动和电流驱动两种形式,按阻值分有高阻值和低阻值两种。

6. 冷启动喷油器

冷启动喷油器安装在进气总管上,其功能是发动机在低温启动时投入工作,以改善发动机的低温启动性能。

第页 共 77 页

§2-3空气供给系统

一、空气供给系统的功用

功用是为发动机可燃混合气的形成提供必要的空气,并测量进入气缸的空气量。

二、空气供给系统的组成

空气供给系统主要由空气滤清器、空气流量计、节气门体、节气门位置传感器、进气总管、进气歧管、温度传感器等组成。

1、空气流量计

空气流量计应设置在空气滤清器和节气门体之间。

常用的空气流量计有翼片式空气流量计、卡门旋涡式空气流量计、热线式空气流量计和热膜式空气流量计4种类型。

(1) 翼片式空气流量计

翼片式空气流量计由翼片部分、电位计部分及接线插头组成。

翼片部分由测量叶片、缓冲叶片组成。测量叶片随空气流量的变化在空气主通道内偏转。

电位计部分主要由平衡配重、滑臂、回位弹簧、调整齿圈和印制电路板等组成。

由于电位计与测量叶片是同轴的,所以当叶片偏转时,电位计滑臂必然转动。

由于转轴一端装有螺旋回位弹簧,当其弹力与吸入空气气流对测量叶片产生的推力平衡时,叶片就会处于某一稳定偏转位置,而电位计滑臂也处于镀膜

第页 共 77 页

电阻的某一对应位置。

电位计滑臂对电源的分压输出即代表此时的空气流量。

把此电压经A/D(模拟/数字)转换后送微机,微机依据空气量的多少,经过运算、处理,确定应该喷射的汽油量,并经执行器控制喷油,从而得到最佳空燃比。

这种空气流量计的结构简单、可靠性高,但进气阻力大,响应较慢且体积较大。

(2) 卡门旋涡式空气流量计

与叶片式空气流量计相比,卡门涡旋式空气流量计具有体积小、质量轻、进气道结构简单、进气阻力小等优点。

所谓卡门旋涡,是指在进气管道中央放置一个锥状涡流发生器,当空气流过时,在涡流发生器后部将会不断产生卡门旋涡的涡流串,测出卡门旋涡的频率便可感知空气流量的大小。

它主要有光电式和超声波式。 ① 光电式卡门旋涡空气流量计

它是利用光电效应原理进行信号检测与转换的。它主要由管路、旋涡发生器、整流栅、导孔、金属箔板弹簧、发光二极管(LED)、光敏晶体管等部分组成。

在产生卡门旋涡的过程中,旋涡发生器两侧的空气压力会发生变化,通过导孔作用在金属箔上,从而使其振动。

发光二极管的光照在振动的金属箔上时,光敏晶体管接收到的金属箔上的反射光是被旋涡调制的光,其输出经解调得到代表空气流量的频率信号。

第页 共 77 页

② 超声波式卡门旋涡空气流量计

该空气流量计中使用了超声波传感器。

所谓超声波,是指频率高于20kHz,人耳听不到的机械波。

在卡门旋涡发生器下游管路两侧相对安装超声波发射探头和接收探头。 因卡门旋涡对空气密度的影响,就会使超声波从发射探头到接收探头的时间较无旋涡变晚,而产生相位差。

对此相位信号进行处理,就可得到旋涡脉冲信号,即代表体积流量的电信号输出。

(3) 热线式空气流量计

热线式空气流量计的基本构成包括:取样管、铂金丝、温度补偿电阻、控制电路及壳体等。

根据安装的部位不同,可分为主流测量方式和旁通测量方式。

主流式热线空气流量计的铂金丝和进气温度传感器都安装在主气道中的取样管内。

旁通式热线空气流量计是将铂金丝绕在陶瓷芯管上,并置于旁通气道内。 当发动机启动后,空气流过铂金丝周围,使其热量散失,温度下降,桥式电路失去平衡,其输出电位差发生变化;

控制电路根据电桥输出电位差的变化调整加热电流,使电桥处于新的稳定状态,并且在电阻上得到代表空气流量的新的电压输出。

2、进气压力传感器

采用速度-密度方式检测进气量的电控汽油喷射系统,是利用进气歧管压力

第页 共 77 页

传感器来间接地测量发动机吸入空气量的。

3、节气门位置传感器

节气门位置传感器安装在节气门体上,它将节气门开度转换成电压信号输出,以便ECU控制喷油量。

节气门位置传感器有开关式和滑动电阻式等类型。 (1) 开关式节气门位置传感器

这种节气门位置传感器结构比较简单,价格低廉,但其输出是非连续的,检测性差。

(2) 滑动电阻式节气门位置传感器

电位器的动触点(即节气门开度输出触点)随节气门开度在电阻膜上滑动,从而在该触点上得到与节气门开度成比例的线性电压输出。

第页 共 77 页

§2-4 电子控制系统

一、电控单元(ECU) 接收传感器或其他装置输入的信息,存储、计算、分析处理信息;输出执行命令;ECU不仅用来控制燃油喷射系统,同时还具有点火提前角控制、怠速控制、排放控制、进气控制、增压控制、自诊断、失效保护和备用控制系统等多项控制功能。

ECU主要由输入回路、A/D转换器、微处理器和输出回路和总线等组成。

修正用 传感器 曲轴位置传感器 水温传感器 氧传感器 爆燃传感器 节气门位置传感器 其他传感器 ECU 基本测量用 用于检测空气量 传感器 用于检测发动机转速 电磁喷油器 电子点火 怠速控制 废气再循环 其他控制

电子控制系统 (1) 输入回路

从传感器输出的信号输入ECU后,首先通过输入回路,其中数字信号直接输入微处理器。

模拟信号则由A/D转换器转换成数字信号之后再输入微处理器。 (2) A/D转换器

由传感器输入的模拟信号,微处理器不能直接处理,要用A/D转换器将模拟信号转换成数字信号,再输入微处理器。

第页 共 77 页

(3)微处理器

微处理器的功能是根据发动机工作的需要,把各种传感器送来的信号用内存的程序(微机处理的程序)和数据进行运算处理,并把处理结果如燃油喷射控制信号、点火控制信号等送往输出回路。

二、传感器

1、发动机转速和曲轴位置传感器

空气流量计检测的是单位时间内的空气流量,为确定每次循环符合最佳空燃比,应求得每次循环吸入的空气量。

即在已知单位时间空气流量的基础上,应检测发动机转速。

为选取合适的喷油时刻和点火时刻,还需检测每缸曲轴转角的位置,故设发动机转速与曲轴位置传感器。

发动机转速与曲轴位置传感器有多种形式,常用的有磁感应式、光电式、霍尔等。

(1) 磁感应式

传感器由转子和线圈组成。转子固定在分电器轴上,线圈固定在分电器壳体上。

永久磁铁的磁力线经转子、线圈、托架构成封闭回路,转子旋转时,由于转子凸起与托架间的磁隙不断发生变化,通过线圈的磁通也不断变化,线圈中便产生感应电压,并以交流形式输出。

(2) 霍尔式传感器

触发叶轮的叶片数等于发动机缸数,叶轮由分电器轴带动旋转,叶片不断地

第页 共 77 页

进出磁场的空气隙。

叶轮以其缺口对着空气隙时,磁铁产生的磁通经导板、空气隙到半导体基片构成回路,这时传感器输出霍尔电压。

当叶轮的叶片进入空气隙时,原磁路被叶片旁通。此时,传感器无霍尔电压输出。

(3) 光电式传感器

光电式传感器主要由发光二极管、光敏二极管、信号盘和控制电路组成。 发光二极管、光敏二极管和控制电路都装在固定底板座上,发光二极管与光敏二极管位置相对,分别位于信号盘的两侧。

当信号盘挡住发光二极管的光线时,光敏二极管截止,控制电路输出低电压。 当缝隙对准发光二极管与光敏二极管时,光线照射到光敏二极管上,控制电路输出高电平。

2、氧传感器

氧传感器安装在排气管内。由于排气中的氧浓度可以反映空燃比的大小,所以在电子控制汽油喷射系统中广泛使用氧传感器。

氧传感器随时将检测的氧浓度反馈给电控装置,电控装置据此判断空燃比是否偏离理论值,一旦偏离,就调节喷油量,以控制空燃比收敛于理论值。

(1) 二氧化钛(TiO2)氧传感器

这种氧传感器是一种体电阻型气敏传感器。

它是利用化学反应强、对氧气敏感、易于还原的氧化物半导体材料二氧化钛在与氧气接触时产生氧化还原反应,使晶格结构发生变化,从而导致电阻值发

第页 共 77 页

生变化的原理工作的。

它的工作过程是:当排气中氧含量较高时,二氧化钛的阻值增大;反之,当排气中氧含量较低时,二氧化钛的阻值减小。

(2) 二氧化锆(ZrO2)氧传感器

二氧化锆氧传感器的基本元件是专用陶瓷体,即二氧化锆固体电解质管。 当锆管接触氧气时,氧气透过多孔铂膜电极,吸附于二氧化锆,并经电子交换成为负离子。

由于锆管内表面通大气,外表面通排气,其内外表面的氧气分压不同,则负氧离子浓度也不同,从而形成负氧离子由高浓度侧向低浓度侧的扩散。

当扩散处于平衡状态时,两电极间便形成电动势,所以二氧化锆氧传感器的本质是化学电池,亦称氧浓差电池。

3、爆震传感器

爆震传感器的功用是把爆震时传到缸体上的机械振动转化成电压信号,输入ECU作为爆震控制信号。

常用的爆震传感器可分为共振型和非共振型两种。 ① 共振型压电式爆震传感器

选择振荡片的固有频率与被测发动机爆震时的振动频率一致,则当爆震发生时两者共振,压电元件有最大谐振输出。

② 非共振型压电式爆震传感器

非共振型压电式爆震传感器实际是一种加速度传感器。它是以接收加速度信号的形式来检测爆震的,这种传感器与共振型传感器的不同之处在于:它内部

第页 共 77 页

无振荡片,但设置了一个配重块。配重块以一定预应力压紧在压电片上。

当发动机产生爆震时,配重块就以一正比于加速度的交变力施加在压电片上,从而产生输出信号。

三、开关信号 (1) 启动信号(STA) 此信号用来判断发动机是否处在启动状态,启动时,由于进气管内混合气流速慢、温度低,因此汽油的雾化、蒸发较差。

为了改善启动性能,在启动发动机时必须加浓混合气。ECU接收到电信号,确认发动机处于启动状态时,将自动增加喷油量。

(2) 空挡启动开关信号(NSW) 在装有自动变速器(A/T)的汽车中,ECU用这个信号区别变速器是处于“P”或“N”(停车或空挡),还是处于“L”、“2”、“D”或“R”挡行驶状态。

NSW信号主要用于怠速系统的控制。 (3) 空调信号(A/C) A/C空调信号用来检测空调压缩机是否工作。

空调压缩机工作时,向微机输送高电平信号,ECU根据A/C信号控制发动机怠速时的点火提前角、怠速转速和断油转速等。

第页 共 77 页

§2-5 燃油喷射控制

一、喷油器的控制和工作原理

燃油喷射式发动机所需的燃油是燃油泵和喷油器供给的。

当发动机工作时,各传感器将信号输入ECU,ECU根据各输入信号的电平状态,经运算判断后输出控制信号,控制三极管导通或截止。

二、喷油正时

喷油正时就是喷油器什么时候开始喷油的问题。

1、多点间歇喷射

多点间歇喷射分同时喷射、分组喷射和顺序喷射三种类型。 ① 同时喷射

所有的喷油器并联连接,ECU根据曲轴位置传感器送入的基准信号,发出喷油器控制信号,控制功率三极管的导通和截止,从而控制各喷油器电磁线圈电路同时接通和切断,使各缸喷油器同时喷油。

通常曲轴每转一周,各缸喷油器同时喷射一次,在发动机的一个工作循环中喷射两次。

由于这种喷射方式是所有各缸喷油器同时喷射,所以喷油正时与发动机进气、压缩、做功、排气的循环没有什么关系。

其缺点是由于各缸对应的喷射时间不可能最佳,有可能造成各缸的混合气形成不一样。

第页 共 77 页

同时喷射正时图 ② 分组喷射

分组喷射一般是把所有气缸的喷油器分成2到4组。

四缸发动机一般把喷油器分成两组,由微机分组控制喷油器,两组喷油器轮流交替喷射。

每一工作循环中,各喷油器均喷射一次或两次。 一般多是发动机每转一周,只有一组喷射。

分组喷射正时图 ③ 顺序喷射

顺序喷射也叫独立喷射。曲轴每转两周,各缸喷油器都轮流喷射一次,且像

第页 共 77 页

点火系统一样,按照特定的顺序依次进行喷射。

顺序喷射方式由于要知道向哪一缸喷射,因此应具备气缸判别信号。 因此当微机根据判缸信号、曲轴位置信号,确定该缸是排气行程且活塞行至上止点前某一喷油位置时,微机输出喷油控制信号,接通喷油器电磁线圈电路,该缸即开始喷射。

顺序喷射可以设立在最佳时间喷油,对混合气的形成十分有利,因此它有利于提高燃油经济性和降低有害物的排放。

顺序喷射正时图

三、喷油量的控制 ① 启动时喷油控制

发动机启动时的基本喷油时间不是根据进气量(或进气压力)和发动机转速计算确定的,而是ECU根据启动信号和当时的冷却水温度,计算出启动时的喷油持续时间。

② 启动后的喷油控制

发动机转速超过预定值时,ECU确定的喷油信号持续时间满足下式: 喷油信号持续时间=基本喷油持续时间×喷油修正系数+电压修正值

第页 共 77 页

式中,喷油修正系数是各种修正系数的总和。 A. 基本喷油量的控制

根据发动机转速信号和进气管压力信号确定喷油量,是以进气量与进气管压力成正比为前提的,这一前提只在理论上成立。

实际工作中,进气脉动使充气效率变化,进行再循环的排气量的波动也影响进气量测量的准确度。 B. 启动后喷油量的修正

在确定基本喷油时间的同时,ECU由各种传感器获得发动机运行工况信息,对基本喷油时间进行修正。 a. 启动后加浓

发动机完成启动后,点火开关由启动(STA)位置转到接通点火(ON)位置,或发动机转速已达到或超过预定值,ECU额外增加喷油量,使发动机保持稳定运行。 喷油量的初始修正值根据冷却水温度确定,然后以一固定速度下降,逐步达到正常。 b. 暖机加浓

冷机时,燃油蒸发性差,为使发动机迅速进入最佳工作状态,必须供给浓混合气。

在冷却水温度低时,ECU根据水温传感器(THW)信号相应增加喷射量。 c. 进气温度修正

通常以20℃为进气温度信号的标准温度,低于20℃时,空气密度大,ECU增加喷油量,使混合气不致过稀;

第页 共 77 页

进气温度高于20℃时,空气密度减小,ECU使喷油量减少,以防混合气太浓。 d. 大负荷加浓

发动机在大负荷工况下运转时,要求使用浓混合气以获得大功率。ECU根据发动机负荷增加喷油量。

发动机负荷状况可以根据节气门开度或进气量的大小确定,故ECU可根据进气压力传感器、空气流量计、节气门位置传感器输送的信号判断发动机负荷状况,决定相应增加的燃油喷射量。

大负荷的加浓量约为正常喷油量的10%到30%。有些发动机的大负荷加浓量还与冷却水温度信号(THW)有关。 e. 过渡工况修正

发动机在过渡工况下运行时(即汽车加速或减速行驶),为获得良好的动力性、经济性、响应性,空燃比应作相应变化,即需要适量调整喷油量。 f. 怠速修正(只用于D型EFI系统) 在D型EFI系统中,决定基本喷油时间的进气管压力,在过渡工况时,相对于发动机转速将产生滞后。

怠速时发动机转速越低,这种滞后时间越长,怠速就越不稳定。

随进气压力增大或转速降低,增加喷油量;随进气压力减少或转速增高,减少喷油量。 g. 断油控制 ① 减速断油

发动机在高速下运行急减速时,节气门完全关闭,为避免混合气过浓、燃料

第页 共 77 页

经济性和排放性能变差,ECU停止喷油。

当发动机转速降到某预定转速之下或节气门重新打开时,喷油器投入工作。 ② 发动机超速断油。

为避免发动机超速运行,发动机转速超过额定转速时,ECU控制喷油器停喷。 电子控制自动变速器用到的信号输入装置有传感器和开关,产生的信号一般有脉冲、模拟、开关3种形态。

速度传感器产生脉冲信号,温度传感器产生模拟信号,选择开关则产生开关信号。

第页 共 77 页

§2-6 点火控制

一、控制点火系统的组成

控制点火系统主要有ECU、传感器、各种控制开关、点火线圈、火花塞和点火执行器组成。

1、传感器

凸轮轴位置传感器是确定曲轴基准位置和点火基准的传感器,它保证ECU控制点火系统正常工作最基本的信号。

空气流量传感器是确定进气量大小的传感器,该信号除用来计算基本喷油量外,还用作负荷信号来计算和读取基本点火提前角。

进气温度传感器信号反映发动机吸入空气的温度,利用该信号对基本点火提前角进行休整;另外利用该信号控制启动和发动机暖机期间的点火提前角。 节气门位置传感器将节气门开度转换成电压信号,以便ECU利用该信号和车速传感器信号来综合判断发动机所处的工况(怠速、中等负荷、大负荷或减速),并对点火提前角进行修正。

爆震传感器用于点火提前角闭环控制系统,利用该信号来判断发动机是否发生爆震,从而对点火提前角进行修正。 各开关信号用于修正点火提前角。

2、ECU ECU是燃油喷射控制系统和点火控制系统的控制核心,存储了该型号发动机在各种工况下的最佳点火提前角,并按预先编制的程序进行计算和判断后,向点火控制器发出最佳点火提前角和点火线圈初级电路导通时间的控制信号。

第页 共 77 页

3、点火控制器

点火控制器是控制点火系统的功率输出级,它接受ECU输出的点火控制信号并进行功率放大,以便驱动点火线圈工作。

二、点火时刻的控制过程

实际点火提前角=初始提前角+基本提前角+修正提前角

起动期间:固定值 起动后

基本点火提前角的控制:由转速和负荷确定

点火提前角的修正:

部分负荷工况根据冷却水温、进气温度和节气门位置等信号修正。

满负荷工况要特别小心控制点火提前角,以免产生爆震。

最大和最小提前角的控制:微处理器计算的点火提前角必须控制在一定范围内,否则发动机很难正常运转。

三、闭合角的控制

闭合角控制电路的作用是:根据发动机转速和蓄电池电压调节闭合角,以保

第页 共 77 页

证足够的点火能量。在发动机转速上升和蓄电池电压下降时,闭合角控制电路使闭合角加大,即延长一次侧电路的通电时间,防止一次侧储能下降,确保点火能量。

点火线圈的次级电压是和初级电路断开时的初级电流成正比。通电时间短时,初级电流小,会使感应的次级电压偏低,容易造成失火。初级电流大,对点火有利;但通电时间过长,会使点火线圈发热,甚至烧坏,还会使能耗增大。因此要控制一个最佳通电时间。

四、发动机爆震的控制

最常见的是利用发动机的爆震信号作为反馈信息,用来控制大负荷等工况下的点火提前角;

爆震传感器将发动机的爆震状况反馈给ECU,一旦爆震程度超过规定的标准,ECU立即发出点火系统推迟点火;当爆震程度低于规定的标准时,ECU又会将点火时刻提前,循环调节点火时刻的结果,使发动机始终处于临界爆震的工作状态。

第页 共 77 页

§2-7 怠速控制

怠速一般是指发动机对外无功率输出时,以最低转速运转。

怠速转速过高,会增加燃油消耗量。因此,怠速转速应尽可能低。但考虑到减少有害物的排放,怠速转速又不能过低。另外,考虑所有怠速使用条件下,如冷车运转与电器负荷、空调装置、自动变速器、动力转向伺服机构的接入等情况,它们都会引起怠速转速的变化,使发动机怠速不稳甚至会引起熄火现象。 怠速时,节气门处于关闭状态,空气通过节气门缝隙及旁通节气门的怠速调节通道进入发动机,由空气流量计(或进气歧管压力传感器)检测该进气量,并根据转速及其它修正信号控制喷油量,使转矩与发动机本身内部阻力矩相平衡,保证发动机在怠速下稳定运转。当发动机的内部阻力矩发生变化时,怠速运转转速将会发生变化。发动机怠速控制装置的功能就是自动维持发动机怠速稳定运转。

一、怠速控制原理

ECU根据从各传感器的输入信号所决定的目标转速与发动机的实际转速进行比较,根据比较得出的差值,确定相当于目标转速的控制量,去驱动控制空气量的执行机构,使怠速转速保持在目标转速附近。

二、节气门直动式控制

节气门直动式怠速控制装置是通过控制节气门开启程度,调节空气流通的面积,达到控制进气量,实现怠速控制的

三、旁通空气式控制

为了控制发动机怠速运转的速度,根据来自发动机ECU的信号,怠速控制阀

第页 共 77 页

增加或减少流过节气门旁通通道的空气量。

§2-8 汽油机进气控制

一、进气惯性增压控制系统

进气惯性增压控制系统,是利用进气流惯性产生的压力波提高进气效率。

二、动力阀控制装置

动力阀控制装置是安装在进气管上,控制进气管空气通道的大小。它可以根据发动机不同负荷来改变进气量,以改善发动机的性能。

小负荷时,真空电磁阀控制动力阀关闭,进气通道变小,发动机输出小功率,来提高燃油经济性;大负荷时,真空电磁阀打开,进气通道变大,发动机输出大功率。

三、废气涡轮增压控制

利用废气排出时的流速,驱动涡轮旋转,涡轮旋转使进气管中的气流增加而增压。

发动机所需要的增压压力目标值大小由ECU根据发动机的运行情况(如加速情况、冷却水温度、爆震状况和进气空气量等)确定。增压压力由进气管压力传感器检测,并作为反馈信号输入ECU,ECU根据其与增压压力目标值的差值,发出不同占空比的脉冲信号(频率为20Hz),控制电磁阀平均开始时间的长短,以调节真空膜盒中的控制压力的大小,控制废气涡轮增压器废气放气阀的开度或可变喷嘴环的角度,从而控制增压器的轮速,产生发动机所需的目标值增压压力。

第页 共 77 页

§2-9 汽油机的排放控制

汽车发动机作为一个大气污染源,应该采取各种有效措施予以治理和改造。现代汽车采取了多种排放控制措施来减少汽车的排气污染,如三元催化转换、废气再循环(EGR)、活性碳罐蒸发控制系统等。

一、废气再循环控制

废气再循环简称为 EGR(Exhaust Gas Recirculation)系统,是目前用于降低NOx排放的一种有效措施。它是将一部分排气引入进气管与新混合气混合后进入气缸燃烧,从而实现再循环,并对送入进气系统的排气进行最佳的控制。 EGR系统净化NOx的基本原理是:排气中的主要成分是CO

2、H2O和N2等,这三种气体的热容量较高。当新混合气和部分排气混合后,热容量也随之增大。在进行相同发热量的燃烧时,与不混合时相比,可使燃烧温度下降,这样就抑制NOx生成,因为NOx 主要是在高温富氧的条件下生成的。

但是过度的废气再循环,使混合气的着火性能和发动机输出功率下降,将会影响发动机的正常运行,特别是在怠速、低转速小负荷及发动机处于冷态运行时,再循环的废气将会明显降低发动机的性能。

因此应根据发动机结构、工况及工作条件的变化自动调整参与再循环的废气量,并选择NOx排放量多的发动机运转范围,进行适量的EGR控制。通常,EGR的控制指标采用EGR率表示,其定义如下

EGR率 =[ EGR气体流量/(吸入空气量+EGR气体流量)]×100%

1、固定EGR率的电子式EGR控制:

在发动机工作时,ECU根据各传感器,如曲轴位置传感器、冷却液温度传感

第页 共 77 页

器、节气门位置传感器、点火开关等送来的信号,确定发动机目前在哪一种工况下工作,以输出指令,控制废气再循环电磁阀打开或关闭,从而控制废气再循环控制阀打开或关闭,使废气再循环进行或停止。

2、可变EGR率的电子式EGR控制:

可变EGR率废气再循环控制的工作原理是:根据发动机台架试验确定的EGR率与发动机转速、进气量的对应关系,将有关数据存入发动机ECU内的ROM中。发动机工作时,ECU根据各种传感器送来的信号,确定发动机在哪一种工况工作,经过查表和计算修正、输出适当的指令,控制电磁阀的开度,以调节废气再循环的EGR率。

3、闭环控制式的EGR控制:

新鲜空气经节气门进入稳压箱,发动机排气中的一部分(还流废气)经控制阀进入稳压箱,稳压箱中设置有EGR率传感器,它对稳压箱中新鲜空气与废气所形成的混合气中的氧气浓度不断地进行检测,并将检测结果输入ECU。ECU经过分析计算后向控制阀输出控制信息,不断地调整EGR率,使废气再循环的 EGR率时刻在ECU的控制下保持在理想状态,从而有效地减少NOx的排放量。

二、三元催化转换控制

该装置装发动机排气管前,把发动机排放废气中的有害气体转化成无毒气体。

三元催化转换器所用的催化剂是铂(或钯)和铑的混合物,催化剂理想工作温度为400~800度。

第页 共 77 页

三元催化转换器只有在理论空燃比14.7附近很窄的范围内工作时,其转换效率才能达到最佳。

三元催化转换器能对排气中的CO、HC、NOx同时进行净化处理。化学反应为: 2NO + 2CO = N2 + 2CO2 2C2H6 + 7O2 = 4CO2 + 6H2O 2CO + O2 = 2CO2

三、活性碳罐蒸发污染控制

为了防止燃油蒸汽直接排向大气而产生污染,同时提高燃油的经济性而采用的装置。

油箱的汽油蒸气通过单向阀进入活性碳罐上部,空气从碳罐下部进入清洗活性碳。在碳罐右上方有一定量排放小孔及受真空控制的排放控制阀,排放控制阀上部的真空度由碳罐控制电磁阀控制,而碳罐控制电磁阀受ECU控制。

第页 共 77 页

§2-10 故障自诊断系统

一、自诊断系统的功能及工作情况

发动机运转过程中,ECU内部的故障自诊断电路随时监测各个传感器和执行器的工作状况,一旦发现传感器或执行器参数异常或功能失效时,系统就会接通仪表盘上的故障指示灯电路。

系统同时将检测到的故障内容以故障码的形式存储在RAM中,以便维修人员读取。

二、故障码的显示

故障码是用数字代表出现故障的系统或故障的大致范围。不同的厂家,故障码有所不同,读取方法也不完全一样。常见的有:

1、脉冲电压显示

1)、电压脉冲宽度相同,十位与个位间有一较短的暂停时间,故障码与故障码之间有一较长的暂停时间。

2)、电压脉冲宽度不同,宽脉冲表示十位,短脉冲表示个位,十位与个位间有一较短的暂停时间,故障码与故障码之间有一较长的暂停时间。

3)、电压脉冲宽度相同,位与位间有一较短的暂停时间,故障码与故障码之间有一较宽的电压脉冲。

第页 共 77 页

4)、脉冲电压不同,5V的电压脉冲表示十位,0V的电压脉冲表示个位,故障码与故障码之间以较长的2.5V电压区分。

2、数字显示

故障码以数字的形式显示在组合仪表的显示屏上。

3、发光二极管显示

发光二极管显示法的二极管一般装在ECU上,根据二极管数量的不同,分个二极管显示式、2个二极管显示式和4个二极管显示式。

1个二极管的与仪表板上的故障指示灯闪烁表示法相同;

2个二极管中,红色的显示十位,绿色的显示个位;

4个二极管则采用

8、

4、

2、1码方式显示;

第页 共 77 页

§2-11 安全保险功能和备用系统

一、安全保险功能

当电控发动机某一传感器、执行器或控制部分出现故障时,如果ECU仍然按原来的方式控制发动机运行,就可能使发动机或其他部件也出现故障。 例如,发动机点火系统出现故障时,ECU仍控制喷油器继续喷油,混合气过浓,未燃烧的混合气进入排气净化装置(三元催化器)后,继续燃烧,使三元催化器温度急剧升高而损坏。

为了避免这种情况的发生,ECU系统一般会启动安全保险功能。 手提电脑的备用电池,电脑的UPS等就是类似的安全保险功能。

二、备用系统

当ECU内的控制系统出现故障时,备用系统立即启动,用固定的信号进行控制。该系统仅仅只能维持基本运行性能,而不能保持正常的运行性能。

1、启动备用系统条件

(1)、当微处理器停止输出点火正时控制信号时。

(2)、当进气歧管压力信号电路出现开路或短路时。

2、备用系统工作状态

当ECU的监视器监测到微处理器出现异常时,先接通故障检查指示灯,提醒驾驶员注意,同时自动转换到备用系统工作状态。

备用系统是个简易的控制系统,主要是根据启动信号和怠速触点状态,选择一固定喷油时间和点火提前角进行控制。由于不是最佳参数,故只能维持基本运行性能,使车辆继续行驶,而不能保持正常的运行性能。

第页 共 77 页

§2-12 柴油机电子控制系统

一、概述

国际上受日益严格的排放法规限制,目前柴油机电子控制技术在国外达到60%--90%。

柴油机电子控系统组成,与汽油机一样仍然有信号输入装置、电控单元ECU、执行器三部分。

柴油机电子控系统的技术特点:一是其关键技术和在柴油喷射电控执行器上;二是柴油电子控制喷射系统的多样化。

二、电控柴油喷射系统分类

电控柴油喷射系统按直接控制的量来分有位置控制和时间控制两类。

位置控制保留了传统的喷油泵、高压油管和喷油器,以及喷油泵中的齿条齿圈、滑套等控制油量的机械传动机构,只是对齿条或滑套的运动位置控制由原来的机械调速器改为微处理器控制;时间控制系统可以保留原来的喷油泵、高压油管和喷油器,也可以用新型的高压燃油系统,用高速电磁阀直接控制高压燃油的喷射。

三、电子控制柴油喷射系统的控制原理

ECU根据各传感器(包括发动机转速、加速踏板位置、齿条位置、喷油时刻、车速及进气压力、进气温度、冷却水温及燃油温度传感器)实时检测到的发动机运行参数,与ECU中预先存储的参数值或图谱相比较,按其最佳值或计算后的目标值把指令输送给执行器。执行器根据ECU的指令,控制喷油量和喷油正

第页 共 77 页

时。

1、喷油量控制

是由ECU控制电动调速器中的控制套筒的位置来实现增减喷油量。ECU根据加速踏板位置和发动机转速传感器送来的信号,首先算出该工况下的基本喷油量;其次,根据进气压力、进气温度、冷却水温传感器、起动机和空调器等信号,对该基本喷油量进行修正;并且还有根据溢流环位置传感器的信号进行反馈修正,以确定最佳喷油量。

2、喷油时刻的控制

ECU按发动机转速和加速踏板的位置确定出基本喷油时刻,然后根据进气压力、冷却水温度、起动信号和正时器活塞位置信号等,对该时刻加以补充修正,最后确定出与各工况相适应的喷油时刻控制信号,并以该信号控制喷油正时控制阀的工作。

3、怠速转速的控制

ECU根据加速踏板位置传感器、车速传感器、起动信号以及发动机转速信号等,决怠速控制何时开始进行;另外还根据水温传感器、空挡开关和空调器等信号,计算出此时的目标怠速转速,并计算出与该转速相适应的喷油量;还根据发动机转速的反馈信号,不断对喷油量进行修正,以确保发动机在目标怠速转速下稳定运转。

4、进气节流控制

是通过ECU控制电磁阀来控制进气节流阀控制怠速进气量,停车时关断进气降低怠速噪声停机振动。

第页 共 77 页

5、预热塞通电控制

通过ECU控制预热塞的通电时间来提高柴油机低温起动和低温怠速运转。

6、废气再循环控制

减少排气中的NOx排放量,与汽油机电控系统相同。

7、涡轮增压

柴油机的转速不易提高,要提高输出功率,必须增大柴油机的转矩,而采用废气涡轮增压是增大功率的一种有效手段。

8、自诊断和安全功能

ECU控制系统具有故障自诊断功能,当系统发生异常时,系统采用指示灯点亮的方式来报警。

柴油机电控系统

第页 共 77 页

第三章

自动变速器

本章教学要求:

1、了解自动变速器的分类和基本结构;

2、熟练掌握自动变速器的电子控制系统;

3、了解电子控制自动变速器的故障诊断;

4、掌握电子控制自动变速器的使用。 重点:

1.电子控制自动变速器的故障诊断; 2.电子控制自动变速器的使用。 难点:

1.自动变速器电子控制系统的工作原理; 2.电子控制自动变速器的使用。 教学方法:

讲授法、讲练结合、启发式

第页 共 77 页

§3-1 自动变速器的分类和基本结构

一、概述:变速器是一种满足汽车在不同工况需要不同转速和扭矩等要求的装置。

自动变速器的采用,使汽车的驾驶变得方便,乘着舒适性大大提高。 轿车自动变速器的装车率,日本高达78%,美国为70%,德国为62%,中国为24%。

1、自动变速器的作用

(1)自动适时地换挡

(2)减轻驾驶员的劳动强度

2、自动变速器的优点

(1) 汽车起步平稳,能吸收、衰减振动与冲击;提高乘坐的舒适性。 (2) 自动适应行驶阻力和发动机工况的变化,实现自动换挡,有利于提高汽车的动力性和平均车速。

(3) 液力变矩器使传动系的动载荷减小,提高了汽车的使用寿命。 (4) 驾驶操纵简单,实现换挡自动化,有利于行车安全。 (5) 能以较低的车速稳定行驶,提高车辆在坏路上的通过性。 (6) 减少了废气污染。

二、分类

自动变速器的驱动方式、挡位数、变速齿轮的结构形式、变矩器的结构类型

第页 共 77 页

及换挡控制形式等都有不同之处。

1、按结构分类:液控液压式自动变速器、机械无级自动变速器和电控液压式自动变速器三种。

2、按汽车驱动方式分类 :前轮驱动自动变速器和后轮驱动自变速器。

以上两种为书上的分类,其实还有很多分类。就象人的分类一样,可以按性别,年龄,身份,高矮,胖瘦,地域,国籍,肤色等。

3、按自动变速器前进挡位数分类 :2挡自动变速器、3挡自动变速器、4挡自动变速器等。

4、按变矩器的类型分类 :普通液力变矩器式、综合液力变矩器式和带闭锁离合器的液力变矩器式自动变速器三种。

5、按齿轮传动机构的类型分类:普通齿轮式和行星齿轮式两种。

6、按控制方式分类:全液压自动变速器和电子控制自动变速器两种。

7、按工作原理分类 :液力自动变速器(AT)、机械自动变速器(AMT)和无级自动变速器(CVT)三种。

三、基本结构

现代汽车自动变速器多由以下几部分组成:液力变矩器、油泵、行星齿轮机构、液压自动换挡控制系统、电控装置、冷却和滤油装置以及变速器油等。

§3-2 液力变矩器

一、液力变矩器的作用

第页 共 77 页

液力变矩器位于自动变速器的最前端,安装在发动机的飞轮上。 它是通过工作轮叶片的相互作用,引起机械能与液体能的相互转换来传递动力,通过液体动量矩的变化来改变转矩的传动元件,具有无级连续改变速度与转矩的能力。

二、液力偶合器的工作原理

液力传动装置的基本形式为液力偶合器与液力变矩器。

液力偶合器的基本构件是具有若干径向平面叶片的、构成工作腔的泵轮和涡轮。

动力传递的原理

如果准备两台电风扇,将它们相对放置,间距几厘米,然后接通其中一台电风扇电源,则另外一台电风扇也会以同样方向旋转。

三、液力变矩器的结构和工作原理

汽车的液力变矩器由泵轮,涡轮和导轮组成。

泵轮为主动件,它与飞轮连接;涡轮为被动件,它与变速器输入轴连接;导轮介于两轮的液流之间,它与变速器的壳体导管连接。

液力变矩器的结构与偶合器的区别是在泵轮与涡轮之间增加了一个固定在单向离合器上的导轮。

§3-3行星齿轮变速系统

一、行星齿轮变速系统的作用和分类

第页 共 77 页

单排行星齿轮

单排行星齿轮机构由太阳齿轮、内齿圈(内齿轮)、行星齿轮架和行星齿轮。 单个行星排是两个自由度机构,单行星排的输入与输出轴可实现减(超)速、等速或反转(倒挡),即两个前进一个倒车的3个排挡。

若一种齿轮固定,另一种齿轮作驱动轮,则剩下的一种齿轮就可以变速转动输出动力。

固定的方法是:内齿轮采用制动器,太阳齿轮采用单向离合器,行星齿轮的固定是指固定行星齿轮支架。 实际行星齿轮变速器中是多个行星排的组合轮系。

行星齿轮机构简图

二、几种典型的行星齿轮变速器

目前自动变速器中的行星齿轮变速器大多为三自由度结构,主要有三类:即辛普森(Simpson)式、拉维娜(Ravigneaux)式及CR—CR式。 1) 辛普森结构

这是以发明者Simpson工程师命名的结构,其结构特点是由两个完全相同齿轮参数的行星排组成,如图所示。

第页 共 77 页

优点是齿轮种类少、加工量少、工艺性好、成本低; 以齿圈输入、输出,强度高,传递功率大; 无功率循环,效率高; 组成的元件转速低,换挡平稳。

辛普森3挡行星齿轮变速器

第页 共 77 页

4挡辛普森结构 2) 拉维娜结构

拉维娜行星齿轮机构是由一个单行星排与一个双星行星排组合而成的复合式行星机构。

拉维娜行星齿轮机构共用一行星架、长行星轮和齿圈,故它只有4个独立元件。

其特点是构成元件少、转速低、结构紧凑、轴向尺寸短、尺寸小、传动比变

第页 共 77 页

化范围大、灵活多变、适合FR式布置。

拉维娜结构 3) CR-CR结构

CR-CR结构是指将2组单行星排的行星架C和齿圈R分别组配的变速器,其特点是变速比大、效率高、元件轴转速低。

第页 共 77 页

§3-4 液压控制系统

一、液压控制系统的功用

液压系统是自动变速器的重要组成部分,为液力变矩器提供传动介质,完成变速器自动换挡控制。

同时,它还保证变速器各部分的润滑,使变速器得到可靠的散热和冷却。 可见,液压系统起到传动、控制、操纵、冷却和润滑等功能。

二、液压系统的组成

自动变速器的液压系统由动力源、执行机构、控制机构、冷却润滑系统等组成。

动力源是被液力变矩器泵轮驱动的油泵,执行机构是指行星齿轮系统的离合器、制动器,控制机构由主油路调压装置、换挡阀和缓冲安全装置及液力变矩器控制装置组成。

第页 共 77 页

第四篇:汽车发动机电控技术 电子教案

第1章 汽车发动机电控技术概述

1.1 概 述

1.1.1 汽车发动机电控技术发展

汽车发动机电控技术的发展始于20世纪60年代,可分为三个阶段:第一阶段,从20世纪60年代中期到70年代末期,主要是为改善部分性能而对汽车电器产品进行技术改造。第二阶段,从20世纪70年代末期到90年代中期。进入20世纪70年代后,随着汽车数量的日益增多,汽车安全问题和排放污染日益严重,能源危机的影响更加突出。第三阶段,从20世纪90年代中期到现在,主要体现在以“人-车-环境”为主线的系统工程整体的优化上。 1.1.2 电控技术对汽车发动机性能的影响

1.提高发动机的动力性。 2.提高发动机的燃油经济性。 3.改善发动机的加速或减速性能。 4.改善发动机的起动性能。 5.降低排放污染。

6.故障发生率大大降低。

1.2 应用在汽车发动机上的电子控制系统

目前应用在汽车发动机上常用的电子控制系统主要有:电控燃油喷射系统、电控点火系统、怠速控制系统、进气控制系统、排放控制系统、增压控制系统、巡航控制系统、警告提示系统、自诊断与报警系统、失效保护系统和应急备用系统。

1.电控燃油喷射系统

主要是根据进气量确定基本的喷油量,再根据其他传感器(如冷却液温度传感器、节气门位置传感器等)信号对喷油量进行修正,使发动机在各种运行工况下均能获得最佳浓度的混合气。

2.电控点火系统 电控点火系统最基本的功能是控制点火提前角。该系统根据各相关传感器信号判断发动机的运行工况和运行条件,选择最理想的点火提前角点燃混合气,改善发动机的燃烧过程。

3.怠速控制系统

根据发动机冷却液温度、空调压缩机是否工作、变速器是否挂入挡位等状况,并通过怠速控制阀对发动机进气量进行控制,使发动机随时以最佳怠速转速运转。 4.进气控制系统 进气控制系统的功能是根据发动机转速和负荷的变化,对发动机的进气进行控制,以提高发动机的充气效率,从而改善发动机的动力性。

5.排放控制系统 排放控制系统的功能主要是对发动机排放控制装置的工作实行电子控制。

6.增压控制系统 增压控制系统的功能是对发动机进气增压装置的工作进行控制。

7.巡航控制系统 巡航控制系统的功用是驾驶员设定巡航控制模式后,ECU根据汽车运行工况和运行环境信息,自动控制发动机工作,使汽车自动维持在一定的车速进行行驶。 8.警告提示系统 由ECU控制各种指示和报警装置,一旦控制系统出现故障,该系统能及时发出信号以警告提示,如氧传感器失效、油箱油温过高等。

9.自诊断与报警系统 在发动机电控系统中,电子控制单元(ECU)都具有自诊断系统,对控制系统各部分的工作情况进行监测。

10.失效保护系统 失效保护系统的功能主要是当传感器或传感器线路发生故障时,控制系统自动按电脑中预先设定的参考信号值工作,以便发动机能继续运转。 11.应急备用系统 应急备用系统的功能是当控制系统电脑发生故障时,自动启用备用系统(备用集成电路),按设定的信号控制发动机转入强制运转状态,以防止车辆停驶在路途中。应急备用系统只能维持发动机运转的基本功能,但不能保证发动机的性能。

1.3 汽车发动机电控系统的基本组成

1.3.1 电控系统的基本组成类型

1.电控系统的基本组成

任何一种电控系统,其主要组成都可分为信号输入装置、电子控制单元(ECU)和执行元件三大部分。信号输入装置是各种传感器。传感器的功用是采集控制系统所需的信号,并将其转换成电信号通过线路传输给ECU。电子控制单元(ECU)是一种综合控制电子装置,其功用是给各传感器提供参考(基准)电压,接收传感器或其他装置输入的信号,并对所接收的信号进行存储、计算和分析处理,根据计算和分析的结果向执行元件发出指令。执行元件是受ECU控制,具体执行某项控制功能的装置。

2.电控系统的类型 电控系统有两种基本类型:即开环控制系统和闭环控制系统。 1.3.2 传感器的类型及功用

汽车发动机集中控制系统所用的传感器主要有: 1.空气流量计(MAFS)

由空气流量计测量发动机的进气量,并将信号输入ECU,作为燃油喷射和点火控制的主控制信号。

2.进气管绝对压力传感器(MAPS)

由进气管绝对压力传感器测量进气管内气体的绝对压力,并将该信号输入ECU,作为燃油和点火控制的主控制信号。 3.节气门位置传感器(TPS) 节气门位置传感器检测节气门的开度及开度变化(如全关(怠速)、全开)以及节气门开闭的速率(单位时间内开闭的角度)信号,此信号输入ECU,用于燃油喷射控制及其他辅助控制(如EGR、开闭环控制等)。 4.凸轮轴位置传感器(CMPS) 凸轮轴位置传感器给ECU提供曲轴转角基准位置信号(G信号),作为供油正时控制和点火正时控制的主控制信号。

5.曲轴位置传感器(CKPS) 曲轴位置传感器有时称为转速传感器,用来检测曲轴转角位移,作为供油正时控制和点火正时控制的主控制信号。

6.进气温度传感器(IATS) 进气温度传感器的功用是给ECU提供进气温度信号,作为燃油喷射控制和点火控制的修正信号。

7.发动机冷却液温度传感器(ECTS) 发动机冷却液温度传感器给ECU提供发动机冷却液温度信号,作为燃油喷射控制和发动机的修正信号。 8.车速传感器(VSS) 车速传感器检测汽车行驶速度,给ECU提供车速信号(SPD信号),用于巡航控制和限速断油控制,也是自动变速器的主控制信号。

9.氧传感器(O2 S) 氧传感器用来检测汽车排气中的氧含量,向ECU输送空燃比的反馈信号,进行喷油量的闭环控制。

10.爆燃传感器(KS) 爆燃传感器用来检测汽油机是否爆燃及爆燃强度,将此信号输入ECU,可作为点火正时控制的修正(反馈)信号。

11.起动开关(STA) 发动机起动时,通过起动开关给ECU提供一个起动信号,作为燃油喷射控制和点火控制的修正信号。

12.空调开关(A/C)又称空调信号 空调信号用来检测空调压缩机是否工作,空调信号与空调压缩机电磁离合器的电源在一起,ECU根据A/C信号控制发动机怠速时点火提前角、怠速转速和断油转速等,作为燃油喷射控制和点火控制的修正信号。

13.挡位开关 自动变速器由P/N(停车或空挡)挡位挂入其他挡位时,发动机负荷将有所增加,挡位开关向ECU输入信号,作为燃油喷射控制和点火控制的修正信号。

14.制动灯开关 在制动时,由制动灯开关向ECU提供制动信号,作为燃油喷射控制和点火控制的修正信号。

15.动力转向开关 采用动力转向装置的汽车,当转向盘由中间位置向左右转动时,由于动力转向油泵工作而使发动机负荷加大,此时动力转向开关向ECU输入信号,作为燃油喷射控制和点火控制的修正信号。

16.巡航(定速)控制开关 当进入巡航控制状态时,由巡航控制开关向ECU输入巡航控制状态信号,由ECU对车速进行自动控制。随着控制系统应用的日益广泛及其功能的扩展,传感器的数量也将不断增加,以满足汽车更高的要求。 1.3.3 电子控制单元的基本功能

发动机控制ECU的功能随车型而异,但都必须有如下基本功能: (1)给传感器提供标准2 V、5 V、9 V或者12 V电压,接收各种传感器和其他装置输入的信息,并将输入的信息转换成微机所能接受的数字信号。(2)储存该车型的特征参数和运算中所需的有关数据信息。(3)确定计算输出指令所需的程序,并根据输入信号和相关程序计算输出指令数值。(4)将输入指令信号和输出指令信号与标准值进行比较,确定并储存故障信息。(5)向执行元件输出指令,或根据指令输出自身已储存的信息(如故障信息等)。(6)自我修正功能(学习功能)。 1.3.4 执行元件的类型

在发动机集中控制系统中,执行元件主要有:喷油器、点火器、怠速控制阀、巡航控制电磁阀、节气门控制电动机、EGR阀、进气控制阀、二次空气喷射阀、活性炭罐排泄电磁阀、油泵继电器、风扇继电器、空调压缩机继电器、自诊断显示与报警装置、仪表显示器等。

第2章 汽油机电控燃油喷射系统

2.1 电控燃油喷射系统概述

2.1.1 燃油喷射系统的基本概念

燃油喷射式是根据直接或间接测量空气的进气量,确定燃烧所需的汽油量并通过控制喷油量开启时间来进行精确配制,使一定量的汽油以一定的压力通过喷油器喷射到发动机的进气道或汽缸内与相应空气形成可燃混合气。

2.1.2 燃油喷射系统的分类 1.按控制装置的控制方式分类

按控制装置的控制方式的不同可分为机械控制式燃油喷射系统(K型)、机电混合控制式燃油喷射系统(K -E型)和电控燃油喷射系统(EFI)三类。 2.按燃油喷射位置分类

按燃油喷射位置不同可分为缸内喷射和缸外喷射。

3.按喷油器安装部位分类

缸外喷射按喷油器安装部位又可分为单点喷射(SPI)和多点喷射(MPI)。

(1)单点喷射是指在进气总管中的节流阀体内设置一只(或两只)喷油器,对各缸实行集中喷射如图2-4(a)所示。(2)多点喷射多点喷射是在每缸进气门前分别设置一喷油器,实行各缸分别供油。多点喷射因其控制精度高而被广泛使用,如图2-4(b)所示。

图2-4 单点喷射和多点喷射示意图

1—燃料;2—空气;3—节气门;4—进气歧管;5—喷油器;6—发动机

4.按燃油喷射方式分类 按燃油喷射方式不同可分为连续喷射和间歇喷射。(1)连续喷射是指在发动机运转期间汽油被连续不断地喷射,其喷油量的大小取决于燃油系统压力的高低。(2)间歇喷射间歇喷射又称脉冲喷射,是指在发动机运转期间汽油被间断地喷射。如图2-5所示。

图2-5 喷油器喷射时序

5.按空气量的计量方式分类 电控燃油喷射系统按对空气量的计量方式不同可分为进气歧管压力计量式(D型)和空气流量计量式(L型)。如图2-6所示为桑塔纳2000GSi型轿车AJR发动机所用的L型电控燃油喷射系统。

图2-6 桑塔纳2000GSi型轿车AJR发动机所用的L型电控燃油喷射系统

1—热线式空气流量计;2—电子控制单元(ECU);3—电动燃油泵;4—节气门控制器;5—怠速电机(与节气门控制单元一体);6—进气温度传感器;7—油压调节器;8—喷油器;9—爆燃传感器;10—汽油滤清器;11—点火线圈;12—氧传感器;13—冷却液温度传感器;14—转速传感器

2.1.3 电控燃油喷射系统的组成及工作原理

电控燃油喷射系统一般由空气供给系统、燃油供给系统和电子控制系统三大部分组成。如图2-7所示为常见电控燃油喷射系统在汽车上的安装情况及零件分配图,如图2-8所示为电控燃油喷射系统的操作原理图。

图2-7 电控燃油喷射系统在汽车上的安装情况及零件分配图

1—喷油器;2—燃油压力调节器;3—辅助空气阀;4—汽油滤清器;5—温度时间开关;6—水温传感器;7—冷起动喷油器;8—空气流量计;9—节气门;10—进气温度传感器;11—节气门位置传感器;12—电控单元;13—降压电阻;14—电动汽油泵;15—汽油缓冲器

图2-8 电控燃油喷射系统的操作原理图

1—油箱;2—汽油滤清器;3—电动汽油泵;4—辅助空气阀;5—汽油缓冲器;6—燃油压力调节器;7—冷起动喷油器;8—水温传感器;9—喷油器;10—温度时间开关;11—节气门位置传感器;12—怠速控制阀;13—空气流量计;14—进气温度传感器;15—旁通空气道调整螺钉;16—空气滤清器;17—电子控制单元;18—点火线圈;19—点火开关;20—EFI继电器;21—电动汽油泵继电器

1.空气供给系统

空气供给系统的功用是根据发动机的工况提供适量的空气,并根据电控单元的指令完成空气量的调节。空气供给系统主要由空气流量计或进气歧管绝对压力传感器、进气温度传感器、节气门位置传感器、进气歧管、辅助空气阀及空气滤清器等组成。 2.燃油供给系统

燃油供给系统是根据电控单元的驱动信号,以恒定的压差将一定数量的汽油喷入进气管。燃油供给系统主要由油箱、电动汽油泵、汽油滤清器、燃油压力调节器、燃油分配管、喷油器等组成。

3.电子控制系统

电子控制系统由电控单元(ECU)、传感器、执行器等组成,它的主要功能是采集发动机的工况信号,计算确定最佳的喷油量、喷油时刻以及点火时刻,还具有故障诊断功能,可保存故障代码,并通过故障指示灯输出故障代码。其基本原理如图2-9所示。

图2-9 电子控制系统基本原理图

2.2 进气系统主要元件的构造与检修

2.2.1 进气系统的组成与类型

根据测量空气流量的方式不同,进气系统可分为质量流量式进气系统(用于L型EFI系统)、速度密度式进气系统(用于D型EFI系统)和节流速度式进气系统三种。 1. 质量流量式进气系统

如图2-10所示为质量流量式进气系统结构图,该进气系统利用空气流量计直接测量吸入的空气量,通常用测得的空气流量与发动机转速的比值作为计算喷油量的标准。

图2-10 质量流量式进气系统结构图

1—空气滤清器;2—空气流量计;3—节气门体;4—节气门; 5—进气总管(稳压箱);6—喷油器;7—进气歧管;8—辅助空气阀

节气门装在节气门体上,控制进入各缸的空气量,在该总成上还装有空气阀。当温度低时空气阀打开,部分附加空气进入进气总管,以提高怠速转速,加快暖机过程(亦称快怠速)。在装有怠速控制阀(ISCV)的发动机上,由ISCV来完成空气阀的作用。 2. 速度密度式进气系统

速度密度式进气系统是利用进气歧管绝对压力传感器测得进气歧管中的绝对压力,然后根据绝对压力值和发动机转速来推算出每一循环发动机吸入的空气量。速度密度式进气系统组成如图2-11所示,它与质量流量式进气系统的主要差别是用进气歧管绝对压力传感器代替了空气流量计。

图2-11 速度密度式进气系统组成

1—进气歧管绝对压力传感器;2—发动机;3—稳压箱;4—节流阀体;5—空气滤清器;6—空气阀;7—喷油器

3.节流速度式进气系统 节流速度式进气系统是利用节气门开度和发动机转速来间接计算进气质量的。

2.2.2 进气系统主要零部件的结构

1.空气滤清器 电控燃油喷射发动机的空气滤清器与一般发动机的空气滤清器相同,在此不再作详细介绍。

2.空气流量计 空气流量计安装在空气滤清器和节气门之间,用来测量进入汽缸内空气量的多少,然后,将进气量信号转换成电气信号输入电控单元,由电控单元计算出喷油量,控制喷油器向节气门室(进气管)喷入与进气量成最佳比例的燃油。

图2-12 叶片式空气流量计的结构图

1—电位计;2—电动汽油泵触点(可动);3—进气温度传感器;4—电动汽油泵固定触点;5—测量板(叶片);6—怠速调整螺钉

(1)叶片式空气流量计

如图2-12所示是叶片式空气流量计的结构图,如图2-13所示是叶片式空气流量计的空气通道,如图2-14所示是叶片式空气流量计的电位计部分结构图。叶片式空气流量计由测量板(叶片)、缓冲板、阻尼室、旁通空气道、怠速调整螺钉、回位弹簧等组成,此外内部还设有电动汽油开关及进气温度传感器等。

图2-13 叶片式空气流量计的空气通道

1—旁通空气道;2—进气温度传感器;3—阀门;4—阻尼室; 5—缓冲板;6—主空气通道;7—测量板(叶片)

图2-14 叶片式空气流量计的电位计部分结构图

1—空气进口;2—电动汽油泵触点;3—平衡块; 4—回位弹簧;5—电位计部分;6—空气出口

叶片式空气流量计的电位计是以电位变化来检测空气量的装置,它与空气流量计测量板同轴安装,能把因测量板开度而产生的滑动电阻变化转换为电压信号,并送给电子控制单元,如图2-15(a)、图2-15(b)所示是电位计与测量板的安装关系及叶片式空气流量计的工作原理图。

图2-15 电位计与测量板的安装关系及叶片式空气流量计的工作原理

1—电位计;2—自空气滤清器来的空气;3—到发动机的空气;4—测量板;5—电位计滑动触头;6—旁通空气道

叶片式空气流量计的电位计内部电路如图2-16所示,电位计检测空气量有电压比与电压值两种方式。

图2-16 电位计内部电路 1—电动汽油泵开关;2—电位计

叶片式空气流量计的电压输出形式有两种,一种是电压值 US 随进气量的增加而降低;另一种则是电压值 US 随进气量的增加而升高,如图2-17所示。

图2-17 叶片式空气流量计的电压输出形式

(2)卡门旋涡式空气流量计

卡门旋涡式空气流量计按照检测方式不同,可以分为反光镜检测方式的卡门旋涡式空气流量计和超声波检测方式的卡门旋涡式空气流量计两种。

如图2-18所示为反光镜检测方式的卡门旋涡式空气流量计结构图及输出脉冲信号波形,这种卡门旋涡式空气流量计是把卡门旋涡发生器两侧的压力变化,通过导压孔引向由薄金属制成的反光镜表面,使反光镜产生振动,反光镜一边振动,一边将发光二极管射来的光反射给光电晶体管,这样旋涡的频率在压力作用下转换成镜面的振动频率,镜面的振动频率通过光电耦合器转换成脉冲信号。

图2-18 反光镜检测方式的卡门旋涡式空气流量计结构图及输出脉冲信号波形

1—反光镜;2—发光二极管;3—钢板弹簧;4—空气流;5—卡门旋涡;6—旋涡发生体 7—压力导向孔;8—光电晶体管;9—进气管路;10—支承板

图2-19 超声波检测方式的卡门旋涡式空气流量计结构图

1—整流栅;2—旋涡发生体;3—旋涡稳定板;4—信号发生器(超声波发射头);5—超声波发生器;6—通往发动机;7—卡门旋涡;8—超声波接收器;9—与旋涡数对应的疏密声波;10—整形放大电路; 11—旁通空气道;12—通往计算机;13—整形成矩形波(脉冲)

如图2-19所示为超声波检测方式的卡门旋涡式空气流量计结构图,这种空气流量计是利用卡门旋涡引起的空气疏密度变化进行测量的,用接收器接收连续发射的超声波信号,因接收到的信号随空气疏密度的变化而变化,由此即可测得旋涡频率,从而测得空气流量。 (3)热线式空气流量计(热膜式空气流量计)

热线式空气流量计有三种形式:一种是把热线和进气温度传感器都放在进气主通路的取样管内,称为主流测量式,其结构如图2-20(a)所示;另一种是把热线缠在绕线管上并把它和进气温度传感器都放在旁通空气道内,称为旁通测量式,其结构如图2-20(b)所示。第三种热线式空气流量计的发热体不是热线而是热膜,其结构如图2-20(c)所示。。 (4)真空度 -转速式(压感式)空气流量计(进气歧管压力传感器)

真空度 -转速式(压感式)空气流量计,从某种角度上讲,它并不是空气流量计,仅是一只进气歧管压力传感器,但由于其功用仍是测量进入发动机汽缸的进气量。

图2-20 热线式空气流量计

1—防回火网;2—取样管;3—白金热线;4—上游温度传感器;5—控制回路;6—插接器;7—热金属线和冷金属线;8—陶瓷螺线管;9—接控制回路;10—进气温度传感器(冷金属线);11—旁通空气道;12—主通气路;13—通往发动机;14—热膜;15—金属网 式和半导体式两种。

如图2-21所示为真空膜盒式进气歧管压力传感器的结构图,该传感器由真空膜盒(两个)、随着膜盒膨胀和收缩可左右移动的铁心、与铁心联动的差动变压器以及在大气压力差作用下可在膜盒工作区间进行功率挡与经济挡转换的膜片构成,传感器被膜片分为左右两个气室。

图2-21 真空膜盒式进气歧管压力传感器的结构图

1—大气压力侧;2—歧管负压侧;3—印刷线路板;4—回位弹簧;5—差动变压器;6—铁心;7—中空膜盒;8—膜片;9—膜盒支点

如图2-22所示为半导体式进气歧管压力传感器的结构图,它由半导体压力转换元件(硅片)与过滤器组成。该传感器的主要元件是一片很薄的硅片,硅片底面粘接了一块硼硅酸玻璃片,使硅膜片中部形成一个真空窗以传感压力,如图2-23(a)所示。硅片中的四个电阻连接成惠斯通电桥形式,如图2-23(b)所示。

图2-22 半导体式进气歧管压力传感器的结构图 1—真空室;2—硅片;3—输出端子;4—过滤器

图2-23 半导体式压力传感器硅膜片的结构及电路

1—硅片;2—硅;3—真空管;4—硼硅酸玻璃片;5—二氧化硅膜;6—应变电阻;7—金属块;8—稳压电源;9—差动放大器 3.节气门体

(1)多点式(MPI)节气门体

节气门体位于空气流量计和发动机之间的进气管上,与驾驶员的加速踏板联动,是使进气通道变化,从而控制发动机运转工况的装置,如图2-24所示为节气门体的外观和结构原理图。节气门体包括控制进气量的节气门通道和怠速运行的旁通空气道,节气门位置传感器也装在节气门轴上,用来检测节气门开度。

图2-24 节气门体的外观和结构原理图

1—怠速调整螺钉;2—旁通通道;3—节气门;4—节气门轴;5—稳压箱(缓冲室);6—加速踏板;7—加速踏板金属丝;8—操纵臂;9—回位弹簧;10—节气门位置传感器;11—辅助空气阀;12—通冷却水管路;13—缓冲器

(2)单点式(SPI)节气门体

SPI式节气门体较MPI式节气门体结构复杂,主要是在SPI式节气门体内还装有集中供油用的主喷油器、压力调节器和节气门位置传感器。主喷油器只有一个,它装在节气门壳体的上部,所喷出的燃油供给发动机各缸使用,如图2-25所示是SPI式节气门体结构图。

图2-25 SPI式节气门体结构图

1—空气阀;2—压力调节器;3—节气门;4—通往油箱;5—自空气滤清器来的空气;6—喷油器;7—来自电动汽油泵;8—调节螺钉;9—通往发动机

4.空气阀

发动机冷起动时,温度低,摩擦阻力大,暖机时间长。空气阀的作用是在发动机低温起动时,可通过空气阀为发动机提供额外的空气(此部分空气也由空气流量计计量),保持发动机怠速稳定运转,使发动机起动后迅速暖车,从而缩短暖车时间。 (1)双金属片调节式空气阀

双金属片调节式空气阀的结构及工作原理如图2-27所示,它由双金属元件、加热线圈和空气阀等组成,旁通空气空道截面积的大小由双金属片控制回转控制阀门来决定。

图2-26 由空气阀构成的空气通道

1—通往发动机的空气;2—进气歧管;3—空气阀; 4—怠速螺钉;5—自空气滤清器来的空气; 6—节气阀;7—缓冲罐(稳压箱)

图2-27 双金属片调节式空气阀的结构及工作原理

1—加热线圈;2—接空气进气歧管;3—阀门; 4—接空气滤清器;5—销;6—双金属片

如图2-28所示是双金属片调节式空气阀的空气量调节范围曲线,当环境温度为 20℃时,发动机起动后3 min~ 6 min,空气阀即可受双金属片推动而关闭。

图2-28 双金属片调节式空气阀的空气量调节范围曲线(环境温度为20℃时)

(2)石蜡调节式空气阀

石蜡调节式空气阀,根据发动机冷却液温度,控制空气通路面积。如图2-29(a)所示是这种一体化结构的总体构成。当发动机处于低温状态时,冷却液温度低,石蜡体积收缩,阀门在外弹簧作用下打开,如图2-29(b)所示,空气流经阀门从旁通空气道进入进气管。发动机暖车后,冷却液温度升高,石蜡体积膨胀变大,推动空气阀克服内弹簧的弹力向左移动,将空气阀关闭,截断空气通道,如图2-29(c)所示。

图2-29 石蜡调节式空气阀的结构与工作原理

1—怠速调整螺钉;2—自空气滤清器来的空气;3—节气门;4—至进气总管;5—感温器;6—阀门;7—冷却水流;8—弹簧;9—空气阀柱塞

5.怠速控制阀

怠速控制阀不仅集中了节气门和由怠速调整螺钉控制的旁通通道的功能,而且还能在ECU控制下,根据发动机实际工况来改变怠速时流入发动机的空气量。 6.真空调节器

真空调节器结构如图2-30(a)所示,当汽车急减速(发动机制动)时,进气管真空度突然增加,真空调节器内的A腔真空度上升,吸起膜片向上抬,将真空调节器控制阀打开,把一部分空气送入进气压力缓冲器内,从而可以抑制进气管真空度剧增,防止发动机瞬时熄火。如图2-30(b)所示是真空调节器的效果曲线图,使用真空调节器后,可以在汽车急减速时,保证进气管真空度曲线平滑过渡,减少进气管真空度的波动幅度,维持发动机转速平

稳。

图2-30 真空调节器的结构与效果曲线图

1—通往进气缓冲器;2—膜片;3—通进气管;4—阀门;5—进气阀;6—A腔; 7—装真空调节器时的进气管真空度曲线;8—无真空调节器时的曲线;9—急减速状态

2.3 燃油供给系统主要元件的构造与检修

燃油系统的框图及系统构成如图2-31所示,它主要由油箱、电动汽油泵、燃油压力调节器、汽油滤清器、喷油器、冷起动喷油器和温度时间开关等构成。

图2-31 燃油系统的框图及系统构成

1—油箱;2—电动汽油泵;3—燃油滤清器;4—喷油总管;5—喷油器;6—冷起动喷油器; 7—接进气歧管;8—燃油压力调节器;9—回油管;10—各缸进气歧管;11—吸入空气

2.3.1 燃油滤清器

燃油滤清器是把含在汽油中的氧化铁、粉尘等固体夹杂物质除去,防止燃油系统堵塞,减小机械磨损,确保发动机稳定运转,提高可靠性。其结构如图2-32(a)所示。滤芯元件一般采用菊花形和盘簧形两种结构,如图2-32(b)所示。盘簧形结构具有单位体积过滤面积大的特点。

图2-32 燃油滤清器

2.3.2 电动汽油泵 电动汽油泵有两种安装方式:一种是在油箱外,安装在输送管路中的外装串联式;另一种是安装在油箱中的内装式。从结构形式分,电动汽油泵有滚柱式、旋涡式和次摆线式三种,其分类情况如下: EFI用电动汽油泵外装串联式——滚柱式内装式滚柱式旋涡式次摆线式目前电动汽油泵一般都安装在汽车的油箱内,如图2-33所示。

图2-33 油箱内安装的电动汽油泵

1—进油滤网;2—电动汽油泵;3—隔振橡胶;4—支架;5—汽油出油管;6—小油箱;7—油箱;8—

回油管

1.外装串联式电动汽油泵

这种电动汽油泵安装在油箱外,它主要由油泵驱动电机和滚柱式油泵组成,如图2-34所示。

图2-34 外装串联式电动汽油泵

1—阻尼稳压器;2—单向阀;3—泵室;4—吸入口;5—安全阀;6—油泵驱动电动机;7—排出

口;8—膜片;9—转子;10—泵套;11—滚柱

2.内装式电动汽油泵

内装式电动汽油泵因其安装在油箱内,所以噪音小,同串联式电动汽油泵相比,它不易

产生气阻和燃油漏泄。

图2 -35 内装旋涡式电动汽油泵

1—出油阀;2—安全阀;3—电刷;4—电枢;5—磁极;6—叶轮; 7—滤网;8—泵盖;9—泵壳;10

—叶片沟槽;11—蜗轮

内装式电动汽油泵具有泵油量大,泵油压力较高(可达 600 kPa以上)、供油压力稳定、运转噪声小、使用寿命长等优点,所以,应用最为广泛。

3.电动汽油泵控制电路

电动汽油泵的控制包括油泵开关控制和油泵转速控制。如图2-36(a)所示为采用内部装有电动汽油泵开关触点的空气流量计电动汽油泵控制电路图。无论是采用卡门旋涡式还是采用热线式空气流量计,都是用如图 2-36(b)所示的ECU的晶体管来控制电动汽油泵的供电情况。

图2-36 电动汽油泵控制电路

(一)

1—蓄电池;2—点火线圈开关;3—主继电器;4—断路继电器;5—空气流量计; 6—电动汽油泵;7—输入回路;8—后备集成电路;9—分电器

控制电路如图2-37(a)所示,ECU根据发动机转速和负荷控制油泵继电器工作,当发动机中小负荷低转速运转时,触点B闭合,油泵电路中串入电阻器5使油泵转速降低;当大负荷高转速时,ECU发出信号切断油泵继电器,A点闭合,使油泵转速升高。

图2-37 电动汽油泵控制电路

(二)

1—点火开关;2—主继电器;3—断路继电器;

4、11—油泵继电器;5—电阻器;6—油泵开关;7—电动汽油泵;8—蓄电池;9—机油压力开关;10—发电机开关

如图2-37(b)所示为带有自动保护功能的电动汽油泵控制电路,该电路能在点火开关处于“断开”位置时,发动机的机油压力为零,或发电机不转动时,电动汽油泵不工作,从而防止汽油喷出而引起火灾。

2.3.3 燃油压力调节器

燃油压力调节器的作用是控制喷油器的喷油压力保持为255 kPa的恒定值,使发动机在各种负荷和转速下,都能精确地进行喷油控制。

图2-38 燃油压力调节器的结构

1—弹簧室;2—弹簧;3—膜片;4—燃油室;5—回油阀;6—壳体;7—真空管接头

燃油压力调节器的结构如图2-38所示,它由金属壳体构成,其内部由膜片分成弹簧室和燃油室两部分,来自输油管路的高压油由入口进入并充满燃油室,推动膜片,打开阀门,在设定压力下和弹簧力平衡,部分燃油经回油管流回油箱,输油管内压力的大小取决于弹簧的压力。

图2-39 燃油压力脉动减振器结构

1—阀门;2—弹簧;3—膜片;4—来自电动汽油泵;5—输送管道

2.3.4 燃油压力脉动减振器

当喷油器喷射燃油时,在输送管道内会产生燃油压力脉动,燃油压力脉动减振器能够使燃油压力脉动衰减,以减弱燃油输送管道中的压力脉动传递,降低噪声。如图2-39所示为燃油压力脉动减振器结构。

2.3.5 喷油器

EFI系统中使用的喷油器是电磁式的,喷油器通过绝缘垫圈安装在进气歧管或进气通道附近的缸盖上,并用输油管将其位置固定,根据ECU提供的喷射信号进行燃油喷射。

1.对喷油器的要求

(1)具有良好的雾化能力和适当的喷雾形状;(2)具有良好的流量特性;(3)具有良好的防积炭功能;(4)使用寿命长;(5)结构简单。

2.喷油器的种类

根据燃油喷射类型不同,喷油器可分为SPI用喷油器(图2-40)和MPI用喷油器(图2-41);按结构形式不同,喷油器可分为从喷油器下部供油方式(图2-40)和从喷油器上部供油方式(图2-41)两种;以喷油器喷口形式来区分,可分为针阀型和孔型两种(图2-41)。

图2-40 喷油器下部供油方式

1—燃油出口;2—燃油入口

图2-41 喷油器上部供油方式

3.喷油器的结构与工作原理

如图2-42所示是喷油器的结构图,在筒状外壳内装有电磁线圈、柱塞、回位弹簧和针阀等。柱塞和针阀装成一体,在回位弹簧压力作用下,针阀紧贴阀座,将喷孔封闭。另外,为防止油中所含杂质影响针阀动作,设有滤清器,为适应不同应用场合,设有调整针阀行程的调整垫片。

图2-42 喷油器的结构图

1—燃油接头;2—电插头;3—电磁线圈;4—衔铁;5—行程;6—阀体;7—壳体;8—针阀;9—凸缘部;10—调整垫片;11—弹簧;12—滤清器

图2-43 喷油器附加电阻

1—喷油器附加电阻;2—喷油器线圈4.喷油器附加电阻

如图2-43所示,在控制喷油器的电磁线圈电路中串联一只附加电阻后,流过电磁线圈的电流受到限制而减少,从而可以提高喷油器电磁线圈的响应特性。附加电阻有如下两种串联方式。如图2-44(a)、图2 -44(b)所示是多缸发动机每缸喷油器都分别串联一只附加电阻。

图2-44 喷油器附加电阻

1—附加电阻;2—喷油器;3—喷射信号

如图2-44(c)、图2 -44(d)所示是共用式附加电阻,对于偶数多缸发动机,首先把汽缸分为两组,然后每一组汽缸喷油器共用一只附加电阻。

5.喷油器的喷雾特性

喷油器所喷燃油的雾化情况和油束形状对发动机工作影响很大,如果油束形状合理,雾化效果好,那么发动机就会获得冷起动性好、怠速平稳、排污少的效果。对于SPI系统,由于喷油器安装在节气门附近,燃油喷出后,在进气管中有较长时间的雾化过程,故所需燃油压力较低;而对于MPI系统,喷油器一般安装在进气管或汽缸盖上,因为是朝向进气门喷射燃油,雾化时间短,为保证良好的雾化,应使油压相应提高。

图2-45 双孔式喷油器的结构图(2TZ-FE型发动机)

1—针阀;2—电线插座;3—电磁线圈

2.3.6 冷起动喷油器

冷起动喷油器是一种装在进气总管中央部位进行燃油辅助喷射的电磁阀式喷油阀,冷起动喷油器的结构如图2-46所示,冷起动喷油器由燃料入口插接器、电线接头、电磁线圈、可动磁芯、旋涡喷油嘴等组成。为了提高向各汽缸分配燃油的均匀性,有的冷起动喷油器上设有两个旋涡式喷油嘴,其结构如图2-48所示,其安装如图2-47(b)所示。

图2-46 冷起动喷油器的结构图

1—旋涡喷油嘴;2—喷射管道;3—阀;4—电磁线圈;5—电线接头;6—燃油入口插接器;7—旋涡喷油嘴构造;8—阀座;9—可动磁芯;10—弹簧

图2-47 冷起动喷油器的安装图

1—冷起动喷油器;2—进气;3—进气总管;4—进气歧管

图2-48 两个旋涡喷油嘴的冷起动喷油器结构图 1—弹簧;2—电磁线圈;3—电线插座;4—柱塞

1.温度时间开关控制

温度时间开关的结构如图2-49(a)所示,它主要由双金属片、加热线圈及搭铁触点等构成。由于其工作工况是由发动机温度和起动电流共同决定的,因此它应装在能反映发动机温度的位置上。当发动机温度较低时,温度时间开关的触点闭合,当点火开关处于“STA”位置时,电流按图2-49(b)中箭头方向流动,使冷起动喷油器喷油。发动机起动后,点火开关转至“ON”位置时,冷起动喷油器停止喷油。在起动过程中,若起动机运转时间过长,有可能使火花塞被淹湿。但由于电流流过加热线圈,使双金属片受热弯曲,触点断开(图2-49(c)),电流不再流经冷起动喷油器,因而可防止火花塞被淹湿。同时,加热线圈②进一步加热双金属片,以免触点再次闭合。。

图2-49 温度时间开关结构图及与冷起动喷油器的工作原理

1—电线接头;2—钉形壳体;3—双金属片;4—加热线圈;5—搭铁触点; 6—蓄电池;7—点火开关;8—线圈①;9—线圈②;10—温度时间开关

2.ECU控制

ECU控制冷起动喷油器的电路如图2-50所示,为了改善发动机冷起动性能,在使用温度时间开关控制的同时,ECU还可以根据冷却液温度对冷起动喷油器的喷油时间进行控制。

图2-50 ECU控制冷起动喷油器的电路图

1—温度时间开关;2—冷起动喷油器;3—水温传感器

2.4 电控系统主要元件的构造与检修

电控系统的功用是接收来自表示发动机工作状态的各个传感器输送来的信号,根据ECU内预存的程序加以比较和修正,决定喷油量和点火提前角。如图2-51所示是与电控燃油喷射控制有关的主要控制系统部件的构成图。

图2-51 与电控燃油喷射控制有关的主要控制系统部件的构成图

1—断路继电器;2—主继电器;3—起动装置;4—电动汽油泵;5—油箱;6—汽油滤清器;7—蓄电池;8—曲轴位置传感器(分电器);9—点火开关;10—点火线圈;11—大气压力传感器;12—空气滤清器;13—进气温度传感器;14—空气流量计;15—冷起动喷油器;16—空气阀;17—节气门位置传感器;18—燃油压力调节器;19—氧传感器;20—温度时间开关;21—冷却液温度传感器

2.4.1 传感器 1.水温传感器

水温传感器安装在发动机节温器出水口附近,它的功用是检测发动机冷却液温度。发动机在运转过程中,混合气浓度需根据发动机温度的高低进行修正,并采用水温传感器向ECU输送温度信号。水温传感器的结构如图2-52(a)所示,它由封闭在金属盒内的对温度变化非常敏感的负温度系数热敏电阻(NTC电阻)构成,利用电阻值的变化来检测冷却液的温度。热敏电阻的特性如图2-52(b)所示,冷却液温度越低电阻值越大,冷却液温度越高电阻值越小。将该传感器的信号输入到ECU,就可以根据冷却液温度进行喷油量的控制。冷却液温度传感器与ECU的连接电路如图2-52(c)所示。

图2-52 水温传感器结构、热敏电阻特性及与ECU的连接电路

1—NTC电阻;2—外壳;3—电线接头;4—水温传感器;5—接蓄电池端;6—电控单元(ECU);7—水温信号

2.进气温度传感器

进气温度传感器的功能是检测发动机吸入(进入空气流量计)的空气温度,并将空气温度信号转变成ECU能识别的电信号传送给ECU,它根据进气温度的高低,做不同程度的额外喷油。图2-53(a)所示是进气温度传感器的剖面图,图2-53(b)所示是进气温度传感器与ECU的连接电路图。

图2-53 进气温度传感器剖面图及与ECU的连接电路 1—导线;2—空气流量计壳体;3—热敏电阻;4—进气温度传感器

3.曲轴位置传感器和发动机转速传感器

检测发动机转速及曲轴转角位置,需要采用发动机转速传感器和曲轴位置传感器。具有这种功能的传感器形式很多,其中使用最多的是电磁式传感器、光电式传感器和霍尔效应式传感器。

(1)电磁式传感器

这种传感器可用于测定曲轴、凸轮轴和分电器驱动轴的转动位置,用来控制点火和燃油喷射时间或测量发动机转速。如图2-54所示的复合转子和耦合线圈构成。下面以四缸四行程发动机为例,就检测特定汽缸曲轴转角基准位置(如压缩上止点)进行说明。

图2-54 G、N耦合线圈安装图

1—转子G;2—耦合线圈G1;3—耦合线圈G 2;4—转子N;

5、9—耦合线圈N;6—转子G、Ne;7—耦合线圈G

1、G 2;8—分电器

安装在分电器轴(分电器转1圈曲轴转2圈)上的具有一个凸起部分的转子G与分电器轴一起转动时,由于转子和耦合线圈G

1、G 2之间的磁隙不断发生变化,在各个耦合线圈上,相对分电器每转1圈,就会产生一个电压脉冲。通过合理设计,使转子G的凸起部分在一缸及四缸压缩上止点时,最靠近耦合线圈G 1 、G 2。这样,通过检测G

1、G 2耦合线圈的电压变化,就可以知道一缸、四缸的压缩上止点位置。图2-55(a)为G

1、G 2产生的电压信号实例。图2-55(b)所示,利用信号G和信号N的组合,就可以检测特定汽缸的曲轴转角位置,把G、N信号输入ECU,即可决定满足发动机多种运转条件的喷油量及喷油时刻。

图2-55 曲轴转角信号

(2)光电式传感器

图2-56(a)所示是光电式曲轴转角传感器的工作原理图,位于光敏二极管对面的是作为光源的发光二极管,在它们之间有一个能断续遮光的转盘。

图2-56 光电式曲轴转角传感器的工作原理与结构图 1—输出信号;2—光敏二极管;3—发光二极管;4—电源;5—转盘;6—转子头盖;7—密封盖;8—波形电路;9—第一缸120°信号缝隙;10—1°信号缝隙;11—120°信号缝隙

图2-56(b)、图2 -56(c)所示为六缸发动机用分电器内的光电式曲轴转角传感器的结构,它由发光二极管和光敏二极管组合来检测带缝隙的转盘的旋转位置,安装在分电器内(或凸轮轴前部)。它决定分组喷射控制及电子点火控制曲轴每转两转的供油正时和点火正时。 (3)霍尔效应式传感器

如图2-57所示,磁场中有一个霍尔半导体片,恒定电流 I从A到B通过该片。在洛仑兹力的作用下,I的电子流在通过霍尔半导体时向一侧偏移,使该片在CD方向上产生电位差,这就是所谓的霍尔电压。如图2-57所示的方法是用一个转动的叶轮作为控制磁通量的开关,当叶轮叶片处于磁铁和霍尔集成电路之间的气隙中时,磁场偏离集成片,霍尔电压消失。这样,霍尔集成电路的输出电压的变化,就能表示出叶轮驱动轴的某一位置,利用这一工作原理,可将霍尔集成电路片用做点火正时传感器。

图2-57 霍尔效应式传感器

1—霍尔半导体元件;2—永久磁铁;3—挡隔磁力线的叶片

4.车速传感器

车速传感器主要有舌簧开关型和光电耦合型两种形式,下面主要以舌簧开关型为例讲述其原理。舌簧开关型车速传感器可用于检测汽车速度(装在组合仪表内),如图2-59(a)所示,也可用于指示曲轴位置(装在分电器内),如图2-59(b)所示。

图2-59 舌簧开关型车速传感器

1—磁铁;2—至转速表软轴;3—舌簧开关;4—分电器轴

舌簧开关传感器工作原理如图2 -61(a)、图2 -61(b)所示,触点的磁性与磁铁近侧极性相反,从而使舌簧开关触点靠本身磁性吸引,使开关导通。磁铁随转速表软轴转动后,当只有一端靠近舌簧开关时,触点则不受磁力线影响,触点分开。这样,两个舌簧开关在转速表软轴上的磁铁作用下,相互以180°的夹角进行通、断变换,把汽车行驶速度信息输入ECU,舌簧开关与ECU的连接电路如图2-61(c)所示。

图2-61 舌簧开关传感器的工作原理及ECU的连接电路图 1—数字式仪表;2—舌簧开关;3—磁铁;4—ECU;5—至其他计数装置 5.节气门开度传感器

节气门开度传感器的作用是测量节气门在全闭还是在全开的位置,将节气门的开闭状态信号输送给ECU,可以满足节气门不同开度状态的喷射量控制。节气门开度传感器通常有三种形式,分别是:线性式节气门开度传感器,开关式节气门开度传感器,编码式节气门开度传感器。

(1)线性式节气门开度传感器

如图2-62(a)所示为线性式节气门开度传感器的结构图,传感器有两个同节气门联动的可动电刷触点,一个触点可在位于基板上的电阻体上滑动,利用电阻值的变化,测量与节气门开度相对应的线性输出电压,根据输出的电压值,可知道节气门的开度。 (2)开关式节气门开度传感器

如图2-63(a)所示是开关式节气门开度传感器的结构图,该传感器由安装在节气门体上并与节气门轴联动的凸轮、可检测出怠速位置的怠速触点、可检测出全开位置的全开触点(也叫功率触点)以及沿导向凸轮沟槽移动的可动触点等构成。图2-63(b)为开关式节气门开度传感器的结构简图。图2-63(c)所示是开关式节气门开度传感器的输出特性。

图2-62 线性式节气门开度传感器

1—电阻体;2—检测节气门开度用的电刷;3—检测节气门全关闭的电刷;Vcc —电源端子;VTA —节气门开度输出端子;IDL—怠速触点;E1 —地线;4—怠速触点开关;5—滑动触头;6—节气门开度传感器

图2-63 开关式节气门开度传感器

1—导向凸轮;2—节气门轴;3—控制杆;4—可动触点;5—怠速触点;6—全开触点(功率触点);7—导线插头;8—导向凸轮槽;9—全开触点信号;10—怠速触点信号;11—节气门开度传感器 如图2-63(c)所示,节气门全关时,可动触点和怠速触点接触,可以检测出节气门的全关闭状态,即输出高电平(5 V或12 V),否则输出0 V。若节气门的开度较大(如50°以上),可动触点和全开触点(功率触点)接触,可以检测节气门的大开度状态,即可输出高电平,否则输出0 V。

图2-64 编码式节气门开度传感器

(3)编码式节气门开度传感器

编码式节气门开度传感器的结构如图2-64所示,它是通过印制电路板上的编码图形与外部驱动轴运动并在图形上滑动的触点,来检测出节气门回转角的。如图2-65(a)所示为怠速回转时节气门开度传感器状态,此时,如IDL触点处于闭合,即可检测出怠速状态。如图2-65(b)所示为加速回转时节气门开度传感器状态,此时,加速触点与印制电路板的加速线路Acc1与Acc2 交替处于闭合、打开状态。对于在一定时间内的急加速,与信号检出的同时,ECU进行非同步喷射控制,以提高加速容量。如图2-65(c)所示为高负荷回转时节气门开度传感器状态,在节气门打开一定程度时,功率触点(PSW)处于闭合状态,即可检测出高负荷状态。如图2-65(d)所示为减速回转时节气门开度传感器状态,此时加减速检测触点处于打开状态,ECU不进行非同步喷射控制。 6.爆燃传感器(在第3章介绍)

7.氧传感器(在第4章介绍)

8.大气压力传感器

检测大气压力需采用大气压力传感器,同第二节中所述的测定进气管压力的半导体式进气歧管压力传感器一样,测定大气压力大多采用根据压电效应制成的半导体式压力传感器。

图2-65 各运转状态下节气门开度传感器的状态

1—加减速检测触点ON;2—加减速检测触点OFF

图2-66 主继电器的结构

1—线圈;2—滑阀(可动铁心);3—调整块;4—触点

2.4.2 继电器 1.主继电器

主继电器的作用是使包括ECU在内的电控燃油喷射系统的各部件不受电源干扰和电压脉冲的影响。主继电器一般多采用滑阀型,图2-66所示是主继电器的结构图,图2-67(a)所示为不装步进电动机式怠速控制阀的主继电器电源电路。图2-67(b)所示是装有步进电动机式怠速控制阀的主继电器电源电路,主继电器由ECU控制。采用双回路点火开关的汽车,使用单触点式主继电器,具体接线如图2-68(a)所示。采用单回路点火开关的汽车,使用双触点式主继电器,其具体接线如图2-68(b)所示,这些电路图对检修电路极有参考价值。

图2-67 主继电器的电源电路

1—点火开关;2—主继电器;3—ECU

图2-68 主继电器接线图

1—点火开关;2—一般电器设备;3—接ECU和电动汽油泵;4—单触点式主继电器;5—接喷油

器和火花塞

2.断路继电器

断路继电器是控制电动汽油泵的继电器,该继电器的作用是使电动汽油泵只有在发动机运转时才工作,即当点火开关接通,但发动机不运转时,油泵停止泵油。如图2-69所示为断路继电器的结构和电路图。

图2-69 断路继电器的结构和电路图 1—可动片;2—线圈;3—触点K 2.4.3 发动机控制单元(ECU)

发动机控制单元根据各种传感器送来的信号,确定满足发动机运转状态所需的燃油喷射量,并根据该喷射量去控制喷油器的喷射时间。图2-70是ECU的构成框图。

图2-70 ECU的构成框图

1—传感器;2—模拟信号;3—输入回路;4—A/D转换器;5—输出回路;6—执行元件;7—微机;8—数字信号;9—ROM-RAM记忆装置

2.5 电控系统喷油器与供油正时控制

燃油喷射式发动机所需燃油靠喷油器供给。各种类型汽车执行元件喷油器的控制电路大同小异,如图2-71所示为桑塔纳2000系列轿车喷油器的控制电路。

图2-71 桑塔纳2000系列轿车喷油器的控制电路(括号内代号为桑塔纳2000GSi型轿车ECU

插座端子代号)

2.5.1 供油正时的控制

供油正时就是指喷油器何时开始喷油。根据燃油喷射时序的不同,多点燃油喷射系统又可分为同时喷射的控制、分组喷射的控制和顺序喷射的控制三种喷射方式。 1.同时喷射的控制

多点燃油同时喷射就是各缸喷油器同时喷油,其控制电路如图2-72(a)所示,各缸喷油器并联在一起,电磁线圈中的电流由一只功率三极管VT驱动控制。喷油器控制信号波形如图2-72(b)所示。由于各缸同时喷油,因此供油正时与发动机进气—压缩—做功—排气工作循环无关,如图2-72(c)所示。

图2-72 多点燃油同时喷射控制电路与正时关系

2.分组喷射的控制

多点燃油分组喷射就是将喷油器喷油分组进行控制,一般将四缸发动机分成两组,六缸发动机分成三组,八缸发动机分成四组。四缸发动机分组喷射的控制电路如图2-73(a)所示。供油正时关系如图2-73(b)所示。 3.顺序喷射的控制

多点燃油顺序喷射控制就是各缸喷油器按照一定的顺序喷油。由于各缸喷油器独立喷油,因此也叫独立喷射,控制电路如图2-74(a)所示。

图2-73 多点燃油分组喷射控制电路与正时关系

在顺序喷射的控制中,发动机工作一个循环(曲轴转2圈720°),各缸喷油器按照特定的顺序依次喷油一次,供油正时关系如图2-74(d)所示。

图2-74 多点燃油顺序喷射控制电路与正时关系

2.5.2 喷油量的控制

喷油量的控制大致可分为起动控制、基本喷油量控制、加减速控制、怠速控制和空燃比反馈控制等。

1.发动机起动时喷油量的控制

发动机起动时,起动机驱动发动机运转,其转速很低(50 r/min左右)且波动较大,导致反映进气量的空气流量信号或进气压力信号误差较大。因此,在发动机冷起动时,ECU不是以空气流量传感器信号或进气压力信号作为计算喷油量的依据的,而是按照可编程只读存储器中预先编制的起动程序和预定空燃比控制喷油。起动控制采用开环控制, ECU首先根据点火开关、曲轴位置传感器和节气门位置传感器提供的信号,判定发动机是否处于起动状态,以便决定是否按起动程序控制喷油,然后根据冷却液温度传感器信号确定基本喷油量。 2.发动机起动后喷油量的控制

在发动机运转过程中,喷油器的总喷油量由基本喷油量、喷油修正量和喷油增量三部分组成,如图2-76所示。基本喷油量由进气量传感器(空气流量传感器或歧管压力传感器)和曲轴位置传感器(发动机转速传感器)信号计算确定;喷油修正量由与进气量有关的进气温度、大气压力、氧传感器等传感器信号和蓄电池电压信号计算确定;喷油增量由反映发动机工况的点火开关信号、冷却液温度和节气门位置等传感器信号计算确定。

图2-76 喷油量控制示意图

(1)基本喷油量的控制

基本喷油量(或基本喷油时间)是在标准大气状态(温度为20℃,压力为101 kPa)下,根据发动机每个工作循环的进气量、发动机转速和设定的空燃比来确定的。 (2)喷油修正量的控制

①ECU根据空气温度和大气压力等信号,对喷油量(喷油时间)进行修正,使发动机在各种运行条件下,都能获得最佳的喷油量。②空燃比的修正为了提高发动机动力性、经济性和降低废气的排放,在工况不同时,其空燃比也不相同。③空燃比反馈修正电控发动机都配装了三元催化转换器和氧传感器,借助于安装在排气管上的氧传感器反馈的空燃比信号,对喷油脉冲宽度进行反馈优化控制。④蓄电池电压修正喷油器的电磁线圈为感性负载,其电流按指数规律变化,因此当喷油脉冲到来时,喷油器阀门开启和关闭都将滞后一定时间,为此必须进行修正。

(3)喷油增量的控制

增量是在一些特殊工况下(如暖机、加速等),为加浓混合气而增加的喷油量。。加浓的程度可表示为:①起动后增量②暖机增量③加速增量。 2.5.3 断油控制

断油控制是电脑在一些特殊工况下,暂时中断燃油喷射,以满足发动机运转中的特殊要求。它包括以下几种断油控制方式: 1.超速断油控制

超速断油是在发动机转速超过允许的最高转速时,由电脑自动中断喷油,以防止发动机超速运转,造成机件损坏,也有利于减小燃油消耗量,减少有害物排放。 2.减速断油控制

减速断油控制过程是由电脑根据节气门位置、发动机转速、水温等运转参数,作出的综合判断。在满足一定条件时,电脑执行减速断油控制。

3.溢油消除

起动时燃油喷射系统向发动机提供很浓的混合气。若多次转动起动马达后发动机仍未起动,淤集在汽缸内的浓混合气可能会浸湿火花塞,使之不能跳火。这种情况称为溢油或淹缸。此时驾驶员可将油门踏板踩到底,并转动点火开关,起动发动机。电脑在这种情况下会自动中断燃油喷射,以排除汽缸中多余的燃油,使火花塞干燥。 4.减扭矩断油控制

装有电子控制自动变速器的汽车在行驶中自动升挡时,控制变速器的电脑会向燃油喷射系统的电脑发出减扭矩信号。燃油喷射系统的电脑在收到这一减扭矩信号时,会暂时中断个别汽缸(如

2、3缸)的喷油,以降低发动机转速,从而减轻换挡冲击。

第3章 汽油机电控点火系统

3.1 电控点火系统的功能

3.1.1 点火提前角的控制

1.点火提前角对发动机性能的影响

图3-1 点火提前角对发动机性能的影响

A—不点火;B—点火过早;C—点火适当;D—点火过迟

点火时刻对发动机的影响很大。如图3 -1所示。若点火过早,则活塞还在向上止点移动过程中,气体压力已达到很大数值。这时气体压力作用的方向与活塞运动的方向相反,此时有效功减小,发动机功率也将减小。因此,应当在活塞到达上止点之前点火,使气体压力在活塞位置相当于曲轴转到上止点后10°~15°时达到最高值。点火时曲轴的曲拐位置与压缩行程结束活塞在上止点时曲拐位置之间的夹角,称为点火提前角。通常把发动机发出功率最大和油耗率最小的点火提前角称为最佳点火提前角。最佳点火提前角除了保证发动机的动力性和燃料的经济性外,还必须保证排放污染最小。发动机工况不同,需要的最佳点火提前角也不相同。

图3-2 点火提前角的计算

2.点火提前角的计算

微机控制的点火提前角由初始点火提前角、基本点火提前角和修正点火提前角组成,如图3-2所示。

(1)初始点火提前角

初始点火提前角又称为固定点火提前角,其值的大小取决于发动机的形式,并由曲轴位置传感器的初始位置决定,一般为上止点前6°~12°。 (2)基本点火提前角

基本点火提前角是发动机最主要的点火提前角,是设计微机控制点火系统时确定的点火提前角。

(3)修正点火提前角

为使实际点火提前角适应发动机的运转状况,以便得到良好的动力性、经济性和排放性能,必须根据相关因素(如冷却液温度、进气温度、开关信号等)适当增大或减小点火提前角,即对点火提前角进行必要的修正。修正点火提前角的项目有多有少,主要有暖机修正、怠速稳定性修正、空燃比反馈修正和过热修正。 3.点火提前角的控制

为了说明微机控制的点火系统的工作过程,下面以四缸发动机点火时刻为例说明。设该发动机判缸信号在上止点前BTDC105°时产生、曲轴转速2000 r/min时 最佳点火提前角为上止点前BTDC30°,如图3-9所示。

图3 -9 点火提前角的控制过程

3.1.2 通电时间的控制

通电时间是指大功率管的导通时间,即点火线圈初级绕组的通电时间。如图3-10所示为蓄电池电压与通电时间的修正曲线。

图3 -10 蓄电池电压与通电时间的修正曲线

在实际控制中,ECU是将导通时间转换成曲轴转角进行控制的,因此通电时间控制又称为闭合角控制。

3.2 电控点火系统的组成与工作原理

3.2.1 电控汽油机点火系统的类型

按点火系统结构和发展过程可分为:传统点火系统和计算机控制的点火系统。在传统点火系统中有: (1)触点式点火系统。(2)晶体管辅助点火系统。(3)无触点式电子点火系统。无触点式电子点火系统按点火触发信号产生的方式不同又可分为:①磁感应式。②光电式。③霍尔效应式。

3.2.2 电控点火系统基本组成与工作原理

电控点火系统主要由电源、传感器、电控单元ECU、点火控制器、点火线圈、分电器(有分电器电控系统)、各种控制开关以及火花塞等组成。

1.电源

电源一般由蓄电池和发电机共同组成,主要是给点火系统提供电能。 2.传感器

传感器主要用来检测与点火有关的发动机的工况信息,并将检测结果输入ECU,作为计算和控制点火时刻的依据。虽然各型汽车采用的传感器的类型、数量、结构及安装位置不尽相同,但是其作用都大同小异,而且这些传感器大多与燃油喷射系统、怠速控制系统等电子控制系统共用。传感器主要由凸轮轴位置(上止点位置)传感器、曲轴位置(曲轴转速与转角)传感器、空气流量传感器、节气门位置(负荷)传感器、冷却液温度传感器、进气温度传感器、车速传感器、爆燃传感器、各种控制开关、点火控制器以及火花塞等组成,如图3-11所示。

图3 -11 微机控制点火系统的组成

(1)凸轮轴位置(上止点位置)传感器是确定曲轴基准位置和点火基准的传感器。该传感器在曲轴旋转至某一特定的位置(如1缸上止点点火在上止点前某一确定的角度)时,输出一个脉冲信号,ECU将这一脉冲信号作为计算曲轴位置的基准信号,再利用曲轴转角信号计算出曲轴任一时刻所处的具体位置。凸轮轴位置和曲轴位置信号是保证ECU控制电子点火系统正常工作的最基本的信号。

(2)空气流量传感器是确定进气量大小的传感器。空气流量信号输入ECU后,除了用于计算基本喷油时间之外,还用做负荷信号来计算和读取基本点火提前角。 (3)进气温度传感器信号反映发动机吸入空气的温度。 (4)节气门位置传感器将节气门开启角度转化为电信号输入ECU,ECU利用该信号和车速传感器信号来综合判断发动机所处的工况(怠速、中等负荷、大负荷、减速),并对点火提前角进行修正。

(5)爆燃传感器用于点火提前角闭环控制系统。ECU根据爆燃传感器输出的信号来判断发动机是否发生爆燃,从而对点火提前角进行修正。 3.电控单元(ECU)

电控单元(ECU)既是燃油喷射控制系统的控制中心,也是点火控制系统的控制中心。在ECU的只读存储器(ROM)中,除存储有监控和自检等程序之外,还存储有由台架试验测定的该型发动机在各种工况下的最佳点火提前角。 4.点火控制器

点火控制器又称点火电子组件、点火器或功率放大器,是微机控制点火系统的功率输出级,它接收ECU输出的点火控制信号并进行功率放大,以便驱动点火线圈工作。 3.2.3 有分电器电控点火系统

微机控制点火系统按点火线圈高压电分配方式可分为机械配电方式和电子配电方式。机械配电方式是指分火头将高压电分配至分电器盖旁电极,再通过高压线输送到各缸火花塞的传统配电方式。采用机械配电方式分配高压电的点火系统称为有分电器点火系统。 3.2.4 无分电器电控点火系统

电子配电方式是指在点火控制器控制下,点火线圈的高压电按照一定的点火顺序,直接加在火花塞上的直接点火方式。采用电子配电方式分配高压电的点火系统称为无分电器电控点火系统DIS(Distributorless Ignition System),无分电器电控点火系统主要有以下两种类型。

1.同时点火方式

同时点火是指点火线圈每产生一次高压电,都使两个汽缸的火花塞同时跳火,即双缸同时点火。次级绕组产生的高压电将直接加在四缸发动机的

1、4缸或

2、3缸(六缸发动机的

1、6缸、

2、5缸或

3、4缸),火花塞电极上跳火。双缸同时点火时,一个汽缸处于压缩行程末期,是有效点火;另一个处于排气行程末期,缸内温度较高而压力很低,火花塞电极间隙的击穿电压很低,对有效点火汽缸火花塞的击穿电压和火花放电能量影响很小,是无效点火。曲轴旋转一转后,两缸所处行程恰好相反。双缸同时点火时,高压电的分配有二极管分配和点火线圈分配两种形式。 2.单独点火的控制

点火系统采用单独点火方式时,每一个汽缸都配有一个点火线圈,且直接安装在火花塞上方,其基本组成和工作原理和同时点火方式相同。单独点火的优点是省去了高压线,点火能量损耗进一步减少,此外,所有高压部件都可安装在发动机汽缸盖的金属屏蔽罩内,点火系统对无线电的干扰可大幅降低。 3.2.5 爆燃控制系统 1.爆燃控制系统组成

图3-15 爆燃控制系统组成

利用点火提前角闭环控制系统能够有效地控制点火提前角,从而使发动机工作在爆燃的临界状态。带有爆燃控制的点火提前角闭环控制系统如图3-15所示,由传感器、带通滤波电路、信号放大电路、整形滤波电路、比较基准电压形成电路、积分电路、点火提前角控制电路和点火控制器等组成。 2.爆燃的判别

常用的方法是,将发动机无爆燃时的传感器输出电压与产生爆燃时的输出电压进行比较,从而得出结论。

(1)基准电压的确定

最简单的方法如图3-16所示,首先对传感器输出信号进行滤波和半波整流,利用平均电路求得信号电压的平均值,然后再乘以常数倍即可形成基准电压UB ,平均值的倍数由设计制造时的试验确定。

图3-16 基准电压的确定方法

(2)爆燃强度的判别

确定爆燃强度常用的方法如图3-17所示,首先利用基准电压值对传感器输出信号进行整形处理,然后对整形后的波形进行积分,求得积分值 Ui。当积分值Ui超过基准电压UB时,ECU将判定发动机发生爆燃。

图3-17 爆燃强度的判别

3.爆燃的控制

爆燃控制系统是一个闭环控制系统,发动机工作时,ECU根据爆燃传感器信号,从存储器中查寻相应的点火提前角控制点火时刻,控制结果由爆燃传感器反馈到ECU输入端,再由ECU对点火提前角进行修正,控制过程如图3-15所示。

3.3 电控点火系统主要元件的构造和维修3

3.3.1 汽车电子点火控制器的组成

汽车电子点火控制器又称为汽车无触点电子点火控制器(简称无触点电子点火器或无触点电子点火组件)。汽车电子点火控制器用来将传感器输入的交变信号脉冲进行整形、放大,转变为点火控制信号,经开关型功率晶体三极管放大后控制点火线圈初级绕组的通断和点火系统的工作。点火控制器内部主要由汽缸判别、闭合角控制、恒流控制、安全信号控制等电路组成。如图3-18所示。在有分电器的电控点火系统中,点火线圈一般都与分电器组装在一起,称之为整体式点火组件,如图3-19所示。

图3 -18 点火控制器内部电路组成

图3 -19 整体式点火组件

1—垫片;2—电容器;3—导线夹;4—分电器盖;5—点火器;6—分电器壳体;7—点火线圈防尘罩;8—分电器电缆;9—分火头;10—点火线圈

在无分电器电控点火系统中,点火线圈一般单独安装在点火控制器附近,如图3-20所示。

图3 -20 无分电器电控点火系统点火控制器位置

1—点火控制器;2—点火线圈

电子点火控制器的检查方法有以下几种控制: (1)外观检查法(2)测量输入电阻法(3)用干电池检查法 (4)用试灯检查法 3.3.2 点火线圈

点火线圈实际上就是一种升压变压器,其作用就是将蓄电池或发电机输出的低压升高到15 kV~20 kV,供火花塞产生高压电火花。 1.点火线圈的类型

根据点火线圈铁心的形状和磁路的不同,常将点火线圈分为开磁路点火线圈和闭磁路点火线圈两类。

(1)开磁路点火线圈

开磁路点火线圈由矩形硅钢片叠成的铁心、初级绕组、次级绕组等组成,其结构及其磁路图如图3-24所示。

图3-24 开磁路点火线圈结构及其磁路图 (2)闭磁路点火线圈

闭磁路点火线圈与开磁路点火线圈在结构上的明显差异是铁心。闭磁路点火线圈采用了“口”字形或“日”字形铁心而不是条形铁心,其显著特点是初、次级绕组在磁路上耦合紧密,即耦合系数大,可达0.95~0.98。图3-25是闭磁路点火线圈结构及其磁路图。

图3-25 闭磁路点火线圈结构及其磁路图

2.点火线圈的检测方法

(1)外观检查查看点火线圈外表面,如发现其胶木盖裂损、接线柱松动、滑丝、外壳变形、工作时温度过高、填充物外溢或高压插座接触不良等现象时,说明其质量不良,应更换新件。(2)点火线圈绝缘性能检查用万用表 R×10 kΩ挡检查,将两表笔分别接点火线圈初级绕组接线线柱和外壳,正常情况其绝缘电阻应为∞,否则应更换新件。(3)点火线圈初级绕组的检查用万用表 R×1Ω挡,测量点火线圈两低压接线柱间的电阻。(4)点火线圈次级绕组的检查用万用表 R×1Ω挡,测量点火线圈正极和高压端之间的电阻,其阻值一般在5 kΩ~15 kΩ之间。

3.3.3 爆燃传感器

爆燃传感器是点火时刻闭环控制必不可少的重要部件,其功用是将发动机爆燃信号转换为电信号传递给ECU,ECU根据爆燃信号对点火提前角进行修正,从而使点火提前角保持最佳。按检测发动机缸体振动频率的检测方式不同,爆燃传感器可分为共振型和非共振型两种。汽车用爆燃传感器按结构不同可分为电感式和压电式两种。 1.电感式爆燃传感器

(1)电感式爆燃传感器结构特点

电感式爆燃传感器为共振型爆燃传感器,主要由感应线圈、伸缩杆、永久磁铁和壳体组成。

(2)电感式爆燃传感器工作原理

当发动机产生振动时,传感器的伸缩杆就会随之产生振动,感应线圈中的磁通量就会发生变化。由电磁感应原理可知,线圈中就会感应交变电动势,即传感器就有信号电压输出,输出电压高低取决于发动机的振动强度和振动频率。如图3-27所示为电感式爆燃传感器输出波形。

图3 -27 电感式爆燃传感器输出波形

2.压电式爆燃传感器

(1)压电式非共振型爆燃传感器 非共振型压电式爆燃传感器的结构如图3-28所示,主要由套筒、压电元件、惯性配重、塑料壳体和接线插座等组成。

图3 -28 压电式非共振型爆燃传感器的结构图

1—套筒底座;2—绝缘垫圈;3—压电元件;4—惯性配重;5—塑料壳体;6—固定螺栓;7—接线插座;8—电极

压电元件的信号输出端就会输出与振动频率和振动强度有关的交变电压信号,如图3-29所示。

图3-29 转速不同时压电式非共振型爆燃传感器输出波形

图3-30 压电式火花塞座金属垫圈型爆燃传感器结构图

1—火花塞;2—垫圈;3—爆燃传感器;4—汽缸垫

3.检测

(1)桑塔纳2000GLi型轿车爆燃传感器的检测 当爆燃传感器发生故障时,发动机ECU能检测到有关信息,并使发动机进入故障应急状态下运行。利用专用的V.A.G1551或V.A.G1552故障阅读仪,通过诊断插座可以读取此故障的有关信息。检修爆燃传感器时,可用万用表电阻OHM×100 kΩ或 R×10 kΩ挡检测传感器电阻。检测时,断开点火开关,拔下传感器线束插头,检测结果应当符合表3-1规定。 (2)桑塔纳2000GSi,捷达AT、GTX型轿车爆燃传感器的检测

桑塔纳2000GSi,捷达AT、GTX型轿车爆燃传感器电路连接及插头和插座上端子位置如图3-31所示,检修时用万用表电阻OHM×100 kΩ或 R×10 kΩ挡检测传感器电阻。检测时,断开点火开关,拔下传感器线束插头,检测结果应当符合表3-2规定。

图3-31 爆燃传感器电路连接及插头和插座上端子位置结构图

3.3.4 点火控制电路

1.桑塔纳2000GLi型轿车点火电路

桑塔纳2000GLi型轿车无触点晶体管点火系统主要由内装霍尔传感器的分电器、点火控制器、点火线圈、火花塞等组成,如图3-32所示。点火过程大致可分为下面三个阶段:

图3-32 桑塔纳2000GLi型轿车无触点晶体管点火电路

(1)当霍尔传感器输出接通信号时,点火控制器接通点火线圈初级绕组,蓄电池提供低压电路电流。

(2)当霍尔传感器输出断路信号时,点火控制便切断点火线圈初级绕组,低压电流及其产生的磁场立即消失。

(3)高压电流经过分电器送到各缸火花塞时,高压电经火花塞的中心电极,击穿中心电极与旁电极之间的火花塞间隙,进入旁电极。在击穿火花塞间隙时,点燃火花塞附近的可燃混合气,完成强制点火功能。 2.丰田花冠轿车电子点火电路

丰田花冠(Corolla)轿车采用的是分电器电控点火系统,它主要由点火开关、分电器、电子点火控制器、点火线圈以及火花塞组成。 3.丰田皇冠轿车电子点火电路

丰田皇冠轿车采用的是无分电器电控点火系统,如图3-34所示。

图3 -34 丰田皇冠轿车电子点火电路

其基本的工作原理如下: (1)来自曲轴位置传感器的信号曲轴位置传感器由G

1、G2及 Ne三个线圈组成,其功能是判别汽缸、检测曲轴的转角以及决定点火时刻的原始设定位置。

(2)ECU输出信号ECU通过曲轴位置传感器接收到G1 、G2 、Ne 信号,向点火控制器输出IGf 、IGdA 、IGdB 三个信号。

(3)点火控制器点火控制器内有汽缸判别、闭合角控制、恒流控制、安全信号等电路,其主要功能是接收IGf 、IGdA 、IGdB 信号,并依次驱动各个点火线圈工作。另外,它还向ECU输入安全信号(IGf )。

(4)安全信号IGf 安全信号是将点火控制器断续点火线圈的初级电流的信号反馈给ECU的信号,使点火控制器具有安全功能。

第4章 汽车机辅助控制系统

4.1 怠速控制系统

4.1.1 怠速控制系统概述 1.怠速控制系统的功能

怠速是指节气门关闭,油门踏板完全松开,且发动机对外无功率输出并保持最低转速稳定运转的工况。怠速控制系统的功能是根据发动机工作温度和负载,由ECU自动控制怠速工况下的空气供给量,维持发动机以稳定怠速运转。

图4 -1 怠速控制系统的组成

1—冷却液温度信号;2—A/C开关信号;3—空挡位置开关信号;4—转速信号;5—节气门位置信

号;6—车速信号;7—执行元件

2.怠速控制系统的组成

怠速控制系统主要由传感器、ECU和执行元件三部分组成,如图4-1所示。 3.怠速控制的方法

怠速控制的实质就是对怠速工况下的进气量进行控制。在发动机集中控制系统中,控制怠速进气量的方法可分为两种基本类型:节气门直动式和旁通空气式。如图4-2所示,节气门直动式通过执行元件改变节气门的最小开度来控制怠速进气量,而在旁通空气式怠速控制系统中,设有旁通节气门的怠速空气道,由执行元件控制流经怠速空气道的空气量。

图4 -2 怠速进气量控制方式

1—节气门;2—进气管;3—节气门操纵臂;4—执行元件;5—怠速空气道

4.1.2 节气门直动式怠速控制器

节气门直动式怠速控制器的外形及结构图如图4-3所示,主要由直流电动机、减速齿轮机构、丝杠机构和传动轴等组成。直流电动机可正转可反转,当直流电动机通电转动时,经减速齿轮机构减速增扭后,再由丝杠机构将其旋转运动转换为传动轴的直线运动。

图4 -3 节气门直动式怠速控制器的外形图及结构图

1—节气阀操纵臂;2—怠速控制器;3—节气门体;4—喷油器;5—燃油压力调节器;6—节气门;7—防转六角孔;8—弹簧;9—直流电动机;

10、

11、13—齿轮;12—传动轴;14—丝杠

4.1.3 步进电动机型怠速控制阀

1.控制阀的结构与工作原理

步进电动机型怠速控制阀的结构如图4-4所示。步进电动机由转子和定子构成,丝杠机构将步进电动机的旋转运动变为阀杆的直线运动,控制阀与阀杆制成一体。步进电动机的结构如图4-

5、图4-6所示,主要由用永久磁铁制成的有16个(8对磁极沿圆周均匀分布)磁极的转子和两个定子铁心组成。

图4 -4 步进电动机型怠速控制阀的结构图

1—控制阀;2—前轴爪;3—后轴承;4—密封圈;5—丝杠机构;6—线束插接器;7—定子;8—转子

图4 -5 步进电动机的结构

1、2—线圈;3—爪极;4—定子B;5—转子;6—定子A

图4 -6 定子结构示意图

步进电动机的工作原理如图4-7所示。当ECU控制步进电动机的线圈按1-2-3-4的顺序依次搭铁时,定子磁场顺时针转动(图4-7(b)向右),由于与转子磁场间的相互作用(同性相斥,异性相吸),使转子随定子磁场同步转动。同理,步进电动机的线圈按相反的顺序通电时,转子则随定子磁场同步反转。转子每转一步便与定子错开一个爪极的位置,由于定子有32个爪极(上、下两个铁心各16个),所以步进电动机每转一步为1/32圈(约11°转角),步进电动机的工作范围为0~125个步进级。

图4 -7 步进电动机的工作原理

图4 -8 步进电动机型怠速控制阀电路

2.控制阀的检修

(1)在检修步进电动机型怠速控制阀时的注意事项①不要用手推或拉控制阀,以免损坏丝杆机构的螺纹。②不要将控制阀浸泡在任何清洗液中,以免步进电动机损坏。③安装时,检查密封圈不应有任何损伤,并在密封圈上涂少量润滑油。

(2)检修步进电动机型怠速控制阀的方法①拆开怠速控制阀线束插接器,将点火开关转至“ON”但不起动发动机,在线束侧分别测量B1 和 B2 端子(参照图4-8)与搭铁之间的电压,均应为蓄电池电压(9 V~14 V),否则说明怠速控制阀电源电路有故障。②发动机起动后再熄火时,2 s~3 s内在怠速控制阀附近应能听到内部发出的“嗡嗡”声,否则应进一步检查怠速控制阀、控制电路及ECU。③拆开怠速控制阀线束插接器,在控制阀侧分别测量端子(参照图4-8)B1 与S1 和S3 、B2 与S2 和S4 之间的电阻,阻值均应为10Ω~30Ω,否则应更换怠速控制阀。④如图4-9所示,拆下怠速控制阀后,将蓄电池正极接至B1 和 B2 端子,负极按顺序依次接通S1 -S2-S3 - S4 端子时,随步进电动机的旋转,控制阀应向外伸出;蓄电池负极按相反顺序依次接通S4 -S3-S2 -S1 时,则控制阀应向内缩回。 3.控制阀的控制内容

(1)起动初始位置的设定为了改善发动机的再起动性,在发动机点火开关关断后,ECU的M -REL端子(图4-8)向主继电器线圈供电一段时间(2 s)。在这段时间内,蓄电池继续给ECU和步进电动机供电(2 s),ECU使怠速控制阀回到起动初始(全开)位置。待步进电动机回到起动初始位置后,主继电器线圈断电,蓄电池停止给ECU和步进电动机供电,怠速控制阀保持全开(125步)不变,为下次起动做好准备。

图4 -9 步进电动机型怠速控制阀工作情况检查

(2)起动控制发动机起动时,由于怠速控制阀预先设定在全开位置,在起动期间经怠速空气道可供给最大的空气量,发动机容易起动。

(3)暖机控制暖机控制又称快怠速控制,在暖机过程中,ECU根据冷却液温度信号按内存的控制特性控制步进电机的运动步数,从而控制怠速控制阀开度,随着温度的上升,怠速控制阀开始逐渐关闭。当冷却液温度达到70℃时,暖机控制过程结束。

(4)怠速稳定控制在怠速运转时,ECU将接收到的实际转速信号与存储器中的目标转速进行比较,其差值超过一定值(一般为20 r/min)时,ECU将通过步进电动机控制怠速控制阀,调节怠速空气供给量,使发动机的实际转速与目标转速相同。

(5)怠速预测控制发动机在怠速运转时,空挡起动开关、空调开关的接通或断开都将使发动机的负荷立即发生变化。

(6)电器负载增多时的怠速控制在怠速运转时,如使用的电器负载增大到一定程度时,蓄电池电压就会降低。

(7)学习控制在发动机使用过程中,由于磨损等原因会导致怠速控制阀的性能发生改变,虽然怠速控制阀的位置相同,但实际的怠速转速会与初设的目标转速略有不同。

4.1.4 旋转电磁阀型怠速控制阀 1.控制阀的结构与工作原理

旋转电磁阀型怠速控制阀的结构如图4-10所示。控制阀安装在阀轴的中部,阀轴的一端装有圆柱形永久磁铁,永久磁铁对应的圆周位置上装有位置相对的两个线圈。由ECU控制两个线圈的通电或断电,改变两个线圈产生的磁场强度,即可改变控制阀的位置,从而调节怠速空气口的开度,以实现怠速空气量的控制。

图4 -10 旋转电磁阀型怠速控制阀

1—控制阀;2—双金属片;3—冷却液腔;4—阀体;

5、7—线圈;6—永久磁铁;8—阀轴;9—怠速空气口;10—固定销;11—挡块;12—阀轴限位杆

ECU控制旋转电磁阀型怠速控制阀工作时,控制阀的开度是通过控制两个线圈的平均通电时间(占空比)来实现的。

2.控制阀的控制内容

旋转电磁阀型怠速控制阀(旁通空气式怠速控制系统)的控制内容主要包括起动控制、暖机控制、怠速稳定控制、怠速预测控制和学习控制,具体内容与步进电动机控制旁通空气式怠速控制系统基本相同。

3.控制阀的检修

旋转电磁阀型怠速控制阀电路(日本丰田PREVIA轿车)如图4-12所示,在维修时,应进行如下检查:

图4 -12 旋转电磁阀型怠速控制阀电路

(1)拆开怠速控制阀线束插接器,将点火开关转至“ON”的位置,但不起动发动机,在线束插接器侧测量电源端子(+B)与搭铁之间的电压,应为蓄电池电压(9 V~14 V),否则说明怠速控制阀电源电路有故障。

(2)在发动机达到正常工作温度、变速器处于空挡位置时,使发动机维持怠速运转,用专用短接线短接故障诊断座上的TE1 与E1 端子,发动机转速应保持在1000 r/min~ 1200 r/min,5 s后转速下降约200 r/min。

(3)拆开怠速控制阀上的三端子线束插接器,在控制阀侧分别测量中间端子(+B)与两侧端子(ISC1 和ISC2 )之间的电阻,正常应为18.8Ω~22.8Ω,否则应更换怠速控制阀。

图4 -13 占空比控制电磁阀型怠速控制阀结构

1、5—回位弹簧;2—电磁线圈;3—阀杆;4—控制阀

4.1.5 占空比控制电磁阀型怠速控制阀

1.控制阀的结构与工作原理

占空比控制电磁阀型怠速控制阀结构如图 4-13所示,主要由控制阀、阀杆、电磁线圈和回位弹簧、进气口、出气口等组成。控制阀的工作原理:控制阀与阀杆制成一体,当电磁线圈通电时,电磁线圈就会产生电磁吸力,当它超过回位弹簧的弹力时,阀杆将被吸起,使阀杆离开阀座,将旁通空气道打开;当电磁线圈断电时,阀杆在回位弹簧的作用下回位,旁通空气道关闭。

图4 -14 快怠速控制阀的结构

1—冷却液腔;2—石蜡感温器;3—控制阀;

4、5—弹簧 2.控制阀的控制内容

占空比控制电磁阀型怠速控制系统的控制内容包括起动控制、暖机控制、反馈控制、怠速预测控制和学习控制。但由于占空比控制电磁阀型怠速控制阀控制的旁通空气量少,在采用此种控制阀的怠速控制系统中,仍需要快怠速控制阀辅助控制发动机暖机过程的空气供给量。快怠速控制阀的结构如图4-14所示,主要由石蜡感温器、控制阀和弹簧等组成。

4.1.6 开关型怠速控制阀

图4 -16 开关型怠速控制阀的结构

1—线圈;2—控制阀

1.控制阀的结构与工作原理

开关型怠速控制阀的结构,如图4-16所示,主要由线圈和控制阀组成。其工作原理与占空比控制电磁阀型怠速控制阀类似。不同的是开关型怠速控制阀工作时,ECU只对阀内线圈通电或断电两种状态进行控制,电磁线圈通电时,控制阀开启,线圈断电时,则控制阀关闭。开关型怠速控制阀也只有开或关两个位置。

2.控制阀的控制内容

当发动机工作时,ECU根据发动机的工作状况对控制阀线圈只进行通、断电控制,其控制条件见表4-1。在满足以下条件之一时,控制阀开或关。

4.2进气控制系统

在发动机电控系统中,进气控制系统主要包括动力阀控制系统、谐波增压控制系统、可变配气相位控制系统。

4.2.1 动力阀控制系统 1.动力阀控制系统的功能

动力阀控制系统的功能是控制发动机进气道的空气流通截面大小,以适应发动机不同转速和负荷时对进气量的要求,从而改善发动机的动力性。

2.动力阀控制系统的结构原理

ECU控制的动力阀控制系统如图4-17所示。动力阀控制系统主要由真空罐、真空电磁阀、ECU、膜片真空气室、动力阀等组成。

图4 -17 动力阀控制系统

1—真空罐;2—真空电磁阀;3—ECU;4—膜片真空气室;5—动力阀

控制进气道空气流通截面大小的动力阀安装在进气管上,动力阀的开闭由膜片真空气室控制,ECU根据各传感器信号通过真空电磁阀(VSV阀)控制真空罐与膜片真空气室的真空通道。发动机小负荷运转时,进气量较少,ECU断开真空电磁阀搭铁回路,真空罐中的真空度不能进入膜片真空气室,动力阀处于关闭位置,进气通道变小。当发动机大负荷运转时,进气量较多,ECU接通真空电磁阀搭铁回路,真空罐中的真空度经真空电磁阀进入膜片真空气室,动力阀开启,进气通道变大。动力阀控制系统的主要控制信号有发动机转速、温度、空气流量等。

4.2.2 谐波增压控制系统

谐波进气增压控制系统工作原理如图 4-18所示。当发动机转速较低时,同一汽缸的进气门关闭与开启间隔的时间较长,此时进气控制阀关闭,使进气管内压力波的传递距离为进气门到空气滤清器的距离;当发动机处于高速区域运转时,此时进气控制阀开启,由于大容量进气室的参与,在进气道控制阀处形成气帘,使进气压力脉动波只能在空气室出口和进气门之间传播,缩短了压力波的传播距离,使发动机在高速时得到较好的进气增压效果。谐波进气增压控制系统控制原理如图4-19所示。ECU根据发动机转速信号控制电磁真空阀的开闭,低速时,电磁真空阀由于不通电而关闭,真空罐无法与真空马达的管路相通,真空马达不动作,进气增压控制阀处于关闭状态,此时进气压力波传播距离较长;高速时,ECU接通电磁真空阀的电路,电磁真空阀开启,真空罐与真空马达的管路相通,真空马达动作,将进气增压控制阀开启,缩短了进气压力波的传播距离。

图4 -18 谐波进气增压控制系统工作原理图

1—喷油器;2—进气道;3—空气滤清器;4—进气室; 5—涡流控制阀;6—进气控制阀;7—节气阀;8—真空驱动器

图4 -19 谐波进气增压控制系统原理图

4.2.3 可变配气相位控制系统

目前,汽车发动机一般都是根据性能的要求,通过试验来确定某一常用转速下较合适的配气相位,在装配时,对正配气正时标记,即可保证已确定的配气相位,且在发动机使用中,已确定的配气相位是不能改变的。自然发动机性能只能在某一常用转速下最好,而在其他转速下工作时,发动机的性能相对较差。为解决上述问题,在有些汽车发动机上采用了可变配气相位控制机构。例如日本本田公司生产的汽车发动机上,配备了更先进的VTEC(Variable Valve Life Timing & Valve Electronic Control)、可变配气正时(相位)及气门升程电子控制系统。

1.VTEC机构的组成

VTEC机构的组成如图4-20所示。同一缸的两个进气门有主、次之分,即主进气门和次进气门。每个进气门通过单独的摇臂驱动,驱动主进气门的摇臂称为主摇臂,驱动次进气门的摇臂称为次摇臂,在主、次摇臂之间装有一个中间摇臂,中间摇臂不与任何气门直接接触,三个摇臂并列在一起组成进气摇臂总成。进气摇臂总成如图4-21所示,在三个摇臂靠近气门的一端均设有油缸孔,油缸孔中装有靠液压控制的正时活塞、同步活塞、阻挡活塞及弹簧。正时活塞一端的油缸孔与发动机的润滑油道相通,ECU通过电磁阀控制油道的通或断。

图4 -20 VTEC机构的组成

1—正时片;2—中间摇臂;3—次摇臂;4—同步活塞B;5—同步活塞A;6—正时活塞;7—进气门;8—主摇臂;9—凸轮轴

图4 -21 进气摇臂总成

1—同步活塞B;2—同步活塞A;3—弹簧;4—正时活塞;5—主摇臂;6—中间摇臂;7—次摇臂

2.VTEC机构的工作原理

发动机低速运转时,电磁阀不通电使油道关闭,机油压力不能作用在正时活塞上,在次摇臂油缸孔内的弹簧和阻挡活塞的作用下,正时活塞和同步活塞A回到主摇臂油缸孔内,与中间摇臂等宽的同步活塞B停留在中间摇臂的油缸孔内,三个摇臂彼此分离,如图4-22所示,此时,主凸轮通过主摇臂驱动主进气门,中间凸轮驱动中间摇臂空摆(不起作用);次凸轮的升程非常小,通过次摇臂驱动次进气门微量开闭,其目的是防止次进气门附近积聚燃油。当发动机高速运转,且发动机转速、负荷、冷却液温度及车速达到设定值时,电脑向VTEC电磁阀供电,使电磁阀开启,来自润滑油的机油压力作用在正时活塞一侧,由正时活塞推动两同步活塞和阻挡活塞移动,两同步活塞分别将主摇臂与中间摇臂、次摇臂与中间摇臂插接成一体,成为一个同步工作的组合摇臂,如图4-23所示。

图4 -22 VTEC机构低速工作状态

1—主凸轮;2—次凸轮;3—次摇臂;4—阻挡活塞;5—同步活塞A;6—正时活塞;7—主摇臂;8—同步活塞B

图4 -23 VTEC机构高速工作状态

1—中间凸轮;2—中间摇臂

3.VTEC控制系统电路

VTEC控制系统电路如图4-24所示。发动机控制ECU根据发动机转速、负荷、冷却液温度和车速信号控制VTEC电磁阀。电磁阀通电后,通过压力开关给电脑提供一个反馈信号,以便监控系统工作。

图4 -24 VTEC控制系统电路图

4.VTEC系统的检修

在维修时,拆下VTEC电磁阀总成后,检查电磁阀滤清器,若滤清器有堵塞现象,应更换滤清器和发动机润滑油。电磁阀密封垫一经拆下,必须更换新件。拆开VTEC电磁阀,用手指检查阀的运动是否自如,若有发卡现象,应更换电磁阀。发动机不工作时,拆下气门室罩盖,转动曲轴分别使各缸处于压缩上止点位置,用手按压中间摇臂,应能与主摇臂和次摇臂分离单独运动。

4.3 增压控制系统

增压控制系统的功能是根据发动机进气压力的大小,控制增压装置的工作,控制进气压力、提高发动机的动力性和经济性。根据增压装置使用的动力源不同,增压装置可分为废气蜗轮增压和动力增压两种类型。废气蜗轮增压是利用发动机排出的废气能量驱动增压装置工作,动力增压则是利用发动机输出动力或电源驱动增压装置工作。图4-25所示为废气蜗轮增压控制系统。

图4 -25 废气蜗轮增压控制系统

1—切换阀;2—驱动气室;3—空气冷却器;4—空气滤清器;5—ECU;6—释压电磁阀

4.4 排放控制系统

在现代汽车尤其是轿车上装用了多种排放控制系统,主要包括:曲轴箱强制通风(PCV)控制系统、废气再循环(EGR)控制系统、三元催化转换器(TWC)控制系统、二次空气供给系统和热空气供给系统、燃油蒸气排放(EVAP)控制系统等,其中EGR控制系统、TWC控制系统、二次空气供给系统、EVAP控制系统采用了ECU控制。 4.4.1 废气再循环控制系统

废气再循环简称EGR,是指在发动机工作时,将一部分废气重新引入汽缸参加燃烧的过程。EGR是目前降低NOx 的一种有效的方法。废气再循环的程度用EGR率来表示,它是指发动机进行废气再循环时,废气再循环量在进入缸内的气体中所占的比率,即

EGR率=[EGR量/(进气量+EGR量)]×100%

图4 -27 开环控制EGR系统

1—EGR电磁阀;2—节气门;3—EGR阀;4—水温传感器

1.开环控制EGR系统

开环控制EGR系统(日本公爵3.0E轿车)如图4-27所示,主要由EGR阀和EGR电磁阀等组成。EGR阀安装在废气再循环通道中,用以控制废气再循环量。EGR电磁阀安装在通向EGR阀的真空通道中,ECU根据发动机冷却液温度、节气门开度、转速和起动等信号来控制电磁阀的通电或断电。ECU不给EGR电磁阀通电时,控制EGR阀的真空通道接通,EGR阀开启,进行废气再循环;ECU给EGR电磁阀通电时,控制EGR阀的真空通道被切断,EGR阀关闭,停止废气再循环,这种控制系统属于普通电子控制的EGR系统。在开环控制EGR系统中,EGR率只能预先设定,发动机在各种工况下的实际EGR率则不能检测。

2.闭环控制EGR系统

在闭环控制EGR系统中,以实际检测的EGR率或EGR阀的开度作为反馈控制信号,控制精度更高。用EGR阀开度作为反馈信号的闭环控制EGR系统如图4-28所示。与采用普通电子控制的EGR系统相比,只是在EGR阀上增设了一个EGR阀开度传感器(电位计式)。闭环控制EGR系统工作时,EGR阀开度传感器可将EGR阀开启高度的信号转换为相应的电压信号,并反馈给ECU,ECU根据反馈信号控制真空电磁阀的动作,调节EGR阀的真空度,从而改变EGR率。

图4 -28 用EGR阀开度作为反馈信号的闭环控制EGR系统

3.EGR控制系统的检查

(1)一般检查在冷起动后,立即拆下EGR阀上的真空软管,发动机转速应无变化,用手触试真空软管口应无真空吸力;发动机温度达到正常温度后,怠速时按上述方法检查,其结果应与冷起动时相同;发动机在正常工作温度下,若将转速提高到2500 r/min左右,折弯真空软管后并从EGR阀上拆下软管,发动机转速应有明显提高(因中断废气再循环)。若不符合上述要求,说明EGR系统工作不正常,应查明故障原因,予以排除。

(2)EGR电磁阀的检查在冷态下测量电磁阀电阻,一般应为33Ω~39Ω;如图4-30所示,EGR电磁阀不通电时,从通往进气管侧接头处吹入空气应畅通,从通往大气的滤网处吹入空气应不通。

(3)EGR阀的检查如图4-31所示,用手动真空泵给EGR阀膜片上方施加约15 kPa的真空度时,EGR阀应能开启;不施加真空度时,EGR阀应能完全关闭。若不符合上述要求,应更换EGR阀。

图4 -30 EGR电磁阀的检查

1—通往大气的滤网;2—通往进气管侧软管接头;3—EGR阀侧软管接头

图4 -31 EGR阀的检查

4.4.2 三元催化转换器(TWC)与空燃比反馈控制系统 1.三元催化转换器

三元催化转换器是利用转换器中的三元催化剂,将发动机排出废气中的有害气体转变为无害气体。它安装在排气管中部。

图4 -33 TWC的转换效率与混合气浓度的关系

发动机排出的废气流经TWC时,三元催化剂不仅可使废气中的HC和CO有害气体进一步氧化,生成无害气体CO2 和H2 O,并能促使废气中的NOx 与CO反应生成无害的CO2 和N2 。TWC将有害气体转变成无害气体的效率受很多因素的影响,其中影响最大的是混合气浓度和排气温度。TWC的转换效率与混合气浓度的关系如图4-33所示。只有在标准的理论空燃比14.7附近,对废气中三种有害气体(碳氢化物、一氧化碳、氮氧化物)的转换效率均比较高。

图4 -34 电控燃油喷射系统的闭环控制原理图

2.氧传感器

(1)氧传感器可分为氧化锆(ZrO2 )式和氧化钛(TiO2 )式两种类型①氧化锆式氧传感器氧化锆式氧传感器结构及其输出特性如图4-35所示,该传感器的基本元件是氧化锆管,氧化锆管固定在带有安装螺纹的固定套内,在氧化锆管内、外表面均覆盖着一薄层铂作

第五篇:2013汽车美容与装饰电子教案1

郑州???职业学院

教 案

2012-2013学年

第二学期

专业: 汽车制造与装配技术 课程: 汽车美容与装饰 教师: ??

教材分析

1 1.教材基本信息

教材名称:汽车美容与装饰

出版社:北京理工大学出版社

编:阎文兵、姜绍忠 出版时间:2011年11月

2.章节内容及学时分配 第一章:汽车美容基础知识

基本知识

第一节:汽车美容概述

第二节:汽车美容的主要项目

第三节:汽车美容的依据和原则 第二章:汽车美容护理设备与工具

基本知识

第一节:汽车美容工具与设备

第二节:汽车常用护理设备

第三章:汽车美容护理用品

基本知识

第一节:汽车清洗系列用品 第二节:汽车护理系列用品 第三节:汽车专业保护系列用品

第四节:其他汽车专业保护剂

第四章:汽车外部的清洁护理

2

基本知识 第一节:洗车 第二节:新车开蜡

第三节:漆面附着物的清除

第四节:打蜡上光 第五节:封釉护理

第六节:汽车外饰的清洁护理

第七节:底盘封塑

第五章:汽车内饰的清洁护理

基本知识

第一节:汽车车室的清洁护理

第二节:发动机室与行李箱的清洁护理

第六章:汽车车身漆面的美容护理

基本知识

第一节:车身漆面美容护理基本常识 第二节:研磨、抛光与还原 第三节:漆面失光处理

第四节:漆面划痕处理 第五节:车身凹陷修复

第七章:汽车车发动机的护理

基本知识

第一节:燃油供给系统的免拆清洗护理

3

第二节:冷却系统的免拆清洗护理 第三节:润滑系统的免拆清洗护理

第八章:汽车装饰

基本知识

第一节:车窗覆膜 第二节:汽车天窗加装 第三节:汽车氙灯

第四节:表面保护膜装贴 第五节:汽车音响的选购 第六节:汽车外饰的清洁护理

第七节:底盘封塑

第九章:汽车美容安全防护知识和安全操作规程

基本知识

第一节:汽车美容安全防护知识 第二节:汽车美容施工安全操作规程

3.教学手段和方法 传统教学法、多媒体课件教学法、现场教学法、理实一体化教学法、实物演示法和动手实训相结合等

4.教材优缺点分析

优点:全书以职业能力培养为主线,通过任务将汽车美容与装饰技术每一部分的技能与知识紧密联系起来。内容上能够反映现代汽车美容的最新技术,注重理论联系实际,与职业岗位工作标准接轨,具有较强的针对性和实用性。突

4

出学生技能培养,体现知识为技能服务的思想,旨在培养学生的技术应用能力。

缺点:侧重于汽车美容,汽车装饰的某些技术阐述过于简单。

6.参考教材

姚时俊主编,汽车美容与装饰,辽宁科学技术出版社 周燕,罗小青主编,汽车美容与装饰,机械工业出版社 王玉东主编,汽车美容与装饰技术培训教程,国防工业出版社 甘文嘉主编,现代汽车美容与装潢,上海交通大学出版社

第1讲

第一章:汽车美容基本知识

5

课前分析:

1.教学内容及时间分配

汽车美容概述

1学时 汽车美容的主要项目 1学时

2.教学目的

通过本次教学,让学生了解汽车美容的发展历程;掌握汽车美容所包含的主 要项目;

3.教学重难点 重点:汽车美容所包含的主要项目 4.教学方法

本教学环节采用理论、实践同步进行的方法。通过多媒体讲授,学生可以更直观的学习。

5.板书布置 详见教学内容 教学内容:

1.汽车美容的发展历程

20世纪30年代初,汽车美容、养护在英、美等发达国家开始起步, 70年代的世界石油危机过后,这一行业得到迅猛发展。20世纪80年代,美国汽车维修市场开始萎缩,而专业汽车美容养护中心却出现了爆炸性的增长,每年以近3万余家的速度递增。根据欧美国家统计,在一个完全成熟的国际化汽车市场中,汽车的制造以及销售利润在整个汽车业的利润构成中仅占 20% ,零部件的供应利润占 20% ,而 50%-60% 的利润全部是从汽车后市场服务业中产生的。我国汽

6

车美容行业产生相对较晚,到20世纪90年代初才出现,此时的汽车美容也只不过是洗洗刷刷涂涂抹抹而已,服务项目、内容、工艺、质量及标准等都很不规范。 “汽车美容”在西方国家被称为“Car Beauty”或“Car Care”。西方国家的汽车美容业随着整个汽车产业的发展已经达到非常完善的地步。他们形容这一行业为“汽车保姆”(Car care center),也称作“第四行业”。所谓第四行业.顾名思义,是针对汽车生产、销售、维修三个步骤而言的。汽车保养护理,已成为普及性的、专业化很强的服务行业,它是一种全新的汽车养护概念,与一般的汽车打蜡有着本质的区别。汽车美容不只是简单的汽车打蜡、除渍、除臭、吸尘及车内外的清洁服务等常规美容护理,所谓的汽车美容,是指针对汽车各部位不同材质所需的保养条件,利用专业美容系列高科技技术设备,采用不同性质的汽车美容护理产品及施工工艺,对汽车进行全新保养护理。

2.发展阶段 第一阶段原始阶段 第二阶段成长阶段 第三阶段垄断阶段 第四阶段发展阶段 第五阶段专业阶段 第六阶段现代化阶段 3.主要美容项目 (1).汽车外部清洁护理

汽车外部清洁护理包括车身的清洁护理与玻璃、电镀件、塑胶件、轮辋、轮胎、保险杠等的清洁护理以及“底盘装甲”等内容。其中车身的清洁护理包括高

7

压洗车、新车开蜡、沥青焦油等污物的去除与打蜡或封釉护理。

(2).汽车内饰清洁护理

汽车内饰清洁护理包括车室美容、发动机美容及行李箱清洁等项目。其中车室美容包括仪表台、顶棚、地毯、脚垫、座椅、座套、车门内饰的吸尘清洁保护,以及蒸汽杀菌、冷暖风口除臭、室内空气净化等项目。发动机美容包括发动机冲洗清洁、喷上光保护剂、做翻新处理等清洁、检查、维护项目。 4.作业及小结

第2讲

第一章:汽车美容基本知识

8 汽车美容的发展经历了几个阶段?

课前分析:

1.教学内容及时间分配

汽车美容的主要项目

1学时 汽车美容的依据和原则

1学时

2.教学目的

通过本次教学,让学生掌握汽车美容所包含的主要项目; 了解汽车美容的依据和原则

3.教学重难点 重点:汽车美容所包含的主要项目 4.教学方法

本教学环节采用理论、实践同步进行的方法。通过多媒体讲授,学生可以更直观的学习。

5.板书布置 详见教学内容 教学内容:

1.汽车美容的主要项目 1.1车身漆面美容

汽车美容店所做的车身漆面美容护理服务项目主要有护理性美容作业与漆面划痕处理项目。

一.护理性美容作业项目

汽车在外部清洗之后的漆面美容护理项目主要有:漆面研磨、抛光、还原、打蜡或封釉护理。

9

(1)研磨:去除漆膜表面的氧化层、轻微划痕等缺陷,漆面划痕修复时也会用到研磨抛光工序。但由于修复的划痕轻微。主要配合其它护理作业,便可消除缺陷,所以本书将研磨列入漆面护理美容的范围。研磨完后还要抛光、还原,这是三道连续的工序,研磨是漆面轻微缺陷修复的第一步,要求使用专用的研磨剂,用研磨/抛光机作业。

(2)抛光:抛光是紧接着研磨的第二道工序。其目的是去除研磨留下打磨痕迹,要求使用专用的抛光剂,用研磨/抛光机作业。

(3)还原:还原是紧接着抛光的第三道工序。其目的是通过还原剂将车漆的光泽还原回新车的状态。还原剂有两种,一种是还原剂,另一种是增光剂。增光剂是在还原剂的基础上具有增光作用。要求使用专用的还原剂,用研磨/抛光机作业。

(4)打蜡:给车漆打蜡,蜡质不仅可以在车漆表面形成清晰度较高的保护膜,而且能够起到上光、防水、防紫外线、防静电等作用。打蜡可以通过人工打蜡完成,也可以用打蜡机作业。但蜡可溶于水,但起不到长期保护漆面的作用。

(5)封釉:釉质主要有抗氧化、耐酸碱、光亮持久、密封、抗划痕等作用。汽车封釉就是采用先进工艺与专用工具将高分子釉剂挤压进车漆的纹理中,使之在车漆内形成牢固的网状保护层,附着在车漆表面大大提高车漆的硬度、光洁度,并具有一年以上的保持功效。汽车封釉之后无需打蜡,而汽车打蜡之后也不能封釉,要想封釉必须用脱蜡洗车液将车清洗干净后才能封釉。

二. 漆面划痕处理

漆面划痕处理服务项目可分为漆面浅划痕处理和漆面深划痕处理。漆面浅划痕的处理要用研磨抛光的方法去除;漆面深划痕的处理可以用色漆修补笔或喷漆

10

工艺完成。

1.2发动机的免拆清洗维护

发动机的免拆清洗维护美容服务项目包括发动机燃油供给系统、发动机冷却系统、发动机润滑系统、自动变速箱的免拆清洗维护等。

1.3 汽车其他美容项目

汽车其它美容服务项目本书统一归为汽车装饰如防爆太阳膜的装贴、汽车天窗的加装、汽车氙灯、车身表面保护——“犀牛皮”的装贴、汽车音响、倒车雷达、汽车防盗装置的选装与汽车的隔音降噪等。

2.汽车美容的依据

汽车美容应根据车型、车况、使用环境及使用条件等因素,有针对性地、合理地安排美容作业的时机及项目。

首先要依据汽车的档次。汽车美容项目、内容及使用用品的不同。高档轿车可考虑使用高档美容用品机械美容作业,重点放在美容效果上,一般汽车只要进行常规的美容作业就可以了。

其二要依据车辆行驶状况来定。汽车美容作业应依据汽车漆膜及其他物面状况有针对地进行。如车漆表面出现划痕,尤其是较深的划痕,若不及时处理会导致金属锈蚀,增大处理的难度。

其三是要依据汽车行驶环境而定。汽车行驶的地域和道路不同,对汽车机械美容作业的时机和项目也不同。如汽车经常在污染严重的工业区行驶,应缩短清洗周期,经常检查漆面有无污染色素沉着,并采取积极预防措施。如汽车经常在沿海地区行驶,由于当地空气潮湿,且大气中含盐分较多,一旦漆面出现划痕应立即采取措施治理,否则会很快造成内部金属锈蚀。如汽车经常在西北地区行驶,

11

由于当地风沙较大,漆面易失去光泽,应缩短打腊抛光的周期。

其四要依据季节变化而定。不同季节气温气候的变化,对汽车表面及室内部件有不同程度的影响。如夏季气温高,漆面易高温老化,冬季寒冷干燥,漆膜易冻裂,应进行必要的预防护理,且冬夏两季经常使用空调,车内易出现异味,应定期进行杀菌和除臭。

3.汽车美容的原则

首先是预防与处理相结合的原则。尽管轻微的漆面划痕可以通过研磨抛光等手段进行处理,但这样会使漆面变薄,减少了有效处理的次数。因此汽车美容护理时应采用预防与处理相结合的原则,以预防为主,积极预防损伤的发生。

其二是单项作业与全套作业相结合的原则。汽车美容护理作业的项目和内容很多,在作业中应根据汽车自身的状况有针对性的选择项目和内容。

其三是局部护理与全车护理相结合的原则。如果汽车漆膜的局部出现损伤,只要对局部进行处理即可,只有在全车漆膜绝大部分出现损伤时,才对全车漆膜进行处理。 4.作业及小结 汽车美容的主要项目有哪些?

第3讲

第二章:汽车美容护理设备与工具

12

课前分析:

1.教学内容及时间分配 汽车美容的工具与设备

2学时

2.教学目的

通过本次教学,让学生熟悉常用汽车美容所包含的工具与设备;了解汽车美容的工艺

3.教学重难点 重点:汽车美容常用的工具和设备 4.教学方法

本教学环节采用理论、实践同步进行的方法。通过多媒体讲授,学生可以更直观的学习。

5.板书布置 详见教学内容 教学内容:

1.汽车美容工具与设备

(1).空气压缩机

空气压缩机是汽车美容护理以及维修的通用设备之一,应用范围很广。空气压缩机在汽车美容护理方面主要用于提供充足的达到预定压力值的高压压缩空气源,以确保汽车美容护理作业车间所有的气动设备都能有效地工作。如用于泡沫清洗机去除清洗后车身面漆上积聚的水渍、各种气动工具(研磨、抛光和除尘工具)、发动机和变速器的免拆清洗以及轮胎充气等。(如图2-1)

13

2-1 2-2 2-3 (2).高压清洗机

高压清洗机用于汽车外表的清洗、发动机的清洗、底盘的清洗、车轮等的清洗。使用普通的自来水为水源,通过其内的电动泵再加压,输出的水流压力在0.2—1.2MPa范围内,并可以按需要进行调节。压力大时,能将粘附于底盘上的泥土冲洗下来。而冲洗风档玻璃和钣金部分时,水压可按要求调小一点,以免造成损伤。

高压清洗机分为高压冷水清洗机和高压冷/热两用清洗机。前者用于气温较高的南方一带,后者除了提供常温的高压水外,还增加了电加热装置,输出高压水的温度可调节,清洁效果更好,但能耗大,一般仅适于冬季寒冷的地区使用。高压清洗机的种类很多,性能不一,价格差别也较大。图2-

2、图2-3分别高压冷/热两用清洗机和高压冷水清洗机。 (3).泡沫清洗机

泡沫清洗机为汽车美容清洁用的主要设备之一。它与高压清洗机不同之处在于它输出的水不但可以增压(输出压力约为0.1~0.5MPa),而且还能加入专用的清洗剂,再通过压缩空气(由空气压缩机提供),使清洗剂泡沫化,然后从泡沫喷枪喷出,能将泡沫状的清洗液均匀地涂敷于车身外表,通过化学反应,从而起到极佳的除尘和去油污作用。

使用泡沫清洗机的目的在于清洗剂内加入了强力发泡剂(一种阴离子活性剂)和助洗剂,在压缩空气的搅动下能产生丰富的泡沫,而浓稠的泡沫容易捕集

14

污垢粒子,使油污溶解于泡沫的外表,减少了油污的沉积,所以去污能力特强,并且使清洗剂发挥了最大的效用。据统计,采用泡沫清洗机后,清洗一辆轿车的材料成本不足0.20元,经济效益明显提高。泡沫清洗机种类较多,有气动和电动两类,如图2-4为气动泡沫清洗机。

2-4 2-5 2-6 (4).水枪和气枪

水枪和气枪分别是与高压清洗机和空气压缩机配套使用的,是重要的清洗没备,种类较多,有的带快速接头,可作快速切换;有的带长短接杆,令使用更为方便。

气枪通常为外购件,不随空气压缩机附送,水枪则常常作为高压清洗机的附件配套使用。高级的水枪带水压和水形调节,高压水枪在汽车清洗中的应用,不但提高了清洗作业的质量,极大地保护漆面,同时也提高了清洗作业的效率,使用起来十分方便。图2-5为常见的水枪的外形。图2-6为常见的气枪的外形。 (5).抛光机及其附件

抛光机也称为研磨机,常常用作机械式研磨、抛光及打蜡之用。其工作原理是电机带动安装在抛光机上的海绵或羊毛抛光盘高速旋转,由于抛光盘和抛光剂共同作用并与待抛表面进行摩擦,进而达到除漆面污染、氧化层、浅痕的目的。抛光盘的转速一般在1500r/min~3000r/min,多为无级变速,施工时可根据需要随时调整。

(6).打蜡机及其附件

15

打蜡机也称轨道抛光机,其外形如图所示。

打蜡机工作时是以椭圆形的轨迹旋转,它的托盘直径比抛光盘的大,它的机体比抛光机轻很多,而且它的双手扶把紧贴机体的中心立铀。专业人员已不再用它来做研磨或抛光,因它的重量、速度和椭圆形的旋转方式使其产生不了足够热能让抛光剂与车漆进行化学反应。但此机用于打蜡效果很好,主要的优点在于此机重量轻,做工细且光盘面积大,比人工打蜡省时省力,而且打蜡时不易产生漆面划痕。 (7).吸尘机

车身内经常积聚有大量的灰尘,特别是座椅上的皱裙和一些角落部位的灰尘极难清除。吸尘器是汽车美容车间必备的工具。现在市面上常见的吸尘器主要有便携式、家用型和专业型三种,又分干式和湿式两类。一般来说,专业型的吸尘吸水机效果最好,使用较多,它具有较好的防水性,集吸尘、吸水、风干于一体,配有适合于内饰结构的专用吸嘴,操作简单,其内置的真空泵能产生很大的真空度,再配上形状不一的各种吸头,能很方便地伸进各个角落部位,快速地吸去附着于其上的灰尘。 (8).高效多功能洗衣机

汽车美容店使用的洗衣机不同于家庭用的普通洗衣机,它要求能清洗较大重量的织物(至少要5公斤级)。而且必须是清洗、烘干和免烫三合一的高效多功能洗衣机,这样才能在完成了汽车美容的同时,也完成了各种织物的清洗和烘干,不会影响交车时间。 2.作业及小结

16 简述常见的汽车美容工具与设备?

第4讲

第二章:汽车美容护理设备与工具

课前分析:

1.教学内容及时间分配

汽车美容的工具与设备

2学时 2.教学目的

通过本次教学,让学生熟悉汽车常用的护理设备;掌握汽车美容护理工艺。 3.教学重难点 重点:常见汽车护理设备 4.教学方法

本教学环节采用理论、实践同步进行的方法。通过多媒体讲授,学生可以更直观的学习。

5.板书布置 详见教学内容 教学内容: 1.常用护理设备

(1)发动机燃油供给系统免拆清洗机

发动机燃油供给系统清洗机采用新流程设计,从输油管输入混有清洁剂的燃料,在发动机运转的同时,混合物经燃烧将分布在化油器、喷油器和燃烧室等处的积炭、胶质与积垢软化、剥落、溶解并随尾气排出。

图2-7为GF—1000(气动)发动机燃油供给系统免拆清洗机。

该机重量25公斤,外形尺寸长×宽×高(mm):360×310 ×1100。该机采用专业隔膜泵,输出压力高、波动小、使用寿命长。可以有效清除发动机燃油系

17

统、燃烧室及进排气门组件的积碳胶质。达到省油、降低有害废气排放,使发动机性能恢复如新。

2-7 2-8 2-9 (2)发动机冷却系统免拆清洗机

汽车冷却系统管路长时间使用,管路内壁产生锈、污垢以至管路阻塞不通畅、发动机温度升高、冷却效果变差,严重时可使发动机发生烧瓦、抱轴,致使汽车无法行驶。

使用冷却系统循环清洗机,不仅可以清除水箱、水道内的水垢、杂质而且可以自动更换防冻液,彻底保养水箱,操作简单方便。

图2-8为DC-600发动机冷却系统免拆清洗机(电动)。 主要技术参数有:

工作电压:直流电压12V或交流电220V/50HZ,功率:0.18kW,长×宽×高(mm):350×530×1070。 (3)发动机润滑系统免拆清洗机

发动机润滑系统清洗机采用新流程设计,结合专用清洗液,以一定的脉冲压力打入发动机油泵入口,让清洗液在发动机内按照机油润滑油回路,冲洗循环,

18

完成溶解发动机内之油泥、积碳,最后循环清洗至油底壳,再由清洗机的回油管路以真空从发动机内抽出,经由清洗剂内的两道极细微滤芯过滤,而将油泥、金属屑、轴承合金粉末、油漆、微粒等除去。整个清洗过程是在发动机静止下完成的。清洗后清洗液在发动机润滑油回路内形成保护膜,不会对发动机内任何部件造成伤害。(图2-9) (4)汽车举升机

汽车举升机为大家比较熟悉的通用维修设备,在汽车美容作业中主要用于将汽车升起进行汽车底盘“装甲”喷涂作业。举升机常见的有双柱举升机、四柱举升机和剪式举升机。其中四柱举升机提升重量大、设备结构复杂、占地面积大,主要用于大型车辆的维修。

双柱举升机的特点是双液压缸驱动,升降平稳,双保险自锁保护装置,链条举升系统,钢丝绳平稳系统,动力装置可装在举升机任一边,柱间距宽阔,220V与380V电源任意选择方便使用,操作方便和牢固可靠。缺点是双主柱对工人的作业稍有不便,两旁的支承架也占用了一定的面积,不利于底盘的美容护理,故只用于汽车的专业维修。 2.作业及小结

简述常见的美容护理设备及工具。

上一篇:汽车网络营销策略分析下一篇:七步打造企业强势品牌

本站热搜