考研高数一知识点总结

2023-01-11

总结是记录某个时期的学习或工作情况,通过系统性分析的方式,编写出详细的书面报告,通过这份报告的内容,可让我们更加了解工作情况。那如何写出科学合理的总结呢?以下是小编整理的《考研高数一知识点总结》的文章,希望能够很好的帮助到大家,谢谢大家对小编的支持和鼓励。

第一篇:考研高数一知识点总结

大一高数一知识点总结

大一高数一知识点总结有哪些呢?我们一起来看看吧!以下是小编为大家搜集整理提供到的大一高数一知识点总结,希望对您有所帮助。欢迎阅读参考学习!

一、集合间的基本关系

1.“包含”关系—子集

注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。

反之: 集合A不包含于集合B,或集合B不包含集合A,记作A B或B A

2.“相等”关系:A=B (5≥5,且5≤5,则5=5)

实例:设 A={x|x2-1=0} B={-1,1} “元素相同则两集合相等”

即:①任何一个集合是它本身的子集。AA

②真子集:如果AB,且A B那就说集合A是集合B的真子集,记作A B(或B A)

③如果 AB, BC ,那么 AC

④如果AB 同时 BA 那么A=B

3. 不含任何元素的集合叫做空集,记为Φ

规定: 空集是任何集合的子集,空集是任何非空集合的真子集。

有n个元素的集合,含有2n个子集,2n-1个真子集

二、集合及其表示

1、集合的含义:

“集合”这个词首先让我们想到的是上体育课或者开会时老师经常喊的“全体集合”。数学上的“集合”和这个意思是一样的,只不过一个是动词一个是名词而已。

所以集合的含义是:某些指定的对象集在一起就成为一个集合,简称集,其中每一个对象叫元素。比如高一二班集合,那么所有高一二班的同学就构成了一个集合,每一个同学就称为这个集合的元素。

2、集合的表示

通常用大写字母表示集合,用小写字母表示元素,如集合A={a,b,c}。a、b、c就是集合A中的元素,记作 a∈A ,相反,d不属于集合A ,记作 dA。

有一些特殊的集合需要记忆:

非负整数集(即自然数集) N 正整数集 N*或 N+

整数集Z 有理数集Q 实数集R

集合的表示方法:列举法与描述法。

①列举法:{a,b,c……}

②描述法:将集合中的元素的公共属性描述出来。如{xR| x-3>2} ,{x| x-3>2},{(x,y)|y=x2+1}

③语言描述法:例:{不是直角三角形的三角形}

例:不等式x-3>2的解集是{xR|x-3>2}或{x|x-3>2}

强调:描述法表示集合应注意集合的代表元素

A={(x,y)|y= x2+3x+2}与 B={y|y= x2+3x+2}不同。集合A中是数组元素(x,y),集合B中只有元素y。

3、集合的三个特性

(1)无序性

指集合中的元素排列没有顺序,如集合A={1,2},集合B={2,1},则集合A=B。

例题:集合A={1,2},B={a,b},若A=B,求a、b的值。

解: ,A=B

注意:该题有两组解。

(2)互异性

指集合中的元素不能重复,A={2,2}只能表示为{2}

(3)确定性

集合的确定性是指组成集合的元素的性质必须明确,不允许有模棱两可、含混不清的情况。

三、集合间的基本关系

1.子集,A包含于B,记为: ,有两种可能

(1)A是B的一部分,

(2)A与B是同一集合,A=B,A、B两集合中元素都相同。

反之: 集合A不包含于集合B,记作 。

如:集合A={1,2,3 },B={1,2,3,4},C={1,2,3,4},三个集合的关系可以表示为 , ,B=C。A是C的子集,同时A也是C的真子集。

2.真子集:如果AB,且A B那就说集合A是集合B的真子集,记作A B(或B A)

3、不含任何元素的集合叫做空集,记为Φ。Φ是任何集合的子集。

4、有n个元素的集合,含有2n个子集,2n -1个真子集,含有2n -2个非空真子集。如A={1,2,3,4,5},则集合A有25=32个子集,25-1=31个真子集,25-2=30个非空真子集。

例:集合 共有 个子集。(13年高考第4题,简单)

练习:A={1,2,3},B={1,2,3,4},请问A集合有多少个子集,并写出子集,B集合有多少个非空真子集,并将其写出来。

解析:

集合A有3个元素,所以有23=8个子集。分别为:①不含任何元素的子集Φ;②含有1个元素的子集{1}{2}{3};③含有两个元素的子集{1,2}{1,3}{2,3};④含有三个元素的子集{1,2,3}。

集合B有4个元素,所以有24-2=14个非空真子集。具体的子集自己写出来。

第二篇:考研高数知识总结1

考研数学讲座(17)论证不能凭感觉

一元微分学概念众多,非常讲究条件。讨论问题时,要努力从概念出发,积极运用规范的算法与烂熟的基本素材。绝不能凭感觉凭想象就下结论。

1. x趋于∞时,求极限 lim xsin(2x∕(x平方+1) ,你敢不敢作等价无穷小替换?

分析 只凭感觉,多半不敢。依据定义与规则,能换就换。

x 趋于∞时,α = 2x∕(x平方+1)是无穷小,sinα 是无穷小, sinα(x) ~ α(x)且 sinα 处于“因式”地位。可以换。

等价无穷小替换后,有理分式求极限,是“化零项法”处理的标准∞∕∞型,答案为 2

2.设f(x)可导,若f(x)是奇(偶)函数(周期函数,单调函数,有界函数),它的导函数fˊ(x)有什么样的奇偶性(周期性,单调性,有界性) ?

分析 有定义数学式的概念,一定要先写出其定义式。简单一点也行。比如 奇函数 f(-x)= -f(x) 周期为T的函数 f(x+T)= f(x) 等式两端分别求导,得 fˊ(-x) = fˊ(x) fˊ(x+T)= fˊ(x) (实际上,由复合函数求导法则, (f(-x))ˊ= fˊ(-x) (-x)ˊ= -fˊ(-x))

所以,奇函数的导数是偶函数;偶函数的导数是奇函数。(如果高阶可导,还可以逐阶说下去。)周期函数的导数也是周期函数。很有趣的是,因为 (x)ˊ= 1 ,有的非周期函数,比如y = x + sinx ,的导数却是周期函数。

(潜台词:周期函数的原函数不一定是周期函数。)

单调函数定义中没有等式的概念,可以先在基本初等函数中举例观察。

如y = x单增,yˊ = 1不是单调函数。y = sinx在(0,π/2)单增,yˊ = conx 单减,没有确定的结论。

有界性讨论相对较为困难。如果注意到导数的几何意义是函数图形的切线斜率。即切线倾角的正切。就可以想到,在x趋于x0时,要是导数值无限增大,相应的图形切线就趋向于与x轴垂直。显然,圆周上就有具竖直切线的点。

取 y =√(1-x的平方),它在[0,1]有界,但是 x 趋于 1 时,其导数的绝对值趋于正无穷。 这个反例说明有界函数的导数不一定有界。

(画外音:写出来很吓人啊。 x → 1 时 ,lim f (x) = 0 ,而 lim fˊ(x)= -∞ )

3. 连续函数的复合函数一定连续。有间断点的函数的复合函数就一定间断吗?

分析 连续函数的复合,花样更多。原因在于复合函数f(g(x))的定义域,是f(x)的定义域与g(x)值域的交。有“病”的点可能恰好不在“交”内。因而,有间断点的函数的复合函数不一定间断。比如:

取分段函数 g(x)为,x > 0 时 g =1 , x ≤ 0 时 g = -1,0是其间断点。 取 f(u)=√u ,则 f(g(x))= 1 在 x > 0 时有定义且连续。 还有一些原因让“病态点”消失。

如果只图简单,你可以取 f(u)为常函数。以不变应万变。

取 f(u)= u的平方 ,则 f(g(x))= 1 ,显然是个连续函数。

4.设 f (x)可导,若x趋于 +∞ 时 ,lim f (x) = +∞ ,是否必有lim fˊ(x)= +∞ 分析 稍为一想,就知为否。 例如 y = x 更复杂但颇为有趣的是 y = ln x ,x 趋于 +∞ 时 ,它是无穷大。但是 yˊ = 1∕x 趋于0 ,这就是对数函数异常缓慢增长的原因。 5.设f(x)可导,若 x 趋于+∞时,lim fˊ(x) = +∞ , 是否必有 lim f(x) = +∞ 分析 用导数研究函数,这是微积分的正道。首先要体念极限(见指导(3)。): 因为 lim fˊ(x) = +∞,所以当 x 充分大时,不仿设 x > x0 时,总有 fˊ(x)>1 用拉格朗日公式给函数一个新的表达式

f (x)= f (x0)+ fˊ(ξ)(x-x0) , x0 <ξ< x (潜台词: ξ=ξ(x) 。你有这种描述意识吗?) 进而就有, x >x0 时, f (x) >f (x0) + 1(x-x0) (画外音:这一步是高级动作。) 因为 f (x0)是个常数,x0是我们选择的定点,所以上式表明,必有 lim f (x) = +∞ 6 。 设 f (x)可导,若 x 趋于 -∞ 时,lim fˊ(x)=-∞ , 是否必有 lim f (x)= -∞ 分析 否。你如果与上述问题5对比,认为情形相仿,结论必有。那就太想当然了。 请你还是老老实实地象5中那样写出推理吧。结论是

若 x 趋于 -∞ 时,lim fˊ(x)= -∞ , 则必有 lim f (x) = +∞

7.设 f (x)可导,若x 趋于+∞时,lim f (x) = c(常数,)是否必有lim f ˊ(x) = 0 分析 否。lim fˊ(x) 有可能不存在。

这是最容易凭感觉想当然的一个题目。我读本科时,最初的想法就是,“lim f(x) = c 表示函数图形有水平渐近线,函数又可导,当然在 x 趋于+∞时,切线就趋于水平了。”

想当然的原因之一是我们见识太少,脑子里的函数都较简单,图形很光滑漂亮。之二则是对于渐近线的初等理解有惯性。

由极限定义的水平渐近线,并不在乎曲线中途是否与其相交。比如, 曲线可以以渐近线为轴震荡,最终造成 lim fˊ(x) 不存在的后果。 对比条件强化 —— 如果 lim fˊ(x) 存在,则必有 lim fˊ(x) = 0 用反证法证明。且不仿设 x 趋于 +∞ 时 lim fˊ(x) = A >0 与前述5中同样,可以选定充分大的正数 x0,使 x>x0 时,总有 fˊ(x)>A/2 ,然后用拉格朗日公式给函数一个新的表达式,导数条件管住ξ,从而有

f (x) >f (x0) + A(x-x0) /2 —→+∞ 矛盾。

8.函数在一点可导,且导数大于0 ,能说函数在这一点单增吗?

分析 不能。函数的单调性是宏观特征,背景是区间。函数在一点可导,且导数大于0,其间所蕴含的信息只能通过可导的定义去挖掘。即先把条件还原成定义算式,即 x 趋于x0 时,lim ( f (x)-f(x0))/ (x-x0)> 0 如果没有别的条件,下一步就试试体念符号。即在x0邻近,分子分母同号。进而在其右侧邻近,分子分母皆为正,f (x) > f(x0) 。但是,我们不知道函数值相互间的大小。

*9 设f (x)可导,若fˊ(a)·fˊ(b) < 0 ,则(a,b)内必有点c ,fˊ(c) = 0

分析 对。尽管可导函数的导函数不一定连续。但是,导函数天然地满足介值定理。这个结论在微积分中叫“达布定理”。

在本篇问题8中,我们讲了“一点导数大于0”的逻辑推理。现在不仿设 fˊ(a) > 0 而 fˊ(b) < 0 分别在a , b两点处写出导数定义式,体念极限符号,(本篇问题8。)可以综合得到结论:

函数的端值 f (a),f (b) 都不是 f (x)在[a,b] 上的最大值。 最大值只能在(a,b)内一点实现,该点处导数为0 好啊,多少意外有趣事,尽在身边素材中。要的是脚踏实地,切忌空想。 考研数学讲座(18)泰勒公式级数连

中值定理是应用函数的导数研究函数变化特点的桥梁。中值定理运用函数在选定的中心点x0的函数值、导数值以及可能的高阶导数值,把函数表示为一个多项式加尾项的形式。再利用已知导函数的性质来处理尾项,对函数做进一步讨论。

中值定理的公式(可微分条件,有限增量公式,泰勒公式)都是描述型的数学公式。 描述型的数学公式并不难学。什么条件下可以用什么样的公式描述,你记住公式,完整地写出来不就行了。公式中的“点ξ”理解为客观存在的点。

在选定的中心点x0,函数的已知信息越丰富,相应的泰勒多项式与函数越贴近。 1.“微分是个新起点” —— 若函数 f(x)在点x0可微,

Δy = f ′(x0)Δx +ο(Δx) ;其中,ο(Δx)表示“比Δx高阶的无穷小。” 则函数实际上就有了一个新的(微局部的)表达式:

f(x)= f (x0) + f ′(x0)(x-x0) + ο(Δx) ( ο(Δx) 尾项,比Δx高阶的无穷小)

(潜台词:只有|Δx |充分小,“高阶无穷小”才有意义。)

历史上,这个表达式称为,“带皮阿诺余项的一阶泰勒公式”。

2. 拉格郎日公式 —— 若 函数f (x)在闭区间 [a,b] 上连续,在(a,b)内可导,则(a,b)内至少有一点ξ,使得 f (b)-f (a) = f ′(ξ)(b-a)

定理说的是区间,应用时不能太死板。在满足条件的区间内取任意两点,实际上也组成一个(子)区间。比如,在区间内任意选定一点x0,对于区间内任意一点x,(任给一点,相对不变。)也可以有 f (x)-f (x0) = f ′(ξ)(x-x0),ξ 在 x 与 x0之间,

(潜台词:任意一点x,对应着一个客观存在的“点ξ”, ξ=ξ(x) ) 即 f(x)= f(x0)+ f ′(ξ)(x-x0) ,ξ 在 x 与 x0之间, 3. 泰勒公式 —— 如果函数在点x0 邻近有二阶导数

f(x)= f(x0)+ f ′(x0)(x-x0)+ (f ″(ξ) /2)(x-x0)² ,ξ 在x与x0之间 式中的尾项叫拉格郎日尾项。有时也把 ξ 表示为 x0 +θ(x-x0) ,0<θ<1 一般情况下,我们无法知道

ξ=ξ(x)的结构、连续性等,只能依靠已知导函数的性质来限定尾项,实现应用目的。

如果函数仅在点x0二阶可导,我们可以用高阶无穷小尾项(皮阿诺余项)

f(x)= f(x0)+ f ′(x0)(x-x0)+ (f ″(x0) /2)(x-x0)²+ ο(|Δx| ²) 泰勒系数 —— 如果在点x0 邻近f(x)n+1 阶可导,则有泰勒系数 f(x0) ,f ′(x0) , f ″(x0) / 2! ,f ′ ″(x0) / 3! ,„„

可以写出, f(x)= n 次泰勒多项式 + 拉格朗日尾项

4. 泰勒级数 —— 如果在点x0邻近f(x)无穷阶可导,不妨取x0 = 0,则利用泰勒系数可以写出一个幂级数

f(x)= f(0)+ f ′(0) x +(f ″(0) /2)x²+(f ′ ″(0 ) / 3!)x³ + „„ 这个幂级数的和函数是否就是f(x)呢?不一定!

(画外音:太诡异了,f(x)产生了泰勒系数列,由此泰勒系数列生成一个幂级数 ,它的和函数却不一定是 f(x)。就象鸡下的蛋,蛋孵出的却不一定是鸡。)

关键在余项。当且仅当 n → ∞ 时,泰勒公式尾项的极限为 0 ,f(x)一定是它的泰勒系数列生成的幂级数的和函数。称为 f(x)的泰勒展开式。 验证这个条件是否成立,往往十分困难。故通常利用五个常用函数的泰勒展开式,依靠唯一性定理,用间接法求某些别的函数的泰勒展开式。

美国的学生特别轻松,他们的大学数学教材很有创意,早在极限部分就要求他们,当成定义记住指数函数与正弦函数的泰勒展开式。

exp(x)= 1 + x + x²/2!+ x³/3!+ „„ -∞

(逐项求导, cos x = 1- x²/2!+ „„

-∞

泰勒公式基本应用(1)—— 等价无穷小相减产生高阶无穷小。 关键在于低阶项相互抵消。应用泰勒公式直接有 ,x → 0 时, exp(x)- 1 ~ x , exp(x)-1-x ~ x² / 2

sin x ~ x , sin x - x ~ - x³ / 3! , cos x -1 ~ - x²/2 ln(1+x)~ x , ln (1+x)-x ~ -x²/2 (1+x)的μ次方- 1 ~ μ x 例87 已知x→ 1时,lim(√(x³+3) -A-B(x -1)-(x -1) ² )/(x -1) ² = 0 ,试确定常数,A,B,C 分析

已知表明 x → 1 时,分子是较分母高阶的无穷小。

题面已暗示,应将函数y =√(x³+3)在点 x = 1 表示为带皮阿诺余项的泰勒公式,且必有

常数项 = A 一次项系数 = B 二次项系数 = C 这些低阶项相互抵消,分子才能成为高于二次方级的无穷小。

于是 A = y(1) = 2 ,B = y ′(1) = 3/4 , C = y″(1) / 2 = 39/64 (画外音:有的人一遇上这类题就想用洛必达法则,这在逻辑上是错的。不懂得无穷小的变化机理。 如果只有两个参数,可看讲座(9)。)

泰勒公式基本应用(2)—— 带皮阿诺余项的泰勒公式用于求极限

例88 若 x→ 0 时 ,极限 lim ( sin6 x+ f(x))/ x³ = 0 ,则

x→ 0 时,极限 l im ( 6 + f(x))/ x² = ? 分析

分子有两项。决不能把 sin6 x 换为 6x , (潜台词:sin6 x不是分子的因式,是分子的一项。)

这时正好用“带皮阿诺余项的一阶泰勒公式”, sin 6x = 6 x - ( 6x)³/3!+ ο(|Δx| ³) 代入已知极限,移项得 lim ( 6 + f(x))/ x² = 36

例89 设函数 f (x) 在 x = 0 的某邻域内有连续的二阶导数,且 f (0)≠0 ,f ′(0)≠0, 记 F(h) = λ1 f (h) + λ2 f (2h) + λ

f (3h) 一 f (0),

试证,存在唯一的实数组 λ1,λ2,λ3 ,使 h → 0 时,F(h) 是比 h ² 高阶的无穷小。

3 分析 讨论极限问题,有高阶导数信息,先写带皮亚诺余项的泰勒公式 f(x)= f(0)+ f ′(0)x + (f ″(0) /2)x²+ ο(|x| ²)

这是函数 f(x)的一个新的(微局部的)表达式,当然可以表示 f (h) , f (2h), f (3h) f (h) = f(0)+ f ′(0) h + (f ″(0) /2)h ²+ ο(| h | ²)

f (2h) = f(0)+ f ′(0)2 h + (f ″(0) /2)(2h)²+ ο(| h | ²) f (3h) = f(0)+ f ′(0)3 h + (f ″(0) /2)(3h)²+ ο(| h | ²) (潜台词:常数因子不影响尾项。) 将各式代入F(h),整理得

F(h) = ( λ1+λ2+λ3一1) f(0)+ ( λ1+2λ2 + 3λ3) f ′(0) h + ( λ1+ 4λ2 + 9λ3) f ″(0) h ²/2 + ο(| h | ²)

要让 h → 0 时,F(h) 是比 h ²高阶的无穷小。,只需令上式中的常数项及 h 和 h ²项的系数全为 0 ,这就得到未知量

λ1,λ2,λ3 的一个齐次线性方程组,它的系数行列式是三阶的范德蒙行列式,其值不为 0 ,故可以相应算得唯一的一组 λ1,λ2,和 λ3 泰勒公式基本应用(3)——带拉格郎日尾项的泰勒公式用于一般讨论 例90 —— 凸函数不等式

如果函数 f (x) 二阶可导且二阶导数定号,(称为凸函数),则应用泰勒公式可以得到不等式

f (x)≥ f(x0)+ f ′(x0)(x-x0) (或≤)

实际上 f(x)= f(x0 )+ f ′(x0)(x-x0)+ (f ″(ξ) /2 ) (x-x0)² ,ξ 在 x 与 x0之间

设 f ″(x)> 0 ,自然有(f ″(ξ) /2 ) (x-x0)² > 0 ,舍掉此项就得到不等式。

*例91 函数 f (x) 在 [-1,1] 上有连续的三阶导数,且 f (-1) = 0 ,f (1) =1,f ′(0) = 0,试证明在区间 内至少有一点 ξ ,使得 f ″′(ξ) = 3 分析 选中心点 x0 = 0,在区间内讨论,写出带拉格郎日尾项的泰勒公式

f(x)= f(0)+(f ″(0) /2)x²+(f ′ ″(η ) / 3!)x³ , η在0与x之间 既然这是 f (x) 的又一个表达式,当然可以代入x = -1 , 1 ,它们分别相应有 ξ 1,ξ 2 0 = f(-1)= f(0)+(f ″(0) /2)(-1)²+(f ′ ″(ξ 1 ) / 3!)(-1)³ , -1<ξ 1<0 1 = f(1)= f(0)+(f ″(0) /2)1² +(f ′ ″(ξ 2) / 3!)1³ , 0 <ξ 2 < 1 到了这一步,仔细观察发现,两式相减,能得到只剩下有关三阶导数值的表达式。 f ′″(ξ 2) + f ′″(ξ 1 ) = 6 或着两个三阶导数值都等于3 ,本题得证。或者它们一大于3 ,一小于3 ,而函数 f ″′(x) 连续,可以应用介值定理完成本题证明。

第三篇:考研数学高数重要知识点

摘要:从整个学科上来看,高数实际上是围绕着、导数和积分这三种基本的运算展开的。对于每一种运算,我们首先要掌握它们主要的计算方法;熟练掌握计算方法后,再思考利用这种运算我们还可以解决哪些问题,比如会计算以后:那么我们就能解决函数的连续性,函数间断点的分类,导数的定义这些问题。这样一梳理,整个高数的逻辑体系就会比较清晰。

函数部分:

函数的计算方法很多,总结起来有十多种,这里我们只列出主要的:四则运算,等价无穷小替换,洛必达法则,重要,泰勒公式,中值定理,夹逼定理,单调有界收敛定理。每种方法具体的形式教材上都有详细的讲述,考生可以自己回顾一下,不太清晰的地方再翻到对应的章节看一看。

接下来,我们来说说直接通过定义的基本概念:

通过,我们定义了函数的连续性:函数在处连续的定义是,根据的定义,我们知道该定义又等价于。所以讨论函数的连续性就是计算。然后是间断点的分类,讨论函数间断点的分类,需要计算左右。

再往后就是导数的定义了,函数在处可导的定义是存在,也可以写成存在。这里的式与前面相比要复杂一点,但本质上是一样的。最后还有可微的定义,函数在处可微的定义是存在只与有关而与无关的常数使得时,有,其中。直接利用其定义,我们可以证明函数在一点可导和可微是等价的,它们都强于函数在该点连续。

以上就是这个体系下主要的知识点。

导数部分:

导数可以通过其定义计算,比如对分段函数在分段点上的导数。但更多的时候,我们是直接通过各种求导法则来计算的。主要的求导法则有下面这些:四则运算,复合函数求导法则,反函数求导法则,变上限积分求导。其中变上限积分求导公式本质上应该是积分学的内容,但出题的时候一般是和导数这一块的知识点一起出的,所以我们就把它归到求导法则里面了。

能熟练运用这些基本的求导法则之后,我们还需要掌握几种特殊形式的函数导数的计算:隐函数求导,参数方程求导。我们对导数的要求是不能有不会算的导数。这一部分的题目往往不难,但计算量比较大,需要考生有较高的熟练度。

然后是导数的应用。导数主要有如下几个方面的应用:切线,单调性,极值,拐点。每一部分都有一系列相关的定理,考生自行回顾一下。

这中间导数与单调性的关系是核心的考点,考试在考查这一块时主要有三种考法:

①求单调区间或证明单调性;

②证明不等式;

③讨论方程根的个数。

同时,导数与单调性的关系还是理解极值与拐点部分相关定理的基础。另外,数学三的考生还需要注意导数的经济学应用;数学一和数学二的考生还要掌握曲率的计算公式。

积分部分:

一元函数积分学首先可以分成不定积分和定积分,其中不定积分是计算定积分的基础。对于不定积分,我们主要掌握它的计算方法:第一类换元法,第二类换元法,分部积分法。这三种方法要融会贯通,掌握各种常见形式函数的积分方法。

熟练掌握不定积分的计算技巧之后再来看一看定积分。定积分的定义考生需要稍微注意一下,考试对定积分的定义的要求其实就是两个方面:会用定积分的定义计算一些简单的;理解微元法(分割、近似、求和、取)。至于可积性的严格定义,考生没有必要掌握。

然后是定积分这一块相关的定理和性质,这中间我们就提醒考生注意两个定理:积分中值定理和微积分基本定理。这两个定理的条件要记清楚,证明过程也要掌握,考试都直接或间接地考过。

至于定积分的计算,我们主要的方法是利用牛顿—莱布尼兹公式借助不定积分进行计算,当然还可以利用一些定积分的特殊性质(如对称区间上的积分)。

一般来说,只要不定积分的计算没问题,定积分的计算也就不成问题。定积分之后还有个广义积分,它实际上就是把积分过程和求的过程结合起来了。考试对这一部分的要求不太高,只要掌握常见的广义积分收敛性的判别,再会进行一些简单的计算就可以了。

会计算积分了,再来看一看定积分的应用。定积分的应用分为几何应用和物理应用。其中几何应用包括平面图形面积的计算,简单的几何体(主要是旋转体)体积的计算,曲线弧长的计算,旋转曲面面积的计算。物理应用主要是一些常见物理量的计算,包括功,压力,质心,引力,转动惯量等。其中数学一和数学二的考生需要全部掌握;数学三的考生只需掌握平面图形面积的计算,简单的几何体(主要是旋转体)体积的计算。这一部分题目的综合性往往比较强,对考生综合能力要求较高。

这就是高等数学整个学科从三种基本运算的角度梳理出来的主要知识点。除此之外,考生需要掌握的知识点还有多元函数微积分,它实际上是将一元函数中的,连续,可导,可微,积分等概念推广到了多元函数的情况,考生可以按照上面一样的思路来总结。

第四篇:03年专升本高数一考纲

演讲稿 工作总结 调研报告 讲话稿 事迹材料 心得体会 策划方案

03年专升本高数一考纲

03年专升本高数一考纲.txt明骚易躲,暗贱难防。佛祖曰:你俩就是大傻B!当白天又一次把黑夜按翻在床上的时候,太阳就出生了03年专升本高数一考纲

高等数学

(一)

本大纲适用于工学理学(生物科学类、地理科学类、环境科学类、心理学类等四个一级学科除外)专业的考生。 总要求

考生应按本大纲的要求,了解或理解“高等数学”中函数、极限和连续、一元函数微分学、一元函数积分学、向量代数与空间解析几何、多元函数微积分学、无穷级数、常微分方程的基本概念与基本理论;学会、掌握或熟练掌握上述各部分的基本方法。应注意各部分知识的结构及知识的内在联系;应具有一定的抽象思维能力、逻辑推理能力、运算能力、空间想象能力;能运用基本概念、基本理论和基本方法正确地推理证明,准确地计算;能综合运用所学知识分析并解决简单的实际问题。

本大纲对内容的要求由低到高,对概念和理论分为“了解”和“理解”两个层次;对方法和运算分为“会”、“掌握”和“熟练掌握”三个层次。

精心收集

精心编辑

精致阅读

如需请下载!

演讲稿 工作总结 调研报告 讲话稿 事迹材料 心得体会 策划方案

复习考试内容

一、函数、极限和连续

(一)函数 1.知识范围 (1)函数的概念

函数的定义 函数的表示法 分段函数 隐函数 (2)函数的性质

单调性 奇偶性 有界性 周期性 (3)反函数

反函数的定义 反函数的图像 (4)基本初等函数

幂函数 指数函数 对数函数 三角函数 反三角函数 (5)函数的四则运算与复合运算 (6)初等函数 2.要求

(1)理解函数的概念。会求函数的表达式、定义域及函数值。会求分段函数的定义域、函数值,会作出简单的分段函数的图像。 (2)理解函数的单调性、奇偶性、有界性和周期性。

(3)了解函数 与其反函数 之间的关系(定义域、值域、图像),会求单调函数的反函数。

(4)熟练掌握函数的四则运算与复合运算。 (5)掌握基本初等函数的性质及其图像。

精心收集

精心编辑

精致阅读

如需请下载!

演讲稿 工作总结 调研报告 讲话稿 事迹材料 心得体会 策划方案

(6)了解初等函数的概念。

(7)会建立简单实际问题的函数关系式。

(二)极限 1.知识范围 (1)数列极限的概念 数列 数列极限的定义 (2)数列极限的性质

唯一性 有界性 四则运算法则 夹逼定理 单调有界数列极限存在定理

(3)函数极限的概念

函数在一点处极限的定义 左、右极限及其与极限的关系 趋于无穷 时函数的极限 函数极限的几何意义 (4)函数极限的性质

唯一性 四则运算法则 夹通定理 (5)无穷小量与无穷大量

无穷小量与无穷大量的定义 无穷小量与无穷大量的关系 无穷小量的性质 无穷小量的阶 (6)两个重要极限

2.要求

(1)理解极限的概念(对极限定义中“ ”、“ ”、“ ”等形式的描述

精心收集

精心编辑

精致阅读

如需请下载!

演讲稿 工作总结 调研报告 讲话稿 事迹材料 心得体会 策划方案

不作要求)。会求函数在一点处的左极限与右极限,了解函数在一点处极限存在的充分必要条件。

(2)了解极限的有关性质,掌握极限的四则运算法则。

(3)理解无穷小量、无穷大量的概念,掌握无穷小量的性质、无穷小量与无穷大量的关系。会进行无穷小量阶的比较(高阶、低阶、同阶和等价)。会运用等价无穷小量代换求极限。 (4)熟练掌握用两个重要极限求极限的方法。

(三)连续 1.知识范围 (1)函数连续的概念

函数在一点处连续的定义 左连续与右连续 函数在一点处连续的充分必要条件 函数的间断点及其分类 (2)函数在一点处连续的性质

连续函数的四则运算 复合函数的连续性 反函数的连续性 (3)闭区间上连续函数的性质

有界性定理 最大值与最小值定理 介值定理(包括零点定理) (4)初等函数的连续性 2.要求

(1)理解函数在一点处连续与间断的概念,理解函数在一点处连续与极限存在的关系,掌握判断函数(含分段函数)在一点处的连续性的方法。

(2)会求函数的间断点及确定其类型。

精心收集

精心编辑

精致阅读

如需请下载!

演讲稿 工作总结 调研报告 讲话稿 事迹材料 心得体会 策划方案

(3)掌握在闭区间上连续函数的性质,会用介值定理推证一些简单命题。

(4)理解初等函数在其定义区间上的连续性,会利用连续性求极限。

二、一元函数微分学

(一)导数与微分 1.知识范围 (1)导数概念

导数的定义 左导数与右导数 函数在一点处可导的充分必要条件 导数的几何意义与物理意义 可导与连续的关系 (2)求导法则与导数的基本公式

导数的四则运算 反函数的导数 导数的基本公式 (3)求导方法

复合函数的求导法 隐函数的求导法 对数求导法 由参数方程确定的函数的求导法 求分段函数的导数 (4)高阶导数

高阶导数的定义 高阶导数的计算 (5)微分

微分的定义 微分与导数的关系 微分法则 一阶微分形式不变性 2.要求

(1)理解导数的概念及其几何意义,了解可导性与连续性的关系,掌握用定义求函数在一点处的导数的方法。 (2)会求曲线上一点处的切线方程与法线方程。

精心收集

精心编辑

精致阅读

如需请下载!

演讲稿 工作总结 调研报告 讲话稿 事迹材料 心得体会 策划方案

(3)熟练掌握导数的基本公式、四则运算法则及复合函数的求导方法,会求反函数的导数。

(4)掌握隐函数求导法、对数求导法以及由参数方程所确定的函数的求导方法,会求分段函数的导数。

(5)理解高阶导数的概念,会求简单函数的 阶导数。

(6)理解函数的微分概念,掌握微分法则,了解可微与可导的关系,会求函数的一阶微分。

(二)微分中值定理及导数的应用 1.知识范围 (1)微分中值定理

罗尔(Rolle)定理 拉格朗日(Lagrange)中值定理 (2)洛必达(L’Hospital)法则 (3)函数增减性的判定法

(4)函数的极值与极值点 最大值与最小值 (5)曲线的凹凸性、拐点

(6)曲线的水平渐近线与铅直渐近线 2.要求

(1)理解罗尔定理、拉格朗日中值定理及它们的几何意义。会用罗尔定理证明方程根的存在性。会用拉格朗日中值定理证明简单的不等式。

(2)熟练掌握用洛必达法则求“ ”、“ ”、“ ”、“ ”、“ ”、“ ”、“ ”型未定式的极限的方法。

精心收集

精心编辑

精致阅读

如需请下载!

演讲稿 工作总结 调研报告 讲话稿 事迹材料 心得体会 策划方案

(3)掌握利用导数判定函数的单调性及求函数的单调增、减区间的方法,会利用函数的单调性证明简单的不等式。

(4)理解函数极值的概念。掌握求函数的极值、最大值与最小值的方法,会解简单的应用问题。

(5)会判断曲线的凹凸性,会求曲线的拐点。 (6)会求曲线的水平渐近线与铅直渐近线。 (7)会作出简单函数的图形。

三、一元函数积分学

(一)不定积分 1.知识范围 (1)不定积分

原函数与不定积分的定义 原函数存在定理 不定积分的性质 (2)基本积分公式 (3)换元积分法

第一换元法(凑微分法) 第二换元法 (4)分部积分法

(5)一些简单有理函数的积分 2.要求

(1)理解原函数与不定积分的概念及其关系,掌握不定积分的性质,了解原函数存在定理。

(2)熟练掌握不定积分的基本公式。

(3)熟练掌握不定积分第一换元法,掌握第二换元法(限于三角代

精心收集

精心编辑

精致阅读

如需请下载!

演讲稿 工作总结 调研报告 讲话稿 事迹材料 心得体会 策划方案

换与简单的根式代换)。

(4)熟练掌握不定积分的分部积分法。 (5)会求简单有理函数的不定积分。

(二)定积分 1.知识范围 (1)定积分的概念

定积分的定义及其几何意义 可积条件 (2)定积分的性质 (3)定积分的计算

变上限积分 牛顿—莱布尼茨(Newton-Leibniz)公式 换元积分法 分部积分法

(4)无穷区间的广义积分 (5)定积分的应用

平面图形的面积 旋转体体积 物体沿直线运动时变力所作的功 2.要求

(1)理解定积分的概念及其几何意义,了解函数可积的条件。 (2)掌握定积分的基本性质。

(3)理解变上限积分是变上限的函数,掌握对变上限定积分求导数的方法。

(4)熟练掌握牛顿—莱布尼茨公式。 (5)掌握定积分的换元积分法与分部积分法。

(6)理解无穷区间的广义积分的概念,掌握其计算方法。

精心收集

精心编辑

精致阅读

如需请下载!

演讲稿 工作总结 调研报告 讲话稿 事迹材料 心得体会 策划方案

(7)掌握直角坐标系下用定积分计算平面图形的面积以及平面图形绕坐标轴旋转所生成的旋转体体积。 会用定积分求沿直线运动时变力所作的功。

四、向量代数与空间解析几何

(一)向量代数 1.知识范围 (1)向量的概念

向量的定义 向量的模 单位向量 向量在坐标轴上的投影 向量的坐标表示法 向量的方向余弦 (2)向量的线性运算

向量的加法 向量的减法 向量的数乘 (3)向量的数量积

二向量的夹角 二向量垂直的充分必要条件 (4)二向量的向量积 二向量平行的充分必要条件 2.要求

(1)理解向量的概念,掌握向量的坐标表示法,会求单位向量、方向余弦、向量在坐标轴上的投影。

(2)熟练掌握向量的线性运算、向量的数量积与向量积的计算方法。 (3)熟练掌握二向量平行、垂直的充分必要条件。

(二)平面与直线 1.知识范围

精心收集

精心编辑

精致阅读

如需请下载!

演讲稿 工作总结 调研报告 讲话稿 事迹材料 心得体会 策划方案

(1)常见的平面方程 点法式方程 一般式方程

(2)两平面的位置关系(平行、垂直和斜交) (3)点到平面的距离 (4)空间直线方程

标准式方程(又称对称式方程或点向式方程)一般式方程 参数式方程

(5)两直线的位置关系(平行、垂直)

(6)直线与平面的位置关系(平行、垂直和直线在平面上) 2.要求

(1)会求平面的点法式方程、一般式方程。会判定两平面的垂直、平行。会求两平面间的夹角。 (2)会求点到平面的距离。

(3)了解直线的一般式方程,会求直线的标准式方程、参数式方程。会判定两直线平行、垂直。

(4)会判定直线与平面间的关系(垂直、平行、直线在平面上)。

(三)简单的二次曲面 1.知识范围

球面 母线平行于坐标轴的柱面 旋转抛物面 圆锥面 椭球面 2.要求

了解球面、母线平行于坐标轴的柱面、旋转抛物面、圆锥面和椭球面的方程及其图形。

精心收集

精心编辑

精致阅读

如需请下载!

演讲稿 工作总结 调研报告 讲话稿 事迹材料 心得体会 策划方案

五、多元函数微积分学

(一)多元函数微分学 1.知识范围 (1)多元函数

多元函数的定义 二元函数的几何意义 二元函数极限与连续的概念 (2)偏导数与全微分 偏导数 全微分 二阶偏导数 (3)复合函数的偏导数 (4)隐函数的偏导数

(5)二元函数的无条件极值与条件极值 2.要求

(1)了解多元函数的概念、二元函数的几何意义。会求二次函数的表达式及定义域。了解二元函数的极限与连续概念(对计算不作要求)。 (2)理解偏导数概念,了解偏导数的几何意义,了解全微分概念,了解全微分存在的必要条件与充分条件。 (3)掌握二元函数的

一、二阶偏导数计算方法。 (4)掌握复合函数一阶偏导数的求法。 (5)会求二元函数的全微分。

(6)掌握由方程 所确定的隐函数 的一阶偏导数的计算方法。 (7)会求二元函数的无条件极值。会用拉格朗日乘数法求二元函数的条件极值。

(二)二重积分

精心收集

精心编辑

精致阅读

如需请下载!

演讲稿 工作总结 调研报告 讲话稿 事迹材料 心得体会 策划方案

1.知识范围 (1)二重积分的概念

二重积分的定义二重积分的几何意义 (2)二重积分的性质 (3)二重积分的计算 (4)二重积分的应用 2.要求

(1)理解二重积分的概念及其性质。

(2)掌握二重积分在直角坐标系及极坐标系下的计算方法。 (3)会用二重积分解决简单的应用问题(限于空间封闭曲面所围成的有界区域的体积、平面薄板质量)。

六、无穷级数

(一)数项级数 1.知识范围 (1)数项级数

数项级数的概念 级数的收敛与发散 级数的基本性质 级数收敛的必要条件

(2)正项级数收敛性的判别法 比较判别法 比值判别法 (3)任意项级数

交错级数 绝对收敛 条件收敛 莱布尼茨判别法 2.要求

精心收集

精心编辑

精致阅读

如需请下载!

演讲稿 工作总结 调研报告 讲话稿 事迹材料 心得体会 策划方案

(1)理解级数收敛、发散的概念。掌握级数收敛的必要条件,了解级数的基本性质。

(2)掌握正项级数的比值判别法。会用正项级数的比较判别法。 (3)掌握几何级数 、调和级数 与 级数 的收敛性。

(4)了解级数绝对收敛与条件收敛的概念,会使用莱布尼茨判别法。

(二)幂级数 1.知识范围 (1)幂级数的概念 收敛半径 收敛区间 (2)幂级数的基本性质

(3)将简单的初等函数展开为幂级数 2.要求

(1)了解幂级数的概念。

(2)了解幂级数在其收敛区间内的基本性质(和、差、逐项求导与逐项积分)。

(3)掌握求幂级数的收敛半径、收敛区间(不要求讨论端点)的方法。

(4)会运用 的麦克劳林(Maclaurin)公式,将一些简单的初等函数展开为 或 的幂级数。

七、常微分方程

(一)一阶微分方程 1.知识范围

精心收集

精心编辑

精致阅读

如需请下载!

演讲稿 工作总结 调研报告 讲话稿 事迹材料 心得体会 策划方案

(1)微分方程的概念

微分方程的定义 阶 解 通解 初始条件 特解 (2)可分离变量的方程 (3)一阶线性方程 2.要求

(1)理解微分方程的定义,理解微分方程的阶、解、通解、初始条件和特解。

(2)掌握可分离变量方程的解法。 (3)掌握一阶线性方程的解法。

(二)可降价方程 1.知识范围 (1) 型方程 (2) 型方程 2.要求

(1)会用降阶法解 型方程。 (2)会用降阶法解 型方程。

(三)二阶线性微分方程 1.知识范围

(1)二阶线性微分方程解的结构 (2)二阶常系数齐次线性微分方程 (3)二阶常系数非齐次线性微分方程 2.要求

精心收集

精心编辑

精致阅读

如需请下载!

演讲稿 工作总结 调研报告 讲话稿 事迹材料 心得体会 策划方案

(1)了解二阶线性微分方程解的结构。 (2)掌握二阶常系数齐次线性微分方程的解法。

(3)掌握二阶常系数非齐次线性微分方程的解法(自由项限定为 ,其中 为 的 次多项式, 为实常数; ,其中 为实常数)。

考试形式及试卷结构 试卷总分:150分 考试时间:150分钟 考试方式:闭卷,笔试 试卷内容比例:

函数、极限和连续 约15% 一元函数微分学 约25% 一元函数积分学 约20% 多元函数微积分(含向量代数与空间解析几何) 约20% 无穷级数 约10% 常微分方程 约10% 试卷题型比例: 选择题 约15% 填空题 约25% 解答题 约60% 试题难易比例: 容易题 约30%

精心收集

精心编辑

精致阅读

如需请下载!

演讲稿 工作总结 调研报告 讲话稿 事迹材料 心得体会 策划方案

约50% 约20%

精心收集

精心编辑 精致阅读 如需请下载! 中等难度题较难题

第五篇:2018考研数学:高数最容易出证明题的知识点

来源:智阅网

考研数学难题一般出现在高等数学,所以我们一定对高等数学重点进行复习。高等数学题目中比较困难的是证明题,在整个高等数学,容易出证明题的地方如下:

一、数列极限的证明

数列极限的证明是数

一、二的重点,特别是数二最近几年考的非常频繁,已经考过好几次大的证明题,一般大题中涉及到数列极限的证明,用到的方法是单调有界准则。

二、微分中值定理的相关证明

微分中值定理的证明题历来是考研的重难点,其考试特点是综合性强,涉及到知识面广,涉及到中值的等式主要是三类定理:

1.零点定理和介质定理;

2.微分中值定理;

包括罗尔定理,拉格朗日中值定理,柯西中值定理和泰 勒定理,其中泰勒定理是用来处理高阶导数的相关问题,考查频率底,所以以前两个定理为主。

3.微分中值定理

积分中值定理的作用是为了去掉积分符号。

在考查的时候,一般会把三类定理两两结合起来进行考查,所以要总结到现在为止,所考查的题型。

三、方程根的问题

包括方程根唯一和方程根的个数的讨论。

四、不等式的证明

五、定积分等式和不等式的证明

主要涉及的方法有微分学的方法:常数变异法;积分学的方法:换元法和分布积分法。

六、积分与路径无关的五个等价条件

这一部分是数一的考试重点,最近几年没涉及到,所以要重点关注。

上面我们讲述的这几个点是我们复习的重点,在历年考试中,考察的频率较高,考生们一定要重点关注。2018汤家凤《考研数学复习大全》(数学一)这本书对我们的考试帮助很大,考生们一定要好好利用。

上一篇:矿业地质灾害应急预案下一篇:科学发展观的全球视野