炼钢转炉基础施工方案

2023-01-13

在一份优秀的方案中,既要包括各项具体的工作环节,时间节点,执行人,也要包括实现方法、需要的资源和预算等,那么具体要如何操作呢?以下是小编精心整理的《炼钢转炉基础施工方案》,供大家参考,更多范文可通过本站顶部搜索您需要的内容。

第一篇:炼钢转炉基础施工方案

南昌钢铁厂炼钢车间2#转炉改造工程方案

方大特钢炼钢厂2#转炉除尘系统改造工程施工方案

方大特钢2号转炉除尘系统改造工程

编 制: 审 核: 批 准: 编制单位:武钢建工集团建设分公司编制时间:二○一一年九月四日

施 工 方 案

武钢建工集团建设分公司

方大特钢炼钢厂2#转炉除尘系统改造工程施工方案

方大特钢炼钢厂2#转炉除尘系统改造工程

施工技术方案

方大特钢炼钢厂因生产工艺需求,决定对2#转炉实行改造,将原有65t转炉改造为80t转炉。我公司根据多年的类似工程的施工组织经验,结合现场实际检修类容及现场施工条件编制此施工方案。因施工检修项目繁多,此方案仅就转炉炉壳、托圈及倾动装置、汽化烟道的更换作出详细介绍。

改造工程拟于2011年9月20日开工,在线工期57天,我们按照45天目标工期组织。

一、工程概况:

1、工程项目(详见甲方施工工程项目及相关项目的交待) 1.1、托圈的更换; 1.

2、炉体更换; 1.3、倾动装置的更换; 1.

4、耳轴轴承的更换;

1.5、转炉炉口段活动烟罩的更换; 1.

6、汽化烟道整体更换; 1.7、下料管、氧枪套管的更换; 1.

8、活动烟罩起升装置拆除及安装; 1.9、炉前、炉后摇炉室更换;

武钢建工集团建设分公司

2 方大特钢炼钢厂2#转炉除尘系统改造工程施工方案

1.10、各层平台钢结构局部改造;

1.

11、二次烟罩局部加固,狗窝部分拆除及恢复,炉门拆除及安装;

1.

12、相应的汽化管网及其它介质管网、水管改造。相关的设备、平台排障和恢复。

1.

13、一次烟气净化设备改造;

1.

14、汽化冷却系统管道隔热保温层恢复; 1.

15、炉下渣包车轨道更换、轨道基础加固; 1.

16、炉下两侧挡火板修复; 1.

17、增设两个高位料仓; 1.

18、更换汇总料仓。

2、主要设备重量清单

2.1、转炉炉体(含炉底、挡渣板),重量81672kg;2.

2、传动端轴承,重量1250kg; 2.3、固定端轴承,重量1250kg; 2.

4、托圈及耳轴,重量87189kg; 2.5、挡渣板,重量3156kg; 2.

6、二次减速机,重量45607.4kg; 2.7、一次减速机(一台),重量6540kg 2.

8、大齿轮,重量16455.6kg;

武钢建工集团建设分公司

方大特钢炼钢厂2#转炉除尘系统改造工程施工方案

3、编制依旧及相关技术要求 3.1、招标文件、技术协议书; 3.

2、施工图纸及设备装配图; 3.3、现场勘察情况; 3.

4、业主对质量、安全、文明施工的有关规定;

3.5、机械施工执行《机械设备安装工程施工及验收规范》GB50231-98;

3.6、钢结构施工执行《钢结构工程施工质量验收规范》GB50205-2001及《钢结构加固技术规范》CEC77:96;

3.7、钢结构焊接施工执行《钢结构工程施工质量验收规范》GB50205-2001

3.8、大烟道安装、找正、焊接等关键过程控制必须层层把关,并执行

GB50236-98《现场设备、工业管道焊接工程施工及验收规范》,

GB50273-98 《工业锅炉安装工程施工及验收规范》

二、施工特点

1、施工工作量大,绝对工期短,拆除及更换总工期仅45天;

2、施工现场可利用的行车起重能力较小,厂房结构中各平台承重能力小,给我方的吊装带来极大的不变;

3、1#、3#转炉处于生产状态,现场作业条件复杂,与业主之间需要强有力的协调;

武钢建工集团建设分公司

4 方大特钢炼钢厂2#转炉除尘系统改造工程施工方案

4、由于在施工期间1#、3#炉仍然在进行正常的生产,2#转炉在两座转炉中间,施工场地狭窄该工程施工作业面狭窄,作业层面复杂,施工环境恶劣吊装难度大。

5、大型构件的拆除及安装均需要炉前行车的配合吊装,而1#、3#转炉处于生产状态,为了尽量减小对业主生产的影响,每次使用炉前行车的时间非常短。

三.总体方案

炉壳、托圈、倾动装置拆除方案:活动烟罩、固定烟道拆除完毕后,将炉壳及托圈利用炉口上方滑车组锁住,分段破坏性拆除后吊落至炉底钢包车上直接倒运走。

炉壳、托圈、倾动装置安装方案:新烟道及除尘设备吊装到位后,拆除炉前平台局部区域,在炉底2台连接钢包车上组装支撑架,将组装为一体的托圈、轴承、大齿轮吊装到炉前平台钢包车支架上,再将炉壳吊运到支架上安装球形铰链及把持器与托圈组装成整体,再整体移进到转炉中心位置。

活动烟罩吊装方案:利用炉前行车将烟道缓慢拉出并吊走。 汽化烟道吊装方案:在利用各层平台预先挂设的滑车组,配合炉前平台牵引滑车组将各段烟道吊落至炉前平台处,再利用炉前行车将烟道吊走。

一次烟气净化设备吊装方案:同固定烟道吊装方案。

武钢建工集团建设分公司

5 方大特钢炼钢厂2#转炉除尘系统改造工程施工方案

四、总体安排

1、停炉前准备:用20天时间完成以下工作:

1)熟悉相关施工图纸及现场环境,依照备件及清单组织备品备件清点、检查、倒运;

2)、结构件现场制作及施工方案所需材料的准备; 3)、施工电源的铺设; 4)、机工具准备;

5)、炉底渣车支撑架的预制。 6)、各种规格绳索插制。 7)、各层平台大梁吊耳的焊接。 8)、各平台吊装点卷扬机的安置。 9)、二次吸尘罩局部加固。 10)、钢结构的制作。

11)、在设备和主要构件拆除前要留下原始标高和中心,认真作好拆除记录;

12)固定烟道的预组装:

要求制造厂出厂前进行打压试验和预组装工作。并按安装方位在分段处作好明显的0°、90°、270°定位标记。我安装方将参与备件验收工作。对于烟道的支撑和吊挂配件要有明细清单。

13、托圈、大齿轮与轴承的组装;

2、停炉后的主要施工顺序:

武钢建工集团建设分公司

6 方大特钢炼钢厂2#转炉除尘系统改造工程施工方案

施工前的准备工作→拆除二次除尘罩→拆除活动烟罩→拆除汽化烟道第一节→拆除汽化烟道第二节→拆除汽化烟道第三节→破坏性拆除炉壳、托圈及大齿轮→拆除一次除尘设备→除尘设备平台梁改造→吊装一次除尘设备→安装汽化烟道第四节→安装汽化烟道第三节→安装汽化烟道第二节→安装汽化烟道第一节→拆除炉前平台→整体安装托圈、炉壳及大齿轮→安装倾动装置→安装活动烟罩→网管改造及保温(同步进行炉底检修项目)

具体施工项目及时间节点详见施工管理网络图

3. 对甲方的配合要求:

3.1. 原料跨兑铁水桥式天车的配合; 3.2. 换氧枪桥式天车的配合; 3.3. 主材的及时供应;

3.4. 炉前摇炉小房的临时性拆安;

3.5.拆除部位相关介质管网,能源动力、电仪表线路等请甲方给予确认配合;

3.6、甲方提供2台钢包车;

五.主要施工方案

1、设备组装施工方案 1.1、托圈、炉体整体的组装:

托圈是转炉主体设备,由钢板焊接而成,箱型截面。 1.1.1组装工程量及主要项目如下: (1)耳轴轴承安装。 (2)大齿轮安装。 (3)炉壳的安装

1.1.2其主要安装工序如下:

武钢建工集团建设分公司

7 方大特钢炼钢厂2#转炉除尘系统改造工程施工方案

(1)开工前,预先制作安装托圈、大齿轮、轴承组装平台。 (2)支撑架四根立柱复侧水平度,标高,再将托圈正面朝上安放在支架上。

(3)安装托圈上部挡座架和下部挡座架。

(3)检查托圈和炉体上的三个球铰是否符合设计要求,螺栓螺帽是否灵活。

(4)将已组装好、验收合格的炉体吊入托圈中。

(5)利用三球铰支撑装置找正,炉体与托圈的定位,并把紧球铰螺栓。

(6)安装托圈上部挡座架和下部挡座架。 (7)安装托圈下部四组把持器。

(8)挡座架施焊、局部应力消除、检测验收。

1.2、炉体的组装:

炉体由厂家整体运送到现场,施工前应做好以下准备工作: 检查构件是否符合设计要求,认真阅读制造厂预装记录,拼装后要达到预组装精度要求。

1.3、轴承及轴承座的组装:

托圈耳轴轴承是双列调心圆柱滚子轴承,与轴装配为过渡配合,因此,装配工艺采用加热轴承的热装工艺。其加热温度、加热时间要根据过盈量等参数计算。

轴承加热要制作一个吊架,吊架与轴承一起放入油箱加热。加热

武钢建工集团建设分公司

8 方大特钢炼钢厂2#转炉除尘系统改造工程施工方案

前要精确测量轴与轴承的过盈量,才能决定加热温度和时间。并要求轴承加热前应处理轴承表面油污、毛刺。套装滚动轴承前,要检查轴承内圈与轴颈内圈配合公差以及轴承外圈与端盖轴承座的配合公差。同时还要检查轴承、轴颈、端盖轴承座三者配合表面的光洁度。

1.4、转炉倾动系统组装

倾动机构采用四点咬合悬挂式,力矩平衡式机构,主要由四台一次减速机、一套二次减速机、扭力杆平衡装置、事故支座、稀油集中润滑站等组成。

安装二次减速机(大齿轮),大齿轮与轴为切向键装配。装配时,要涂色检查切向键上下表面与轮槽、轮毂槽的接触情况,接触率应大于65%。若发现接触不良,可用锉刀或刮刀修整键槽。合格后,把切向键用木锤或铅、铝、纯铜锤敲入键槽,直至大齿轮的周向、轴向都紧固可靠为止。装配时要注意切向键的斜度应与轮毂的斜度一致,否则大齿轮会产生歪斜,同时降低连接的强度。

2、主要设备拆除方法

2.1、挡火墙、炉门等拆除、恢复方案 2.1.

1、14.6m平台、吸尘罩的加固:

加固的目的是为了拆除炉门后的立柱以及炉门前的吸尘罩,加固施工要安排在转炉停炉检修期间间或拆除炉砖时进行。

加固的方法:用大型工字钢或槽钢将14.6m平台的荷载转到19.7m大梁上去,将炉门两边的吸尘罩固定在加固构件上。

武钢建工集团建设分公司

9 方大特钢炼钢厂2#转炉除尘系统改造工程施工方案

2.1.2、拆除炉门:

停炉前要做好一切准备工作,一旦停炉首先将炉门吊走,给拆除立柱、挡火墙让出施工场地。

2.1.3、拆立柱、挡火墙:

拆立柱、挡火墙与托圈、炉壳破坏性拆除平行交叉作业,拆除构件尽量放到炉下去,再拖到旁边放好,安装时再拖到炉下用滑车组进行安装。

安装:当新托圈、炉壳吊装到位后,即可在倾动装置安装的同时进行立柱、挡火墙的恢复工作。

2.2、活动烟罩的拆除:

当衬砖拆除完毕后,将活动烟罩放置在炉壳上,利用炉前行车配合炉后滑车组牵引,吊装活动烟罩到炉前平台后倒运走。

2.3 炉壳、托圈及大齿轮的拆除及安装:

2.3.1、活动烟罩、固定烟道拆除完毕后,利用炉口上方滑车组锁炉壳下端,将炉壳下段破坏性割断,缓慢吊落至炉底钢包车上倒运走。

2.3.2、按照此方法分别破坏性拆除炉壳、托圈并及时倒运走。 2.3.

3、固定烟道全部吊装到位后,拆除炉前平台局部区域。并同时组装预制好的钢包车支撑架及托圈移动滑道。经过计算,托圈安装在支撑架上后,耳轴中心标高必须在+9.80m以上,而托圈下表面到耳轴中心高度为875mm,则预制支撑架的高度必须在+8.925m以上。

武钢建工集团建设分公司

10 方大特钢炼钢厂2#转炉除尘系统改造工程施工方案

2.3.4、托圈、炉体、轴承、大齿轮的重心经过计算,重心在支架之内,因此不会倾翻。为提高安全系数,在传动端底和非传动端底座处设支撑滑道,防止在炉体移动过程中发生倾倒。当耳轴中心标高为+9.80m时,轴承外径为1150mm,此时轴承下表面标高为+9.225m。故安装的滑到上表面标高不得高于+9.225m。

2.3.5、平台拆除完毕、支撑架组装完成后,将组装好的托圈吊装到支撑架上,吊装炉壳到托圈内并安装炉壳支撑装置。再用工字钢将托圈支撑在钢包车上,以免牵引时晃动。

2.3.6、在组装炉壳及托圈时,将扭力杆及下箱体吊装到位,并下降到最低位,以便托圈及大齿轮的平移到位。

2.3.6、将小车拖至转炉中心:用滑车组将小车拖至炉体中心(此时就可进行8.10m平台的恢复工作)。

2.3.7、托圈炉体找正:在轴承座与托圈间焊接支撑架,放置压机,再配合安装在支撑架上部的压机找正转炉中心线及标高。

2.3.8、安装、恢复倾动装置。 2.

4、汽化烟道的拆除:

2.4.1、在拆除固定烟道前,首先要排除各部位障碍,达到固定烟道能安全、快速拆除的目的。停炉后,在停炉洒水拆炉砖时,我方即可进行以下工作:

A、二次除尘大烟罩的加固,烟罩拆除部分拆除的准备工作。 B、各层平台吊装的障碍物拆除。与固定烟道、活动烟罩连接的汽化管网及介质管网拆除。固定烟道上的悬挂件拆除。排障所需拆

武钢建工集团建设分公司

11 方大特钢炼钢厂2#转炉除尘系统改造工程施工方案

除的设备部件原则上在各层平台编号就近存放,并采取保护性拆除方式。所拆除的废除件按甲方要求运到指定地点。

C、各段烟道捆绑钢丝绳、挂设滑车组,做好开始拆除吊装的准备工作。

2.4.2、固定烟道的拆除从第1段至第3段进行。烟道均为整体拆除后从炉前平台吊出,其中第三段的U型段下段采取分片破坏性拆除后,利用35M平台上方的电动葫芦将拆除件吊到35M平台最西侧。(在开工前的准备阶段,预先对电动葫芦进行检查)。

2.4.3、各段固定烟道的拆除以在高层框架各层平台相关大梁部位挂设滑车组吊装为主,辅以炉前牵引滑车组临时配合。

2.4.4、各段吊安滑车组挂设及关键分段第二段的吊装过程模拟图见如下示意图:

武钢建工集团建设分公司

12 方大特钢炼钢厂2#转炉除尘系统改造工程施工方案

加料跨屋面.5兑铁水矫式天车炉前操作平台图2:汽化烟道二拆除吊装立面示意图

2.4.5、固定烟道的安装从第4-1的顺序进行。各段烟道的找正采取导链配合进行。并进行相关支撑、吊挂装置的安装和恢复。

2.5、一次烟气净化设备的拆除及安装:

在汽化烟道第三节拆除后,即可将一次除尘设备各段临时性隔断、锁住,拆除构件吊装的障碍物,待炉壳及托圈破坏性拆除完毕后

武钢建工集团建设分公司

13 方大特钢炼钢厂2#转炉除尘系统改造工程施工方案

按照汽化烟道拆除方法将除尘设备逐件进行拆除。一次除尘拆除后立即进行除尘设备安装位置的平台梁改造,在将平台改造完毕后即可进行新的除尘设备的吊装。

六.机具计划

6.1. 卷扬机:49KW单筒6台;32KW单筒4台; 6.2. 15t~30t丝杆压机5台;

6.3. 氩弧焊机6台;电焊机10台;

6.4. 电动扳手3把;

6.5. 重型套筒扳手2套;

6.6. 10t导链10台;5t导链15台; 6.7. 2t~5t导链40台;

6.8. 各种配套使用的卡环、绳扣及撬扛等起重工具若干; 6.9. 活动扳手20把;手锤6把;大锤6把; 6.10.施工能源介质的准备;氧气,乙炔,氩气等 6.11. 100t液压千斤顶4台;50t液压千斤顶2台;

七.安全措施

本次工程量大,再加上工期紧,任务重,施工难度大。我公司为了安全、高质量的完成任务,精心组织和施工准备,合理安排施工,所有施工人员除严格遵守国家各项法律、法规及南昌钢铁厂有关规章

武钢建工集团建设分公司

14 方大特钢炼钢厂2#转炉除尘系统改造工程施工方案

制度外,还要严格执行开工报告、动火、用电等南昌钢铁厂的施工手续,为预防事故发生,安全施工,特制定如下安全防范措施:

1.大件物体的吊装、倒运

(1)严格按施工方案和技术交底的各项程序进行施工。 (2)正确使用起重机械,施工前仔细检查各种吊装工机具,如:卷扬机、滑车组、钢绳、卡环等,发现问题及时更换。在吊装前要进行试车,确保万无一失。

(3)起重作业时必须统一指挥、信号明确,卷扬机由专人操作, 安装立柱时选用钢绳要合理,安全系数K=6以上。

(4)用作吊装用的结构部位必须认真检查,认定其稳定性,必要时应加固使其达到吊装要求。空中变换角度时,吊点、重心必须准确,物件静止时,必须临时加固,吊装时,施工人员要远离吊物,防止吊运中物体挤、撞。

(5)大件物体的倒运,要及时同甲方做好沟通协调工作,并在倒运区域内设置防护安全隔离带,禁止与施工无关人员进入施工作业区域。在倒运的过程中,要安排专人进行指挥和调控。

2.多层立体交叉作业

(1)合理安排施工,尽量避开上下交叉作业。

(2)上层施工时,必须确认下层无施工人员或互相协调。切割物件时要固定好物件后方可施工。

(3)严禁乱扔杂物、杂件,施工废弃物要及时清理并按甲方要求

武钢建工集团建设分公司

15 方大特钢炼钢厂2#转炉除尘系统改造工程施工方案

放置到指定位置,必要时设立安全网,并安排监护人员维护现场。 (4)各施工作业体要及时进行有效沟通,并安排好专职安全员进行安全巡检,做好安全协调工作。

3.施工临时用电

(1)现场的各种电气设备需要专人管理,确定责任人,开关、按钮未经允许不得开启。

(2)必须对光线不好的作业区域要提前作好照明工作。 (3)所有的配电箱、电气设备必须按三级配电、二级漏电保护执行,线缆不得破损、裸露,不得随意摆放,应规范有序,避免可能的砸、挤及火的危害,专人巡回检查,排除隐患。

(4)具体细则严格按公司《施工临时用电安全管理办法》、《电工安全技术规程》执行。

4.其他

(1)由于施工现场正在生产中,所有施工人员尤其注意往来的生产行吊、转运车及其它货运车辆,在兑铁和倒铁水时严禁在炉台前行走。

(2)各种备品备件要摆正放牢,易燃易爆物品按有关规定放置。 (3)高空施工人员必须正确系好安全帽、安全带,作好防护措施,危险施工区域设置警示牌、标语。必要时在相关通道、临边洞口设置安全防护绳,禁止非施工人员进入施工现场。

(4)现场准备足够的消防器材和各种救护用品、用具。

武钢建工集团建设分公司

16 方大特钢炼钢厂2#转炉除尘系统改造工程施工方案

(5)其它具体工种按各工种安全规程严格要求自己,交接班时要根据下班工作任务,交代注意事项,安排合理的防范措施。 (6)当班安全员必须与各作业长,班组长协调沟通,了解本班的作业内容,预测可能会发生的事故,发现隐患,及时制止。有权向任何违章违纪,不听教育,屡教不改的施工人员进行停工学习,警告,罚款。安全员本人要以身作则,施行交接班制度。

(7)在工程开工前期和施工期间,公司组织全体施工人员进行不间断的各工种安全知识和安全防护的教育学习。严格执行公司制定的各项安全规章制度,对违反的职工严厉按公司有关制度进行考核。

八.质量保证措施

1、严格按施工图的质量标准、技术要求组织施工、检查。 2.建立、健全质量保证体系和质量控制休系。 3.严格执行我公司贯标文件,按程序文件指导施工。

4.严格执行工程质量验收标准,施工管理人员必须熟悉技术标准,要做好技术交底工作,干什么,就要知道标准。

5.要确保工程交工资料与工程同步,工程完工时要提供完整、真实有效的交工资和竣工图。

6.施工人员必须持证上岗,特殊工种必须抓好上岗前培训工作,不合格者不得上岗。

7.落实质量“三检制”,认真及时作好质量记录,专人负责,严格把好工序交接质量关。

武钢建工集团建设分公司

17 方大特钢炼钢厂2#转炉除尘系统改造工程施工方案

8.设立重点项目、关键部位质量管理点(如炉壳焊接、把持器安,加强工序检查,严把质量关。

武钢建工集团建设分公司

18 装)

第二篇:转炉炼钢技术

09冶金(3)班 吴丰

一、摘要

转炉炼钢(converter steelmaking)是以铁水、废钢、铁合金为主要原料,不借助外加能源,靠铁液本身的物理热和铁液组分间化学反应产生热量而在转炉中完成炼钢过程。转炉按耐火材料分为酸性和碱性,按气体吹入炉内的部位有顶吹、底吹和侧吹;按气体种类为分空气转炉和氧气转炉。碱性气顶吹和顶底复吹转炉由于其生产速度快、产量大,单炉产量高、成本低、投资少,为目前使用最普遍的炼钢设备。转氧炉主要用于生产碳钢、合金钢及铜和镍的冶炼。本文系统阐述了转炉炼钢技术的原理以及介绍了整个的工艺流程;总结了转炉炼钢技术的发展历程和世界转炉炼钢趋势。

二、 引言

早在 1856 年德国人贝赛麦就发明了底吹酸性转炉炼钢法,这种方法是 近代炼钢法的开端,它为人类生产了大量廉价钢,促进了欧洲的工业革命。 但由于此法不能去除硫和磷,因而其发展受到了限制。1879 年出现 了托 马斯底吹碱性转炉炼钢法,它使用带有碱性炉衬的转炉来处理高磷生铁。 虽然转炉法可 以大量生产钢,但它对生铁成分有着较严格的要求,而且一 般不能多用废钢 。随着工业 的进一步发展,废钢越来越多。在酸性转炉 炼钢法发明不到十年,法国人马丁利用蓄热原理,在 1864 年创立了平炉炼 钢法,1888 年出现了碱性平炉。平炉炼钢法对原料的要求不那么严格,容 量大,生产的品种多,所以不到 20 年它就成为世界上主要的炼钢方法,直 到 20 世纪 50 年代,在世界钢产量中,约 85%是平炉炼出来的。1952 年在 奥地利 出现纯氧顶吹转炉,它解决了钢中氮和其他有害杂质的含量问题, 使质量接近平炉钢,同时减少了随废气(当用普通空气吹炼时,空气含 79 % 无用的氮)损失的热量,可以吹炼温度较低的平炉生铁,因而节省了高炉 的焦炭耗量,且能使用更多的废钢 。由于转炉炼钢速度快(炼一炉钢约 10min,而平炉则需 7h),负能炼钢,节约能源,故转炉炼钢成为当代炼钢 的主流。 转炉炼钢(图 2) 其实 130 年以前贝斯麦发明底吹空气炼钢法时,就提出了用氧气炼钢的设 想,但受当时条件的限制没能实现。直到 20 世纪 50 年代初奥地利的 Voest Alpine 公司才将氧气炼钢用于工业生产,从而诞生了氧气顶吹转炉,亦称 LD 转炉。顶吹转炉问世后,其发展速度非常快,到 1968 年出现氧气底吹法 时,全世界顶吹法产钢能力已达 2.6 亿吨,占绝对垄断地位。1970 年后, 由于发明了用碳氢化合物保护的双层套管式底吹氧枪而出现了底吹法,各 种类型的底吹法转炉(如 OBM,Q-BOP,LSW 等)在实际生产中显示出许多 优于顶吹转炉之处,使一直居于首位的顶吹法受到挑战和冲击。 3 顶吹法的特点决定了它具有渣中含铁高,钢水含氧高,废气铁尘损失 大和冶炼超低碳钢 困难等缺点,而底吹法则在很大程度上能克服这些缺 点。但由于底吹法用碳氢化合物冷却喷嘴,钢水含氢量偏高,需在停吹后 喷吹惰性气体进行清洗。基于以上两种方法在冶金学上显现出的明显差别, 故在 20 世纪 70 年代以后,国外许多国家着手研究结合两种方法优点的顶 底复吹冶炼法。继奥地利人 Dr.Eduard 等于 1973 年研究转炉顶底复吹炼钢 之后,世界各国普遍开展了转炉复吹的研究工作,出现了各种类型的复吹 转炉,到 20 世纪 80 年代初开始正式用于生产。由于它 比顶吹和底吹法都 更优越,加上转炉复吹现场改造 比较容易,使之几年时间就在全世界范围 得到普遍应用,有的国家(如日本)已基本上淘汰了单纯的顶吹转炉。 传统的转炉炼钢过程是将高炉来的铁水经混铁炉混匀后兑入转炉,并 按一定 比例装入废钢,然后降下水冷氧枪以一定的供氧、枪位和造渣制度 吹氧冶炼。当达到吹炼终点时,提枪倒炉,测温和取样化验成分,如钢水 温度和成分达到 目标值范围就 出钢。否则,降下氧枪进行再吹。在出钢 过程中,向钢包中加入脱氧剂和铁合金进行脱氧、合金化。然后,钢水送 模铸场或连铸车间铸锭。 。

三、关键字

转炉炼钢

氧枪

造渣

装料

优化炼钢工艺

四、正文

(一):转炉炼钢流程介绍。

(二)、转炉炼钢氧枪位控制.(三). 转炉冶炼工艺: 转炉冶炼五大制度: 装料制度、供氧制度、造渣制度、温度制度、终点 控制及合金化制度。

(四)我国转炉的发展概况.(五)世界转炉炼钢发展趋势.(六)优化转炉炼钢工艺

(一)、转炉炼钢流程介绍

转炉炼钢是把氧气鼓入熔融的生铁里,使杂质硅、锰等氧化。在氧化的过程中放 出大量的热量 (含 1%的硅可使生铁的温度升高 200 摄氏度),可使炉内达到足 够高的温度。 因此转炉炼钢不需要另外使用燃料。 炼钢的基本任务是脱碳、 脱磷、 脱硫、 脱氧, 去除有害气体和非金属夹杂物, 提高温度和调整成分。 归纳为: “四 脱”(碳、氧、磷和硫),“二去”(去气和去夹杂),“二调整”(成分和温 度)。采用的主要技术手段为:供氧,造渣,升温,加脱氧剂和合金化操作。本专题将详细介绍转炉炼钢生产的工艺流程。

1.1 转炉冶炼原理简介

转炉炼钢的原材料分为金属料、非金属料和气体。金属料包括铁水、废钢、铁合金,非金属料包括造渣料、熔剂、冷却剂,气体包括氧气、氮气、氩气、二氧化碳等。非金属料是在转炉炼钢过程 中为了去除磷、硫等杂质,控制好过程温度而加入的材料。主要有造渣料(石灰、白云石),熔剂(萤石、氧化铁皮),冷却剂(铁矿石、石灰石、废钢),增碳剂和燃料(焦炭、石墨籽、煤块、重油)

转炉炼钢是在转炉里进行。转炉的外形就像个梨,内壁有耐火砖,炉侧有许 9 多小孔(风口),压缩空气从这些小孔里吹炉内,又叫做侧吹转炉。开始时,转 炉处于水平,向内注入 1300 摄氏度的液态生铁,并加入一定量的生石灰,然后 鼓入空气并转动转炉使它直立起来。这时液态生铁表面剧烈的反应,使铁、硅、 锰氧化 (FeO,SiO2 , MnO,) 生成炉渣,利用熔化的钢铁和炉渣的对流作用,使 反应遍及整个炉内。几分钟后,当钢液中只剩下少量的硅与锰时,碳开始氧化, 生成一氧化碳(放热)使钢液剧烈沸腾。炉口由于溢出的一氧化炭的燃烧而出现 巨大的火焰。最后,磷也发生氧化并进一步生成磷酸亚铁。磷酸亚铁再跟生石灰 反应生成稳定的磷酸钙和硫化钙, 一起成为炉渣。 当磷与硫逐渐减少, 火焰退落, 炉口出现四氧化三铁的褐色蒸汽时,表明钢已炼成。这时应立即停止鼓风,并把 转炉转到水平位置,把钢水倾至钢水包里,再加脱氧剂进行脱氧。整个过程只需 15 分钟左右。如果氧气是从炉底吹入,那就是底吹转炉;氧气从顶部吹入,就 是顶吹转炉。 转炉冶炼工艺流程简介: 转炉冶炼工艺流程简介: 转炉一炉钢的基本冶炼过程。 顶吹转炉冶炼一炉钢的操作过程主要由以下六 步组成: (1)上炉出钢、倒渣,检查炉衬和倾动设备等并进行必要的修补和修理; (2)倾炉,加废钢、兑铁水,摇正炉体(至垂直位置); (3)降枪开吹,同时加入第一批渣料(起初炉内噪声较大,从炉口冒出赤色烟 雾,随后喷出暗红的火焰;3~5min 后硅锰氧接近结束,碳氧反应逐渐激烈,炉 口的火焰变大,亮度随之提高;同时渣料熔化,噪声减弱); (4)3~5min 后加入第二批渣料继续吹炼(随吹炼进行钢中碳逐渐降低,约 12 min 后火焰微弱,停吹); (5)倒炉,测温、取样,并确定补吹时间或出钢; (6)出钢,同时(将计算好的合金加入钢包中)进行脱氧合金化。 1.2、转炉炼钢主要工艺设备简介:

转炉炉体可转动,用于吹炼钢或吹炼锍的冶金炉。转炉炉体用钢板制成,呈圆筒 形,内衬耐火材料,吹炼时靠化学反应热加热,不需外加热源,是最重要的炼钢 设备,也可用于铜、镍冶炼。 10 AOD 精炼炉 AOD 即氩氧脱碳精炼炉,是一项用于不锈钢冶炼的专有工艺。AOD 炉型根据容量 有 3t、6t、8t、10t、18t、25t、30t 等。装备水平也由半自动控制发展到智能 计算机控制来冶炼不锈钢。 VOD 精炼炉 VOD 精炼炉是在真空状态下进行吹氧脱碳的 炉外精炼炉,它以精炼铬镍不锈钢、超低碳钢、超纯铁素体不锈钢及纯铁为主。 将初炼钢液装入精炼包中放入密封的真空罐中进行吹氧脱碳、脱硫、脱气、温度 调整、化学元素调整。 LF 精炼炉 LF(ladle furnace) 炉是具有加热和搅拌功能的钢包精炼炉。加热一般通过 电极加热,搅拌是通过底部透气砖进行的。 转炉倾炉系统 倾炉系统:变频调速(变频器+电机+减速机+大齿轮) 倾炉机构: 倾炉机构由轨道、 倾炉油缸、 摇架平台、 水平支撑机构和支座等组成。 1.3转炉冶炼目的: 将生铁里的碳及其它杂质(如:硅、锰)等氧化,产出比铁 的物理、化学性能与力学性能更好的钢。 钢与生铁的区别:首先是碳的含量,理论上一般把碳含量小于 2.11%称之钢, 它的熔点在 1450-1500℃,而生铁的熔点在 1100-1200℃。在钢中碳元素和铁元 素形成 Fe3C 固熔体,随着碳含量的增加,其强度、硬度增加,而塑性和冲击韧 性降低。钢具有很好的物理、化学性能与力学性能,可进行拉、压、轧、冲、拔 等深加工,其用途十分广泛。 氧气顶吹转炉炼钢设备工艺: 如图 4 所示。按照配料要求,先把废钢等装入炉内,然后倒入铁水,并加 入适量的造渣材料(如生石灰等)。加料后,把氧气喷枪从炉顶插入炉内, 吹入氧气(纯度大于 99%的高压氧气流),使它直接跟高温的铁水发生氧 化反应,除去杂质。用纯氧代替空气可以克服由于空气里的氮气的 影响而使钢质变脆,以及氮气排出时带走热量的缺点。在除去大部分硫、 磷后,当钢水的成分和温度都达到要求时,即停止吹炼,提升喷枪,准备 出钢。出钢时使炉体倾斜,钢水从出钢口注入钢水包里,同时加入脱氧剂 进行脱氧和调节成分。钢水合格后,可以浇成钢的铸件或钢锭,钢锭可以 再轧制成各种钢材。 氧气顶吹转炉在炼钢过程中会产生大量棕色烟气,它 的主要成分是氧化铁尘粒和高浓度的一氧化碳气体等。因此,必须加以净 化回收,综合利用,以防止污染环境。从回收设备得到的氧化铁尘粒可以 用来炼钢;一氧化碳可以作化工原料或燃料;烟气带出的热量可以副产水 蒸气。此外,炼钢时,生成的炉渣也可以用来做钢渣水泥,含磷量较高的 炉渣,可加工成磷肥,等等。氧气顶吹转炉炼钢法具有冶炼速度快、炼出 的钢种较多、质量较好,以及建厂速度快、投资少等许多优点。但在冶炼 过程中都是氧化性气氛,去硫效率差,昂贵的合金元素也易被氧化而损耗, 因而所炼钢种和质量就受到一定的限制。 1.4、转炉炉体工艺参数

转炉炉体

1.4.1 炉体总高(包括炉壳支撑板) :7050mm 1.4.2 炉壳高度:6820mm 1.4.3 炉壳外径:Φ4370mm 1.4.4 高宽比: H/D=1.56 1.4.5 炉壳内径:Φ4290mm 1.4.6 公称容量:50t 1.4.7 有效容积:39.5m 3 1.4.8 熔池直径: Φ3160mm 1.4.9 炉口内径:Φ1400mm 1.4.10 出钢口直径:140mm 1.4.11 出钢口倾角(与水平):20° 1.4.12 炉膛内径:Φ3160mm 1.4.13 炉容比:0.79m /t.s 1.4.14 熔池深度:1133mm 1.4.15 炉衬厚度:熔池:500mm 炉身:500mm 炉底:465mm 炉帽:550mm 1.4.16 炉壳总重:77.6t 3 11 1.4.17 炉衬重量:120t 1.4.18 炉口结构:水冷炉口 1.4.19 炉帽结构:水冷炉帽

1.4.20 挡渣板结构:双层钢板焊接式 1.4.21 托圈结构:箱式结构(水冷耳轴)

倾动装置

型式:四点啮合全悬挂扭力杆式(交流变频器调速)

最大工作倾动力矩:100t*m 最大事故倾动力矩:300t*m 倾动角度:±360°

倾动速度:0.2~1r/m5.1、前言

(二)、转炉炼钢氧枪位控制

2.1、前言

(1).氧枪介绍

氧枪又称喷枪或吹氧管, 是转炉吹氧设备中的关键部件, 它由喷头 (枪头) 、 枪身(枪体)和枪尾组成。转炉吹炼时,喷头必须保证氧气流股对熔池具有一定 的冲击力和冲击面,使熔池中的各种反应快速而顺利的进行。 (2).枪位对炼钢的重要性

在转炉炼钢整个炉役中, 随着炼钢炉次的增加, 炉衬由于受到侵蚀不断变薄, 炉容不断增大,因此,每隔一定炉次对熔钢液面进行测定,根据装入制度(定深 装入或定量装入)及测定结果确定氧枪高度,而在两次测定期间,氧枪高度保持 不变。同时,在具体每一个炉次中,按照吹炼的初期、中期和末期设定若干不同 高度〔1〕,而在每一时间段内,其高度是不变的。由于在转炉炼钢过程中要向 炉内分期分批加入造渣剂、助熔剂(初期)等造渣材料和冷却剂(末期),使炉内状 况发生变化,相当于加入一个扰动,同时在不同阶段,渣的泡沫程度及粘度也不 同,而目前的固定氧枪高度吹炼不能及时适应这些情况,从而使炉内的反应及退 渣不能平稳地进行。造渣是转炉炼钢过程中的一项重要内容,渣的好坏直接关系 到炼钢过程能否顺利进行,有时甚至造成溢渣或喷溅,从而降低钢的收得率以及 粘枪,因此要尽量避免溢渣和喷溅。另一方面,固定枪位的吹炼模式也无法适应 铁水、废钢、造渣材料等化学成分变化引起反应状况的不同。针对转炉炼钢过程 12 中固定枪位所存在的问题, 我们采用模糊控制的方法使氧枪枪位根据炉内的具体 情况进行连续调节,同时针对转炉炼钢是一炉一炉进行的,炉与炉之间既不完全 相同又有联系的特点,采用自学习技术确定每一炉次氧枪的枪位,使转炉炼钢过 程平稳进行,从而提高碳温命中率。in

2.2/枪位控制

目前,转炉炼钢氧枪枪位一般是根据吹炼状况分段设定的〔1〕。在每一段 中,枪位不再变化,如图 1 所示。在本文中,根据转炉炼钢的不同阶段采用不同 的控制策略。在吹炼初期和中期,由于分批加入造渣材料和助熔剂,且渣高与声 音具有明确的反比关系,因此采用模糊控制调节枪位。而在吹炼末期,则采用较 低的固定枪位进行吹炼,以利于石灰进一步渣化,使脱碳反应按扩散进行,渣钢 反应趋于平衡,炉内钢水成分和温度得以均匀。在初、中期的模糊控制中仍然采 用这种分段设定的枪位作为基本设定,而在每一段中,根据炉况采用模糊控制对 枪位进行自动调节,即 u=u0+Δu,其中 u 为要控制的氧枪枪位,u0 为每个阶段 设定的基本枪位,Δu 为对枪位的调整量。

(1). 氧枪升降要求 为适应转炉吹炼工艺要求,在吹炼过程中,氧枪需要多次升降一调整枪位。 转炉对氧枪升降机构提出了要求,应具有合适的升降速度并可以变速,并能保证 氧枪升降平稳、控制灵活、操作安全。氧枪漏水等出现故障时能快速更换氧枪、 结构简单便于维护。

(5)、量化因子的选取及自调整 采用模糊控制的氧枪枪位控制系统如图 3 所示(见下页)。 由于在转炉炼钢过 程中,每个阶段声音大小不同,基本枪位不同,因此声音的给定值 S 与一般恒值 控制系统不同, 它随着冶炼进程而不断变化。 在吹炼初期, 声音的给定值比较大, 随着冶炼的进行, 给定值逐渐减小, 到吹炼中期和后期, 声音的给定值基本不变, 维持在一个较小的数值。为了适应这一情况,使得在整个冶炼过程中误差及其变 化率都能比较均匀地归一化到〔-1,1〕的整个区间内,提高系统的控制精度, 对量化因子进行调整。选误差 SE 的量化因子 K1=1/Se,误差变化率 SC 的量化 因子 K2=1/Sc,其中 Se 和 Sc 分别为误差及误差变化率的基本论域,比例因子 K3=uh,uh 为控制量即氧枪移动范围。由于声音误差范围随着给定值的变小而变 小,因此在吹炼中后期为了提高控制能力,应加大误差的量化因子,否则就会使 量化后的误差很难进入到较大的模糊子集内,无法实现有效的控制。因为 S 随着 吹炼的进行逐渐减小,到一定阶段开始稳定,所以使 K1=1/Se=1/S,从而实 现了对误差量化因子的自调整。 由于给定的声音大小及基本枪位对声音误差变化 率影响不大,故在整个吹炼过程中不改变 K2 的大小。对于比例因子 K3,为了适 应 K1 变化对模糊控制输出的影响,使得在同样的声音误差情况下,不因 K1 的增 大而使氧枪移动过大,因此比例因子 K3 应随着 K1 的增大而减小,故使 K3=uh =K0S,其中 K0 为系数,根据本炉次枪位设定值及给定的声音最大值确定。比例 因子及量化因子经过上述的臊调整,使得在吹炼中后期对声音误差的灵敏度增 加,提高了控制精度。 2.3、枪位自学习

转炉炼钢是一炉一炉进行的,在每一炉的冶炼过程中,它是一个连续升温脱 碳过程,与连续工业过程有些类似,但冶炼时间比较短,被控量是不断变化的, 炉与炉之间没有本质的必然联系,每炉的冶炼独立进行,因此从整体上看,与连 续工业过程又有着明显的区别。另一方面,它又具有某些断续工业的特点,每一 炉相当于一个加工工件,但它又绝不是断续工业。从上面的分析可以看出,转炉 炼钢既不同于连续工业和断续工业,与它们又有一定的联系,因此转炉炼钢是介 于连续工业过程和断续工业过程之间的一类复杂工业过程, 这就使得其控制具有 一定的特殊性。基于转炉炼钢炉与炉之间的联系,利用自学习技术确定下一炉次 枪位模式,可以很好地反映炉衬变化及原材料化学成分波动给冶炼带来的影响, 使冶炼过程更加平稳。 枪位的学习采用迭代自学习〔3〕。设 yd(k,j)为一个炉役中第 k 炉第 j 段 时设定的基本枪位, y(k,j)为第 k 炉第 j 段时的实际枪位(指第 j 段的平均枪位), 其差值为Δy(k,j)=y(k,j)-yd(k,j),说明枪位设定存在偏差,应修改下一炉的 枪位设定高度,进行枪位自学习。学习过程中,枪位的确定使用加权移动平均算 法〔4〕。这种方法的优点是需要数据量少,并且非常稳定,因而所需计算机内 存和计算量都比较小。 取前边最近四炉的实际氧枪高度的加权平均值作为下一炉 氧枪高度设定值,即 yd(k+1,j)=a1y(k,j)+a2y(k-1,j)+a3y(k-2,j)+a4y(k-3,j) 其中 (7) a

1、a

2、a

3、a4 为加权因子,且有 a1+a2+a3+a4=1。 另外前边最近四炉指的是吹炼过程平稳、无较大或大喷、终点碳温同时命中且所 炼钢种相同的炉次,每炼一炉钢都要根据吹炼结果对所选炉次更新一次,以保证 总是使用最新四炉的数据,这样可以充分反映炉衬、铁水、废钢、造渣材料等的 最新变化,消除了各种异常情况等随机因素的影响,使氧枪设定更能适应生产实 际,提高炼钢过程的稳定性和终点命中率。 2.4、仿真研究

对一座 15t 转炉进行仿真研究,仿真结果如图 4 所示。图中右侧纵坐标为声 音给定值(标幺值),曲线 1 为声音给定,曲线 2 为基本枪位设定,曲线 3 为实际 氧枪高度。图 4(a)为没有造渣材料加入时氧枪高度变化情况,图 4(b)给出了在 第 2 分钟、第 4 分钟和第 7 分钟分 3 次加入造渣材料时氧枪高度变化情况。 17 由上图可得出结论; 炼钢期间会发出很 强的声音,这种声音的大小与炉内状况存在着明确的对应关系,声音的强度与炉 渣高度成反比,尤其是在吹炼的初期和中期,这种关系更为准确。 在转炉炼钢过程中,氧枪是必不可少的设备,氧枪的枪位直接关系到脱碳、 升温及冶炼过程的平稳进行。采用模糊控制根据炉内状况对氧枪位进行连续调 节,克服了固定枪位不能及时适应炉况变化的缺点,同时利用转炉炼钢是一炉一 炉进行的,炉与炉之间存在着一定的联系的特点,使用迭代自学习技术修改枪位 的设定,适应了炉衬变薄及炼钢原料化学成分波动带来的不利影响。

(三). 转炉冶炼工艺: 转炉冶炼五大制度: 装料制度、供氧制度、造渣制度、温度制度、终点 控制及合金化制度。

3.1、装料制度

确定合理的装入量,需考虑的两个参数: 炉容比:(V/T,m3/t),0.8-1.05(30-300t 转炉); 熔池深度:需大于氧气射流的冲击深度 800-2000mm (30-300t 转炉) 装料制度:定量装入、定深装入;分阶段定量装入。 分阶段定量装入:1-50 炉,51-200 炉,200 炉以上,枪位每天要校正。 交接班看枪位。

(三). 转炉冶炼工艺: 转炉冶炼五大制度: 装料制度、供氧制度、造渣制度、温度制度、终点 控制及合金化制度。

3.2、供氧制度

基本操作参数 供氧强度 Nm3/t.min 氧气流量 Nm3/h 操作氧压 Mpa 氧枪枪位 m 供氧强度(Nm3/t.min) 决定冶炼时间,但太大,喷溅可能性增大,一 般 3.0-4.0。 氧气流量大小(Nm3/h): 装入量,C、Mn、Si 的含量,由物料平衡计算得到,50-65Nm3/h。 氧压(Mpa) 喷头的喉口及马赫数一定, 大, P 流量大,有一范围 0.8-1.2Mpa。 氧枪枪位,由冲击深度决定,1/3-1/2 吨钢耗氧量计算: % C Si Mn P S 铁水成分 4 .3 0 0 .8 0 0 .2 0 0 .1 3 0.04 成品成分 0.20 0.27 0.50 0.02 转炉公称容量为 100 吨时,炉渣量为 :100×10%=10 吨 铁损耗氧量 10×15%×16/(16+56)=0.33 吨 〔C〕→[CO] 耗氧量 100×(4.30%-0.20%)×90%×16/12=4.92 吨 〔C〕→[CO2] 耗氧量 100×(4.30%-0.20%)×10%×32/12=1.09 吨 〔Si〕→[SiO2]耗氧量 100×0.8%×32/28=0.914 吨 〔Mn〕→[MnO]耗氧量 100×0.2%×16/55=0.058 吨 〔P〕→[P2O5] 耗氧量 100×0.13%×(16×5)/(31×2)=0.168 吨 [S] 1/3 被气化为 SO2, 2/3 与 CaO 反应生成 CaS 进入渣中, 则〔S〕不 耗氧。 总 耗 氧 量 = 0.33+4.92+1.09+0.914+0.058+0.168=7.48 吨 /1.429 = 5236Nm3 实际耗氧量=5236/0.9/99.5%=5847Nm3 实际吨钢耗氧量=5847/100=58.37Nm3/t 两种操作方式: 软吹:低压、高枪位,吹入的氧在渣层中,渣中 FeO 升高、有利于脱磷; 硬吹:高压低枪位(与软吹相反),脱 P 不好,但脱 C 好,穿透能力强,脱 C 反应激烈 。 氧枪操作方式 氧枪操作就是调节氧压和枪位。 氧枪的操作方式: 衡枪变压 :压力控制不稳定,阀门控制不好; 恒压变枪:压力不变,枪位变化,目前主要操作方式

3.3、造渣制度

炼钢就是炼渣。 6 造渣的目的:通过造渣,脱 P、减少喷溅、保护炉衬。 造渣制度:确定合适的造渣方式、渣料的加入数量和时间、成渣速度。 渣的特点:一定碱度、良好的流动性、合适的 FeO 及 MgO、正常泡沫化 的熔渣 造渣方式: 单渣法:铁水 Si、P 低,或冶炼要求低。 双渣法:铁水 Si、P 高,或冶炼要求高。 留渣法:利用终渣的热及 FeO,为下炉准备。 成渣速度 转炉冶炼时间短,快速成渣是非常重要的,石灰的溶解是决定冶炼速度的 重要因素。 石灰的熔解: 开始吹氧时渣中主要是 SiO,MnO,FeO,是酸性渣,加石灰后,石灰溶 解速度,可用下式表 J=K(CaO+1.35MgO-1.09SiO2+2.75FeO+1.9MnO-39.1) 形成 2CaO*SiO2,难熔渣。FeO,MnO,MgO 可加速石灰熔化。因为可降低炉 渣粘度,破坏 2CaO*SiO2 的存在。 采用软烧活性石灰、加矿石、萤石及吹氧加速成渣。 。 成渣途径 钙质成渣 低枪位操作,渣中 FeO 含量下降很快,碳接近终点时,渣中铁才回升。 。 适用于低磷铁水、对炉衬寿命有好处。 铁质成渣过程 高枪位操作,渣中 FeO 含量保持较高水平,碳接近终点时,渣中铁 才下降。 适用于高磷铁水、对炉衬侵蚀严重;FeO 高,炉渣泡沫化严重,易产 生喷溅。 吹炼过程熔池渣的变化

3.4、温度制度

温度控制就是确定冷却剂加入的数量和时间 影响终点温度的因素: 铁水成分:[%Si]=0.1,升高炉温约 15 ℃ 铁水温度:铁水温度提高 10℃,钢水温度约提高 6 ℃(30t) 铁水装入量: 每增加 1 吨铁水, 终点钢水温度约提高 8 ℃ (30t) 废钢加入量: 每增加 1 吨废钢, 终点钢水温度约下降 45 ℃ (30t) 7 此外,炉龄、终点碳、吹炼时间、喷溅等有影响 温度控制措施: 熔池升温: 降枪脱 C、氧化熔池金属铁。金属收到率降低; 熔池降温: 加冷却剂(矿石、球团矿、氧化铁皮、废钢);废钢冶炼时一般不加。

3.5、终点控制及合金化制度:

终点控制指终点温度和成分的控制 终点标志: 钢中碳含量达到所炼钢种的控制范围 钢中 P 达到要求 出钢温度达到要求 终点控制方法: 终点碳控制的方法: 一次拉碳法、增碳法、高拉补吹法。 一次拉碳法:按出钢要求的终点碳和温度进行吹炼,当达到要求时 提枪。操作要求较高。优点:终点渣 FeO 低,钢中有害气体少,不加增碳 剂,钢水洁净。氧耗较小,节约增碳剂。 增碳法:所有钢种均将碳吹到 0.05%左右,按钢种加增碳剂。优点: 操作简单,生产率高,易实现自动控制,废钢比高。 高拉补吹法:当冶炼中,高碳钢种时,终点按钢种规格略高一些进 行拉碳,待测温、取样后按分析结果与规格的差值决定补吹时间。 终点温度确定: 所炼钢种熔点: T=1538-∑△T×j △T: 钢中某元素含量增加 1%时使铁的熔点降低值, j 钢中某元素%含量。 考虑到钢包运行、镇静吹氩、连铸等要求.减少喷溅的 发生,使氧枪枪位在整个炉役期间始终处于最优位置。

(四)我国转炉的发展概况:

1951 年碱性空气侧吹转炉炼钢法首先在我国唐山钢厂试验成功,并于 1952 年投入工业生产。1954 年开始厂小型氧气顶吹转炉炼钢 的试验研究工作, 1962 年将首钢试验厂空气侧吹转炉改建成 3t 氧气顶吹转炉, 开始了工业性 试验。在试验取得成功的基础上,我国第一个氧气顶吹转炉炼钢车间 (2×30t)在首钢建成,于 1964 年 12 月 26 日投入生产。以后,又在唐山、 上海、杭州等地改建 了一批 3.5~5t 的小型氧气顶吹转炉。1966 年上钢一 19 厂将原有的一个空气侧吹转炉炼钢车间,改建成 3 座 30t 的氧气顶吹转炉 炼钢车间,并首 次采用了先进的烟气净化回收系统,于当年 8 月投入生产,还建设了弧形 连铸机与之相配套,试验和扩大了氧气顶吹转炉炼钢 的品种。这些都为我 国日后氧气顶吹转炉炼钢技术的发展提供了宝贵经验。此后,我国原有的 一些空气侧吹转炉车 间逐渐改建成中小型氧气顶吹炼钢车 间,并新建了 一批中、大型氧气顶吹转炉车 间。小型顶吹转炉有天津钢厂 20t 转炉、济 南钢厂 13t 转炉、邯郸钢厂 15t 转炉、太原钢铁公司引进 的 50t 转炉、包 头钢铁公司 50t 转炉、武钢 50t 转炉、马鞍山钢厂 50t 转炉等;中型的有 鞍钢 150t 和 180t 转炉、攀枝花钢铁公司 120t 转炉、本溪钢铁公司 120t 转炉等;20 世纪 80 年代宝钢从日本引进建成具 70 年代末技术水平的 300t 大型转炉 3 座、首钢购入二手设备建成 210t 转炉车间;90 年代宝钢又建成 250t 转炉车间,武钢引进 250 转炉,唐钢建成 150 转炉车间,重钢和首钢 又建成 80t 转炉炼钢车间;许多平炉车间改建成氧气顶吹转炉车间等。到 1998 年我国氧气顶吹转炉共有 221 座,其中 100t 以下的转炉有 188 座, (50~90t 的转炉有 25 座),100-200t 的转炉有 23 座,200t 以上的转炉有 10 座,最大公称吨位为 300t。顶吹转炉钢占年总钢产量的 82.67%。 世界转炉炼钢趋势

提高钢水洁净度,即大大降低吹炼终点时的各种夹杂物含量,要求S低于0.005%;P低于0.005%,N低于20ppm。提高化学成分及温度给定范围的命中精度,为此采用复合吹炼、对熔池进行高水平搅拌并采用现代检测手段及控制模型。减少补吹炉次比例,降低吨钢耐材消耗。

铁水预处理对改进转炉操作指标及提高钢的质量有着十分重要的作用。美国及西欧各国铁水预处理只限于脱硫,而日本铁水预处理则包括脱硫、脱硅及脱磷。例如1989年日本经预处理的铁水比例为:NKK公司京滨厂为55%,新日铁君津厂为74%,神户厂为85%,川崎千叶厂为90%。

日本所有转炉钢厂,美国、西欧各国的几十家钢厂以及其它国家的所有新建钢厂,在转炉上都装有检测用的副枪,在预定的吹炼时间结束前的几分钟内正确使用此枪可保证极高的含碳量及钢水温度命中率,使90%-95%的炉次都能在停吹后立即出钢,即无需再检验化学成分,当然也就无需补吹。此外,这也使产量提高,使补衬磨损大大减少。

复合吹炼能促进各项冶炼参数稳定,因而在许多国家得到推广。80年代初期诞生于卢森堡和法国的LBE炼钢法,除原型方案外,相继演化出一系列派生工艺,有20多种名称,例如:STB、LD—KC、BAP、TBM、LD—OTB、LD—CB、K—BOP、K—OBM、LET等。无论是LBE原型,还是各派生工艺,实践证明它们有其各自的优势。LBE、LD—KC、BAP、TBM这些方法实际无差别—都是炉顶吹氧及经炉底喷人氩气。还有一些方法是从炉底输入一氧化碳、二氧化碳、氧气。各种复合吹炼工艺可用以下数字(转炉座数)说明其推广情况。1983年63座,1988年140座,1990年228座。奥地利、澳大利亚、比利时、意大利、加拿大、卢森堡、葡萄牙、法国、瑞士、韩国等这些国家全部或几乎全部转炉都采用复合吹炼。

单纯底吹的氧气炼钢法(Q—BOP、OBM、LWS)未能推广。1983年运行的这类转炉有26座,而到1990年只剩下18座。

日本采用所谓的吹洗法,即在炉顶吹氧结束时,接着从炉底吹氩,使钢水中碳含量达到0.01%。这对汽车用钢、薄板用钢及电工用钢的冶炼尤为重要。

值得注意的是,日本正在开发复合吹炼条件下调控冶炼过程用的新方法及新设备。其中有利用炉顶氧枪里的光缆随吹炼进程连续监测钢中锰含量;利用装于炉底的光纤传感器以及利用所排气体信息连续监测钢水温度;并在进行喷溅预测及预防方面的研究。

神户制钢公司开发的喷溅预测是以顶吹氧枪悬吊系统的检测为基础。日本NKK公司京滨厂是通过对出钢口的监测来减轻喷溅。当熔渣猛烈上浮时,视频信号发出往炉内添煤或石灰石的指令。比较好用的材料(从平息熔池的时间来说)是煤。 转炉炉衬寿命是极为重要的课题。日本、美国及西欧各国资料分析表明,影响炉衬磨损的各项冶炼参数,例如后期渣氧化度、碱度及吹炼终点时钢水温度,各国钢厂之间并无大的差别。只有通过用副枪检测方可将对炉衬最为有害的后吹时间从10-15min减少到1-3min及消除补吹。

(六)优化转炉炼钢工艺

转炉炼钢工艺各项指标取决于铁水的化学成分,而对铁水的主要要求是含硫量低(低于0.03%),相应要求较高含硅(0.7%-0.9%)及具有优化造渣所需的锰量(0.8%-1.0%)。

炼铁炼钢各阶段脱硫过程理化规律及动力特性分析表明,在动力方面,在铁水中比在钢水中更容易保证脱硫反应,因为在含碳量较高及氧化度较低条件下硫具有更高的活性。然而在高炉炼铁当中很难脱硫,因为在高炉一系列复杂的氧化—还原反应中,深脱硫的各种热动力条件的能量不可避免地会增高硅含量并因此导致石灰及焦炭消耗的增加及产量的下降。因此,生产低硫铁需周密策划工艺,采用含硫最少的炉料及制备高碱度混成渣 在转炉吹炼中脱硫也无效果,因为钢渣系中达不到平衡状态,渣与钢间的硫分配系数因熔池氧化度高及碳含量低,仅为2-7。如此低的硫分配系数使得难以在转炉冶炼中实现深脱硫,并导致炼钢生产在技术及经济上的巨大消耗。无论是在高炉炼铁,还是在转炉炼钢当中都保证不了金属有效脱硫所需的热动力条件,因此进行高炉炼铁及转炉炼钢过程中的深脱硫研究,在技术及经济上都是不可取的。而合理的作法是将脱硫过程从高炉及转炉中分离出来。这就可简化烧结—高炉—转炉生产流程降低生产成本。将脱硫从高炉及转炉中分离出来,使高炉炉外脱硫成为设计大型联合钢厂和重要工艺环节,在冶炼低硅铁的同时不必再为保证转炉中的精炼进行代价很高的高炉炉外脱硅。铁水原始硅含量低还可降低锰含量。在氧气转炉炼钢中锰的作用非常重要,它决定着及早造渣所需的条件并对出钢前终点钢水氧化度起调节作用,长期实践证明,需设法使铁水中锰保持0.8%-1.0%的水平,因而在烧结混合料中必需补充锰,而这就提高了成本。烧结—高炉—转炉各流程锰平衡分析表明,上述锰在高炉里还原、然后在转炉里氧化导致锰原料及锰本身不可弥补的巨大损失,而且还给各生产流程操作增加很多麻烦。在碳含量很低(0.05%-0.07%)条件下停止吹炼时,氧化度的影响如此之大,以致会把锰的最终含量定在极窄范围内,实际上已很少再与铁水原始锰含量相关。在这种条件下,尽管铁水原始锰含量达0.5%-1.2%,但钢的最终锰含量实际上都一样(0.07%-0.11%)。因此在当代转炉炼钢工艺条件下(各炉次都有过吹操作),没必要在烧结混合料中使用含锰原料来提高铁水原始锰含量,更合理的作法是冶炼低锰铁。同时为节约低锰铁在转炉炼钢中脱氧的用量,研究直接采用锰矿石的效果具有重要意义。对众多炉次进行工业平衡计算所得工艺指标的对比表明,冶炼铁水不添加锰矿石,而在转炉炼钢中添加锰矿石,与用含锰1.13%的铁水炼钢,这两种炼钢法相比,前者每吨生铁可节省锰矿石15.3kg.此外,还可减少锰铁1.3kg/t钢、石灰5kg/t,氧气2.17m3/t的耗量,并可大大缩短吹炼时间。

铁水中硅、锰含量低及无需脱硫,这些条件会改变造渣机理及动力特性,因为这时石灰消耗下降,渣量减少,渣碱度及氧化度增高。在这样的条件下,渣的精炼功能只限于铁水脱磷。这样就能在转炉冶炼本身中多次利用渣,使渣具有很高的精炼能力。

根据这一原则开发出转炉炼钢新工艺,即在转炉炼钢本身中多次(3-5次)利用后期渣(循环造渣)。采用这样的工艺可降低石灰消耗及渣中铁损。及早造就高碱度氧化渣,及使硅、锰含量低可提供钢水深脱磷所需的强劲动力

五、参考文献

(1)邓丽新; 提高转炉煤气回收量的探讨

中国钢铁年会论文集(上)[C];1997年

(2)付丹;合理利用转炉煤气的分析研究与实践 1997中国钢铁年会论文集(上)[C];1997年

(3)兆春民;李兴云;潘广宏; 有效回收利用转炉煤气资源促进钢铁工业的发展

六、总结

随着溅渣护炉技术的日益完善,转炉炉龄不断提高,而第一次溅渣、补大面和喷补的炉龄延长,耐火材料的成本逐步降低,吨钢效益不断增加。随着炉龄的提高,炉役期内耐火材料的消耗量降低,生产成本或直接经济效益提高;而炉役期间钢产量大幅度增加。

第三篇:炼钢(转炉)安全操作规程

1、 严格执行厂、车间安全规程及各项安全管理制度。进入现场前必须按规定穿戴各种劳保用品。

2、 起动操作各种设备前,首先确认设备必须完好、安全装置齐全、联锁系统灵敏,不准用潮湿的导电物体操作电气设备。

3、 渣罐、钢包内有水潮湿不准使用,严禁向钢包或渣罐内扔潮湿物品或废旧弃物品。

4、 冶炼时严禁进入炉下工作,特殊情况进入时,必须采取可靠的安全措施。

5、 更换钢水车、渣罐车时,必须断电,并做到按规定使用吊具。

6、 使用地轮(索引)拉钢水车时,地轮到钢水车钢丝绳三角区内严禁站人,并指定专人指挥。

7、 转炉兑铁、加废钢、拉碳摇炉时,所有人员要站在炉子侧面安全位置,不准任何人从本炉座前方穿过。

8、 不准使用已达报废标准的渣罐。

9、 使用吊具时,首先检查吊具必须完好,并做到专属专用,不准使用钢丝绳吊运红热金属,不准使用中碳钢以上及铸钢做别棍。

10、 钢水车、渣罐车、过跨车、合金小车等车辆禁止乘人。

转炉炉长岗位安全操作规程

1、 上岗前必须穿戴好劳保用品。

2、 严禁封点炼钢。

3、 凡有下列情况之一不准冶炼或停止冶炼: a) 烟道罩群漏水成流或炉楼下有积水。

b) 罩群、氧枪传动钢丝绳、保护绳磨损达到报废标准。 c) 氧枪氧气胶管漏气,高压水胶管漏水,枪身漏水或喷头漏水。 d) 转炉与氧枪罩群一次风机一文水电气联锁失灵。 e) 氧枪孔、加料三角槽口氮封压力低于规定数值。 f) 氧气调节阀失灵,氧气切断阀漏气。 g) 冷却水或氧气测量系统有故障。

4、 炉内有液态渣或强氧化渣时严禁兑铁。

5、 拉碳提枪时,必须检查枪头、枪身及炉口无异常,确认无误后方可指挥摇炉工摇炉,如有异常严禁动炉。

6、 拉碳摇炉或因故提枪再次吹炼前,炉长负责喊开炉前人员,以免发生喷溅伤人。

7、 罩群、氧枪传动系统有人工作,不得兑铁。

8、 脱氧合金化过程,若有异常,炉长要指挥周围人员躲避到安全位置。

9、 出完钢后炉长要检查炉衬侵蚀情况,防止漏钢冲刷水冷 圈

造成炉内进水。

10、 炉下清理前,必须将烟道罩群内的浮渣及炉皮、炉嘴、护炉板两侧墙板的浮渣打干净,确认无误后方可作业。

11、 炉下有人时严禁指挥摇炉。

12、 清理钢水车、渣罐车时,必须先切断电流、设专人监护,方可进行操作。

13、 严禁执行检修牌、操作牌制度。

14、 负责整个炉前组安全工作的组织和实施。

转炉—助手岗位安全操作规程

1、 上岗前必须穿戴好劳保用品。

2、 必须严格执行检修 牌和操作牌制度。

3、 吹炼过程中氧枪失灵,应用事故提枪装置紧急提枪,严禁吹炼。

4、 炉内因其他因素进水,严禁动炉并通知炉长停止吹炼。

5、 处理烟道罩群、氧枪传动等系统故障和测液面时,必须将氧气切断阀关死,防止突然放氧。

6、 需要调试氧气流量时,必须通知炉前,待喊开氧枪孔周围人员方可进行,防止发生意外伤害。

7、 操作人员不得擅自修改各种工艺参数。

转炉二助手(摇炉工)岗位安全操作规程

1、 上岗前必须按规定穿戴好劳动保护用品。

2、 炉内有液态渣或强氧化渣严禁兑铁。

3、 凡炉内、钢包内、渣罐内进水,不准使用,待确认水蒸发或处理好后,喊开炉前人员,方可缓慢摇炉。

4、 罩群氧枪提升强度不够,不准摇炉。

5、 水冷炉嘴固定拉筋断裂开焊造成炉臂活动,应立即停炉处理,防止出钢时炉嘴突然掉下放炮伤人。

6、 兑铁、开新炉、补炉第一炉炉渣必须喊开炉前人员,缓慢摇炉。发现异常立即摇正炉体。

7、 炉下有人时禁止摇炉出钢倒渣,以防钢渣飞溅伤人。

8、 出钢液面距钢包口最低位置不小于150mm,保证净容。

9、 开钢包车时,注意检查轨道两旁情况,保证轨道无杂物、无人员通过。

转炉炉前工安全操作规程

1、 上岗前必须穿戴好劳动保护用品。

2、 兑铁加废钢吹炼时,严禁在操作区域内停留。

3、 铁水包未到兑铁位置,不准挂小钩。

4、 测温取样时必须待炉内平稳无异常后,方可进行操作并注意站位。

5、 样勺内剩余钢水要缓慢倒在样杯旁,禁止乱磕乱扔。

6、 挡渣时,要在摇炉到适合位置进行,补炉第一炉、新炉第一炉严禁挡渣。

7、 使用行车时,手势要清晰准确,吊物要确认吊牢放稳。

8、 吊具使用前要检查,不合格不准使用。

9、 送检时上下楼梯平台要扶稳。

10、 测液面,清理氧枪氮封口钢渣,换枪移枪处理料仓时注意站位,防止跌落,并注意平台,防止有悬浮物掉下伤人。

转炉炉下工安全操作规程

1、 上岗前必须按规定穿戴好劳动保护用品。

2、 进入工作区域作业时,必须了解区域状况后,方能作业。

3、 转炉在兑铁、加废钢、拉碳出钢倒渣摇炉时严禁进入炉下区域。

4、 炉下清理时,必须摇正炉体,降下罩群,清渣本着先上后下,不准多层作业原则,身体不允许暴露在斜护板外面工作,并有专人监护。

5、 更换渣罐时,身体站在安全位置,开动渣罐车。

6、 开渣罐车时要确保轨道上无行人杂物,渣罐时确认放稳。

7、 使用吊具时先检查吊具,不合格不准使用。

8、 倒(泼)渣时,首先确认渣场上有无积水,无积水或场地不潮湿时,方可倒渣。

高位工安全操作规程

1、 上岗前必须按规定穿戴好劳保用品。

2、 开机前应对设备安全装置进行检查,有缺陷不得开机。

3、 不得用湿手和其他物品触摸电气开关。

4、 工作时要对周围环境确认,注意脚下、料仓口、上下楼梯扶稳踏牢。

5、 高位工作时,必须携带煤气报警仪,防止煤气中毒。

6、 设备运行时应站在安全处,严禁用手及物件触及转动(移动)的部位。

7、 处理设备问题应停机处理,处理完毕后,要与地位操作室联系,确认无误方可开机。

8、 在听到皮带报警器响后,确认皮带机周围无人无障碍物,具备起动条件,通知低位料仓操作室启动皮带。

9、 严禁跨越皮带机。

低压工安全操作规程

1、 上岗前按规章穿戴好劳保用品。

2、 严禁跨越皮带机。

3、 不得用湿手和其他物体触摸电气开关。

4、 皮带机起动前先响铃1分钟接到高位反馈后确认无误方可开机。

5、 停机检修和临时处理故障前必须严格执行挂牌制度,坚持谁挂牌谁负责的原则。

废钢工安全操作规程

1、 上岗前按规定穿戴好劳动保护用品。

2、 严禁将潮湿的废钢、油污密封容器、爆炸物、不明物体、泥沙、有色金属等有害物体入炉,以防伤人和损害设备。

3、 加料时,必须注意作业区是否有人,废钢不得支出废钢斗外。

4、 起吊废钢料槽前必须确认挂稳吊牢,指挥手势要明确,不得单挂耳轴。

5、 经常检查废钢料槽使用情况,发现料槽耳轴有问题立即联系维修人员维修。

6、 废钢工接班时,应对所使用的吊具进行全面检查,如发现有问题立即通知维修人员维修,不得凑合使用。

兑铁水工安全操作规程

1、 上岗前按规定穿戴好劳动保护用品,严格按混铁炉技术规程操作。

2、

3、 行车必须有专人指挥,兑铁时铁水包位置要对准。 兑铁前指挥者先检查铁水车周围,禁止有人工作或通过。

4、 铁水包要经常检查,发现铁水包侵蚀严重或掉砖要及时换包,以免造成漏铁穿包事故。

5、 兑铁水应按照转炉的装入制度的装入量控制,铁水包结铁,使铁包严重倾斜应换包。

6、 每班检查铁水包尾钩连杆使用情况,发现问题及时检修。

第四篇: 转炉炼钢的原材料

1、 转炉炼钢用原材料有哪些,为什么要用精料?

炼钢用原材料分为主原料、辅原料和各种铁合金。氧气顶吹转炉炼钢用主原料为铁水和废钢(生铁块)。炼钢用辅原料通常指造渣剂(石灰、萤石、白云石、合成造渣剂)、冷却剂(铁矿石、氧化铁皮、烧结矿、球团矿)、增碳剂以及氧气、氮气、氩气等。炼钢常用铁合金有锰铁、硅铁、硅锰合金、硅钙合金、金属铝等。

原材料是炼钢的物质基础,原材料质量的好坏对炼钢工艺和钢的质量有直接影响。国内外大量生产实践证明,采用精料以及原料标准化,是实现冶炼过程自动化、改善各项技术经济指标、提高经济效益的重要途径。根据所炼钢种、操作工艺及装备水平合理地选用和搭配原材料可达到低费用投入,高质量产出的目的。

转炉入炉原料结构是炼钢工艺制度的基础,主要包括三方面内容:一是钢铁料结构,即铁水和废钢及废钢种类的合理配比;二是造渣料结构,即石灰、白云石、萤石、铁矿石等的配比制度;三是充分发挥各种炼钢原料的功能使用效果,即钢铁料和造渣料的科学利用。炉料结构的优化调整,代表了炼钢生产经营方向,是最大程度稳定工序质量,降低各种物料消耗,增加生产能力的基本保证。

2、

转炉炼钢对铁水成分和温度有什么要求?

铁水是炼钢的主要原材料,一般占装入量的70%~100%。铁水的化学热与物理热是氧气顶吹转炉炼钢的主要热源。因此,对入炉铁水化学成分和温度必须有一定的要求。

A铁水的化学成分

氧气顶吹转炉炼钢要求铁水中各元素的含量适当并稳定,这样才能保证转炉冶炼操作稳定并获得良好的技术经济指标。

(1)硅(Si)。硅是转炉炼钢过程中发热元素之一。硅含量高,会增加转炉热源,能提高废钢比。有关资料表明,铁水中WSi每增加0.1%,废钢比可提高约1.3%。铁水硅含量高,渣量增加,有利于去除磷、硫。但是硅含量过高将会使渣料和消耗增加,易引起喷溅,金属的收得率降低。Si含量高使渣中SiO2含量过高,也会加剧对炉衬的冲蚀,并影响石灰渣化速度,延长吹炼时间。

通常铁水ωSi=0.30%~0.60%为宜。大中型转炉用铁水硅含量可以偏下限,而对于热量不富余的小型转炉用铁水硅含量可偏上限。转炉吹炼高硅铁水可采用双渣操作。

(2)锰(Mn)。铁水锰含量高对冶炼有利,在吹炼初期形成MnO,能加速石灰的溶解,促进初期渣及早形成,改善熔渣流动性,利于脱硫和提高炉衬寿命。铁水锰含量高.终点钢中余锰高,可以减少锰铁加入量,利于提高钢水纯净度等。转炉用铁水对ωMn/ωSi比值的要求为0.8~1.0,目前使用较多的为低锰铁水,ωMn=0.20%~0.80%o、

·

(3)磷(P)。磷是高发热元素,对大多数钢种是要去除的有害元素。因此,要求铁水磷含量越低越好,一般要求铁水ωp≤0.20%哼铁水中磷含量越低,转炉工艺操作越简化,并有利于提高各项技术经济指标。

铁水磷含量高时,可采用双渣或双渣留渣操作,现代炼钢采用炉外铁水脱磷处理,或转炉内预脱磷工艺,以满足低磷纯净钢的生产需要。

(4)硫(S)。除了含硫易切削钢以外,绝大多数钢种硫也是要去除的有害元素。氧气转炉单渣操作的脱硫效率只有30%~40%。我国炼钢技术规范要求入炉铁水ωS≤0.05%。冶炼优质低硫钢的铁水硫含量则要求更低,纯净钢甚至要求铁水ωS≤0.005%。因此,必须进行铁水预处理降低入炉铁水硫含量。

(5)碳(C)。铁水中ωC=3.5%~4.5%,碳是转炉炼钢的主要反热元素。 B铁水的温度

铁水温度的高低是带入转炉物理热多少的标志,铁水物理热约占炉热收入的50%。铁水温度高有利于稳定操作和转炉的自动控制。铁水的温度过低,影响元素氧化过程和熔池的温升速度,不利于成渣和去除杂质,容易发生喷溅。因此,我国炼钢规定入炉铁水温度应大子1250℃,并且要相对稳定。

通常,高炉的出铁温度在1350~1450℃,由于铁水在运输待装过程中散失热量,所以最好采用混铁车或混铁炉的方式供应铁水,在运输过程应加覆盖剂保温,以减少铁水降温。

3、 对铁水带渣量有什么要求,为什么? 铁水带来的高炉渣中SiO

2、S等含量较高,若随铁水进入转炉会导致石灰消耗量增多,渣量增大,容易造成喷溅,增加金属消耗,影响磷、硫的去除,并损坏炉衬等。因此,要求入炉铁水带渣量比不超过0.50%。铁水带渣量大时,在铁水兑入转炉之前应尽进行扒渣。

4 、 转炉炼钢用废钢的来源有哪些,对废钢的要求是什么? 废钢的来源有自产废钢和外购废钢,自产废钢是指企业口生产过程中产生的废钢或回收的废旧设备、铸件等,外购废钢勇从国内或国外购买的废钢。

转炉炼钢对废钢的要求有:

(1)废钢的外形尺寸和块度应保证能从炉口顺利加入转炉。废钢单重不能过重,以便减轻对炉衬的冲击,同时在吹炼期必须全部熔化。轻型废钢和重型废钢合理搭配。废钢的长度应小于转炉口直径的1/2,废钢的块度一般不应超过300kg,国标要求废钢长度不大于1000mm,最大单件重量不大于800kg。

(2)废钢中不得混有铁合金。严禁混入铜、锌、铅、锡等有色金属和橡胶,不得混有封闭器皿、爆炸物和易燃易爆品以及有毒物品。废钢的硫、磷含量均不得大于0.050%。

废钢中残余元素含量应符合以下要求:ωNi<0.30%、ωCr<0.30%、ωCu<0.30%、ωAs<0.80%。除锰、硅外,其他合金元素残余含量的总和不超过0.60%。

(3)废钢应清洁干燥,不得混有泥砂、水泥、耐火材料、油物、珐琅等,不能带水。

(4)废钢中不能夹带放射性废物,严禁混有医疗临床废物。

(5)废钢中禁止混有其浸出液中pH值大于等于12.5或小于等于2.0的危险废物。进口废钢容器、管道及其碎片必须向检验机构申报曾经盛装或输送过的化学物质的主要成分以及放射性检验证明书,经检验合格后方能使用。

(6)不同性质的废钢分类存放,以免混杂,如低硫废钢、超低硫废钢、普通类废钢等。另外,应根据废钢外形尺寸将废钢分为轻料型废钢、统料型废钢、小型废钢、中型废钢、重型废钢等。非合金钢、低合金钢废钢可混放在一起,不得混有合金废钢和生铁。合金废钢要单独存放,以免造成冶炼困难,产生熔炼废品或造成贵重合金元素的浪费。

5 、 转炉炼钢对入炉生铁块的要求是什么? 生铁块也叫冷铁,是铁锭、废铸铁件、包底铁和出铁沟铁的总称,其成分与铁水相近,但不含显热。它的冷却效应比废钢低,通常与废钢搭配使用。

入炉生铁块成分要稳定,硫、磷等杂质含量愈低愈好,最好ωS≤0.050%,ωP≤0.10%。硅的含量不能太高,否则,增加石灰消耗量,对炉衬也不利,要求铁块凹ωS<1.25%。

6、 转炉炼钢对铁合金有哪些要求,常用铁合金的主要成分是怎样的? 转炉炼钢对铁合金的主要要求是:

(1)铁合金块度应合适,为10~50mm;精炼用合金块度为10~30mm,成分和数量要准确。 (2)在保证钢质量的前提下,选用价格便宜的铁合金,以降低钢的成本。

(3)铁合金应保持干燥、干净。

(4)铁合金成分应符合技术标准规定,以避免炼钢操作失误。如硅铁中的铝、钙含量,沸腾钢脱氧用锰铁的硅含量,都直接影响钢水的脱氧程度。

转炉脱氧合金化常用的铁合金有Fe-Mn、Fe-Si、Mn-Si合金、Ca-Si合金、铝、Fe-A

1、Ba-Ca-Si合金、Ba-AI-Si合金等。

7、 转炉炼钢对增碳剂有什么要求? 转炉冶炼中、高碳钢种时,使用含杂质很少的石油焦作为增碳剂。对顶吹转炉炼钢用增碳剂的要求是固定碳要高,灰分、挥发分和硫、磷、氮等杂质含量要低,并要干燥,干净,粒度要适中。其固定碳ωC≥96%,挥发分≤1.0%,ωS≤0.5%,水分≤0.5%,粒度在1~5mm;粒度太细容易烧损,太粗加入后浮在钢液表面,不容易被钢水吸收。

8、 转炉炼钢对石灰有什么要求?

石灰是炼钢主要造渣材料,具有脱P,脱S能力,用量也最多。其质量好坏对吹炼工艺,产品质量和炉衬寿命等有着重要影响。因此,要求石灰CaO含量要高,SiO2含量和S含量要低,石灰的生过烧率要低,活性度要高,并且要有适当的块度,此外,石灰还应保证清洁、干燥和新鲜。

SiO2会降低石灰中有效CaO含量,降低CaO的有效脱硫能力。石灰中杂质越多越降低它的使用效率,增加渣量,恶化转炉技术经济指标。石灰的生烧率过高,说明石灰没有烧透,加入熔池后必然继续完成焙烧过程,这样势必吸收熔池热量,延长成渣时间;若过烧率高,说明石灰死烧,气孔率低,成渣速度也很慢。

石灰的渣化速度是转炉炼钢过程成渣速度的关键,所以对炼钢用石灰的活性度也要提出要求。石灰的活性度(水活性)是石灰反应能力的标志,也是衡量石灰质量的重要参数。此外,石灰极易水化潮解,生成Ca(OH)2,要尽量使用新焙烧的石灰。同时对石灰的贮存时间应加以限制,一般不得超过2天。块度过大,熔解慢,影响成渣速度,过小的石灰颗粒易被炉气带走,造成浪费。一般以块度为5~50mm或5~30mm为宜,大于上限、小于下限的比例各不大于10%。贮存和运输时必须防雨防潮。

9、什么是活性石灰,活性石灰有哪些特点,使用活性石灰有什么好处? 通常把在1050~1150℃温度下,在回转窑或新型竖窑(套筒窑)内焙烧的石灰,即其有高反应能力的体积密度小、气孔率高、比表面积大、晶粒细小的优质石灰叫活性石灰,也称软烧石灰。

活性石灰的水活性度大于310mL,体积密度小,约为1.7~2.0g/cm3,气孔率高达40%以上,比表面积为0.5~1.3 g/cm3;晶粒细小,熔解速度快,反应能力强。使用活性石灰能减少石灰、萤石消耗量和转炉渣量,有利于提高脱硫、脱磷效果,减少转炉热损失和对炉衬的蚀损,在石灰表面也很难形成致密的硅酸二钙硬壳有利于加速石灰的渣化。

10、 转炉用萤石起什么作用,对萤石有什么要求? 萤石是助熔剂,其主要成分是CaF2。纯CaF2的熔点为1418℃,萤石中还含有SiO2和S等成分,因此熔点在930℃左右;加入炉内后使CaO和石灰高熔点的2CaO·Si02外壳的熔点降低,生成低熔点化合物3CaO·CaF2·2SiO2(熔点为1362℃),也可以与MgO生成低熔点化合物(1350℃),从而改善炉渣的流动性。萤石助熔作用快、时间短。但过多使用萤石会形成严重的泡沫渣,导致喷溅,同时也加剧对炉衬的侵蚀,并污染环境。因此应严格控制吨钢萤石加入量。

转炉用萤石ωCaF2≥85%,ωSiO2≤5.0%,ωS≤0.10%,ωP≤0.06%,块度在5~50㎜,并要干燥、清洁。 近年来,由于萤石供应不足,各钢厂从环保的角度考虑,试用多种萤石代用品,均为以氧化锰或氧化铁为主的助熔剂,如铁锰矿石、氧化铁皮、转炉烟尘、铁矾土等。

11、 转炉用白云石或菱镁矿的作用是什么,对白云石和菱镁矿有什么要求? (1)白云石是调渣剂,有生白云石与轻烧白云石之分。 生白云石的主要成分为CaCO3·MgCO3。经焙烧可成为轻烧白云石,其主要成分为CaO、MgO。根据溅渣护炉技术的需要,加入适量的生白云石或轻烧白云石保持渣中的MgO含量达到饱和或过饱和,以减轻初期酸性渣对炉衬的蚀损、使终渣能够做黏,出钢后达到溅渣的要求。

对生白云石的要求是ωMgO>20%,ωCaO≥29%,ωSiO2≤2.0%,烧减≤47%,块度为5~30mm。

由于生白云石在炉内分解吸热,所以用轻烧白云石效果最为理想。对轻烧白云石的要求是ωMgO≥35%,ωCaO≥50%,ωSiO2≤3.0%,烧减≤10%,块度为5~40mm。

(2)菱镁矿也是调渣剂,菱镁矿是天然矿物,主要成分是MgCO3,焙烧后用做耐火材料。对菱镁矿的要求是ωMgO≥45%,ωCaO <1.5%,ωSiO2≤1.5%,烧减≤50%,块度为5~30㎜。

(3)MgO-C压块是吹炼终点碳低或冶炼低碳钢溅渣时的调渣剂,由轻烧菱镁矿和碳粉制成压块,一般ωMgO=50%~60%,ωC=15%~20%,块度为10~30mm。

12、 转炉炼钢常用哪些冷却剂? 氧气顶吹转炉炼钢过程的热量有富余,因而根据热平衡计算需加入适量的冷却剂,以准确地命中终点温度。氧气顶吹转炉用冷却剂有废钢、生铁块、铁矿石、氧化铁皮、球团矿、烧结矿、石灰石和生白云石等,其中主要为废钢、铁矿石。上述冷却剂的冷却效应从大到小排列顺序为:铁矿石、氧化铁皮、球团矿、烧结矿、石灰石和生白云石、废钢、生铁块。

13、 转炉炼钢对铁矿石有什么要求? 铁矿石主要成分为Fe2O3或Fe3O4,铁矿石的熔化和铁被还原都吸收热量,因而能起到调节熔池温度的作用。但铁矿石带入脉石,增加渣量和石灰消耗量,同时一次加入量过多会引起喷溅和冒烟。铁矿石还能起到氧化作用。氧气顶吹转炉用铁矿石化学成分以ωTFe≥56%,ωSiO2≤10%,ωS≤0.20%,块度为10~50㎜为宜,并要求干燥、清洁。

14、 转炉炼钢对氧化铁皮有什么要求? 转炉炼钢用氧化铁皮来自轧钢和连铸过程中产生的氧化壳层,其主要成分是氧化铁。因此,氧化铁皮可改善熔渣流动性,也有利于脱磷,并且可以降温。对氧化铁皮的要求是ωTFe>70%,SiO

2、S、P等其他杂质含量均低于3.0%。粒度应不大于10mm,使用前烘烤干燥,去除油污。

15、 转炉炼钢用合成造渣剂的作用是什么? 合成造渣剂是用石灰加入适量的氧化铁皮、萤石、氧化锰或其他氧化物等溶剂,在低温下预制成型。这种合成渣剂的熔点低,碱度高,成分均匀,粒度小,在高温下易碎裂,成渣速度快,因而减轻了转炉造渣的负担。

16、 氧气转炉炼钢对氧气有什么要求? 氧气是顶吹转炉炼钢的主要氧化剂。炼钢用工业纯氧是由空气分离制取的。对炼钢用氧气的要求是纯度要高,φO2>99.6%,氧压应稳定,并要脱除水分。

17、 转炉炼钢对氮气的要求是什么? 氮气是转炉溅渣护炉和复吹工艺的主要气源。对氮气的要求是满足溅渣和复吹需用的供气流量,气压要稳定。氮气的纯度大于99.95%,氮气在常温下干燥、无油。

18、 转炉炼钢对氩气的要求是什么? 氩气是转炉炼钢复吹和钢包吹氩精炼工艺的主要气源。对氩气的要求是:满足吹氩和复吹用供气量,气压稳定,氩气纯度大于99.95%,无油、无水。

19、 转炉炼钢对焦炭的要求是什么?

转炉炼钢用焦炭烘烤炉衬。对焦炭要求是:固定碳高(一般要求大于80%),发热值高,灰分和有害杂质含量低(水分小于2%,ωS≤0.7%),块度应为10~40mm。

20、 什么是铁水预处理? 铁水预处理是指铁水兑入炼钢炉之前,为脱硫或脱硅、脱磷而进行的处理过程。

除上述普通铁水预处理外还有特殊铁水预处理,如针对铁水含有特殊元素提纯精炼或资源综合利用而进行的提钒、提铌、提钨等预处理技术。

21、在炼钢生产中采用铁水预脱硫技术的必要性是什么? (1)用户对钢的品种和质量要求提高,连铸技术的发展也要求钢中硫含量低(硫含量高容易使连铸坯产生裂纹)。铁水脱硫可满足冶炼低硫钢和超低硫钢种的要求。

(2)转炉炼钢整个过程是氧化气氛,脱硫效率仅为30%~40%;而铁水中的碳硅等元素氧含量低,提高了铁水中硫的活度系数,故铁水脱硫效率高;铁水脱硫费用低于高炉、转炉和炉外精炼的脱硫费用。

(3)减轻高炉脱硫负担后,能实现低碱度、小渣量操作,有利于冶炼低硅生铁,使高炉稳定、顺行,可保证向炼钢供应精料。

(4)有效地提高钢铁企业铁、钢、材的综合经济效益。

22、铁水脱硫常用的脱硫剂有几类,各有何特点? 生产中,常用的脱硫剂有苏打灰(Na2CO3)、石灰粉(CaO)、电石粉和金属镁。

(1)苏打灰。其主要成分为Na2CO3,铁水中加入苏打灰后与硫作用发生以下3个化学反应:

Na2CO3(1)+[S]+2[C]=Na2S(1)+3{CO} Na2CO3 (1)+[S]+[S]=Na2S(1)+SiO2(1)+{CO}

Na2O(1)+[S]=Na2S(1)+[O] 用苏打灰脱硫,工艺和设备简单,其缺点是脱硫过程中产生的渣会腐蚀处理罐的内衬,产生的烟尘污染环境,对入有害。目前很少使用。

(2)石灰粉。其主要成分为CaO,用石灰粉脱硫的反应式如下:

2CaO(S)+[S]+1/2[Si]=(CaS)(S)+1/2(Ca2SiO4) 石灰价格便宜、使用安全,但在石灰粉颗粒表面易形成2CaO·SiO2致密层,限制了脱硫反应进行,因此,石灰耗用量大,致使生成的渣量大和铁损大,铁水温降也较多。另外,石灰还有易吸潮变质的缺点。

(3)电石粉。其主要成分为CaC2,电石粉脱硫的反应式如下:

CaC2+[S]=(CaS)(S)+2[C] 用电石粉脱硫,铁水温度高时脱硫效率高,铁水温度低于1300℃时脱硫效率很低。另外,处理后的渣量大,且渣中含有未反应尽的电石颗粒,遇水易产生乙炔(qH2)气体,故对脱硫渣的处理要求严格。在脱硫过程中也容易析出石墨碳污染环境。电石粉易吸潮生成乙炔(乙炔是可燃气体且易发生爆炸),故电石粉需要以惰性气体密封保存和运输。

(4)金属镁。镁喷入铁水后发生如下反应:

Mg+[S]=MgS(S)

镁在铁水的温度下与硫有极强的亲和力,特别是在低温下镁脱硫效率极高,脱硫过程可预测,硫含量可控制在0.001%的精度。这是其他脱硫剂所不能比拟的。

金属镁活性很高,极易氧化,是易燃易爆晶,镁粒必须经表面钝化处理后才能安全地运输、储存和使用。钝化处理后,使其镁粒表面形成一层非活性的保护膜。

用镁脱硫,铁水的温降小,渣量及铁损均少且不损坏处理罐的内衬,也不影响环境。因而铁水包喷镁脱硫工艺获得了迅猛的发展。

镁的价格较高,保存时须防止吸潮。

23、 铁水脱硫的主要方法有哪些,铁水脱硫技术的发展趋势是怎样的? 迄今为止,入们已开发出多种铁水脱硫的方法,其中主要方法有:投入脱硫法、铁水容器转动搅拌脱硫法、搅拌器转动搅拌脱硫法和喷吹脱硫法等。

(1)投入法。该法不需要特殊设备,操作简单,但脱硫效果不稳定,产生的烟气污染环境。

(2)铁水容器搅拌脱硫法。该法主要包括转鼓法和摇包法,均有好的脱硫效果,该法容器转动笨重,动力消耗高,包衬寿命低,使用较少。

(3)采用搅拌器的机械搅拌法。如KR法即属于此类。 KR搅拌法由于搅拌能力强和脱硫前后能充分的扒渣,可将硫含量脱至很低,其缺点是设备复杂,铁水温降大。

(4)喷吹法。此法是用喷枪以惰性气体为载体,将脱硫剂与气体混合吹入铁水深部,以搅动铁水与脱硫剂充分混合的脱硫方法。该法可以在鱼雷罐车(混铁车)或铁水包内处理铁水。铁水包喷吹法目前已被广泛应用。

喷吹脱硫法具有脱硫反应速度快、效率高、操作灵活方便,处理铁水量大,设备投资少等优点。因而,它已成为铁水脱硫的主要方法。

铁水脱硫技术的发展趋势如下: (1)采用全量铁水脱硫工艺; (2)趋向在铁水包内预脱硫; (3)脱硫方法以喷吹法为主;

(4)用金属镁做脱硫剂的趋势不断扩大。

24、 用金属镁进行铁水脱硫的机理是什么? 镁其熔点为651℃,密度为2.8g/cm3,如与氧结合生成MgO后,其熔点为2800℃,密度为3.07~3.20g/cm3,二者均为高熔点、低密度稳定化合物。

镁通过喷枪喷入铁水中,镁在高温下发生液化、气化并溶于铁水:

Mg(S)→Mg(1)→{Mg}→[Mg]

Ms与S的相互反应存在两种情况:

第一种情况:

{Mg}+[S]二MgS(S) 第二种情况:

{Mg}→[Mg]

[Mg]+[S]=MgS(S)

在高温下,镁和硫有很强的亲和力,溶于铁水中的[Mg]和{Mg}都能与铁水中的[S]迅速反应生成固态的MgS,上浮进入渣中。

在第一种情况下,在金属—镁蒸气泡界面,镁蒸气与铁水中的硫反应生成固态MgS,这只能去除铁水中3%~8%的硫。

在第二种情况下,溶解于铁水中的镁与硫反应生成固态MgS,这是主要的脱硫反应,最为合理。在这种情况下,保证了镁与硫的反应不仅仅局限在镁剂导入区域或喷吹区域内进行,而是在铁水包整个范围内进行,这对铁水脱硫是十分有利的。

镁在铁水中的溶解度取决于铁水温度和镁的蒸气压。镁的溶解度随着压力的增加而增大,随铁水温度的上升而大幅度降低。为了获得高脱硫效率,必须保证镁蒸气泡在铁水中完全溶解,避免未溶解完的镁蒸气逸入大气造成损失。促进镁蒸气大量溶解于铁水中的措施是:铁水温度低;加大喷枪插入铁水液面以下的深度,提高镁蒸气压力,延长镁蒸气泡与铁水接触时间。

25、 采用金属镁脱硫为什么要对镁粒进行表面钝化处理,对颗粒镁有什么要求? 金属镁活性很高,极易氧化,是易燃易爆晶。镁粒只有经表面钝化处理后才能安全地运输、储存和使用。经钝化处理后,镁粒表面形成一层非活性的保护膜,如盐钝化的涂层颗粒镁,制备时采用熔融液态镁离心重复分散技术,利用空气动力逆向冷却原理将盐液包敷在镁颗粒外层,形成银灰色均匀的球状颗粒。

单吹镁脱硫用的涂层颗粒镁要求:

ωMg≥92%;粒度为0.5~1.6mm,其中粒度大于3mm以上的针状不规则颗粒少于8%。

26、 铁水脱硫容器为什么趋向采用铁水包? 在鱼雷罐内进行脱硫,动力学条件较差,脱硫剂喷入后,由于鱼雷罐形状影响搅拌的均匀性,反应重现性差,脱硫剂消耗量大。采用铁水包喷吹脱硫,由于铁水包的几何形状,使脱硫反应具有更好的动力学条件和反应空间,可根据冶炼具体要求更准确地控制铁水的硫含量。一般容量大于80t的铁水包铁液深度都比鱼雷罐深,喷入铁水的脱硫剂与铁水进行反应更加充分,因此在铁水包内喷吹脱硫可以有效利用脱硫剂。同时铁水包内的铁水温度比鱼雷罐内低一些,更促进镁脱硫获得理想的脱硫效果,降低了铁水处理成本。由于铁水包内喷吹脱硫有较高的效率,与在鱼雷罐脱硫相比,如果将硫含量从0.045%降到0.010%,可节省脱硫剂15%;如果将硫含量从0.045%降到0.005%,可节省脱硫剂24%。显然,硫含量的目标值越低,在铁水包喷吹脱硫剂的优势越大。20世纪80年代已开始发展到在铁水包内处理铁水。目前新建铁水脱硫装置大多采用铁水包单独喷吹镁或复合喷吹镁的技术和设备。

27、 喷镁脱硫要求铁水包净空是多少? 当铁水包喷镁脱硫时,镁通过喷枪喷入铁水,载气对铁水有搅拌作用,可以促进反应物的传质和产物的排出。由于镁在高温下液化、气化和溶于铁水,气化时产生的镁气体对铁水的搅拌作用强烈,顶吹时常发生喷溅。因此,铁水包应有不小于400mm高度的净空,同时设置防溅包盖是必要的。

28、 铁水包喷吹镁脱硫与其他脱硫工艺比较具有哪些优点? 铁水包喷镁脱硫工艺与其他脱硫工艺相比,具有以下显著的优点:

(1)脱硫效率高。可根据冶炼品种要求,铁水硫含量可脱至任意水平,深度脱硫时达到ωS=0.005%以下,甚至ωS=0.002%以下;

(2)脱硫剂单耗低,处理时间短 (3)形成渣量少,扒渣铁损低; (4)对环境污染小; (5)温度损失少;

(6)易于进行过程自动控制; (7)综合成本低。

29、 铁水包喷吹颗粒镁脱硫,镁的单位消耗主要取决于哪些因素? 用镁脱硫的单耗主要取决于铁水初始硫含量、终点硫含量、铁水温度、铁水重量(铁水包内铁水深度)。

在理论上1kg金属镁能脱除1.32kg的硫;实际上,由于铁水中还有残余的镁、用于脱氧的镁、少量的镁蒸气逸出及与载气、顶渣反应损失的镁等原因,镁的利用率不可能达到100%。与初始硫含量低时相比,初始硫含量高时镁的利用率高。

镁脱硫与CaO、CaC2脱硫不同,镁脱硫反应为放热反应,低温对反应有利,在低温下镁在铁水中的溶解度大,有利于镁参与反应而提高利用率;但温度高时有利于反应产物上浮进入顶渣提高反应速度,但总的来说温度低对镁脱硫更有利。

铁水量多,铁水包内铁水深度大,喷枪插入深,镁的利用率高。铁水包内铁水深度浅,喷枪插入浅,镁气泡来不及完全溶解就从铁水液面逸出。因此,喷吹深度大可以减少镁的逸出损失。

30、 铁水脱硫后兑入转炉前为什么必须扒渣? 经过脱硫处理后的铁水,须将浮于铁水表面上的脱硫渣除去,以免炼钢时造成回硫,因为渣中MgS或CaS会被氧还原,即发生如下反应:

(MgS)+[O]=(MgO)+[S] (CaS)+[O]=(CaO)+[S] 因此,只有经过扒渣的铁水才能兑入转炉。钢水硫含量要求越低,相应要求扒渣时扒净率越高,尽量减少铁水的带渣量。

31、 脱硫后的低硫铁水兑入转炉炼钢,为什么吹炼终点常常出现增硫现象? 经脱硫处理后的低硫铁水(ω〔S〕=0.002%~0.009%),兑入转炉炼钢,有时出现不能进一步脱硫,吹炼终点的钢水还常常有增硫现象,这是因为炼钢过程中铁水渣、铁块、废钢、石灰中的硫进入钢水,而吹炼过程脱硫量低于增硫量所致,吹炼终点增硫量可达0.002%~0.005%,甚至0.005%以上。增硫主要发生在吹炼的前期和中期,一般铁块、废钢和铁水渣带入硫占炉料总硫量的60%以上,所以增硫成为生产超低硫钢种的重大障碍。因此,生产ω〔S〕<0.005%的超低硫钢种时,可采用铁水脱硫处理加上较高的铁水装入比,并尽量减少铁水的带渣量,同时出钢加合成渣、二次精炼脱硫,特别是用LF炉造高碱度还原渣,进一步深脱硫。

32、 脱硫后扒渣时的铁损大小与哪些因素有关? 脱硫后扒渣时的铁损大小与以下因素相关。 (1)渣量越大,扒净率越高,铁损越大。

(2)渣偏干,渣铁易分离,易于扒除,铁损低;渣越稀,渣铁分离困难,铁损大。扒渣时,可加入适量稠渣剂。

(3)扒渣机工作性能好,扒渣效率高,铁损低。 (4)铁水包包嘴形状和倾角应有利于扒渣需要,减少扒渣“死区”。

(5)操作入员的技能十分重要,操作熟练、准确和灵敏,同样条件下能明显提高扒渣效率和降低铁水损失。

33、 铁水采用三脱(脱硅、脱磷、脱硫)预处理有何优缺点? 铁水采用三脱预处理的优缺点如下: (1)可实现转炉少渣冶炼(渣量小于30kg/t)。

(2)铁水脱硫有利于冶炼高碳钢、高锰钢、低磷钢、特殊钢(如轴承钢)、不锈钢等。

(3)可提高脱碳速度,有利于转炉高速冶炼。

(4)转炉吹炼终点时钢水锰含量高,可用锰矿直接完成钢水合金化。

(5)铁水采用三脱预处理的缺点是铁水中发热元素减少,转炉的废钢加入量减少。

34、 为何铁水脱磷必须先脱硅? 铁水预脱硅技术是基于铁水预脱磷技术而发展起来的。由于铁水中氧与硅的亲和力比磷大,当加入氧化剂脱磷时,硅比磷优先氧化,形成的Siq大大降低渣的碱度。为此脱磷前必须将硅含量降至0.15%以下,这个值远远低于高炉铁水的硅含量,也就是说,只有当铁水中的硅大部分氧化后,磷才能被迅速氧化去除。所以脱辚前必须先脱硅。

35 、 铁水脱硅有哪些方法,采用何种脱硅剂? 铁水脱硅方法有下列几种: (1)在高炉出铁沟脱硅。

(2)在高炉出铁沟摆槽上方喷射脱硅剂脱硅。 (3)在鱼雷罐车中喷射脱硅剂脱硅。 (4)在铁水罐中加入脱硅剂和吹氧脱硅。

脱硅剂均为氧化剂,常用高碱度烧结矿粒、氧化铁皮、铁矿石铁锰矿、烧结粉尘、氧气等。 36 、 铁水脱磷有哪些方法,采用何种脱磷剂? 铁水脱磷方法主要包括如下几种: (1)在铁水罐中喷射脱磷剂并吹氧脱磷。 (2)在鱼雷罐中喷射脱磷剂并吹氧脱磷。 (3)在转炉中进行铁水脱磷。

目前最广泛使用的脱磷剂为苏打系脱磷剂或石灰系脱磷剂。石灰系脱磷剂主要成分为CaO并配加一定量的烧结矿粉和萤石粉。若铁水同时脱磷和脱硫,则先用石灰剂脱磷后,再喷吹苏打粉(Na2CO3)进一步脱磷和脱硫。

37、 铁水三脱预处理,硅、磷、硫含量一般脱到什么水平? 一般来说,炼钢用铁水预处理前后的硅、磷、硫含量变化如下:

铁水

ω[Si]

ω[P]

ω[S]

预处理前

0.30%~1.25%

0.08%~0.20%

0.02%~0.07%

预处理后

0.10%~0.15%

<0.01%

<0.005%

38 、采用转炉双联工艺进行铁水预处理的特点是什么? 采用转炉进行铁水三脱预处理,有利于实现全量(100%)铁水预处理。此法具有如下特点:

(1)与喷吹法相比,放宽对铁水硅含量要求。采用转炉三脱,控制铁水ω〔Si〕≤0.3%,可以达到脱磷要求,而喷吹法脱磷要求铁水ω〔Si〕≤0.15%。因此,采用转炉三脱可以和高炉低硅铁冶炼工艺相结合,省去脱硅预处理工艺。

(2)控制中等碱度R=2.5~3.0渣,可得到良好的脱磷、脱硫效果。通常采用的技术有:使用脱碳转炉精炼渣作为脱磷合成渣;增大底吹搅拌强度促进石灰渣化并适当增加萤石量;配加石灰粉和转炉烟尘制成的高碱度低熔点脱磷剂。 (3)严格控制处理温度,避免熔池脱碳升温。保证脱磷,抑制脱碳。

(4)增强熔池搅拌强度,同时采用弱供氧制度。

(5)渣量减少,冶炼时间缩短,生产节奏加快,炉龄提高。

第五篇:转炉炼钢、炉外精炼、连铸

1、转炉炼钢

转炉炼钢(converter steelmaking)是以铁水、废钢、铁合金为主要原料,不借助外加能源,靠铁液本身的物理热和铁液组分间化学反应产生热量而在转炉中完成炼钢过程。转炉按耐火材料分为酸性和碱性,按气体吹入炉内的部位有顶吹、底吹和侧吹;按气体种类为分空气转炉和氧气转炉。碱性氧气顶吹和顶底复吹转炉由于其生产速度快、产量大,单炉产量高、成本低、投资少,为目前使用最普遍的炼钢设备。转炉主要用于生产碳钢、合金钢及铜和镍的冶炼。

转炉炼钢-正文

一种不需外加热源,主要以液态生铁为原料的炼钢方法。转炉炼钢法的主要特点是:靠转炉内液态生铁的物理热和生铁内各组分(如碳、锰、硅、磷等)与送入炉内的氧进行化学反应所产生的热量,使金属达到出钢要求的成分和温度。炉料主要为铁水和造渣料(如石灰、石英、萤石等),为调整温度,可加入废钢以及少量的冷生铁块和矿石等。转炉按炉衬的耐火材料性质分为碱性(用镁砂或白云石为内衬)和酸性(用硅质材料为内衬);按气体吹入炉内的部位分为底吹、顶吹和侧吹;按吹炼采用的气体,分为空气转炉和氧气转炉。酸性转炉不能去除生铁中的硫和磷,须用优质生铁,因而应用范围受到限制。碱性转炉适于用高磷生铁炼钢,曾在西欧得到较大发展。空气吹炼的转炉钢,因含氮量高,质量不如平炉钢,且原料有局限性,又不能多配废钢,未能像平炉那样在世界范围内广泛采用。1952年氧气顶吹转炉问世,逐渐取代空气吹炼的转炉和平炉,现在已经成为世界上主要炼钢方法。

简史 1856年,英国贝塞麦(H.Bessemer)发明了底吹酸性转炉炼钢法,以后被称为贝塞麦转炉炼钢法。从此开创了大规模炼钢的新时代。1879年英国托马斯(S.G.Thomas)创造了碱性转炉炼钢法。造碱性渣除磷,适用于西欧丰富的高磷铁矿的冶炼,一般称托马斯转炉炼钢法。1891年,法国特罗佩纳(Tropenas)创造了侧面吹风的酸性侧吹转炉炼钢法,曾在铸钢厂得到应用。

用氧气代替空气的优越性早被认识,但因未能获得大量廉价的工业纯氧,长期未能实现。到20世纪40年代,空气分离制氧以工业规模进行生产之后,炼钢大量用氧有了可能。但是,旧有转炉改用氧气吹炼,炉底风眼烧损很快,甚至使吹炼无法进行。1948年杜雷尔(R.Durrer)在瑞士采用水冷氧枪垂直插入炉内吹炼铁水获得成功,1952年奥地利林茨(Linz)和多纳维茨 (Donawiz)钢厂建立30吨氧气顶吹转炉车间。后来就按这两个地名的第一个字母称氧气顶吹转炉炼钢法为LD炼钢法。50年代,LD炼钢法传播到世界各国,逐步取代平炉炼钢法。随着顶吹氧转炉的问世,也出现了其他类型吹氧炼钢方法,如卡尔多转炉(Kaldo)炼钢法,罗托转炉(Rotor)炼钢法,但都未能推广。喷石灰粉的氧气顶吹转炉炼钢法,称LD-AC法,可以吹炼含磷高的生铁,在氧气底吹转炉问世前曾应用于高磷生铁炼钢生产。

尽管氧气顶吹转炉法得到广泛发展,有人认为由底部供气,熔池搅拌力强,冶炼过程较为合理。1965年加拿大空气液化公司试验成功用同心吹氧管同时吹入气态碳氢化合物来冷却喷嘴的技术。随后法国也试成用燃料油冷却喷嘴的技术。较好地解决了氧气底吹风口烧损快的问题,使底吹转炉炼钢方法得以复苏。1967年后在联邦德国和法国分别采用上述两项技术建造氧气底吹转炉投入生产,称 为”OBM”法(即Oxygen Bottom-blowMaximilian)和“LWS”法(为Loire、Wendel/Sidelor和Sprunck三公司的缩写)。1971年美国引进“OBM”的技术,用于底吹氧气喷石灰粉吹炼含磷生铁,取名“Q-BOP”法,Q表示不平静quiet快quick和优质quality,BOP为碱性氧气法(见氧气底吹转炉炼钢)。

氧气顶吹转炉采用喷嘴或透气砖自底部吹入少量惰性气体或氧气,可明显地改善熔池的搅拌力,而兼有底吹和顶吹的优点,1974年英国首先在1.25吨转炉上、1975年法国和卢森堡合作在65吨转炉上先后试验顶底复合吹炼转炉炼钢成功。随后开始在世界范围内推广应用。

中国于30~40年代曾在各地用侧吹酸性转炉炼钢,总生产能力约10万吨/年。50年代,唐山钢厂试用碱性炉衬吹炼成功,并推广到全国各地。50~60年代侧吹转炉钢产量曾达中国钢总产量的20%以上。50年代末,首先在北京建成30吨氧气顶吹转炉车间开始生产。以后在各地相继建成投产。1980年氧气转炉钢的产量占全国钢的总产量40.64%。

原理

转炉炼钢法同其他炼钢法主要区别在于他不借助外加能源,仅靠吹入熔池的空气或氧气与生铁水中各种元素的放热氧化反应完成脱碳和脱除杂质的任务,并将钢液加热到出钢(1600℃或更高)温度。

氧化 当空气或氧气吹入铁水时,生铁中易氧化元素就开始氧化,产生的氧化物和加入的石灰形成炉渣。各项元素按其与氧结合能力的顺序依次氧化。首先氧化的是硅、锰和少量的铁。开始时因温度低(1200~1300℃),而且石灰溶解很慢,组成低氧化钙的铁-锰-硅酸渣。随着温度升高,碳开始激烈地进行氧化。随石灰逐渐溶解,炉渣转变为硅酸钙渣或磷酸钙渣,磷和硫亦被脱除,熔池铁液中各种元素氧化的先后顺序为硅、钒、锰、铬。碳随着温度的提高而分别先于有关元素氧化(见自由焓)。

脱氧 转炉吹炼终了时,钢液中存在着少量过剩的溶解氧,一般为0.01~0.08%。其含量主要取决于终点钢水的碳含量(图1)。但在固体钢中氧的溶解度很低,仅为0.002~0.003%,因此在浇铸后的钢水凝固过程中,氧便以FeO形式析出,影响钢的质量。所以,要炼成合格的钢,就必须脱氧。脱氧是将与氧亲和力较大的元素及其合金作为脱氧剂加入钢液中,利用脱氧产物不溶于钢液而析出上浮脱离钢液的原理,使钢中的含氧量降到规定限度之下(见钢的脱氧反应)。各元素在1600℃时的脱氧能力比较见图2。在生产中常用的脱氧元素锰、硅、铝,它们的脱氧能力依次递增。为提高脱氧效率,使脱氧产物易于形成大颗粒排出,脱氧剂的加入一般应采用由弱到强的顺序,即先加锰铁,再加硅铁,最后加铝(或铝铁)。

2、炉外精炼

将转炉、平炉或电炉中初炼过的钢液移到另一个容器中进行精炼的炼钢过程,也叫“二次炼钢”。炼钢过程因此分为初炼和精炼两步进行。

简介

将转炉、平

炉外精炼

炉或电炉中初炼过的钢液移到另一个容器中进行精炼的炼钢过程,也叫“二次炼钢”。炼钢过程因此分为初炼和精炼两步进行。初炼:炉料在氧化性气氛的炉内进行熔化、脱磷、脱碳和主合金化。精炼:将初炼的钢液在真空、惰性气体或还原性气氛的容器中进行脱气、脱氧、脱硫,去除夹杂物和进行成分微调等。这样将炼钢分两步进行,可提高钢的质量,缩短冶炼时间,简化工艺过程并降低生产成本。

1933年法国佩兰(R.Perrin)应用专门配制的高碱度合成渣,在出钢的过程中,对钢液进行“渣洗脱硫”,这是炉外精炼技术的萌芽。1950年在联邦德国用钢液真空处理法脱除钢中的氢以防止“白点”。60年代末期以来,炉外精炼技术经过不断地发展,目前已有几十种方法应用于工业生产,逐步形成了炼钢工艺中的一个新分支。中国于1957年开始研究钢液真空处理法。建立了钢液脱气、真空铸锭装置,70年代建立了氩氧炉、钢包精炼炉和钢包喷粉装置等炉外精炼设备。

钢液的炉外精炼是把一般炼钢炉中要完成的精炼任务,如脱硫、脱氧、除气、去除非金属夹杂物、调整钢的成分和钢液温度等,炉外的“钢包”或者专用的容器中进行。这样就把原来的炼钢工艺分成两步进行: 第一,在一般炼钢炉中进行熔化和初炼,称为初炼炉; 第二,在钢包或专用的精炼容器中进行精炼。这些“钢包”或者专用的容器称为精炼炉。

原理

精炼主要通过下述作用:

真空脱气

钢液中气体的溶解度服从平方根定

炉外精炼

律,钢中氢含。钢液真空处理时,降低精炼容器中氢的分压p啹,即可达到钢液脱氢的目的。氢的溶解反应平衡常数KH是温度的函数,在1600℃时,KH=0.0027。氢在钢液中溶解平衡常数低,扩散速度快,所以钢液脱氢速度很快,可使钢中氢含量接近平衡值。同理,也可进行脱氮,但氮在钢液中的溶解平衡常数较高,KN=0.040,扩散速度慢,因此钢液真空处理时,氮的脱出率仅为10~25%(见钢的去气,真空冶金)。

真空脱氧

炉外精炼通常用两种脱氧方法。真空下碳脱氧和加

炉外精炼

入合金元素硅、锰、铝等进行沉淀脱氧。真空下碳氧反应为:【C】+【O】─→CO↑,则【C】%·【O】%=ppCO/K=mppCO,平衡常数K为温度的函数,在1600℃和ppCO=1大气压时值为0.0020~0.0025,因此真空下碳的脱氧能力很强,可超过脱氧元素硅、锰和铝。反应产物CO是气态而不是呈夹杂物形态,在真空下极易排除。

惰性气体处理

向钢水中吹入惰性气体,这种气体本身不参与冶金反

炉外精炼

应,但从钢水中上升的每个小气泡都相当于一个“小真空室”(气泡中H

2、N

2、CO的分压接近于零) 具有“气洗”的作用。 炉外精炼生产不锈钢的原理,就是应用不同的CO分压下碳铬和温度之间的平衡关系。用惰性气体加氧进行精炼脱碳(工艺过程中不断变换氩/氧的比例),可以降低碳氧反应中CO的分压,在较低温度的条件下,降低碳含量而铬不被氧化。

钢液搅拌 炉外精炼过程中对钢液进行搅拌,使钢液成分和温度均匀化,并能促进冶金反应。多数冶金反应过程是相界面反应,反应物和生成物的扩散速度是这些反应限制性环节。钢液在静止状态下,冶金反应速度很慢,如电炉中静止的钢液脱硫需要30~60分钟;炉外精炼中搅动钢液进行脱硫只需3~5分钟,即可达到同样的效果。钢液在静止状态下,夹杂物靠上浮除去,服从于斯托克斯(Stokes)定律,排除速度较慢;搅拌钢液时,夹杂物的除去服从于指数规律,式中Xt和X0分别表示时间s和开始时间(s=0)时夹杂物的浓度;k为常数,与搅拌强度、类型和夹杂物的特性有关。

处理方式

钢包处理型炉外精炼

炉外精炼

特点是精炼时间短(10~30分钟),精炼任务单一,没有补偿钢水温度降低的加热装置,工艺操作简单,设备投资少。有钢水脱气、脱硫,成分控制和改变夹杂物形态等装置。真空循环脱气法(RH、DH),钢包真空吹氩法(Gazid),钢包喷粉(CaSi或其他粉剂)处理法(IJ、TN、SL)等均属此类。

钢包精炼型炉外精炼 特点是精炼时间长(60~180分钟),具有多种精炼机能,有补偿钢水温度降低的加热装置,适于各类高合金钢和特殊性能钢种(如超纯钢种)的精炼生产。真空吹氧脱碳法 (VOD)、真空电弧加热脱气法(VAD)和钢包精炼炉法(ASEA-SKF)等,均属此类。与此类似的还有氩氧脱碳法(AOD)。

工艺特点

炉外精炼具有共同工艺特点:①选择一个理想的精炼气氛条件,通常采用真空、惰性气氛或还原性气氛。②对钢液进行搅拌,可采用电磁感应、惰性气流或机械方法搅拌。③钢液加热,在精炼过程中通常采用电弧加热、埋弧加热、等离子加热或增 工业生产概况

在各种炉外精炼方法中,钢包处理型炉外精炼在工业生产中使用最多

炉外精炼

。70年代末期世界各国投入工业生产的炉外精炼设备约有 400余座。美国和日本生产轴承钢全部都经真空处理(RH法、DH法等),超低硫钢的生产以及控制夹杂物形态的钢种主要应用钢包喷粉处理法生产(TN法、SL法)。AOD炉利用氩-氧混合吹炼生产不锈钢,铬元素的回收率达98%以上,并可使用高碳铬铁做合金原料,经济效果十分显著。美国的不锈钢生产几乎全部用AOD炉。目前世界上AOD炉生产的不锈钢约占75%。ASEA-SKF炉和VAD炉均采用电弧加热钢液,用电磁感应或氩气流搅拌钢液,可进行长时间的精炼操作,多用于生产高合金钢。这类设备还可作钢液保护炉,用于多炉联合生产特大钢锭。

炉外精炼法可以大幅度地提高冶金质量,并将钢中有害杂质降低到以下水平:【H】0.5~3ppm,【O】5~30ppm,【N】15~50ppm,【C】0.002~0.03%,【S】0.002~0.01%,提高现有炼钢炉生产能力30~50%,使钢液浇铸温度波动幅度保持±3~4℃范围内,生产成本降低13~54%。

炉外精炼的手段

渣洗:最简单的精炼手段;真空:目前应用的高质量

炉外精炼

钢的精炼手段;搅拌:最基本的精炼手段;喷吹:将反应剂直接加入熔体的手段;调温:加热是调节温度的一项常用手段。

3、连铸

简述

连铸即为连续铸钢(英文,Continuous Steel Casting)的简称。在钢铁厂生产各类钢铁产品过程中,使用钢水凝固成型有两种方法:传统的模铸法和连续铸钢法。而在二十世纪五十年代在欧美国家出现的连铸技术是一项把钢水直接浇注成形的先进技术。与传统方法相比,连铸技术具有大幅提高金属收得率和铸坯质量,节约能源等显著优势。

流程

连续铸钢的具体流程为:钢水不断地通过水冷结晶器,凝成硬壳后从结晶器下方出口连续拉出,经喷水冷却,全部凝固后切成坯料的铸造工艺过程。

连铸坯从连铸机下方拉出

如果连铸生产薄板坯,那么还可以进入连铸连轧工艺进行进一步的加工。 连铸除了铸钢之外,还可以铸造铝、铜制产品。 连铸工艺的发展史

从二十世纪五十年代开始,连铸这一项生产工艺开始在欧美国家的钢铁厂中,这种把液态钢水经连铸机直接铸造成成型钢铁制品的工艺相比于传统的先铸造再轧制的工艺大大缩短了生产时间,提高了工作效率。到了八十年代,连铸技术作为主导技术逐步完善,并在世界各地主要产钢国得到大幅应用,到了九十年代初,世界各主要产钢国已经实现了90%以上的连铸比。中国则在改革开放后才真正开始了对国外连铸技术的消化和移植;到九十年代初中国的连铸比仅为30%。

WAM公司

WAM公司作为中国最早的一家民营专业化连铸技术公司,从1992年成立起就致力于中国连铸技术的发展和创新,为推动国内连铸钢铁业的迅速发展,提高国内连铸比贡献自己的一份力量。

铸铁水平连铸课题

铸铁水平连铸课题为国家“七五”攻关项目,铸铁经过水平连铸方法生产的型材,无砂型铸造经常出现的夹渣、缩松等缺陷,其表面平整,铸坯尺寸精度高(土L 0mm)无需表面粗加工,即可用于加工各种零件。特别是铸铁型材组织致密,灰铸铁型材石墨细小强度高,球铁型材石墨球细小园整,机械性能兼有高强度与高韧性结合的优点。目前国际上铸铁型材已广泛运用到制造液压阀体,高耐压零件,齿轮、轴、柱塞、印刷机辊轴及纺织机零部件。在汽车、内燃机、液压、机床、纺织、印刷、制冷等 连铸机的结构

连铸机结构示意图

连铸机主要由中间罐、结晶器、振动机构、引锭杆、二次冷却道、拉矫机和切割机组成。

中间罐是装盛钢水的部位,加热成液态的钢水首先装在钢包中,由天车拉运至中间包上方,并把钢水倒入中间包中。中间包中的钢水再经由管道进入结晶器。液态金属的温度可以随合金大幅增加严格控制。

结晶器

结晶器是连铸机的核心部件,连铸生产的主体思想是把液态的钢水直接铸造成成型产品,结晶器就是把液态钢水冷却出固态钢坯的部件,它是由一个内部不断通冷却水的金属外壳组成,这个不断输送冷却水的外壳把与之相接触的钢水冷却成固态。另一方面,结晶器的形状还决定了连铸出的钢坯外形,如果结晶器的横截面是长方形,连铸出的钢坯将是薄板坯;而正方形形状的结晶器横截面拉出的钢坯将是长条形,即方坯。

与结晶器相连的部件是振动机构,该机构在生产过程中通过不断地振动带动结晶器一同振动,排除液态金属中的气体,帮助凝结成固态外壳的钢坯从下方拉出。

引锭杆

引锭杆在连铸机刚开始生产时起拉动第一块钢坯的作用。在液态钢水在结晶器中凝结之后,引锭杆将钢坯从下方拉出,同时拉开连铸生产的序幕。

在拉出钢坯之后,第一个经过的区域是二次冷却道,在二次冷却道中向钢坯喷射冷却水,将钢坯将逐渐从外表冷却到中心,沿着辊道进入拉矫机。

拉矫机的作用是将连铸坯拉直,以便于下一步工序的进行。

拉矫机的后方是切割机。对于生产出不同形状的钢坯,使用的切割机也就不同。连铸薄板坯多用大型飞剪,而条状坯则多使用与钢坯同步前进的火焰切割机。

连铸的主要问题

虽然高度的自动化有助于生产出无收缩铸件,但如果液态金属事先不除尽杂质,在铸造过程中会出现问题。氧化是液态金属杂质的主要来源,气体、矿渣或不溶合金也可能卷入液态金属。为防止氧化,金属尽量与大气隔离。在中间包,任何夹杂物包括气泡,其他矿渣或氧化物,或不溶合金也可能被夹杂在渣层。

一个主要的连铸问题是连铸坯的断裂。如果凝固的金属外壳过薄,有可能导致钢坯在拉出一定长度后下方的金属将上方正在凝结的金属拉断,导致钢水泄露,进而破坏其他机器而发生事故。通常情况下,断裂是由于过高的拉出速度,使凝固的外壳没有足够时间来产生所要求的厚度;也有可能是拉出的金属温度仍然过高,这意味着最终凝固时间大大低于矫直辊和地方链断裂整顿期间,由于应用的压力。阿突破,也可能发生,如造成撕裂。如果传入的金属过热,可以通过减慢拉出速度来防止断裂。

另一个可能出现的问题是碳化物,钢铁与溶解氧反应也可能产生碳化物。由于金属是液态,这种碳化反应是非常的快,同时产生大量高温气体,如果是在中间包或者结晶器中发生碳化反应,氧元素还会反应生成氧化硅或氧化铝,如果产生过多的氧化硅或氧化铝将有可能堵塞中间包与结晶器中间的连接管,进而导致破坏生产。

上一篇:铝工业发展现状与趋势下一篇:论环境税收制度的构建