考研数学定理的证明

2024-05-08

考研数学定理的证明(通用12篇)

篇1:考研数学定理的证明

考研数学定理证明

不一定会考,或者说是好像近几年也就是09年的考题出过一道证明题(拉格朗日中值定理的证明)。但准备时最好把课本上几个重要定理(比如中值定理)的证明看下,做到会自己证明。还有就是几个证明过程或方法比较奇特的定理,要看懂证明。一个可以应付直接考证明题,还可以借鉴证明思路帮助自己解其他题目,算是开扩思路吧,总之看下会有好处的,而且也不是很多,比照课本自己总结下吧,我去年就是这么整理的。数学140+

定理的证明属于比较难的,可以不看。很多人看都看不懂,或者看懂了也不会用。

但是定理的结论和应用一定要会。

考研里的证明题属于压轴的,大部分人都做不出来,所以不用担心。只要把基本盘拿下,你的分数就应该能过国家线。

祝你成功。

呵呵非常理解你的处境。我觉得这个问题不难解决,主要有两个办法。下面帮你具体分析一下,呵呵~

一。旁听师弟师妹的数学课~优点:不仅经济,便利,而且对老师的水平有保证~因为都是你们学校的嘛,你可以事先充分打听好哪个老师哪门课讲得好,然后还能比较容易获取课程进度,这样就可以专门去听自己不懂得那块,针对性强矮甚至你下课后还可以就不懂得习题跟老师请教一下~就本人这么多年的上学经验,老师对“问题学生”都是欢迎的,至少不排斥~缺点:由于不是专门针对考研复习的讲授,有些东西可能不是很适合~举个例子吧,比如将同样的知识,高一时候和高三第一轮复习时,讲的侧重点就不一样~(但是个人觉得这不算什么大缺点~嘿嘿~)

二。报名参加专门的考验辅导班。优点显而易见。老师肯定都是有多年考研辅导经验的,指导复习当然针对性强,有事半功倍的效果。缺点就是,嘿嘿,学费问题。你所在地的学费情况我就不清楚了,你可以自己去查一下~

还有一句话想说,其实这两个办法也不是对立的,你可以在学校里去旁听老师的课,把第一轮扎扎实实的复习完,放假回家去报名参加个辅导班,利用假期有针对性的做第二轮复习~相信两轮复习下来,你的长进一定不蝎呵呵~

我就说这么多,要是以后想起来了会再来补充的~最后祝你如愿考上理想院校哦~加油

也不知道一楼是哪个名校数学系的研究生,广州大学吗?这么有才华!听他的话等楼主没考到130哭的地方都找不到。

考研每一门学科都要复习好几轮,也不知道楼主考什么专业,数学几?

基础差的话第一轮复习要弄清楚定理及其证明过程。如果应届本科生又是学理科,平时成绩不错,高数,线性分都很高的话第一轮可以直接看教材做题。

篇2:考研数学定理的证明

在考研数学中,有关中值定理问题的证明是一个比较难的考点,很多考生反映在做中值定理证明时没有思路,虽然看例题能明白,但自己做题时还是比较困难,之所以出现这种情况,主要原因在于这些同学没有掌握中值定理证明题的分析方法和技巧,没有掌握其证明规律,为了使大家能够掌握恰当的方法,下面中公考研数学辅导老师就以几个证明题为例来跟大家谈谈如何做分析证明题。

一、中值定理问题的证明分析方法

首先,做证明题同其它题一样,也要先仔细审题,认真解读题目的条件和要证的结论,理解其含义;

其次,做证明题需要先进行分析推理,分析的方向有两个,一个是根据题目的条件来向结论所在方向推导,另一个是由结论倒推条件,直到结论与条件挂上钩,二者联系在一起;

最后,也是做中值定理证明题不同于其它问题的地方,就是要充分理解各个中值定理的关键使用条件和方法,必要时作相应的辅助函数来进行证明。

二、中值定理问题证明实例

全国高校报录比汇总 全国高校报录比汇总

全国高校报录比汇总 全国高校报录比汇总

全国高校报录比汇总 全国高校报录比汇总

此等式变形为某一个函数的导数的形式,并以此函数作为辅助函数来证明结论。对于中值定理问题的证明,大家还应该多做一些练习题来进一步提高解题能力。最后预祝各位学子在2016考研中能实现自己的梦想。

篇3:考研数学定理的证明

一、欧几里得的证明方法

如图1, 这是早在两千多年前的数学名著《几何原本》中提出的关于勾股定理的证明, 通过边长为a, b, c的三个正方形搭建一个直角三角形, 并作辅助线CD, CL, FB, 其中CL垂直于DE并与AB交于M点 , 还需要确 保HB垂直于FH.

因为AF = AC, AB = AD, ∠FAB =∠CAD, 所以△FAB≌△CAD, 因为△FAB的面积等于1 /2 a2, △CAD的面积等于矩形ADLM的面积的一半, 所以矩形ADLM的面积为a2. 同理可证, 矩形MLEB的面积为b2.

因为正方形ADEB的面积 = 矩形ADLM的面积 + 矩形MLEB的面积, 所以可以得出结论:c2= a2+ b2, 即a2+ b2= c2.

这一证明方法, 给学生提供了通过图形的面积去分析边长关系的重要方法. 首先, 就是在于∠BCA必须是直角, 这样才能维持点H, B, C在同一条直线上, 从而建立一个直角三角形ABC;其次, 必须给学生指出给交点命名一个字母符号, 才不会遗忘一些关键信息;最后, 确定直角三角形ABC三边之间的关系.

数学的教学不仅需要围绕“知识与能力”展开, 更重要的是需要让学生产生“情感态度和价值观”上的共鸣. 欧几里得在《几何原本》中, 以这个定理为中心, 开启了自己的数学框架体系, 也为后人在学习数学的提供了宝贵的财富. 这些情感也需要教师在谈及图形引导时进行潜移默化的教育.

二、美国总统的证明方法

时间倒回到1876年, 当时正值黄昏, 在公园里, 有两个孩子嘈杂的吵闹声惊动了周围许多人, 其中也包括未来的美国总统加菲尔德. 两个孩子正在为直角三角形的边长讨论着, 这激发了他仔细研究“勾股定理”的兴趣. 不久之后, 他公开发表了自己的证明方法. 加菲尔德身为总统却为孩子的数学问题苦思冥想, 这对于总是抱怨成绩不好却不愿意努力学习的学生来说, 应该说是非常好的教育案例.

如图2, 图形ABCD是一个直角梯形, 以∠DAE为直角的三角形和以∠CBE为直角的三角形是全等三角形, 两个三角形的三条边a, b, c完全相等, 图形的基本关系确定之后, 下面便可以开始证明.

第一步, 寻找等式关系, 根据已知条件, △DAE和△CBE是全等三角形, 所以它们对应的每一条边和每一条角都相等, ∠AEB为平角180°, 加上∠DAE和∠EBC都为直角, 证明∠DEC为直角便不是什么难事了. 紧接着依据边EC和DE为长度相等的边, 判定△DEC为等腰直角三角形也就顺理成章了. 证明如下: 因为Rt△EAD≌Rt△CBE, 所以∠ADE = ∠BEC. 同时∠AED + ∠ADE = 90°, 所以∠AED + ∠BEC = 90°, 还能得出∠DEC = 180° - 90° = 90°, 最终可以确定△DEC是一个等腰直角三角形, 它的面积等于1/ 2 c2.

第二步, 建立破题的等式关系, 根据边长的关系算出△DEC的面积的根本目的还是在于建立另外一个等式关系, 那就是直角梯形ABCD的面积等于三个直角三角形面积之和, 即直角梯形ABCD的面积 = △DAE的面积 + △EBC的面积 + △DEC的面积. 因为∠DAE = 90°, ∠EBC = 90°, 所以AD∥BC, 并可以证明ABCD是一个直角梯形, 它的面积等于1 /2 (a + b) 2, 即最终可以得出结论 a2+ b2= c2.

通过这两个等式, 我们便很容易地证明出了“勾股定理”, 这个方法十分简便地描述出了三角形各个边长的关系, 还确定了各个面积之间的关系.

三、课堂通常的证明方法

虽然说相对于欧几里得在《几何原本》当中记录的方法, 总统证明法已经要简单许多, 但是从初中生的知识基础而言, 课堂通常使用的方法要更加简便易懂. 这是为学习基础薄弱的同学准备的, 也是为学习能力较强的同学打好基础的重要手段.

如图3, 将四个全等三角形进行组合, 拼凑出一个边长为a + b的正方形, 这样便形成了一个明显的面积相等的等式, 再根据边角关系可以确定中间的图形为边长为c的正方形, 则有:

四、小 结

篇4:考研数学定理的证明

圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半。

已知:在⊙O中,弧BC所对的圆周角是∠BAC,圆心角是∠BOC(如图一),求证:∠BAC= ∠BOC。

分析:圆周角∠BAC与圆心O的位置关系有三种:(1)圆心O在∠BAC的一条边AB(或AC)上(如图二);(2)圆心O在∠BAC的内部(如图三);(3)圆心O在∠BAC的外部(如图四)。

在第一种位置关系中,圆心角∠BOC恰为△AOC的外角,这时很容易得到结论;在第二、三两种位置关系中,均可作出过点A的直径,將问题转化为第一种情况,同样可以证得结论。这充分体现了一种重要的数学思想——化归思想。

数学问题的解决几乎都离不开化归,只是体现的形式有所不同。计算题是利用规定的运算法则进行化归,证明题是利用公理、定理或已经证明了的命题进行化归,应用题利用数学模型化归,因此,离开了化归,数学问题将无法解决。通过一定的转化过程,把待解决的问题转化为已经解决或比较容易解决的问题或这类问题的某种组合,这种思想被称之为化归思想。从化归的途径上来看,大致可以分为下面两种:

一、新知识向已有知识的转化

在初中阶段,有许多新知识的获得或新问题的解决都是通过转化为已知知识或已解决的问题来完成的,也就是将新知识向已有知识进行转化,从而使问题得到解决。下面就以解方程为例来进行分析。

解一元二次方程时有以下四种基本解法:

(一)如果方程的一边是关于X的完全平方式,另一边是个非负数,则根据平方根的意义将形如(x+m)2=n(n≥0)的方程转化为两个一次方程而得解,此为直接开平方法。

(二)如果将方程通过配方恒等变形,一边化为含未知数的完全平方式,另一边为非负数,则其后的求解可由思路一完成,此为配方法。

(三)如果方程一边能分解成两个一次因式之积,另一边为零,就可以得到两个因式分别为零的一次方程,它们的解都是原方程的解,此为因式分解法。

(四)如果以上三条思路受阻,便可把方程整理为一般形式,直接利用公式求解。

纵观以上四种方法,不难发现,方法一是依据平方根的意义将二次方程转化为一次方程,完成了由“二次”向“一次”的转化。方法二中的“配方”仅完成了方程的恒等变形,把问题转移到“可开方”上来,并未完成“降次转化”这一实质性工作,但已经为“二次”向“一次”转化创造了条件,因而习惯上称之为“配方法”,配方法的实质就是通过转化为开平方来解决的。方法三即因式分解法也顺利地实现了由“二次”转化为“一次”的目的。方法四即所谓公式法,对一般的一元二次方程,通过配方,转化为开平方求得一般结论,即求根公式。公式法实际上已将解方程转化成为代数式的求值问题,而公式的得到则是化归思想的典型体现。纵观整个初中教材,不难发现除了解方程问题,还有许多知识的转化都属于新知识向已有知识的转化。

二、一般情况向特殊情况的转化

本文开头圆周角定理的证明就是先解决特殊条件或特殊情况下的问题,然后通过恰当的化归方法把一般情况下的问题转化为特殊情况下的问题来解决,这也是顺利解决某些问题的一种重要的化归途径,特别是在中考题的最后一题中,往往也有许多时候是需要先解决特殊条件下的问题,然后再通过化归把一般情况下的问题转化为特殊条件下的情形来解决。

三、化归思想方法的教学策略

从上面的分析中,我们不难发现化归思想在初中数学的学习中有着举足轻重的作用,是一种非常重要的数学思想。那么如何在日常教学中更好的渗透和落实化归思想呢?

(一)夯实基础知识,完善知识结构是落实化归思想方法教学的基础。教学过程中,可从以下几个方面做起:

1、重视概念、公式、法则等基本数学模型的教学,为寻求化归目标奠定基础。从某种意义上说,中学数学教学实际上是数学模型的教学,建立数学模型是实现问题的规范化和程序化,运用模型的过程即是转化与化归的过程。

2、养成整理、总结数学方法的习惯,为寻求化归方法奠定基础。差生之所以拿到基本题没有思路,其根本原因是其知识结构残缺不全。

3、完善知识结构,为寻求化归方向奠定基础。在平时教学中帮助学生完善知识结构,例如做好单元小结,其中画知识结构图或列知识表是完善知识结构使知识系统化、板块化的有效方法之一。通过表格或网络图,知识之间的相互联系、依存关系一目了然,为问题的转化提供了准确的方向。

(二)培养化归意识,提高转化能力是实现化归思想方法教学的关键

数学是一个有机整体,它的各部分之间相互联系、相互依存、相互渗透,使之构成了纵横交错的立体空间,我们在研究数学问题的过程中,常需要利用这些联系对问题进行适当转化,使之达到简单化、熟悉化的目的。要实施转化,首先须明确转化的一般原理,掌握基本的化归思想和方法,并通过典型的问题加以巩固和练习。因此,在平时的教学中,我们不断教会学生解题,通过仔细的观察、分析,由问题的条件、图形特征和求解目标的结构形式联想到与其有关的定义、公式、定理、法则、性质、数学解题思想方法、规律以及熟知的相关问题解法,由此不断转化,建立条件和结论之间的桥梁,从而找到解题的思路和方法。

(三)掌握化归的一般方法,是实现数学化归思想方法教学的基本手段

化归的实质是不断变更问题,因此,可以从变形的成分这个方面去考虑,也可以从实现化归的常用方法直接去考虑。在实际运用中,这两个方面又是互相渗透、互相补充的。初中阶段常用的化归方法有恒等变换法,具体包括分解法、配方法、待定系数法等:其次是映射反演法,具体包括换元法、坐标法等。

(四)深入教材,反复提炼与总结是实现化归思想方法教学的基本途径

篇5:考研数学定理的证明

免费领取考试干货资料,还有资料商城等你入驻

2018考研数学之高数考点预测:中值定理证明

中值定理证明是高等数学重点难点,今年很有可能会考到,冲刺时间不多,小编带大家来把这些考点回顾巩固下: 中值定理是考研数学的重难点,这一类型的问题,从待证的结论入手,首先看结论中有无导数,若无导数则采用闭区间连续函数的性质来证明(介值或零点定理),若有导数则采用微分中值定理来证明(罗尔、拉格朗日、柯西定理),这个大方向首先要弄准确,接下来就待证结论中有无导数分两块来讲述。

一、结论中无导数的情况

结论中无导数,接下来看要证明的结论中所在的区间是闭区间还是开区间,若为闭区间则考虑用介值定理来证明,若为开区间则考虑用零点定理来证明。

考试使用毙考题,不用再报培训班

邀请码:8806

下载毙考题APP

免费领取考试干货资料,还有资料商城等你入驻

考试使用毙考题,不用再报培训班

邀请码:8806

下载毙考题APP

免费领取考试干货资料,还有资料商城等你入驻

考试使用毙考题,不用再报培训班

邀请码:8806

下载毙考题APP

免费领取考试干货资料,还有资料商城等你入驻

考试使用毙考题,不用再报培训班

篇6:2016考研数学 费马定理

对于中值定理这部分的学习,很多同学都感到很困惑。然而中值定理又是我们考研数学中的难点,这部分的试题灵活性,综合性比较强,对考生的思维要求比较高,同时这一部分在考试中经常是出证明题,学生的得分率比较低,这里我帮助同学们一起学习中值定理。首先是要理解并记忆定理的内容;二是记住定理的证明过程,并掌握这一部分试题主题的证明思想。费马定理是三大中值定理的引理,很多同学在复习的时候经常忽略,下面中公考研数学辅导老师就带大家来看费马定理。

对于费马定理这个内容主要是说明,如果要证函数发f(x)在一点的导数为零,只要证明在这点取极值(极大值或极小),则存在导数等于零。

中公考研

http:// 考研交流学习群【198233974】

罗尔定理的证明是会用到费马定理的,对于费马定理一定要掌握。

中公考研

篇7:考研数学定理的证明

2009考研数学一考前必做三套模拟试题(一)及答案

最专业的学习资料下载网站http://.cn

欢迎下载http://.cn的学习资料,为了您的电脑更安全,请从http://.cn下载本站资料,其他网站下载的资料,均为非法盗链,并且不能保证您的电脑和上网安全。为了能更好的保证您的电脑和上网安全,请从http://.cn下载所以本站提供的资料。

马克思主义哲学认为,世间万物存在或者运动都是有规律可循的。掌握了规律,认识事物就会更加地简便和透彻。同样,运用到考研上,掌握出题者的规律就会了解各种题型,了解

高等数学部分

1.在题设条件中给出一个函数f(x)

2.3.在题设条件中函数f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=0或或,则“不管三七二十一”先用拉格朗日中值定理处理。

4.f(u)。

线性代数部分

1.题设条件与代数余子式Aij或A*(列)展开定理以及AA*=A*A=|A|E。

2.若涉及到A、B

3.若题设n阶方阵A满足,要证可逆,则先分解出因子aA+bE再说。4.5.若已知AB=0B的解来处理。

6.7.若已知AζAζ0=λ0ζ0处理。

8.若要证明抽象阶实对称矩阵A为正定矩阵,则用定义处理。

概率与数理统计解题部分

1.。

2.若给出的试验可分解成(0-1)的n试验,及其概率计算公式。

3.4.若题设中给出随机变量X ~ N 来处理有关问题。

5.求二维随机变量(X,Y)的边缘分布密度的区域,然后定出X的变化区间,再在该区间内画一条//y轴的直线,先与区域边界相交的为y的下限,后者为上限,而 的求法类似。

6.欲求二维随机变量(X,Y)满足条件Y≥g(X)或(Y≤g(X))的概率,应该马上联想到二重积分 的计算,其积分域D是由联合密度 的平面区域及满足Y≥g(X)或(Y≤g(X))的区域的公共部分。

7.涉及n次试验某事件发生的次数X的数字特征的问题,马上要联想到对X作(0-1)分解。即令

8.凡求解各概率分布已知的若干个独立随机变量组成的系统满足某种关系的概率(或已知概率求随机变量个数)的问题,马上联想到用中心极限定理处理。

9.若 为总体X的一组简单随机样本,则凡是涉及到统计量 的分布问题,一般联想到用 分布,t分布和F分布的定义进行讨论。

本站郑重申明:为了您的电脑更安全,请从http://.cn下载本站资料,其他网站下载的资料,本站一例不保证您的上网安全。

最专业的学习资料下载网站

篇8:考研数学定理的证明

——菲·蔡·约翰逊

数学教学实质上是数学思维活动的教学, 在数学教学中要充分调动学生的主体作用, 注重教学过程, 改变被动接受知识的局面, 实现课堂教学素质化, 才能真正提高课堂教学质量和效率。下面说说我在教学中的做法, 通过这个例子来具体地说明数学课上如何提高课堂效率。

课例:《勾股定理的证明》

教学目标:勾股定理是学生在已经掌握了直角三角形的有关性质的基础上进行学习的。它是直角三角形的一条非常重要的性质, 是几何中最重要的定理之一;它揭示了一个直角三角形三条边之间的数量关系;它可以解决直角三角形中关于边的计算问题, 是解直角三角形的主要根据之一, 在实际生活中用途很大。教材在编写时注意培养学生的动手操作能力和分析问题的能力, 通过实际分析、拼图等活动, 使学生获得较为直观的印象;通过联系和比较, 理解勾股定理, 以便正确地进行运用。

例如, 勾股定理证明教学过程中, 教师可这样实施:

一、故事引入, 激发兴趣

为了激发学生学习勾股定理的兴趣, 可以由下列故事引入:三千多年前有个叫商高的人对周公说:把一根直尺折成直角, 两端连接得到一个直角三角形, 如果勾是3, 股是4, 那么弦等于5。

这样引起学生的学习兴趣, 激发学生的求知欲。

教师紧接着问:是不是所有的直角三角形都有这个性质呢?

教师要善于激疑, 使学生进入乐学状态。这样做将学生的注意力吸引到课堂上来, 学生全神贯注地听课, 课堂效率得到提高。

二、自学教材, 主动探究

教师将教材知识整合, 制作成幻灯片, 以此指导学生自学教材。通过自学感悟、理解新知, 体现了学生的自主学习意识, 锻炼了学生主动探究知识的能力, 养成了学生良好的自学习惯。

1. 通过自主学习, 教师设疑或学生提疑。如:怎样证明勾股定理?通过自学, 中等以上的学生基本都能掌握, 这时能激发学生的表现欲。

2. 通过合作探究, 引导学生摆脱网格的限制, 研究任意直角三角形三边的数量关系。渗透由特殊到一般的思想方法。

3. 教师引导学生按照要求进行拼图, 观察并分析; (学生每人准备四个大小一样的直角三角形) (1) 这两个图形有什么特点? (2) 你能写出这两个图形桔黄色部分的面积吗? (3) 你得到什么结论?

这时教师组织学生分组讨论, 调动全体学生的积极性, 达到人人参与的效果, 接着全班交流。先由某一组代表发言, 说明本组对问题的理解程度, 其他各组作评价和补充。教师及时进行富有启发性的点拨, 最后, 师生共同归纳, 形成一致意见, 最终解决疑难。

三、巩固练习, 强化提高

1. 出示练习, 学生分组解答, 并由学生总结解题规律。课堂教学中动静结合, 以免引起学生思维疲劳。

例1.某楼房三楼失火, 消防员赶来救火, 了解到每层楼高3米, 消防员取来6.5米长的梯子, 梯子的底部离墙基2.5米, 请问消防员能否进入三楼灭火?

2. 出示例1:学生试解, 师生共同评价, 以加深对例题的理解与运用。针对例题再次进行巩固练习, 进一步提高学生运用知识的能力, 对练习中出现的情况可采取互评、互议的形式, 在互评互议中出现的具有代表性的问题, 教师可以采取全班讨论的形式予以解决, 以此突出教学重点。

四、归纳总结, 练习反馈

引导学生对知识要点进行总结, 梳理学习思路。分发自我反馈练习, 学生独立完成。

五、课后作业

1. 课本第81页1、2、3题。

2. 通过报刊、资料或上网查阅中外名人对勾股定理的证明方法以及勾股定理的发展史。

教学反思:本节课教学目标明确, 重点突出, 注重对知识形成过程的教学。但是在准备这节课时还是不够充分, 比如引例比较简单, 可以适当增加。在本节课后, 我又搜集了一些关于勾股定理的典故, 充实本节课的内容。

勾股定理的典故:

1.5000年前的埃及人, 也知道这一定理的特例, 也就是勾3、股4、弦5, 并用它来测定直角, 之后才渐渐推广。

2.金字塔的底部, 四正四方, 正对准东西南北, 可见方向测得很准, 四角又是严格的直角。而要量得直角, 当然可以采用作垂直线的方法, 但是如果将勾股定理反过来用, 也就是说:只要三角形的三边是3、4、5, 或者符合的公式, 那么弦边对面的角一定是直角。

3. 到了公元前540年, 希腊数学家毕达哥拉斯注意到了直角三角形三边是3、4、5, 或者是5、12、13, 他想:是不是所有直角三角形的三边都符合这个规律?反过来, 三边符合这个规律的, 是不是都是直角三角形?他搜集了许多例子, 结果都对这两个问题作了肯定的回答。他非常高兴, 杀了一百头牛来祝贺。以后, 西方人就将这个定理称为“毕达哥拉斯定理”。

另外, 合作探究和拼图部分给学生留的时间太少, 应该给学生足够的时间进行思考, 让学生发现问题并解决问题。

总之, 本课意在创设愉悦和谐的乐学气氛, 优化教学手段, 借助电教手段提高课堂教学效率, 建立平等、民主、和谐的师生关系。加强师生间的合作, 营造一种学生敢想、敢说、敢问的课堂气氛, 让全体学生都能生动活泼、积极主动地学习, 在学习中培养创新精神和实践能力。

教学延伸:这节课中, 师生之间和生生之间的讨论取得了良好的效果。学生在自学的基础上充分发扬互助合作精神。每位同学在清楚地表明自己想法的同时, 也注意听取了其他同学的意见。在讨论的过程中, 教师为学生营造出宽松、和谐的民主教学氛围, 并通过组织与引导, 激发、鼓励学生去想、去说、去做。应该将这种和谐的教学氛围保持下去, 并且值得其他学科借鉴。本节课的一个遗憾是缺少对勾股定理发展史的介绍, 只是在作业中有所体现, 让学生主动收集勾股定理的证明方法, 到图书馆或上网查找资料, 将课堂延伸到课外, 变被动学习为主动学习, 变学生客体为主体, 大大激发学生的学习积极性。勾股定理应用广泛, 要逐步培养学生在日常生活中主动应用数学的意识, 将教学延伸到更为广阔的数学、人文、科学等领域。

摘要:本文详细讲述了勾股定理的证明过程。

篇9:几何定理的机器证明

几千年来,人们解几何题的招数,层出不穷,争奇斗艳,概括起来,不外这4类:检验、搜索、归约和转换,50多年来,数学家和计算机科学家费尽心思,循循善诱,把个中奥秘向计算机传授,使得计算机解几何题的能力日新月异,大放光彩,除了灵机一动加辅助线,或千变万化的问题转换之外,前3种方法计算机都学得十分出色了,用机器帮助,以至在某种程度上代替学者研究几何,帮助乃至代替老师指导学生学习几何,已经从古老的梦想变为现实。

在几何定理机器证明中,采用代数方法,引进坐标,将几何定理的叙述用代数方程的形式重新表达,证明问题就转化成判定是否能从假设的代数方程推出结论的代数方程的问题,这样把几何问题代数化,自笛卡尔以来已是老生常谈,并无实质困难,然而代数化的过程,坐标点的选取和方程引进的次序都可能影响到后续证明的难度,甚至由于技术条件的限制,影响到证明是否可能完成,也就是说,几何问题化成纯代数问题之后,也并不见得一定容易,更不能说就能实现机械化了,这不仅是因为解决这些代数问题的计算量往往过大,令人望而却步,还因代表几何关系而出现的那些代数等式或不等式常常杂乱无章,使人手足无措,从这些杂乱无章的代数关系式中要找出一条途径,以达到所要证的结论,往往要用到高度的技巧,换句话说,即使你不怕计算,会用计算机来算,也不知道从何算起。

解几何题是思维的体操,是十分有吸引力的智力活动之一,图形的直观简明,推理的曲折严谨,思路的新颖巧妙,常给人以美的享受,许多青少年数学爱好者,往往首先是对几何有了浓厚的兴趣,用计算机证明几何问题,如果仅限于用平凡而繁琐的数值计算代替巧妙而难于入手的综合推理,则未免大煞风景,通过计算机的大量计算判断命题为真,确实是证明了定理,这是有严谨理论基础的,但这样的证明写出来只是一大堆令人眼花缭乱的算式、数字或符号,既没有直观的几何意义,又难于理解和检验,这跟几何教科书上十行八行就说得明明白白的传统风格的证明大相径庭,如果计算机给出的这一堆难于理解和检验的数据也算是几何问题的解答,这种解答只能叫做不可读的解答。

篇10:考研数学定理的证明

勾股定理的证明及其延伸

1.说明

勾股定理是数学中一个重要知识。虽然在教材章节内容中所占篇幅不多,在考试中也往往不会作为一个独立知识点进行命题,但其实其内容及方法常常包含在其他各类题目中,是问题解答过程中一个很重要的手段。所以学生对勾股定理要能够十分熟练地进行使用。本文对勾股定理进行证明及拓展,以使学生对其进行深刻理解。

2.勾股定理的证明

命题:在直角三角形中,a、b为直角边长,c为斜边边长,则有abc。勾股定理一个最简单的证明方法是使用图形证明法。如下图,我们使用4个同样大小的红色直角三角形(a、b为直角边长,c为斜边边长)拼出2个图形: 22

2图1和图2这两个蓝色正方形的面积是相等的(它们的边长都是a+b),而4个红色直角三角形的面积也是相等的,所以2个图形中白色部分的面积也应该相等(都等于蓝色正方

形面积减去4个红色三角形的面积)。而左边图形中白色部分的面积是ab,右边图形中白色部分的面积是c,所以abc。

222222

3.圆与三角形

在讨论勾股定理的延伸之前,我们先来看圆与三角形的关系。

如图3,以BC为直径做圆,圆心为BC的中点O。在圆上任取一点A,则三角形ABC为直角三角形,其中∠A=90°。

如图4,同样做圆。如果A点在圆外,则∠A为锐角。可以这样来证明:连接AO,和圆交与点D。容易得到∠BAC<∠BDC,而∠BDC=90°,故∠A<90°。

如图5,同样做圆。如果A点在圆内,则∠A为钝角。可以这样来证明:连接OA,并延长和圆交与点D。容易得到∠BAC>∠BDC,而∠BDC=90°,故∠A>90°。

综合起来,我们可以得到如下命题:

命题:在三角形ABC中,以BC为直径、BC的中心点为圆心做圆,如果A在圆上,则∠A=90°;如果A在圆外,则∠A<90°;如果A在圆内,则∠A>90°。

注意,这个命题的逆命题也是成立的,即:

命题:在三角形ABC中,以BC为直径、BC的中心点为圆心做圆,如果∠A=90°,则A在圆上;如果∠A<90°,则A在圆外;如果∠A>90°,则A在圆内。

这个逆命题可以利用上面几副图用反证法很容易证得。

4.勾股定理的延伸

现在,我们对勾股定理进行延伸,如下:

命题:在三角形中,a、b、c为其3条边长,其中c为最长边(c≥a、c≥b),如果三角形为直角三角形,则abc;如果三角形为锐角三角形,则abc;如果三角形为钝角三角形,则abc。

请注意上面“c为最长边(c≥a、c≥b)”的条件限定。如果c不是最长边,那么必然是abc,这就不存在任何讨论的必要了。

下面我们来证明这一命题。对于直角三角形的情况,那就是勾股定理,前面我们已经证明了。现在只要证明锐角和钝角三角形的情况。

见下图,仍然如上一节那样,去最长边c为直径做圆(设这条边为BC),那么直径所对应的∠A也会是三角形ABC中最大的角(大角对大边)。

222222222222从上节的讨论中,如果是锐角三角形,A必然在圆外,如图6所示。从A点做直径BC的垂线,交圆于D点。显然AB>BD、AC>DC,而BDDCBC,所以222AB2AC2BC2。

如果是钝角三角形,A必然在圆内,如图7所示。从A点做直径BC的垂线,反向延长交圆于D点。显然AB

命题:在三角形中,a、b、c为其3条边长,其中c为最长边(c≥a、c≥b),如果222222a2b2c2,则三角形为直角三角形;如果a2b2c2,则三角形为锐角三角形;如果

a2b2c2,则三角形为钝角三角形。

5.勾股定理的增强描述

综合以上的讨论,我们可以对勾股定理进行增强型的表述,如下:

在三角形中,a、b、c为其3条边长,其中c为最长边(c≥a、c≥b),则三角形为直角三角形的充分必要条件是abc;三角形为锐角三角形的充分必要条件是222

篇11:考研数学定理的证明

八年级数学下勾股定理的证明(二)教案

18.1 勾股定理(二) 教者:庞建国 时间:四月二十日 地点:八年级7班 教学目标 知识与技能 1.了解利用拼图验证勾股定理的方法。 2、掌握勾股定理的内容,会用面积法证明勾股定理。 3.介绍我国古代在勾股定理研究方面所取得的成就,激发学生的爱国热情,促其勤奋学习。 过程与方法 1、经历用拼图的方法验证勾股定理,培养学生的创新能力和解决实际问题的能力。 2、在拼图的过程中,鼓励学生大胆联想,培养学生数形结合的意识。 情感态度与价值观 1、利用拼图的方法验证勾股定理,是我国古代数学家的一大贡献,借助此过程对学生进行爱国主义教育。 2、经历拼图的过程,并从中获得学习数学的快乐,提高学习数学的兴趣。 重点 经历用不同的拼图方法验证勾股定理的过程,体验解决同一问题方法的多样性,进一步体会勾股定理的文化价值。 难点 用不同的拼图方法证明勾股定理。 教具 小黑板,直角三角形,正方形 课时 总三课时 之 第二课时 教材 分析 勾股定理是几何中几个重要定理之一,它揭示的是直角三角形中三边的数量关系。它在数学的发展中起重要的作用,在现时世界中也有着广泛的作用。学生通过对勾股定理的学习,可以在原有的基础上对直角三角形有进一步的认识和理解。 教法 分析 针对八年级学生的知识结构和心理特征,本节课选择引导探索法,由浅入深的探究问题,引导学生自主探索,合作交流。这种教学理念反映了时代精神,有利于提高学生的思维能力,有效地激发学生的思维积极性。基本教学流程是:新课引入DD探索研究DD证明新知DD巩固练习DD课时小结DD布置作业等六部分组成。 学法 分析 在教师的组织指导下,鼓励学生做好课前准备活动,采用自主探索,合作交流的研讨式学习方式,让学生积极思考问题,获取知识,掌握方法,借此培养学生动手、动脑、动口的能力,使学生真正成为学习的主体。 教学过程 教学设计 与 师生行为 设计意图 第一步:课堂引入 问题:我们曾经学习过整式的运算,其中平方差公式(a+b)(a-b)=a2-b2 ;完全平方公式(a±b)2=a2±2ab+b2 是非常重要的内容,谁还能记得当时这两个公式是如何推出的? 师生行为: 学生动手活动,分组操作,然后再组内交流。教师深入小组参与活动,倾听学生的交流并帮助指导学生完成任务。 教师应重点关注: (1)学生能否积极主动的参与活动; (2)学生能否利用拼图的方法,通过计算拼图的面积而得出两个公式的意义; (3)学生能否从这两个公式的几何意义联想到直角三角形的三边的关系是否也可以类似证明。 引入新课: 你能用上述方法证明上一节猜想的命题吗? 回忆前面的知识,由此得出用拼图的方法推证数学结论非常直观,上一节课已经通过数格子的方法大胆猜想出了一个命题:在直角三角形中,两条直角边的.平方和等于斜边的平方。但我们不能对所有的直角三角形一一验证,因此需从理论上加以推证,学生也许会从此活动中得到启示,采用类似拼图的方法证明。 第二步:探索研究 同学们先用自己的模具拼图,看能拼出那些几何图形,在黑板上展示个别同学的作品。然后分析能否用其中的一些图形来解决直角三角形三边之间的数量关系。 锻炼学生的动手能力。 第三步:证明新知: 方法一;(赵爽弦图) 如图,让学生剪4个全等的直角三角形,拼成如图的图形,利用面积证明。 整体看:四边形ABCD是一个以直角三角形的弦(c)为边长的正方形,其面积为c2; S正方形=C 局部看:四边形ABCD是由四个直角三角形和一个正方形构成,其面积可表示为4×ab+(b-a)2.S正方形=2ab+(a-b) 方法二:总统证法 (伽菲尔德(1831∽1881),是美国第20任总统。他对数学怀有浓厚兴趣。1876年,当他还是议员的时候,发现了勾股定理的一种有趣证明:如图) 他是这样分析的,整体看:梯形ABCD的面积=(a+b)(a+b)=(a+b)2=a2+ab+b2; 局部看:梯形ABCD的面积=△AED的面积+△BEC的面积+△DEC的面积=ab+ab+c2. 比较上面两式便可得到 a2+b2=c2. 1876年4月1日,伽菲尔德在《新英格兰教育日志》上发表了他对勾股定理的这一证法. 1881年,伽菲尔德就任美国第二十任总统,后来人们为了纪念他对勾股定理直观、简捷、易懂、明了的证明,就把这一证法称为“总统”证法. 方法一:进一步了解勾股定理的发展历史,体现出中国古代的学者对勾股定理的研究,希望同学们领略我国古代数学家的智慧。 方法二:对数学的研究是不受行业所限的,我们要全身心的投入到数学的研究中去,提高学生学习数学的主动性。 第四步:课堂练习用如图所示的方法证明勾股定理。 对本节课学过的方法做进一步的巩固,达到学以致用的目的。 第五步:课时小结 这节课你学到了哪些知识和方法? 师生行为: 学生小组讨论。教师巡视,对个别同学予以辅导。 知识:能够利用面积来说明勾股定理。 方法:拼图法在数学推理中的应用。 这种形式的小结,激发了学生的主动参与意识,调动了学生的学习兴趣,为每一位学生都创造了在数学学习活动中获得成功的体验机会。 第六步:作业布置 1.如图,一艘船由岛A正南30海里的B处向东以每小时20海里的速度航行2小时后到达C处。求AC间的距离. 2.如图,已知一等腰三角形的周长是16,底边上的高是4.求这个三角形各边的长.3.若三角形的三个内角的比是1:2:3,最短边长1cm,最长边长2cm.求:(1)这个三角形各角的度数;(2)另外一边长的平方. 4.如图,直角三角形三条边的比是3:4:5.求这个三角形三条边上的高的比. 5.如图,折叠长方形一边AD,点D落在BC边的点F处,BC=10cm,AB=8cm,求:(1)FC的长;(2)EF的长. 第七步:板书设计: 一、回忆勾股定理内容。 二、用拼图法验证勾股定理。 三、课时小结。 课后反思 :

篇12:考研数学定理的证明

一,罗尔(Rolle)中值定理费马(Fermat)引理:设fx在点x0取得极值,且f/x0存在则f/x0=0。解析:几何意义:曲线在极值点处的切线是平行于x轴的。

2罗尔(Rolle)中值定理:函数fx在闭区间a,b上连续,在开区间a,b内可导(每一点都具有导数)并且在闭区间a,b的端点函数值相等,即:fafb,那么在开区间a,b内至少有一点使得f/0。

解析:⑴该定理是奠定一系列中值定理的基础。

⑵此定理反映了由区间端点函数值的情况来表现区间内导函数值的变化情况,给出了点的具体位置和计算方法(与Lagrange中值定理的区别)。

⑶几何意义:若连接曲线两端点的弦是水平的,则曲线上至少有一点的切线是水平的。⑷两个推论:①推论1:如果函数fx在区间a,b内的导数恒等于零,那么函数fx在区间a,b内是一个常数。②推论2:如果函数fx在区间a,b内处处有

。f/xg/x,则在此区间内fxgxC(常数)

二,拉格朗日(Lagrange)中值定理

设函数fx在闭区间a,b上连续且在开区间a,b内可导(每一点都具有导数)那么在开区间a,b内至少有一点ab使等式fbfaf

该定理的其它几种表示形式:⑴f//ba成立。fbfa ba

AB解析:反映其几何意义:如果连接曲线yfx的弧上除端点外处处具有不垂直于x轴的切线,那么这弧上至少有一点,使曲线在处的切线平行于弦AB。

⑵令aba,01则fbfaf/ababa,01。解析:由于的特定取值范围,所以在证明不等式时较常用,若令ax0,bx0h那么有:fx0hfx0f/x0hh,01。

⑶有限增量公式:如果用x表示ba则函数增量yfbfa,这时该定理变成yf/x。

解析:⑴从理论上与微分的区别:该公式准确的表明了函数增量与自变量增量(不要求其趋第1页

于零或比较小而仅要求其为有限增量)的关系,而微分只能近似的表示这一关系,并且要求

x比较小,而且当x0时dy表示y的误差才趋于零。但在实际应用中仍常用微分去

近似表示函数值的改变量。⑵类比与上式,则还可表示为yf三,柯西(Cauchy)中值定理

设两个函数fx和gx在闭区间a,b上连续且在开区间a,b内可导(每一点都具有导数)且g/x在a,b内每一点均不为零,则在a,b内至少存在一点使得

/

xxx,01。

fbfaf/,ab成立。gbgag/解析:⑴要求分子与分母中的是同一个值。⑵

Lagrange

理,此

fx0hfx0f/x0h

,01。

gx0hgx0g/x0h四,Rolle,Lagrange,Cauchy中值定理间的关系

xxfafb

CauchygLagrangeRolle

五,泰勒(Taylor)中值定理定义:若fx在a,b上有直到n阶连续的导数,在开区间a,b上n1阶导数存在,则

意的x,x0a,b

有:

fxfx0

f

/

x0

1!

xx0

f

//

x0

2!

xx0

fnx0xx0nRnx其中

n!

fn1称为余项(与误差估计有关)。其中当x0xx0n1(介于x与x0之间)Rnx

n1!

取零时的泰勒(Taylor)公式称为麦克劳林(Maclaurin)公式。

解析:使复杂函数成为简单函数的有效方法。2 各种形式的泰勒(Taylor)公式

⑴带有皮亚诺(Peano)余项的泰勒

(Taylor)公式:

f/x0f//x0fnx02nn

Taylor:fxfxxxxxxxxx,xx000000

1!2!n!///n

Maclaurin:fxf0f0xf0x2f0xnxn,x01!2!n!





⑵带有Lagrange余项的泰勒(Taylor)公式:

f/x0f//x0fnx0fn12nn1

Taylor:fxfxxxxxxxxx00000

n11!2!n!

///nn1

xxn1,01Maclaurin:fxf0f0xf0x2f0xnf

n11!2!n!

Cauchy

项的泰

(Taylor)

nfkx0

xx0kfxn1

xnm,xxm!fk!k0Taylor:0m

gkx0n!gn1k

xx0gx 

k!k0

nxx0xnn1fkx0k

xx0fCauchy:令gxx,m0则fxk!n!k0

⑷带有积分余项的泰勒(Taylor)公式:

n

fkx01xn1kn

Taylor:fxxxftxtdt0x0

k!n!k0

kn1n1f0kxnn1Maclaurin:fxxfxt1tdt0k!n!k0常见函数的麦克劳林(Maclaurin)展式

⑴带有皮亚诺(Peano)余项的麦克劳林(Maclaurin)展式:

n

x3x5x2n1x2k1n1k12n

sinxx1x1x2n

2n12k13!5!!k1



2n2kn

x2x4nxkx2n

cosx11x1x2n

2n2k2!4!!k0



kn

xx2xnk1xn

e1x1xn

1!2!n!k!k0x





nkn

x2x3n1xk1xn

ln1xx1x1xn

23nkk1



1x

n

1212n1nnkk

1xxxx1Cxxn2!n!k1

⑵带有Langrange余项的麦克劳林(Maclaurin)展式:

sinx1

k1n

n

k1

x2k1ncosx

1x2n1,012k12n1!

x2kn1cosx

cosx11x2n2,01

2k2n2!k0

k

xkex

exn1,01

!k0k!n1x

n

ln1x1`

k1

n

k1

xkxn1n

1,x1,01n1kn11x

1x

kk

1Cx

k1

n

1n1xn1xn1,x1,01

n1!Taylor公式的应用

⑴求极限。⑵近似计算,误差估计。⑶与幂级数的关系。⑷不等式证明。六,罗比塔(L”Hospital)法则解决问题的情况:

00

。

解析:不是以上两种型的转化为以上型。例如:

“0”型,“”型,“00”型,“0”型,“1”型。需注意的问题:⑴只有未定式才能应用罗比塔(L”Hospital)法则,不是未定式,则不能用罗比塔(L”Hospital)法则,且分子与分母分别求导。

⑵只有

法则。

00

未定式才能直接应用罗比塔(L”Hospital)

00

未定

⑶求其他类型未定式的值时,就首先将其转化为

式,然后才能应用罗比塔(L”Hospital)法则。

⑷可以对未定式反复应用罗比塔(L”Hospital)法则,直到求出确定的极限值为止。⑸用对数方法求极限时还要将结果还原为指数形式。

上一篇:“交通安全教育”主题班会下一篇:追逐梦想的700字作文