尺规作图证明

2024-04-19

尺规作图证明(共6篇)

篇1:尺规作图证明

浅谈尺规作图

所属县:广西百色市凌云县

单 位:广西百色市凌云县凌云中学

姓 名:唐奕清

内容提要:尺规作图,具有悠久的历史渊源、丰富的教学意义和现实内涵。但由于各种原因,尺规作图的教学存在着许多不利因素。我们需正视困难和问题,寻找解决问题的途径,提高尺规作图的教学质量。

关键词:尺规作图 教学意义 教学困难 提高途径

尺规作图,是指有限次使用无刻度的直尺和圆规来解决不同的几何作图问题。尺规作图有着悠久的历史,古希腊人最早提出了尺规作图。后经希腊数学家欧几里德在《几何原本》一书中以理论形式加以明确,并被人们一直所遵守,进而流传至今。

在我国,关于尺规作图的教学一直有着优良的教学传统。根据张景中院士的回忆,在1978年举行的全国中学生数学竞赛中,数学家苏步青就曾写信向主持命题工作的数学大师华罗庚建议,出一道有关尺规作图的题目作为考试试题。[1]这种重视尺规作图的意识,进一步在《全日制九年义务教育数学课程标准》中得到了体现。《标准》中明确要求学生能完成一些基本的尺规作图,并能根据一些基本作图探索一些问题;对于尺规作图的过程,要求能写出已知、求作和作法。

尺规作图不仅有悠久的历史渊源,也拥有着丰富的教学意义和现实内涵。首先,尺规作图能够丰富教学情境,培养学生的实践能力。众所周知,尺规作图是一种由学生实际执行的操作,具有不可替代的直观性,十分符合让学生自己动手解决问题的教学理念。在实际教学中,尺规作图是一种情境的创设,即要求在某种条件下,由学生自己动手解决问题。学生能作出一张符合要求的图形,是一种具有挑战性的创造活动,能够激发学生的创造性。因此,在几何教学中强调“观察、操作、推理”的今天,尺规作图理应得到足够的重视.[2] 其次,尺规作图能培养学生严谨的学习习惯、严密的逻辑思维和空间想象能力。尺规作图的一般步骤如下:①要求学生画出草图,假设图形已作出;②根据图形分析画法;③利用尺规严格操作并写出作法;④若要求证明,就给出证明;否则就写出结论。学生严格按照步骤进行作图的过程,正是一个猜想、操作、验证的过程,有助于学生养成严谨的学习习惯,培养学生严密的逻辑思维能力。[3]另外,尺规作图能有效的培养学生的空间想象能力。而空间想象能力正是立体几何教学中的重难点,它直接影响到学生学习立体几何的效果。从二维到三维的转变,是学生认识客观世界,改造世界的基础。尺规作图可以使学生积累相当的经验,能有效的培养学生的空间想象能力,是立体几何学习的关键所在。

第三,尺规作图既能展现数学美,又能培养学生的学习兴趣,具有良好的教学效果。数学美是一种特殊的美,是美的高级形式。著名哲学家沙利文曾说过:“优美的公式就如但丁神曲中的诗句,黎曼的几何与钢琴合奏曲一样优美。”在课堂教学中,向学生展示标准图形,能让学生充分感受数学美,启发思维,深化知识的理解。学生自己动手,尺规作图,则能提高审美认识,陶冶情操。

此外,尺规作图有着许多规范的作图语句,如:(l)过点X作某个平面的垂线,垂足为点X;(2)过点X作直线XX的平行线,交直线XX于点X;(3)在XX上截取XX=XX;(4)延长XX到点X,使XX=XX;(5)在线段XX上取中点X,连结XX等等。这些规范作图语句的使用,既可以避免在考试中出现不必要的失分,也能培养学生规范的书面表达能力和与他人合作交流的能力。因此,我们必须重视尺规作图的教学作用,正视有关尺规作图的教学问题。

然而,随着科学技术的发展、推广和工业生产的需要,各种各样精密的作图工具开始出现。这些工具的使用,虽然方便了人们的需要,但也使得一些人开始怀疑和轻视尺规作图的作用。目前,这种思想已经开始在课堂上漫延,一些教师出于各种原因,淡化了尺规作图,甚至于在课堂上根本不尺规作图。结合自身的教学实践,我个人认为出现这种现象有以下几个原因,并结合教学实际,提出一些解决问题的途径,与大家交流,仅供大家参考。

(1):正确认识教师的角色。

数学课程改革倡导以学生为本的教育理念,倡导数学教学是数学活动的教学,倡导平等交往、互动合作、共同发展的师生关系,这就要求教师能够正确认识自身角色。普通高中数学课程标准提出:教师不仅是课程的实施者,而且也是课程的研究、建设和资源开发的重要力量;教师不仅是知识的传授者,而且也是学生学习的引导者、组织者和合作者。[4]在日常的教学活动中,教师必须起到引导者和组织者的重要作用,引导学生养成尺规作图的良好习惯,组织专门的尺规作图教学,在教学活动的开展过程中与学生深入交流、合作,提高学生的尺规作图水平。

(2):高度认识尺规作图的作用。之所以出现教师上课“作草图”、学生解题“作草图”,甚至于在考试中也“作草图”的现象,对尺规作图作用的认识不够是根本原因。正所谓:天再高又怎样,踮起脚尖就更接近阳光,不管出现多少精密、复杂的制图仪器,尺规作图是掌握这些仪器的基础,在教学和社会实践活动中具有不可替代的作用。所以,在当前教材中,从小学、初中到高中数学教材,从平面作图到立体作图,都以专门的章节突显了尺规作图的特色和作用。因此,我们要高度认识到尺规作图的作用(前文已述,此处不再赘述),才能提高广大师生的尺规作图水平,达到数学新课程标准的要求。

(3):不舍本逐末,将尺规作图深入课堂,持之以恒。许多教师和学生认为:尺规作图很麻烦,需要一定的时间,对解题无甚帮助,影响到解题的速度。殊不知,这是本末倒置的做法。俄国数学家沙雷金就说过:未来的几何学习应当重视以下四个步骤,直观感知—操作确认—思辨论证—度量计算。但是中国的几何教学,把前两个步骤忽略了,变成纯粹的思辨论证,以及论证基础上的计算。缺乏直观,实际上就扼杀了几何。[5]这句话一语中的的点出了当前在几何教学中存在的问题。正确的做法是:在教学过程中,教师和学生都应当尺规作图,这样才可以增强学生的直观感知能力。而直观感知能力,是问题解决的第一步,也可为以后的作图和解题积累经验,提高尺规作图的速度和效率。此外,冰冻三尺,非一日之寒,培养学生的尺规作图能力不是一日这功。教师更不能“三天打渔,两天晒网”,而应当将尺规作图深入到几何教学的每一个环节,并且持之以恒,才能达到良好的培养尺规作图能力的效果。

(4):认真解决在尺规作图教学中遇到的问题。

在尺规作图的教学和使用过程中会遇到许多困难和障碍,正视这些问题,并有效地解决它,是提高尺规作图教学效果的关键。学生遇到的问题主要有心理障碍、操作障碍和语言障碍等等。解决这些问题的方法多样,许多专家和教师都各有妙招,大家可以查找相关文献去阅读,解决自己在具体教学中遇到的问题。但是有一个总的方针必须把握,那就是:首先应让学生明确作图题与证明题在本质、形式、思维依据、思维方式上的区别与统一,以减少论证思维对作图题的消极影响。其次,也是最重要的一条是根据学生逻辑推理思维往往要依赖直观、具体的形象的客观实际,要求学生在分析作图步骤之前,先按求作画出草图,并在草图中尽量标出已知的条件,使求作的图形形象而又具体地展现在学生面前,化抽象为直观。然后再根据已知条件,并以“两点定线”、“两线定点”的原则考虑作图的步骤。[6](5):引入多媒体教学方式,激发学习兴趣。虽然尺规作图仅限于使用无刻度的直尺和圆规,但这并不妨碍我们引入多媒体这一先进的教学手段。通过使用投影仪,教师可以使用和学生一样的直尺,圆规,进行作图。亲历亲为的教学,可以加强学生的直观感知,提高教学效果。此外,附带有尺规作图功能的作图软件,如:几何画板、authorware等软件都可轻松地展现详细、精确的制图过程。尺规作图的多媒体教学,既可节省教学时间,同时又可激发学生的学习兴趣。为以后学生使用更复杂、精密的制图仪器打好坚实的基础。当然,这要求教师们不断提高自身的综合素质,熟练掌握这些优秀、实用的尺规作图软件,与时俱进,否则会事倍功半,事得其反。

总之,尺规作图具有丰富的教学意义和现实意义,在几何教学中的意义越来越显著。广大师生应充分认识到尺规作图的重要内涵,正视在尺规作图教学中遇到的问题,解决它,从而不断提高教学质量,为学生的发展奠基。

参考文献

[1]张景中.新概念几何.中国少年儿童出版社.2002 [2]乐嗣康、崔雪芳、张奠宙.尺规作图教学的现代意义.中学数学月刊.2005年第12期

[3]刘芳.对尺规作图教学的三个思考.中学数学杂志.2009年第10期

[4]中华人民共和国教育部.普通高中数学课程标准(实验).北京:人民教育出版社.2003-4-1 [5]沙雷金[吕乃刚译].直观几何.上海:华东师范大学出版社.2001-1-1.[6]王孝波.尺规作图的学习障碍及教学对策.教学研究.1998年第1期

篇2:尺规作图证明

尺规作图:是指限定用没有刻度的直尺和圆规来完成的画图。一把没有刻度的直尺看似不能做什么,画一个圆又不知道它的半径,画线段又没有精确的长度。

其实尺规作图的用处很大,比如单用圆规找出一个圆的圆心,量度一个角的角度,等等。运用尺规作图可以画出与某个角相等的角,十分方便。尺规作图的中基本作图: 作一条线段等于已知线段; 作一个角等于已知角; 作线段的垂直平分线; 作已知角的角平分线; 过一点作已知直线的垂线。还有:

已知一角、一边做等腰三角形 已知两角、一边做三角形 已知一角、两边做三角形 依据公理:

还可以根据已知条件作三角形,一般分为已知三边作三角形,已知两边及夹角作三角形,已知两角及夹边作三角形等,作图的依据是全等三角形的判定定理:SSS,SAS,ASA等。注意:

保留全部的作图痕迹,包括基本作图的操作程序,只有保留作图痕迹,才能反映出作图的操作是否合理。

 

尺规作图方法:

任何尺规作图的步骤均可分解为以下五种方法: ·通过两个已知点可作一直线。·已知圆心和半径可作一个圆。·若两已知直线相交,可求其交点。·若已知直线和一已知圆相交,可求其交点。·若两已知圆相交,可求其交点。

【学习目标】

1.了解什么是尺规作图.

2.学会用尺规作图法完成下列五种基本作图:(1)画一条线段等于已知线段;(2)画一个角等于已知角;(3)画线段的垂直平分线;(4)过已知点画已知直线的垂线;(5)画角平分线.

3.了解五种基本作图的理由.

4.学会使用精练、准确的作图语言叙述画图过程. 5.学会利用基本作图画三角形等较简单的图形. 6.通过画图认识图形的本质,体会图形的内在美.

【基础知识精讲】 1.尺规作图:

限定只用直尺和圆规来完成的画图,称为尺规作图.

注意:这里所指的直尺是没有刻度的直尺,由于免去了度量,因此,用尺规作图法画出的图形的精确度更高,它在工程绘图等领域应用比较广泛.

2.尺规作图中的最基本、最常用的作图称为基本作图. 3.基本作图共有五种:

(1)画一条线段等于已知线段. 如图24-4-1,已知线段DE.

求作:一条线段等于已知线段. 作法:①先画射线AB.

②然后用圆规在射线AB上截取AC=MN. 线段AC就是所要作的线段.(2)作一个角等于已知角. 如图24-4-2,已知∠AOB.

求作:∠A′O′B′,使∠A′O′B′=∠AOB. 作法:①作射线O′A′;

②以点O为圆心,以任意长为半径作弧,交OA于C,交OB于D. ③以点O′为圆心,以OC长为半径作弧,交O′A′于C′. ④以点C′为圆心,以CD为半径作弧,交前弧于D′. ⑤经过点D′作射线O′B′,∠A′O′B′就是所求的角.(3)作线段的垂直平分线. 如图24-4-3,已知线段AB.

求作:线段AB的垂直平分线.

作法:①分别以点A和点B为圆心,大于的长为半径作弧,两弧相交于点C和D.

②作直线CD.

直线CD就是线段AB的垂直平分线.

注意:直线CD与线段AB的交点,就是AB的中点.(4)经过一点作已知直线的垂线.

a.经过已知直线上的一点作这条直线的垂线,如图24-4-4.

已知:直线AB和AB上一点C,求作:AB的垂线,使它经过点C. 作法:作平角ACB的平分线CF.

直线CF就是所求的垂线,如图24-4-4. b.经过已知直线外一点作这条直线的垂线.

如图24-4-5,已知:直线AB和AB外一点C.求作:AB的垂线,使它经过点C.

作法:①任意取一点K,使K和C在AB的两旁.

②以C为圆心,CK长为半径作弧,交AB于点D和E.

③分别以D和E为圆心,大于的长为半径作弧,两弧交于点F.

④作直线CF.

直线CF就是所求的垂线. 注意:经过已知直线上的一点,作这条直线的垂线转化成画线段垂直平分线的方法解决.(5)平分已知角.

如图24-4-6,已知∠AOB.

求作:射线OC,使∠AOC=∠BOC.

作法:①在OA和OB上,分别截取OD、OE.

②分别以D、E为圆心,大于的长为半径作弧,在∠AOB内,两弧交于点C. ③作射线OC.

OC就是所求的射线.

注意:以上五种基本作图是尺规作图的基础,一些复杂的尺规作图,都是由基本作图组成的,同学扪要高度重视,努力把这部分内容学习好.

通过这一节的学习,同学们要掌握下列作图语言:(1)过点×和点×画射线××,或画射线××.(2)在射线××上截取××=××.(3)以点×为圆心,××为半径画弧.

(4)以点×为圆心,××为半径画弧,交××于点×.

(5)分别以点×,点×为圆心,以××,××为半径作弧,两弧相交于点×.(6)在射线××上依次截取××=××=××.

(7)在∠×××的外部或内部画∠×××=∠×××.

注意:学过基本作图后,在作较复杂图时,属于基本作图的地方,不必重复作图的详细过程,只用一句话概括叙述就可以了.

如:(1)画线段××=××.(2)画∠×××=∠×××.

(3)画××平分∠×××,或画∠×××的角平分线.(4)过点×画××⊥××,垂足为点×.(5)作线段××的垂直平分线××,等等. 但要注意保留全部的作图痕迹,包括基本作图的操作程序,不能因为作法的叙述省略而作图就不按程序操作,只有保留作图痕迹,才能反映出作图的操作是否合理.

【经典例题精讲】

例1 已知两边及其夹角,求作三角形. 如图24-4-7,已知:∠α,线段a、b,求作:△ABC,使∠A=∠α,AB=a,AC=b.

作法:①作∠MAN=∠α.

②在射线AM、AN上分别作线段AB=a,AC=b. ③连结BC.

如图24-4-8,△ABC即为所求作的三角形.

注意:一般几何作图题,应有下面几个步骤:已知、求作、作法,比较复杂的作图题,在作图之前可根据需要作一些分析.

例2 如图24-4-9,已知底边a,底边上的高h,求作等腰三角形.

已知线段a、h.求作:△ABC,使AB=AC,且BC=a,高AD=h.

分析:可先作出底边BC,根据等腰三角形的三线合一的性质,可再作出BC的垂直平分线,从而作出BC边上的高AD,分别连结AB和AC,即可作出等腰△ABC来.

作法:(1)作线段BC=a.

(2)作线段BC的垂直平分线MN,MN与BC交于点D.(3)在MN上截取DA,使DA=h.(4)连结AB、AC.

如图24-4-10,△ABC即为所求的等腰三角形.

例3 已知三角形的一边及这边上的中线和高,作三角形. 如图24-4-11,已知线段a,m,h(m>h).

求作:△ABC使它的一边等于a,这边上的中线和高分别等于m和h(m>h).

分析:如图24-4-12,假定△ABC已作出,其中BC=a,中线AD=m,高AE=h,在△AED中AD=m,AE=h,∠AED=90°,因此这个Rt△AED可以作出来(△AED为奠基三角形).当Rt△AED作出后,由可得到. 的关系可作出点B和点C,于是△ABC即

作法:(1)作△AED,使∠AED=90°,AE=h,AD=m.(2)延长ED到B,使.

(3)在DE或BE的延长线上取.

(4)连结AB、AC.

则△ABC即为所求作的三角形.

注意:因为三角形中,一边上的高不能大于这边上的中线,所以如果h>m,作图题无解;若m=h,则作出的图形为等腰三角形.

例4 如图24-4-13,已知线段a.

求作:菱形ABCD,使其半周长为a,两邻角之比为1∶2.

分析:因为菱形四边相等,“半周长为a”就是菱形边长为,为此首先要将线段a等分,又因为菱形对边平行,则同旁内角互补,由“邻角之比为1∶2”可知,菱形较小内角为60°,则菱形较短对角线将菱形分成两个全等的等边三角形.所以作图时只要作出两个有公共边的等边三角形,则得到的四边形即为所求的菱形ABCD.

作法:(1)作线段a的垂直平分线,等分线段a.

(2)作线段AC,使.

(3)分别以A、C为圆心,为半径,在AC的两侧画弧,两弧分别交于B,D.

(4)分别连结AB、BC、CD、DA得到四边形ABCD,则四边形ABCD为所求作的菱形(如图24-4-14).

注意:这种通过先画三角形,然后再画出全部图形的方法即为“三角形奠基法”.

例5 如图24-4-15,已知∠AOB和C、D两点.

求作一点P,使PC=PD,且使点P到∠AOB的两边OA、OB的距离相等.

分析:要使PC=PD,则点P在CD的垂直平分线上,要使点P到∠AOB的两边距离相等,则P应在∠AOB的角平分线上,那么满足题设的P点就是垂直平分线与角平分线的交点了.

作法:

(1)连结CD.

(2)作线段CD的中垂线l.

(3)作∠AOB的角平分线OM,交l于点P,P点为所求.

注意:这类定点问题应需确定两线,两直线的交点即为定点,当然这两直线应分别满足题目的不同要求.

【中考考点】

例6(2000·安徽省)如图24-4-16,直线

表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有()

A.一处 B.二处 C.三处 D.四处 分析:到直线

距离相等的点在相交所构成的角的平分线上,可利用作角平分线的方法找到这些点.

解:分别作

相交所构成的角平分线,共可作出六条,三条角平分线相交的交点共有四个.

答案:D.

注意:本题应用了角平分线的性质,在具体作图时,不可只作出位于中心位置的一处,而要全面考虑其他满足条件的点.

例7(2002·陕西省)如图24-4-17,△ABC是一块直角三角形余料,∠C=90°,工人师傅要把它加工成—个正方形零件,使C为正方形的—个顶点,其他三个顶点分别在AB、BC、AC边上.

(1)试协助工人师傅用尺规画出裁割线(不写作法,保留作图痕迹);

(2)工人师傅测得AC=80 cm,BC=120cm,请帮助工人师傅算出按(1)题所画裁割线加工成的正方形零件的边长.

解:(1)作∠ACB的平分线与AB的交点E即为正方形—顶点,作CE线段的中垂线HK与AC、BC的交点F、D即为所作正方形另两个顶点,如图24-4-17.

(2)设这个正方形零件的边长为x cm,∵DE∥AC,∴,∴.

∴x=48.

答:这个正方形零件的边长为48cm.

注意:本题是几何作图和几何计算相结合题目,要求读者对基本作图务必掌握,同时对作出图形的性质要清楚.

例8(2002·山西省)如图24-4-18①,有一破残的轮片(不小于半个轮),现要制作一个与原轮片同样大小的圆形零件,请你根据所学的有关知识,设计两种方案,确定这个圆形零件的半径.

分析:欲确定这个圆形零件的半径,可以借助三角板,T形尺或尺规作图均可,图②中是这个零件的半径,图③中OB是这个零件半径. 解:如图24-4-18②③所示.

【常见错误分析】

例9 如图24-4-19,已知线段a、b、h.

求作△ABC,使BC=a,AC=b,BC边上的高AD=h.

并回答问题,你作出的三角形唯一吗?从中你可以得到什么结论呢? 错解:(1)作法:①作Rt△ADC,使AD=h,AC=b. ②在直线CD上截取CB=a.

如图24-4-20,则△ABC就是所求作的三角形.

(2)作出的三角形唯一.

(3)得出结论:有两边及一边上的高对应相等的两三角形全等.

误区分析:本题错解在于忽略了三角形的高可能在三角形内部也可能在三角形的外部. 正解:如图24-4-21,作法:①作Rt△ADC,使AD=h,AC=b. ②在直线CD上截取CB=a(在点C的两侧). 则△ABC,△AB′C都是所求作三角形.(2)作出的三角形不唯一.

(3)得出结论有两边及—边上的高对应相等的两三角形不一定全等. 注意:与三角形的高有关的题目应慎之又慎.

【学习方法指导】 学习本单元基本作图,主要是运用观察法,通过具体的操作,了解各种基本作图的步骤,掌握作图语言.

【规律总结】

画复杂的图形时,如一时找不到作法,—般是先画出一个符合所设条件的草图,再根据这个草图进行分析,逐步寻找画图步骤.有时,也可以根据已知条件和基本作图,先作局部三角形,再以此为基础,根据有关条件画出其余部分,从而完成全图,这种方法称为三角形奠基法.

考点一 尺规作图 1.定义:只用没有刻度的直尺和圆规作图叫做尺规作图. 2.步骤:(1)根据给出的条件和求作的图形,写出已知和求作部分;(2)分析作图的方法和过程;(3)用直尺和圆规进行作图;(4)写出作法步骤,即作法. 考点二 五种基本作图 1.作一线段等于已知线段; 2 .作一个角等于已知角; 3.作已知角的平分线; 4.过一点作已知直线的垂线; 5.作已知线段的垂直平分线. 考点三 基本作图的应用 1.利用基本作图作三角形(1)已知三边作三角形;(2)已知两边及其夹角作三角形;(3)已知两角及其夹边作三角形;(4)已知底边及底边上的高作等腰三角形;

(5)已知一直角边和斜边作直角三角形. 2.与圆有关的尺规作图(1)过不在同一直线上的三点作圆

(即三角形的外接圆).(2)作三角形的内切圆.

尺规作图简史:

篇3:尺规作图的三大难题

相传德利安人为了摆脱某种瘟疫,遵照神谕,必须把阿波罗的立方体祭坛的体积扩大一倍.后来,这个问题提到柏拉图那里,柏拉图又把它交给了几何学家.这就是著名的倍立方问题.除倍立方问题外,还有三等分任意角、化圆为方(作一正方形,使其面积等于给定的圆面积)等问题.

在数学史中,很难找到像这样长期被人关注的问题.两千多年以来,无数人的聪明才智倾注于这三个问题而毫无结果.但对这三个问题的深入探索,促进了希腊几何学的发展,引出了大量的发现.如圆锥曲线、许多二次和三次曲线以及几种超越曲线的发现等;后来又有关于有理数域、代数数、超越数、群论和方程论若干部分的发展.直到19世纪,即距第一次提出这三个问题两千年之后,这三个问题才被证实在所给的条件下是不可能解决的.

篇4:尺规作图拾趣

怎样限制几何作图的工具呢?他们认为,几何图形都是由直线和圆组成的,有了直尺和圆规,就能作出这两样图形,进而能作出全部几何图形。于是规定在几何作图时,只准许使用圆规和没有刻度的直尺,并且规定只准许使用有限次。

在历史上最先明确提出尺规作图的是伊诺皮迪斯(古希腊哲学家。大约生于公元前480年,卒年不详)。在这之前,解作图题是不限工具的。伊诺皮迪斯以后,尺规的限制逐渐成为一种公约,最后总结在古希腊数学家欧几里得(公元前330-前275)的名著《几何原本》之中。

一些著名的尺规作图已经知道是不可能的。证明这些作图的“不可能”。大多是利用了19世纪出现的伽罗华理论。这个理论是由才华横溢、年仅20多岁的法国数学家伽罗华开创的。尽管如此,仍有很多数学爱好者在尝试这些不可能的题目。这些题目当中以“化圆为方”及“三等分任意角”最受注意。因为它们通俗易懂。美国数学家杜德利(1937-),曾把数百个宣称解决了这些不可能题目的错误作法结集成书。

由于有了这样一个规定,一些普普通通的几何作图题,顷刻间身价百倍,受到万众瞩目。有不少题目甚至让西方数学家苦苦思索了2000多年。

尺规作图特有的魅力,使无数的人沉湎其中。连法国皇帝拿破仑这样一位威震欧洲的风云人物,在转战南北的闲暇时光,也常常沉醉于尺规作图的乐趣中。有一次,他还编了一道尺规作图题。向全法国的数学家挑战呢!

拿破仑出的题目是:只准许使用圆规,将一个已知圆心的圆周四等分。

由于圆心是已知的。解出这个题目并不算太难。题目提出后不久就被数学家们解决了。

如果再增添一把直尺,将这些四等分点连接起来,就可以得到一个正四边形。即正方形。由此不难看出,等分圆周与作正多边形实际上是一回事儿。

只使用直尺和圆规,怎样作出一个正五边形和正六边形呢?

这两个题目都很容易解答,有兴趣的读者不妨试一试。

不过,只使用直尺和圆规,要作出正七边形可就不那么容易了。别看由6到7,仅仅只增加了一条边,却一跃成为古代几何的四大名题之一。尺规作图题就是这样变幻莫测!

这个看上去非常简单的题目,曾经使许多著名数学家束手无策。后来。大名鼎鼎的古希腊数学家、物理学家阿基米德(约公元前287-前212)发现了前人之所以失败的原因:正七边形是不能由尺规作出的。阿基米德从理论上证明了这一结论。那么,采用尺规作图法,究竟有哪些正多边形作得出来,哪些作不出来呢?有人猜测:如果正多边形的边数是大于5的质数。这种正多边形就一定作不出来。

17是一个比5大的质数,按上面这种说法,正十七边形是一定作不出来的。在2000多年的时间里,确实有许多数学家试图作出正十七边形。但无一不遭到失败。岂料在1796年,18岁的德国大学生高斯(1777-1855)居然用尺规作出了一个正十七边形。这顿时震动了整个欧洲数学界。

这件事也深深震动了高斯,使他充分意识到自己的数学能力。从此他决心献身于数学研究,后来终于成为一代数学大师。

高斯还发明了一个判别法则,指出什么样的正多边形能由尺规作出,什么样的正多边形则不能,圆满地解决了作正多边形的问题。高斯的判别法则表明,能够由尺规作出的正多边形是很少的,例如。在边数为100以内的正多边形中。能够由尺规作出的只有24种。

有趣的是,正七边形的边数虽少,却不能由尺规作出:而正257边形,边数多得叫人很难画出这样的图形,却一定可由尺规作出。1832年。德国数学家黎克洛(1808—1875)根据高斯指出的法则,解决了正257边形的作图问题。他的作图步骤极其烦琐,写满了80页纸,创造了一项“世界纪录”。

篇5:《尺规作图》参考教案1专题

一、教学目标

1.了解尺规作图.2.掌握尺规的基本作图:画一条线段等于已知线段,画一个角等于已知角.3.尺规作图的步骤.4.尺规作图的简单应用,解尺规作图题,会写已知、求作和作法.二、教学重点:画图,写出作图的主要画法.三、教学难点:写出作图的主要画法,应用尺规作图.四、教学方法:引导法,演示法.五、教学过程

(一)引入 直尺、量角器、圆规都是都是大家很熟悉的工具,大家都知道用直尺可以画线,用量角器可以画角,用圆规可以画圆.请大家画一条长4cm的线段,画一个48°的角,画一个半径为3cm的圆.如果只用无刻度的直尺和圆规,你还能画出符合条件的线段、角吗? 实际上,只用无刻度的直尺和圆规作图,在数学上叫做尺规作图.(二)新课

1.画一条线段等于已知线段.请同学们探索用直尺和圆规准确地画一条线段等于已知的线段.已知线段a,用直尺和圆规准确地画一条线段等于已知线段a.请同学们讨论、探索、交流、归纳出具体的作图方法.例1 已知三边作三角形.已知:线段a、b、c.(画出三条线段a、b、c)求作:△ABC,使得三边为线段a、b、c.作法:(1)画一条线段AB,使得AB=c.(2)以点A为圆心,以线段b的长为半径画圆弧;再以点B为圆心,以线段a的长为半径画圆弧;两弧交于点C.(3)连结AC,BC.△ABC即为所求.2.画一个角等于已知角.1 / 2

请同学们探索用直尺和圆规准确地画一个角等于已知角.已知角∠MPN,用直尺和圆规准确地画一个角等于已知角∠MPN.请同学们讨论、探索、交流、归纳出具体的作图方法.作法:(1)画射线OA.(2)以角∠MPN的顶点P为圆心,以适当长为半径画弧,交∠MPN的两边于E、F.(3)以点O为圆心,以PE长为半径画弧,交OA于点C.(4)以点C为圆心,以EF长为半径画弧,交前一条弧于点D.(5)经过点D作射线OB.∠AOB就是所画的角.(如图)注意:几何作图要保留作图痕迹.探索如何过直线外一点做已知直线的平行线;

请同学们讨论、探索、交流、归纳出具体的作图方法.例2 根据下列条件作三角形.(1)已知两边及夹角作三角形;(2)已知两角及夹边作三角形;

请同学们讨论、探索、交流、归纳出具体的作图方法(顺序).练习:

(三)小结

篇6:尺规作图证明

一、选择题

1.下列画图的语句中,正确的为()

A.画直线AB=10cm B.画射线OB=10cm C.延长射线BA到C,使BA=BC D.过直线AB外一点画一条直线和直线AB相交

2.如图,用尺规作出了BF∥OA,作图痕迹中,弧MN是()

A.以B为圆心,OD长为半径的弧 B.以C为圆心,CD长为半径的弧 C.以E为圆心,DC长为半径的弧 D.以E为圆心,OD长为半径的弧 3.用直尺和圆规作一个角等于已知角,如图,能得出 的依据是()

A.(SAS)B.(SSS)C.(AAS)D.(A SA)

4.如图,锐角三角形ABC中,BC>AB>AC,甲、乙两人想找一点P,使得∠BPC与∠A互补,其作法分别如下:

(甲)以A为圆心,AC长为半径画弧交AB于P点,则P即为所求;

(乙)作过B点且与AB垂直的直线l,作过C点且与AC垂直的直线,交l于P点,则P即为所求对于甲、乙两人的作法,下列叙述何者正确?()

A.两人皆正确 B.两人皆错误 C.甲正确,乙错误 D.甲错误,乙正确

5.如图,在△ABC中,∠ACB=90°,∠A=30°,BC=4,以点C为圆心,CB长为半径作弧,交AB于点D;再分别以点B和点D为圆心,大于 的长为()

BD的长为半径作弧,两弧相交于点E,作射线CE交AB于点F,则AF

A.5 B.6 C.7 D.8 6.如图,在Rt△ABC中,∠C=90°,以△ABC的一边为边画等腰三角形,使得它的第三个顶点在△ABC的其他边上,则可以画出的不同的等腰三角形的个数最多为()

A.4 B.5 C.6 D.7 7.画正三角形ABC(如图)水平放置的直观图△A′B′C′,正确的是()

A.B.C.D.8.已知∠AOB,用尺规作一个角 等于已知角∠AOB的作图痕迹如图所示,则判断∠AOB= 所用到的三角形全等的判断方法是()

A.SAS B.ASA C.AAS D.SSS 9.如图,在△ABC中,∠C=90°,∠B=30°,以点A为圆心,任意长为半径画弧分别交AB,AC于点M和N,再分别以点M,N为圆心画弧,两弧交于点P,连结AP并延长交BC于点D,则下列说法中正确的个数是()

①AD是∠BAC的平分线②∠ADC=60°③△ABD是等腰三角④点D到直线AB的距离等于CD的长度.

A.1 B.2 C.3 D.4 10.如图,用尺规作图作∠AOC=∠AOB的第一步是以点O为圆心,以任意长为半径画弧①,分别交OA、OB于点E、F,那么第二步的作图痕迹②的作法是()

A.以点F为圆心,OE长为半径画弧 B.以点F为圆心,EF长为半径画弧 C.以点E为圆心,OE长为半径画弧 D.以点E为圆心,EF长为半径画弧

11.如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG,若AD=5,DE=6,则AG的长是()

A.6 B.8 C.10 D.12 12.如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E.若BF=8,AB=5,则AE的长为()

A.5 B.6 C.8 D.12

二、填空题

13.我们学过用直尺和三角尺画平行线的方法,如图所示,直线a∥b的根据是________.

14.作图并写出结论:如图,点P是∠AOB的边OA上一点,请过点P画出OA , OB的垂线,分别交BO 的延长线于M、N ,线段________的长表示点P到直线BO的距离;线段________的长表示点M到直线AO的距离;线段ON的长表示点O到直线________的距离;点P到直线OA的距离为________.15.如图,已知线段AB,分别以点A,B为圆心,大于线段AB长度一半的长为半径画弧,相交于点C,D,连接AC,BC,BD,CD.其中AB=4,CD=5,则四边形ABCD的面积为________.

16.如图,在Rt△ABC中,∠ACB=90°,BC=9,AC=12.分别以点A和点B为圆心、大于AB一半的长为半径作圆弧,两弧相交于点E和点F,作直线EF交AB于点D,连结CD.则CD的长为________.

17.如图,依据尺规作图的痕迹,计算∠α=________°.

18.以Rt△ABC的锐角顶点A为圆心,适当长为半径作弧,与边AB,AC各相交于一点,再分别以这两个交点为圆心,适当长为半径作弧,过两弧的交点与点A作直线,与边BC交于点D.若∠ADB=60°,点D到AC的距离为2,则AB的长为________.19.如图,在每个小正方形的边长为1的网格中,点A,B均在格点上.(Ⅰ)线段AB的长为________.

(Ⅱ)请利用网格,用无刻度的直尺在AB上作出点P,使AP= 证明).________.,并简要说明你的作图方法(不要求

20.如图,在矩形 两弧相交于点 长为________. 和 中,按以下步骤作图:①分别以点 ;②作直线

于点

.若

和 为圆心,以大于,的长为半径作弧,的,则矩形的对角线

三、解答题

21.如图,利用尺规,在△ABC的边AC上方作∠CAE=∠ACB,在射线AE上截取AD=BC,连接CD,并证明:CD∥AB(尺规作图要求保留作图痕迹,不写作法)

22.已知:如图,Rt△ABC中,∠ACB=90°

(1)用直尺和圆规作∠ABC的平分线,交AC于点O;

(2)在(1)的条件下,若BC=3,AC=4,求点O到AB的距离。

23.如图,在 中,.(1)作 的平分线交 边于点,再以点 为圆心,的长为半径作 ;(要求:不写作法,保留作图痕迹)

(2)判断(1)中

24.如图,BD是菱形ABCD的对角线,∠CBD=75°,与 的位置关系,直接写出结果.(1)请用尺规作图法,作AB的垂直平分线EF,垂足为E,交AD于F;(不要求写作法,保留作图痕迹)(2)在(1)条件下,连接BF,求∠DBF的度数.

25.如图,在Rt△ABC中,∠BAC=90°,∠C=30°.

(1)请在图中用尺规作图的方法作出AC的垂直平分线交BC于点D,交AC于点E(不写作法,保留作图痕迹).

(2)在(1)的条件下,连接AD,求证:△ABC∽△EDA.

26.如图,在四边形ABCD中,∠B=∠C=90°,AB>CD,AD=AB+CD.

(1)利用尺规作∠ADC的平分线DE,交BC于点E,连接AE(保留作图痕迹,不写作法)

(2)在(1)的条件下,①证明:AE⊥DE;

②若CD=2,AB=4,点M,N分别是AE,AB上的动点,求BM+MN的最小值。

答案解析

一、选择题 1.【答案】D

【解析】 :A、错误.直线没有长度;

B、错误.射线没有长度; C、错误.射线有无限延伸性,不需要延长; D、正确. 故答案为:D.

【分析】根据直线、射线、线段的性质即可一一判断; 2.【答案】C

【解析】 :弧MN是以E为圆心,DC长为半径的弧。

故答案为 :C。【分析】根据平行线的判定,这里要使BF∥OA,其依据是内错角相等,两直线平行,故根据尺规作图就是作一个角∠FBO=∠AOB,故弧MN,是以E为圆心,DC长为半径的弧。3.【答案】B

【解析】 :根据画法可知OD=OC=OD=OC DC=DC

在△ODC和△ODC中

∴△ODC≌△ODC(SSS)∴∠A′O′B′=∠AOB.故答案为:B 【分析】根据画法可知△ODC和△ODC的三边相等,得出两三角形全等,再根据全等三角形的性质可得出结论。4.【答案】D

【解析】 :甲:如图1,∵AC=AP,∴∠APC=∠ACP,∵∠BPC+∠APC=180° ∴∠BPC+∠ACP=180°,∴甲错误; 乙:如图2,∵AB⊥PB,AC⊥PC,∴∠ABP=∠ACP=90°,∴∠BPC+∠A=180°,∴乙正确,故答案为:D.

【分析】甲:根据等边对等角可得∠APC=∠ACP,再由平角的定义可得∠BPC+∠APC=180°,等量带环即可判断;

乙:根据四边形的内角和为5.【答案】B

【解析】 :连接CD,∵在△ABC中,∠ACB=90°,∠A=30°,BC=4,∴AB=2BC=8.

∵作法可知BC=CD=4,CE是线段BD的垂直平分线,∴CD是斜边AB的中线,∴BD=AD=4,∴BF=DF=2,∴AF=AD+DF=4+2=6. 故选B.,可知乙的作法正确。

【分析】连接CD,根据在△ABC中,∠ACB=90°,∠A=30°,BC=4可知AB=2BC=8,再由作法可知BC=CD=4,CE是线段BD的垂直平分线,故CD是斜边AB的中线,据此可得出BD的长,进而可得出结论. 6.【答案】D

【解析】 如图,①以B为圆心,BC长为半径画弧,交AB于点D,△BCD就是等腰三角形; ②以A为圆心,AC长为半径画弧,交AB于点E,△ACE就是等腰三角形; ③以C为圆心,BC长为半径画弧,交AC于点F,△BCF就是等腰三角形; ④作AC的垂直平分线交AB于点H,△ACH就是等腰三角形; ⑤作AB的垂直平分线交AC于G,则△AGB是等腰三角形; ⑥作BC的垂直平分线交AB于I,则△BCI是等腰三角形. 故答案为:C.【分析】根据等腰三角形的性质分情况画出图形,即可得出答案。7.【答案】D

【解析】 第一步:在已知正三角形ABC中,取AB所在的直线为x轴,取对称轴CO为y轴,画对应的x′轴、y′轴,使∠x′O′y′=45°,第二步:在x′轴上取O′A′=OA,O′B′=OB,在y’轴上取O′C′=OC,第三步:连接A′C′,B′C′,所得三角形A′B′C′就是正三角形ABC的直观图,根据画正三角形的直观图的方法可知此题选D,故答案为:D.

【分析】根据画正三角形的直观图的方法可得出答案。8.【答案】D 【解析】 如图,连接CD、,∵在△COD和△,∴△COD≌△ ∴∠AOB= 故答案为:D。中,(SSS),【分析】根据全等三角形的判定方法SSS,画出三角形.9.【答案】D

【解析】 根据基本作图,所以①正确,因为∠C=90°,∠B=30°,则∠BAC=60°,而AD平分∠BAC,则∠DAB=30°,所以∠ADC=∠DAB+∠B=60°,所以②正确;

因为∠DAB=∠B=30°,所以△ABD是等腰三角形,所有③正确;

因为AD平分∠BAC,所以点D到AB与AC的距离相等,而DC⊥AC,则点D到直线AB的距离等于CD的长度,所以④正确.故答案为:D.【分析】(1)由已知角的平分线的作法知,AD是∠BAC的平分线;

(2)根据三角形的一个外角等于和它不相邻的两个内角的和可得∠ADC=∠DAB+∠B,由(1)可得∠DAB=30°,所以∠ADC=∠DAB+∠B=60°;

(3)由(2)知,∠DAB=30°=∠B,根据等腰三角形的判定可得△ABD是等腰三角形;(4)根据角平分线上的点到角两边的距离相等可得,点D到直线AB的距离等于CD的长度。10.【答案】D

【解析】 :用尺规作图作∠AOC=∠AOB的第一步是以点O为圆心,以任意长为半径画弧①,分别交OA、OB于点E、F,第二步的作图痕迹②的作法是以点E为圆心,EF长为半径画弧. 故选D.

【分析】根据作一个角等于一直角的作法即可得出结论. 11.【答案】B

【解析】 :连接EG,∵由作图可知AD=AE,AG是∠BAD的平分线,∴∠1=∠2,∴AG⊥DE,OD= DE=3.

∵四边形ABCD是平行四边形,∴CD∥AB,∴∠2=∠3,∴∠1=∠3,∴AD=DG. ∵AG⊥DE,∴OA= AG.

=

=4,在Rt△AOD中,OA= ∴AG=2AO=8. 故选B.

【分析】连接EG,由作图可知AD=AE,根据等腰三角形的性质可知AG是DE的垂直平分线,由平行四边形的性质可得出CD∥AB,故可得出∠2=∠3,据此可知AD=DG,由等腰三角形的性质可知OA= 用勾股定理求出OA的长即可. 12.【答案】B

【解析】 :连结EF,AE与BF交于点O,AG,利

∵四边形ABCD是平行四边形,AB=AF,∴四边形ABEF是菱形,∴AE⊥BF,OB= ∵AB=5,BF=4,OA= AE.

在Rt△AOB中,AO= ∴AE=2AO=6. 故选B.

=3,【分析】由基本作图得到AB=AF,AG平分∠BAD,故可得出四边形ABEF是菱形,由菱形的性质可知AE⊥BF,故可得出OB的长,再由勾股定理即可得出OA的长,进而得出结论.

二、填空题

13.【答案】同位角相等,两直线平行

【解析】 如图所示:

根据题意得出:∠1=∠2;∠1和∠2是同位角; ∵∠1=∠2,∴a∥b(同位角相等,两直线平行); 故答案为:同位角相等,两直线平行.

【分析】直尺保证了三角板 所作的是平移,∠

1、∠2的大小相等,又是同位角,“同位角相等,两直线平行”.14.【答案】PN;PM;PN;0

【解析】 :如图

∵PN⊥OB ∴线段PN的长是表示点P到直线BO的距离; ∵PM⊥OA ∴PM的长是表示点M到直线AO的距离;∵ON⊥PN ∴线段ON的长表示点O到直线PN的距离; ∵PM⊥OA ∴点P到直线OA的距离为0 故答案为:PN、PM、PN、0 【分析】先根据题意画出图形,再根据点到直线的距离的定义,即可求解。15.【答案】10

【解析】 :由作图可知CD是线段AB的中垂线,∵AC=AD=BC=BD,∴四边形ACBD是菱形,∵AB=4,CD=5,∴S菱形ACBD= ×AB×CD= ×4×5=10,故答案为:10.

【分析】由作图可知CD是线段AB的中垂线,四边形ACBD是菱形,利用S菱形ACBD= 16.【答案】

×AB×CD求解即可.

【解析】 :由作图可知,EF垂直平分AB,即DC是直角三角形ABC斜边上的中线,故DC= AB= . =

×15=

故答案为:

【分析】由作图可知,EF垂直平分AB,即DC是直角三角形ABC斜边上的中线,在Rt△ABC中,利用勾股定理求出AB的长,即可求得DC的长。17.【答案】56

【解析】 :∵四边形ABCD的矩形,∴AD∥BC,∴∠DAC=∠ACB=68°.

∵由作法可知,AF是∠DAC的平分线,∴∠EAF= ∠DAC=34°.

∵由作法可知,EF是线段AC的垂直平分线,∴∠AEF=90°,∴∠AFE=90°﹣34°=56°,∴∠α=56°. 故答案为:56.

【分析】先根据矩形的性质得出AD∥BC,故可得出∠DAC的度数,由角平分线的定义求出∠EAF的度数,再由EF是线段AC的垂直平分线得出∠AEF的度数,根据三角形内角和定理得出∠AFE的度数,进而可得出结论. 18.【答案】2

【解析】 :根据题中的语句作图可得下面的图,过点D作DE⊥AC于E,由尺规作图的方法可得AD为∠BAC的角平分线,因为∠ADB=60°,所以∠B=90°,由角平分线的性质可得BD=DE=2,tan∠ADB=2 在Rt△ABD中,AB=BD·故答案为2..【分析】由尺规作图-角平分线的作法可得AD为∠BAC的角平分线,由角平分线的性质可得BD=2,又已知∠ADB即可求出AB的值.19.【答案】2 ;取格点M,N,连接MN交AB于P,则点P即为所求

【解析】(Ⅰ)由勾股定理得AB=(Ⅱ)∵AB ∴

∴AP:BP=2:1.,AP=,;

取格点M,N,连接MN交AB于P,则点P即为所求;

∵AM∥BN, ∴△AMP∽△BNP, ∴

∵AM=2,BN=1, ∴

∴P点符合题意.故答案为:取格点M,N,连接MN交AB于P,则点P即为所求。【分析】(Ⅰ)利用勾股定理求出AB的长。

(Ⅱ)先求出BP的长,就可得出AP:BP=2:1,取格点M,N,连接MN交AB于P,则点P即为所求,根据相似三角形的判定定理,可证得△AMP∽△BNP,得出对应边成比例,可证得AP:BP=2:1。20.【答案】 , , 【解析】【解答】连接AE,根据题意可知MN垂直平分AC ∴AE=CE=3 222在Rt△ADE中,AD=AE-DE

AD2=9-4=5 222∵AC=AD+DC

AC2=5+25=30 ∴AC=

【分析】根据作图,可知MN垂直平分AC,根据垂直平分线的性质,可求出AE的长,再根据勾股定理可求出AD的长,然后再利用勾股定理求出AC即可。

三、解答题

21.【答案】解:如图所示,∵∠EAC=∠ACB,∴AD∥CB,∵AD=BC,∴四边形ABCD是平行四边形,∴AB∥CD.

【解析】【分析】用尺规作图即可完成作图。理由如下:

根据内错角相等,两直线平行可得AD∥CB,已知AD=BC,根据一组对边平行且相等的四边形是平行四边形可得四边形ABCD是平行四边形,根据平行四边形的性质可得AB∥CD. 22.【答案】(1)如图1,BO为所求作的角平分线

(2)如图2,过点O作OD⊥AB于点D,∵∠ACB=90°,由(1)知BO平分∠ABC,∴OC=OD,BD=BC。∵AC=4,BC=3 ∴AB=5,BD=3,AD=2 设CO=x,则AO=4-x,OD=x 在Rt△AOD中,即点O到AB的距离为,得,【解析】【分析】(1)以点B为圆心,任意长度为半径画弧,交BA,BC于以点,再分别以这两个交点为圆心,大于这两交点间的距离的长度为半径,画弧,两弧在角内交于一点,过B点及这点,作射线BO交AC于点哦,BO就是所求的∠ABC的平分线;(2)过点O作OD⊥AB于点D,根据角平分线上的点到角两边的距离相等得出OC=OD,BD=BC=3。根据勾股定理得出AB的长,进而得出AD的长,设CO=x,则AO=4-x,OD=x,在Rt△AOD中,利用勾股定理得出方程,求解得出答案。23.【答案】(1)解:如图,作出角平分线CO;作出⊙O.(2)解:AC与⊙O相切.

【解析】【分析】(1)根据题意先作出∠ACB的角平分线,再以O为圆心,OB为半径画圆即可。(2)根据角平分线上的点到角两边的距离相等及切线的判定定理,即可得出AC与⊙O相切。24.【答案】(1)解:如图所示,直线EF即为所求;

(2)解:∵四边形ABCD是菱形,∴∠ABD=∠DBC= ∠ABC=75°,DC∥AB,∠A=∠C.

∴∠ABC=150°,∠ABC+∠C=180°,∴∠C=∠A=30°,∵EF垂直平分线线段AB,∴AF=FB,∴∠A=∠FBA=30°,∴∠DBF=∠ABD﹣∠FBE=45°

【解析】【分析】(1)分别以A,B两点为圆心,大于AB长度一半的长度为半径画弧,两弧在AB的两侧分别相交,过这两个交点作直线,交AB于点E,交AD于点F,直线EF即为所求;

DC∥AB,(2)根据菱形的性质得出∠ABD=∠DBC= ∠ABC=75°,∠A=∠C.故∠ABC=150°,∠ABC+∠C=180°,∠C=∠A=30°,根据垂直平分线的性质得出AF=FB,根据等边对等角及角的和差即可得出答案。25.【答案】(1)解:如图所示:

(2)解:∵∠BAC=90°,∠C=30°

又∵点D在AC的垂直平分线上,∴DA=DC,∴∠CAD=∠C=30°,∵∠DEA=∠BAC=90°,∴△ABC∽△EDA.

【解析】【分析】(1)利用尺规作图作出AC的垂直平分线交BC于点D,交AC于点E 即可。

(2)根据垂直平分线的性质证出DA=DC,可证得∠CAD=∠C,然后根据两组角对应相等的两三角形相似,即可证得结论。26.【答案】(1)

(2)①证明:在AD上取一点F使DF=DC,连接EF,∵DE平分∠ADC,∴∠FDE=∠CDE,在△FED和△CDE中,DF=DC,∠FDE=∠CDE,DE=DE ∴△FED≌△CDE(SAS),∴∠DFE=∠DCE=90°,∠AFE=180°-∠DFE=90° ∴∠DEF=∠DEC,∵AD=AB+CD,DF=DC,∴AF=AB,在Rt△AFE≌Rt△ABE(HL)∴∠AEB=∠AEF,∴∠AED=∠AEF+∠DEF= ∴AE⊥DE ②解:过点D作DP⊥AB于点P,∠CEF+

∠BEF=

(∠CEF+∠BEF)=90°。

∵由①可知,B,F关于AE对称,BM=FM,∴BM+MN=FM+MN,当F,M,N三点共线且FN⊥AB时,有最小值,∵DP⊥AB,AD=AB+CD=6,∴∠DPB=∠ABC=∠C=90°,∴四边形DPBC是矩形,∴BP=DC=2,AP=AB-BP=2,在Rt△APD中,DP= ∵FN⊥AB,由①可知AF=AB=4,∴FN∥DP,=,∴△AFN∽△ADP ∴ 即 解得FN=,,∴BM+MN的最小值为

上一篇:年同学聚会日程安排样式下一篇:浅埋暗挖关键施工技术