路面基层结合料

2024-04-13

路面基层结合料(共8篇)

篇1:路面基层结合料

《高等筑路材料》结题论文

学号:

姓名:

2013年10月

国内外关于减小半刚性(无机结合料稳定材料)基层沥青路面

收缩裂缝的措施和方法

摘要:无机结合料稳定材料基层常被称为半刚性基层,为我国目前使用最广泛的路面基层类型。但无机结合稳定材料基层存在着一个较大缺点:因其本身容易产生收缩裂缝,故使路面形成反射裂缝。该文通过分析无机结合料稳定材料收缩裂缝的成因,介绍了国内外关于减少无机结合料稳定材料收缩裂缝的措施方法,以及这些措施的效果和发展趋势,为实际工程提供参考。关键词:无机结合料稳定材料;半刚性基层;收缩裂缝;

绪论

从 80 年代至今,经过“六五”、“七五”、“八五”科技攻关项目的研究,半刚性基层沥青路面成套技术逐渐形成,成为我国高速公路的主要结构形式。现在我国已建成的高速公路 95%以上都是半刚性基层沥青路面,可以毫不夸张地讲,我国高速公路的发展史就是半刚性基层沥青路面的发展史。

在我国高速公路取得巨大成就的背后,我们应该清醒地看到与发达国家相比我们的高速公路尚处于较低的层次。前几年由于受规范的限制和对规范理解上的偏差,盲目追求半刚性基层高强度、高模量,同时为追求取芯的过分完整和密实,拼命加大水泥剂量、增加细料含量,造成以悬浮结构、重型击实成型为主的水泥稳定碎石基层裂缝严重。

无机结合料稳定路面在前期具有柔性路面的力学特性,当环境适宜时,其强度和刚度会随着时间的推移而不断增大,而且无机结合料稳定路面还具有稳定性好、抗冻性强、结构自身自成板体等特点,因此在我国无机结合料稳定材料已广泛用于修建公路路面基层或底基层,但不足之处是抗变形能力差,对于温度和湿度的变化比较敏感,在其强度形成的过程中,以及运营期间会产生干燥收缩裂缝和温度收缩裂缝。而且,在交通荷载的作用下,这种收缩裂缝会扩展到沥青面层而形成反射裂缝。其结果是破坏了路面的连续性和整体性,影响了路面的使用效果,更为严重的是裂缝的存在使得路表水有可能通过裂缝渗入到土基中,从而影响路基的强度和稳定性,导致路面的早期破坏。

1.什么是半刚性基层?

在粉碎的或原状松散的土中掺入一定量的无机结合料(包括水泥、石灰或工业废渣等)和水,经拌合得到的混合料在压实和养生后,其抗压强度符合规定要求的材料称为无机结合料稳定材料,以此作为路面基层即称为无机结合料稳定材料基层。由于无机结合料稳定材料的刚度介于柔性路面材料和刚性路面材料之间,常称此为半刚性材料。因此也将无机结合料稳定材料基层称为半刚性基层。

2.产生收缩裂缝的原因?

无机结合料稳定材料基层收缩裂缝分为干缩裂缝和温度裂缝,它属于非荷载型裂缝。(1)干缩裂缝

所谓干缩裂缝是指由于基层中的水份变化,而使材料产生收缩的现象。无机结合料稳定材料经拌和压实后,由于蒸发和混合料内部发生水化作用,混合料的水份会不断减少。由于水的减少而发生的毛细管作用、吸附作用、分子间力的作用、材料矿物晶体或凝胶体间层间水的作用和碳化收缩作用等会引起半刚性材料产生体积收缩。例如石灰土、水泥土或水泥石灰土基层碾压结束后,如果不及时养生或养生结束后未及时铺筑面层,只要太阳暴晒,就可能出现干缩裂缝。随着暴晒时间增长,裂缝会越来越严重,将基层切割成数平方米大小的小块。即使是干缩性小的二灰稳定粒料和水泥稳定粒料基层,在养生结束后,如果暴晒时间过久,也会产生间距为5~10m的横向裂缝。干缩裂缝主要是横向裂缝,也有少数纵向裂缝,缝顶宽约0.5~3mm。如果面层是沥青层,这种裂缝会向上反射,并导致沥青面层形成反射裂缝。因此,提前采取措施防止无机结合料稳定基层开裂是个十分重要的问题。无机结合料稳定材料基层产生体积干缩的程度或干缩性(最大干缩性应变和平均干缩系数)的大小与下列一些因素有关:材料种类、结合料的含量、被稳定料的物理特性和矿物成份、含水量和龄期等。(2)温度裂缝

无机结合料稳定材料是由固相(组成其空间骨架的原材料的颗粒和其间的胶结构)、液相(存在于固相表面与空隙中的水和水溶液)和气相(存在于空隙中的气体)组成。半刚性材料的外观胀缩性是三相在降温过程中相互作用,使半刚性材料产生体积收缩,即为温度收缩,从而形成裂缝。温度裂缝则主要包括低温收缩裂缝和温度疲劳裂缝两种。低温收缩裂缝是指随着冬季大气温度的下降,路面温度也随着下降,这时基层材料开始收缩,而由于基层在路面结构中处于面层与底基层之间,由于面层、基层、底基层的收缩不一样,上下受到约束,当气温下降到一定极限时,基层材料中的拉应力或拉应变一旦超过材料的抗拉强度或极限抗拉强度时,而引起基层的开裂,温度收缩裂缝主要是横向的。而温度疲劳裂缝主要发生在太阳照射强烈、日温差大的地区,在这种地区,基层白天温度与夜间温度之差相当大,在基层中产生较大温度应力,这种温度应力日复一日地反复作用在基层中,使基层产生疲劳开裂,由此产生的裂缝称为温度疲劳裂缝。不同材料的无机结合料稳定材料基层的温缩性质差异很大,粒料越细温缩性越大。半刚性基层养生后,若能及时铺上沥青面层,特别是较厚的沥青面层,一般不会产生温缩裂缝。值得注意的是,要避免温缩和干缩的同时发生、互相加强。

3.减少无机结合料收缩裂缝的措施和方法

(1)南昌市城市规划设计研究总院的孔健提出如下建议。

针对无机结合料稳定材料基层的收缩裂缝,目前主要采取以下措施:(1)选择收缩性小的材料。在进行半刚性路面设计时,首先应该选用抗冲刷性能好、干缩系数和温缩系数小的和抗拉强度高的材料做基层。粉粒f小于0.075mm含量少的粒料的抗冲刷性最好,水泥稳定粒料和密实式石灰粉煤灰稳定粒料是所有无机结合料材料中收缩系数最小的材料,应该首先选用这两种材料做沥青路面的基层。

(2)在采用水泥或石灰粉煤灰稳定粒料(土)做沥青路面的基层时,应尽量采用不含塑性细土的级配粒料。如果天然粒料土中含有过多的塑性细土,应筛除部分塑性细土或掺配粗集料,使其含量减到最小,以减小结合料稳定混合料的收缩性,使结合料稳定粒料基层可能产生的收缩裂缝减到最小。

(3)采用合适的无机结合料稳定材料基层混合料配合比设计。

a.保证粗集料含量。混合料中粗集料含量在65%以上时,能有效减少收缩裂缝的产生。

b.使用骨架密实结构矿料的级配,密室因其碎石处于骨架结构,而其骨架中间用密实的小碎石填充,大小碎石间用结合材料粘合,这样材料的抗温度(或抗干燥)收缩性能都比较好采用合适的配合比设计。

(4)为保证收缩裂缝不呈现最大值,应尽可能考虑在温差较小的条件下施工无机结合料稳定材料基层。对于无机结合料材料尤其是无机结合料材料温差的控制,主要考虑三个特征值:半刚性基层施工时的温度、基层材料最高温度、最终温度或外界气温,除了从无机结合料稳定材料基层原材料、配合比等方面降低水化热温升之外,其它降低温差的措施还有:

a.水泥、水及砂石等原材料在夏天施工时应有一定的遮蔽措施,防止阳光直接照射使无机结合料稳定材料基层原材料的温度过高。

b.充分利用某些天然条件,如利用夜间或有利的低温季节进行无机结合料稳定材料基层的施工以降低施工时温度。

c.在拌和无机结合料稳定材料基层时可以采用冰水或掺冰以及预冷骨料等以降低施工时温度。

d.无机结合料稳定材料基层碾压完毕,表面应覆盖一定保温材料,以减少半刚性基层内外温差,防止基层材料温度的骤然变化及水分的迅速挥发。

(5)计量准确。基层施工中必须严格按试验确定的结合料剂量进行控制,计量一定准确。

(6)拌和均匀。施工中剂量不仅要计量准确,而且要拌和充分、均匀,不出现灰条、灰团和花面,混和料色泽一致。

(7)无机结合料稳定材料基层有一共同特性,就是其干缩应变随混合料的含水量增加而增大。施工碾压时的含水量愈大,结构层愈容易产生干缩裂缝,因此,施工中要严格控制压实含水量,不允许洒水车在工作面上停车或调头,防止洒水不匀。由于在最佳含水量下压实的基层材料,具有较大的收缩变形,所以应在小于最佳含水量下压实成型。当含水量为最佳含水量的0.85~0.95倍时,施工的压实成型并不困难,还可减少收缩裂缝。

(8)采用乳化沥青封层保湿养生。基层成型后,采用洒水养生,很容易使含水量骤高骤低,增加缩裂的可能。采用乳化沥青保湿养生可使含水量变化均匀,防止收缩裂缝的产生。

(9)对于有较厚沥青面层的无机结合料稳定材料基层,如果在施工过程中保证在铺筑沥青面层之前基层不产生收缩裂缝,在路面使用过程中,沥青面层内的裂缝将是沥青面层本身的温度裂缝,由基层裂缝引起的反射裂缝所占比例将很小,甚至没有,即可以减少沥青面层内的裂缝总数。因此,施工过程中保证无机结合料稳定材料基层不产生收缩裂缝,应作好基层的初期养护。

a.无机结合料稳定材料基层碾压完成后,要及时养生,保护混合料的含水量不受损失,决不能让基层曝晒变干开裂。

b.无机结合料稳定材料层碾压完成后最迟在养生结束后,应立即喷洒沥青乳液,做成透层。

c.透层完成后,应尽快铺筑沥青面层。透层虽有一定的保温保湿作用,但时间稍长,无机结合料稳定材料混合料的水份也会损失并产生干缩裂缝;在温差大的情况下,无机结合料稳定材料基层也可能产生温缩裂缝,为了保护基层不产生收缩裂缝,必须在5~10d内铺筑沥青面层。

(10)在一般道路上,无机结合料稳定材料基层上的沥青面层较薄。在这种薄或较薄的沥青面层下,即使在铺筑沥青面层前,无机结合料稳定材料基层没有开裂,在铺筑沥青面层后,基层也难于避免会产生干缩裂缝(特别在干旱地区)和温缩裂缝(特别在冰冻地区)或干缩与温缩的综合裂缝。因此,对于这种半刚性基层薄(或较薄)沥青面层结构,应在无机结合料稳定材料基层碾压完成后,按施工规范进行养生。养生结束后,在基层顶面喷洒透层沥青,尽可能先做个下封层,然后开放交通半月以上(开放交通的时间尽可能长些),待无机结合料稳定材料基层的收缩裂缝完成后,再铺筑沥青面层,这样可明显减少反射裂缝。

(11)设预留缝。在无机结合料稳定材料基层中每隔一段距离设一道收缩缝f基层成型后,用混凝土切缝机切割即可),能起到较好的止裂作用,缝的间距将随所用半刚性材料类型、沥青质量和当地气温条件而变,具体需要通过试验路确定。一般情况下,间距为8~12m。如在预留缝上铺一幅宽3m的玻璃纤维布效果更好。[1]

(2)国内外学者还提出了以下的解决方法:

1.长安大学蒋应军在水泥稳定碎石收缩裂缝防治研究中提出骨架密实结构的水泥稳定碎石混合料,通过研究得出如下结论:

水泥稳定碎石混合料的干缩主要是通过毛细管张力作用、吸附水及分子间力作用、层间水作用及碳化收缩作用四个过程引起的宏观体积收缩。其干燥收缩值与材料刚度成反比,与含水量成正比。同样材料组成下,用粉煤灰代替一定量的水泥可以改善水泥碎石混合料的路用性能。

2.长安大学张嘎吱等进行了“考虑抗裂性的水泥稳定类材料的配合比设计方法研究”,得出如下结论:

相同级配的水泥稳定碎石混合料存在一相应于最小温缩系数的最佳水泥剂量。水泥稳定类材料干缩率随含水量变化是一近似抛物线的发展过程。水泥稳定碎石混合料中0.075mm 以下的细集料含量越多,混合料抵抗收缩能力越差。水泥稳定类材料整体级配越细,干燥收缩越大;级配接近于悬浮结构,干缩性越大,且干缩破坏主要发生在早期。

3.长安大学杨红辉等进行了。水泥稳定碎石抗裂机理及评价方法。的研究,得出研究成果如下:

应用均匀试验研究了水泥、膨胀剂及纤维等对水泥稳定碎石混合料抗裂性能的作用规律。试验表明,水泥含量对混合料的路用性能具有显著影响,水泥含量越大,水泥碎石混合料抗裂能力越差。膨胀剂提高了水泥碎石材料的强度和刚度,能有效抑制水泥稳定碎石混合料产生早期干燥收缩裂缝。

4.江苏省交通科学研究院进行了“水泥稳定碎石抗裂设计方法”的研究,得出如下研究成果:

过高的水泥用量会导致抗裂能力的下降。室内研究表明适量的外加剂能显著降低水泥稳定碎石混合料的干缩应变。混合料级配过粗(4.75mm 通过率 29%)时基层弯沉值较大,级配较细(规范中值)时由于细集料偏多容易导致裂缝,因此建议集料级配宜控制 4.75mm 通过率为 34%左右。

5.长安大学李美江等通过“道路材料振动压实研究”采用振动成型方式对水泥稳定碎石材料进行了初步研究,得出如下研究结论: 水泥稳定碎石混合料振动压实时响应频率在35Hz左右,最佳振幅在1.3mm-1.7mm之间。振动压实成型方式极大的提高了试件的抗压强度,而混合料最大干密度提高相对较小。对级配良好的易于振动压实的水泥稳定碎石混合料,静面压力、激振力等振动参数对达到标准震实状态所需的振动时间影响很大。

6.美国 K.P.乔治等人研究了水泥稳定土的干缩特性,并论述了影响水泥稳定土收缩的因素:

在其它条件相同的情况下,土中粘粒含量愈多水泥稳定土收缩能力越强。试件含水量越大,试件干缩应变越大,所以在基层施工中要严格控制含水量。密实度越大,试件干缩应变越小,故而减小基层开裂可以用增加压实功能来改善。[2]

7.针对基层材料本身的抗裂措施,实际上就是采取措施减小半刚性材料的收缩性能,增强其抗拉性能,可以通过掺加添加剂或者是加筋材料来限制其收缩,也可以通过改善半刚性基层材料各组成成分的性能来增强基层的抗裂性能。

(1)在半刚性基层材料中掺入短纤维可有效地提高稳定土的抗裂性能,苏州科技学院的董苏波等人对玻璃纤维二灰稳定碎石的强度和刚度进行了试验,结果表明,玻璃纤维可提高二灰碎石半刚性基层的强度,降低其刚度,并且可有效改善二灰碎石基层的韧性。

(2)长沙交通学院的陈哗在试验的基础上探讨了聚丙烯短纤维增强二灰稳定土的性能,而徐剑则通过在水泥稳定土中掺加格网碎片来增强基层的抗裂性能。

(3)在日本,用水泥和特殊沥青乳剂综合稳定使水泥与沥青混合以防水分的蒸发,而沥青乳剂中的水分则供给水泥硬化,使收缩系数随沥青剂量的增加而减小。

(4)长安大学的戴经梁和蒋应军等通过大量试验认为,改善半刚性材料的级配,采用骨架密实结构能显著减小半刚性基层的收缩量,增强基层的抗裂性。对于组成半刚性基层的材料来说,诸多的研究都表明:在满足设计强度的基础上限制水泥用量,并且尽量选用低标号、水化热小、干缩性小的水泥,适当加入缓凝减水剂、缓凝阻裂剂、减缩剂等外加剂,为提高后期强度,减少收缩裂缝可用粉煤灰代替部分水泥剂量等。

(5)在我国高等级公路基层稳定材料中,二灰稳定粒料要比水泥稳定粒料抗收缩开裂能力强,而且,能大量利用工业废料(粉煤灰),经济性好,因而应用非常广泛。但是,由于二灰稳定粒料早期强度低,施工进度受到限制,且表面松散,不利于层间结合,逐渐被水泥稳定粒料基层所代替。

8.在基层施工中所采取的一个重要的防止裂缝产生的措施就是对基层采取预裂措施,在沥青面层铺筑之前,人为地制造规则的裂缝或不规则的裂纹网。

(1)德国1986年新规范规定,当沥青罩面层的厚度小于或等于14cm时,不管基层厚度多大,只要基层抗压强度超过12MPa,基层必须预先切纵缝和横缝。

(2)前苏联有关规范指出,为了减少裂缝的破坏作用,避免薄沥青面层下水泥稳定土基层产生不规则的裂缝反射到沥青面层上,建议基层每隔8一12m做一假缝,缝深6一8cm,缝宽10一12mm。锯缝后立即用沥青马蹄脂填缝,并对沥青面层产生的规则且较整齐反射裂缝也采用沥青马蹄脂填缝。目前,在我国该工艺已得到广泛应用,许多实际应用的工程实例都表明此项工艺对防治半刚性基层的收缩裂缝确有成效。许多研究者针对不同半刚性材料基层设置预剧缝的计算以及具体工艺过程都进行了一定的研究探讨。

9.国外很多学者认为微细裂缝的传荷能力好,会大大减轻甚至完全消除宽缝的出现,如捷克斯洛伐克在水泥稳定材料硬结过程中,用反复碾压的方法人为地创造微细裂缝网;科威特在新铺的水泥土基层上用重型钢轮压路机碾压,故意使水泥土基层预先开裂。基层的施工质量是决定基层是否开裂的关键,要保证基层有足够的压实度,严格控制基层的含水量,并且为降低温差适当安排基层施工的[3]季节和时间。

4.结论

以上就是国内外关于减小无机结合料稳定材料基层沥青路面收缩裂缝的措施和方法。虽然无机结合料稳定材料基层沥青路面因容易产生裂缝而限制其广泛应用。但是,在设计合理、施工质量保证前提下,采用一些措施和方法可有效地减少无机结合料稳定基层的裂缝产生。

参考文献 【1】 孔健;减小无机结合料稳定材料基层沥青路面收缩裂缝的措施和方法[J];城市道桥与防洪;2011年01期

【2】 张红春;半刚性基层沥青路面综合抗裂技术研究[D];长安大学;2008年 【3】 张鹏;高等级公路半刚性基层材料的抗裂性能研究[D];大连理工大学;2007年

篇2:路面基层结合料

旧沥青路面铣刨料再生基层的应用研究

结合沥青路面大修工程,介绍了旧沥青路面就地冷再生利用.通过室内试验、理论分析和工程应用,对泡沫沥青再生混合料用作路面基层材料的级配、配合比、泡沫沥青最佳用量、施工工艺等进行了系统的应用研究.结果表明,旧沥青路面泡沫沥青冷再生混合料做基层材料具有良好路用性能,能满足道路的`使用要求,具有良好的推广使用价值.

作 者:石霖凯 SHI Lin-kai  作者单位:河南交通职业技术学院,河南,郑州,450006 刊 名:内蒙古公路与运输 英文刊名:HIGHWAYS & TRANSPORTATION IN INNER MONGOLIA 年,卷(期): “”(3) 分类号:U416.217 U418.8 关键词:旧沥青路面铣刨料   泡沫沥青   再生基层   应用  

篇3:路面基层结合料

关键词:沥青路面,就地冷再生,底基层,混合料

1 概述

就地冷再生:采用专用的就地冷再生设备,对沥青路面进行现场铣刨,破碎和筛分,掺入一定数量的新集料、再生结合料、活性填料(水泥、石灰等)、水,经过常温拌和、摊铺、碾压等工序,一次性实现旧沥青路面再生的技术,它包括沥青层就地冷再生和全深式就地冷再生两种方式。仅对沥青材料层进行的就地冷再生称为沥青层就地冷再生;再生层既包括沥青材料层又包括非沥青材料层的称为全深式就地冷再生。冷再生混合料的配比直接影响着冷再生层作为受力结构层的强度。现就平青乐线K297+752~K301+102段冷再生底基层混合料组合设计控制要点作简要分析。

2 混合料组成设计

2.1 冷再生旧料特征

本工程路段路面面层破坏严重,经铣刨破碎的旧沥青混凝土路面的材料中沥青已经不明显存在,形成具有不同粒径的骨料,级配见表1。

2.2 新添骨料性质

为使旧沥青混合料的级配符合规范要求,按照实际情况添加部分新集料。新添集料为滦县产花岗岩,各项指标:抗压强度93.5 MPa,磨耗率4.3%,压碎值14.1%,磨光值55,含泥量0.43%,相对密度2.582%。

2.3 添加剂

试验中冷再生添加剂采用当地产42.5号冀东牌普通硅酸盐水泥。

2.4 再生混合料力学性质试验分析

2.4.1 试样制备

1)将新混合料完全风干,测定旧混合料完全风干后的含水量。

按式(1)确定试样的干质量:

Msample=Mair-dry/[1+(Wair-dry/100)] (1)

其中,Msample为试样的干质量,g;Mair-dry为试样的风干质量,g;Wair-dry为风干试样的含水量,%。

2)按式(2)确定稳定剂的用量:

Mcement=(Cadd/100)Msample (2)

其中,Mcement为水泥用量,g;Cadd为水泥百分比,%;Msample为试样的干质量,g。

2.4.2 最佳含水量和最大干密度的确定

1)冷再生混合料最佳含水量(ω)。

冷再生新料中加入添加剂后,随着添加剂剂量的增大,冷再生混合料的最佳含水量呈上升趋势,图1为混合料的最佳含水量与水泥(添加剂)剂量的关系图。

2)冷再生混合料的最大干密度(ρ)。

添加剂冷再生新料中经过物理化学反应的生成物填充旧料孔隙,不但起到减少孔隙的作用,而且也起到了提高干密度的作用,并且随着添加剂剂量的增加,最大干密度也增加。图2为添加剂的最大干密度与剂量的关系图。

2.4.3 稳定材料的准备

1)根据式(1)计算试样干质量。2)根据式(2)计算稳定剂用量。3)按式(3)确定加水百分比,并按式(4)确定需要加水的质量。

Madd=WOMC-Wair-dry (3)

Mwater=(Wadd/100)×(Msample+Mcement) (4)

其中,Wadd为试样的加水百分比,%;WOMC为试样的最佳含水量,%;Wair-dry为风干试样的含水量,%;Mwater为加水质量,g;Msample试样干重,g;Mcement为稳定剂添加量,g。

2.4.4 成型试件力学性能试验

1)冷再生混合料的抗压强度。

试件在温度(20±2)℃、湿度大于95%的养护室内养生6 d,浸水24 h后,按JTJ 057-94公路工程无机结合料稳定材料试验规程进行无侧限抗压强度试验。

对于冷再生混合料,随着添加剂水泥剂量的增加,其相同龄期的试件无侧限抗压强度值逐渐升高,见图3。从图3中看出对于相同的水泥添加剂剂量,随着龄期的增长,其抗压强度也逐渐升高。

2)抗劈裂强度。

同样由JTJ 057-94公路工程无机结合料稳定材料试验规程方法进行劈裂试验:由试验结果可知,在同龄期90 d的情况下,随着添加剂剂量的增加,其劈裂强度逐渐增大。

3)抗压回弹模量。

采用承载板法测定混合料试样90 d龄期的抗压回弹模量,见图4。

2.5确定稳定剂的最佳用量

1)计算无侧限抗压强度试验结果的平均值和偏差系数。

2)根据要求的强度标准,选定合适的水泥剂量,此剂量试件室内试验结果的平均抗压强度R应符合式(5)的要求:

其中,Rd为设计抗压强度;Cv为试验结果的偏差系数(以小数计);Za为标准正态分布表中随保证率(或置信度a)而变的系数,取保证率为90%,即Za=1.282。

最终确定设计水泥添加剂为5%。

工地人工撒布水泥,实际采用的水泥剂量应比室内试验确定的剂量多0.5%~1.0%;采用水泥稀浆车,实际采用的水泥剂量应比室内试验确定的剂量多0%~0.5%。

3结语

冷再生混合料的配制控制要点为旧混合料的级配组成,含油量;添加剂选定的情况下,配比是重要环节。

参考文献

篇4:如何改善路面沥青结合料的性能

关键词:改善路面沥青结合料性能

1、改善沥青结合料的性能

改善沥青的温度敏感性、低温稳定性和流变性对提高混合料的高温和低温力学性质效果非常显著,沥青性能改善对提高路面长期使用性能有着非常重要的作用。比较各种改性沥青的性能,sBs改性沥青无论从高温、低温眭能、弹性恢复性能,还是感温性能几个方面,都有明显的优势,是其他改性沥青如PE和EVA无法相比的。sBs的优越性突出表现在使软化点大幅度提高的同时,又使低温延度明显增加,感温性得到很大改善,不仅高温稳定性大幅度提高,而且低温性能也同时改善,并且弹性恢复率特别大,所有指标都有明显提高,这是非常难得的。sBs改性沥青具有其他改性剂或综合改性剂无法相比的优点,而且在价格上也可以与PE、EVA竞争,所以改性沥青以选用sBs为佳。目前,世界上使用最多的是sBs,约占改性沥青总量的40%-44%。

2、提高集料的质量

在考虑材料对沥青混合料的影响时,往往比较重视沥青的影响,而对集料的影响重视不够。然而,集料质量差,混合料的质量必然也差,故要提高沥青混合料的性能,必要条件是保证集料的质量,然后再考虑矿料级配的控制。要提高路面抗车辙的能力,集料要符合下面两项要求:一是碎石表面微观粗糙度大,且形状接受立方体,质地坚硬;二是使用人工砂,限制使用圆形颗粒的天然砂。但是,我们生产的碎石针片状偏多,形状难以接近立方体;人工砂没有专门生产供应,所谓的人工砂一般只是轧石厂筛余的下脚料。碎石的粒径组成比例也不稳定,筛分结果有较大偏差。这样势必引起混合料级配的改变,对路面的质量和使用寿命产生很大影响。为此,我们应该采取有效措施,提高矿料质量,保证颗粒组成的稳定性。轧好的碎石要分开堆放,并做好防尘保护,保持碎石清洁。进场材料要按规范进行检验,尽可能加大抽检密度,不合格的材料坚决退场。堆场要进行场地硬化,避免将堆场的土混入碎石中。不同规格的料堆间设置隔离墙,以免不同规格碎石混杂一起。料堆要有明显标示,防止上料时装错料。

3、改善沥青与集料的粘结性

路面早期破坏水损害是其中一个重要原因。水损害产生的原因除了施工和配合比设计方面的原因以外,沥青结合料与集料表面的粘结力丧失而导致集料松散剥离是其中的主要原因。沥青混合料的粘附性差(水稳性不好),容易导致面层严重辙槽、局部松散和坑洞等水损坏现象。国内外道路工程师们常采用两种方法,一是利用碱性矿料处理酸性矿料的表面,使后者活化,传统做法是使用石灰或水泥。由于用消石灰水处理矿料工程量较大,也可以直接往拌和室内加消石灰或生石灰粉。掺消石灰粉、生石灰粉或水泥是首选推荐措施,理由是这种方法价格便宜,施工简单,只要用它代替一部分矿粉就可以了。另外一种方法是向沥青中加入少量液体抗剥落剂,这些液体抗剥落剂的初期效果不错,但其长期性能或耐久性尚待进一步研究,工程应用时要注意选择。

4、使用纤维沥青混凝土

在沥青混凝土中掺加纤维,以改善沥青混凝土的性能,提高沥青混凝土的高温稳定性,低温抗裂性、抗疲劳性、柔韧性、抗剥落;性、抗磨耗性和水稳性,以及抵抗反射裂缝等方面都有很好的功效。按照混合料总重的2.25%的比例加入博尼维后,大约每立方米有超过18亿根分离的博尼维吸附并稳定沥青,使沥青的粘稠度和粘聚力增大,并由于纵横交错的加筋作用,使得混合料具有较高的强度。从动稳定度的结果可以看出,博尼维可使混合料的高温抗车辙性能改善。试验结果还可以看出,博尼维经搅拌均匀后,分布于沥青混合料中,通过加筋作用使混合料具有了较好的柔性,其劲度模量增加,耐疲劳性改善,并使混合料的低温抗裂性能增强,疲劳寿命增加。

5、改善沥青混凝土面层的使用性能

沥青混合料的性能要求往往是矛盾的或相制约的,照顾了某一种性能,很可能会降低另一方面的性能。这里最突出的有两对矛盾,第一是高温稳定性和疲劳性能与低温抗裂性能的矛盾。为了提高高温抗车辙能力,应尽量采用粗级配,增加集料数量,减少用油量,采用粘稠度小的沥青,但这样的混合料低温很容易开裂,疲劳性能差;而为了提高耐久性和低温抗裂性能,则要近可能使用稠度大的沥青,而且要增加用量,用细集料、密集配混合料,但这样到了夏天很容易产生泛油和车辙病害。第二是路面表面特性和耐久性的矛盾。要求抗滑性能好,不濺水,雨雾小,噪音轻,必须提高表面粗糙度,采用构造深度大的粗集料、开级配或半开级配的沥青混合料。但是这样的混合料空隙率必然较大,而孔隙率大的混合料空气接触面大,老化快,耐久性差,耐疲劳性能差;为了提高耐久性,就要采用较小空隙率的混合料。为了解决这两对矛盾,采用传统集配是达不到要求的,实践证明下面几种方法的应用效果非常显著。

5.1使用多碎石沥青混凝土国内研究统计资料显示,sA C-16混凝土的稳定度可达到传统A C25[型混凝土的2.67倍,表面构造深度TD一般都在0.8-1.1(ram)之间,最大可超过1.2mm。且SAC有优良的摩擦系数和表面构造深度,可达到密级配,并具优良的抗辙槽能力。

5.2使用沥青玛蹄脂碎石混合料(SMA)

sMA由于具有相互嵌锁的骨架,它的抗形变能力受高温影响不大。此外,它的卓越封闭性(由于其高沥青含量在每一碎石周围形成了厚沥青膜)能抵风化作用。

篇5:路面基层结合料

1k411022不同无机结合料稳定基层的特性

在粉碎的或原状松散的土中掺人一定量的水泥、石灰、工业废渣等无机结合料和水,经拌合得到的混合料在压实与养生后,其抗压强度符合规定要求的材料称为无机结合料稳定材料,用此材料建筑的基层称为无机结合料稳定基层。

无机结合料稳定材料属于半刚性材料,称这类基层(底基层)为半刚性基层(底基层)。

无机结合料稳定材料在路面结构的基层和底基层使用较广。其自成板体,稳定性好、抗冻性能好,缺点是耐磨性差。

(1)石灰稳定类基层(底基层)

石灰稳定土是由土、石灰和水组成。石灰稳定类材料适用于各种等级路面的底基层,不应用作高级路面的基层。影响石灰土强度的因素有土质、灰质、石灰剂量、含水量、密度、石灰土的龄期、养生条件等。

在冰冻地区的潮湿路段及其他地区的过分潮湿路段,不宜用石灰土作基层。

(2)水泥稳定类基(垫)层

在粉碎土或原状松散土中,掺加适量水泥,加水拌合经摊铺、碾压、养护成型的基(垫)层称为水泥稳定类基(垫)层。水泥稳定土可用于一般等级道路的基层和底基层。影响水泥土强度的因素有土质、水泥成分、水泥剂量、含水量、工艺过程和养生等。

(3)工业废渣稳定基层

工业废渣材料主要用石灰与之混合,主要有石灰粉煤灰类及石灰其他废渣类混合料。常选用石灰稳定工业废渣做高级或次高级路面的基层或底基层。石灰稳定工业废渣基层具有以下优点:水硬性、缓凝性、强度高且随龄期不断增加,稳定性、成板体(整体)性好、抗水、抗冻、抗裂且收缩性小,适应各种环境和水文地质条件。另外,用石灰稳定工业废渣在温度较高时强度增长快,因此最好在热季施工,并加强保湿养生。

常用的工业废渣有粉煤灰、煤渣、钢渣、电石渣、煤矸石等。

篇6:沥青混合料路面面层施工质量控制

濮阳市公路工程建设经验交流会

濮阳市通达公路工程有限公司

摘要本文详细阐述了沥青路面的施工质量控制和一套机械化施工工艺与方法。

关键词沥青路面施工质量施工工艺

近几年随着路网建设步伐的加快,如何在高速发展的同时建设高质量的公路,特别是如何铺筑高质量的沥青路面、提高其行车舒适性和耐久性,是公路建设者需要解决的一个重要问题,又加之新大型设备代替以前的老小设备,新的施工工艺更需要去试验研究。我们根据濮阳市公路建设施工现状,就提高沥青路面的质量问题进行了深入研究和探索,在原材料质量控制、混合料的组成设计、混合料的拌和、摊铺工艺及施工机械的选型与组合等方面,摸索了一套较为成功的控制方式,使我市公路干线的沥青路面质量也随之上了一个新的台阶。

1.原材料控制

控制好原材料的质量,是提高沥青路面的基础。沥青混合料所用原材料主要包括碎石、砂、矿粉和沥青。

1.1粗集料

沥青层用粗集料包括碎石、破碎砾石、筛选砾石、钢渣、矿渣等,必须由具有生产许可证的采石场生产或施工单位自行加工。濮阳市境内无料源,所用粗集料均是从鹤壁浚县和山东梁山购进的石灰岩扎制碎石,收料时严格要求不准有风化岩石,碎石压碎值不大于30%,针片状含量不大于20%,洁净、干燥、表面粗糙,粒径规格等质量技术要求符合规范规定。

1.2 细集料

沥青路面的细集料包括天然砂、机制砂、石屑。细集料必须由具有生产许可证的采石场、采砂场生产,应洁净、干燥、无风化、无杂质,并有适当的颗粒级配。

1.2.1砂

我市工程所使用的砂,主要来自河北和山东的河砂,砂的规格和含泥量等技术指标符合规范要求。

1.2.2 矿粉

为充分发挥矿粉在混合料中的作用,增加混合料的热稳定性、耐久性以及沥青与石料之间的粘结力,我们明确规定沥青混凝土所用矿粉,必须是石灰岩经球磨机专一磨制而成的,细度达到一定要求,禁止使用扎制碎石所剩石屑中夹杂的矿粉。

1.3 沥青

强制使用重交AH-90沥青,每车进库沥青都要抽验针入度、延度、软化点三大指标,防止不合格沥青进场使用。

2.混合料配比

沥青混合料的室内配合比组成设计,由市公路管理局质量检测站完成,采用马歇尔试验确定沥青用量。随着带有自动电子计量沥青混合料拌和楼的出现,沥青混合料施工配合比的确定和调整变得更加重要,特别是目前没有专门的路用碎石加工厂,所生产碎石的规格不能很好的符合路用标准,要生产出级配良好的混合料,在施工拌和时,需要严格控制拌和楼各热料仓中热料的比例,各种集料的计量精度必须达到标准要求。

近两年我们面层采用4cm中粒式沥青混凝土和3cm细粒式沥青混凝土的上下双面层结构,中粒式沥青混凝土级配选用AC-20标准,细粒式沥青混凝土级配选用AC-13标准。根据砂石料、矿粉和沥青情况,每个项目分别做马歇尔试验,由试样的流值、稳定度、饱和度、空隙率和密度,确定最佳沥青用量。下面表中是我们曾在国道106线河北省界至南乐县城(1号)、濮杨线濮阳县城至基黄路(2号)、鹤台线高堡至山东省界N0.1合同段(3号)、N0.2合同段(4号)施工中使用的配合比:

中粒式沥青混凝土面层(AC-20)级配选用一览表

细粒式沥青混凝土面层(AC-13)级配选用一览表

以上配合比满足规范级配标准,根据进料的差异,随时在拌和时予以调整。从现场实铺情况看,中粒式沥青混凝土(AC-20标准)中3号配合比较好,表面粗细集料分布均匀;细粒式沥青混凝土(AC-13标准)中3号配合比较好,表面粗细集料分布均匀、密实、平整、粗糙。

3.施工机械

沥青路面施工所用的机械设备,数量和种类不多,但要求精良。现代公路施工质量的高低,筑路机械的现代化程度起着非常重要的作用,没有先进的施工机械,就修建不出高质量的工程,路面施工机械更是重要,这是我们公路建设者的共识。在路面施工中,强制使用带有满足计量精度要求的沥青混合料拌和楼、大型带自动找平和振动夯实功能的摊铺机、双钢轮高频压路机等关键特种机械,是提高沥青路面施工质量的关键。下面是我们近两年沥青路面施工机械的使用情况:

3.1拌和设备

沥青混合料拌和设备2000型(生产量120吨/小时)以上的型号,大多配备5个上料斗,具有皮带转速粗略配料、间歇式、电子称配料等功能,性能先进。从实用效果看,混合料半和均匀,各种材料用量满足计量精度要求,与试验室配合比的符合性较好。选用性能先进、质量好的拌和设备,是生产高质量沥青混合料的前提,是控制路面拥包、泛油等病害的重要环节。

3.2 摊铺设备

沥青混合料摊铺设备使用西安产ABG423摊铺机,具有自动找平、振动夯实功能,摊铺宽度可调,路面宽度12米以内一次成型。可采用走钢丝和平衡梁两种摊铺方法。

3.3 压实设备

沥青混合料压实以美国产英格索兰DD-110双钢轮压路机为主。该型压路机具有振动高频低幅、根据压实层密实情况智能调整振动方式、自动加振去振等功能,压实方式科学,不推挤混合料,压实后具有较好的平整度和密实度,是一种较先进的路面压实机械,在我们路面基层和面层施工中得到广泛的使用。另外,如配有胶轮压路机辅助压实,效果更佳。

3.4 机械组合方式

施工时,根据沥青混合料拌和设备功率型号,采用不同的组合方式。当采用2000型(120t/h)的拌和楼时,一般可选用2台DD-110双钢轮压路机和1台胶轮压路机压实。至于摊铺机,一台2000型(120t/h)的拌和楼和一台ABG423摊铺机组合使用较好。运输混合料车辆,可根据混合料的运输距离计算配置,数量应适当宽余。

4.施工工艺控制

4.1 摊铺准备

摊铺前应做好基层的验收工作,特别是高程、横坡和平整度超出允许范围的,要处理合格才能够放线摊铺面层。否则,如将这些问题带到面层再去处理,就会更加困难,甚至不可能完全调整。

4.2 试铺

每个项目大面积摊铺前,都必须摊铺试验段,以验证配合比和取得有关参数,并探求机械设备的最佳组合。如拌和设备各料斗的上料速度、集料和配和比精度、摊铺速度、松铺系数、压实机械组合和碾压遍数、运输车辆型号和数量的确定、拌和与摊铺现场人员数量的确定等等,都要在试验段施工中总结得出,以获得最佳的施工效益。

4.3 拌和

正式拌和混合料前,要对砂石料进行凉拌和热拌,调整上料斗转速,检测拌和楼各料仓粒径组成,进而调整各料仓的兑料比例,以获得符合试验室级配要求的配合比,随后在试验段中掺加沥青拌和验证。在大面积施工时,操作人员要调整拌和机达到最大的生产率,也就是根据混合料的配合比调整各上料仓,在合理的出料温度下达到最佳的上料转速和最大的上料速度。拌和设备的拌和能力受施工气温、原材料的含水量等因素制约,应根据情况相应调整。一般情况下,沥青和矿料加热温度应在150-170oC,混合料出料温度应在140-160oC,并保证运至现场的温度不低于140oC。

4.4 运输

混合料运输所用的车辆类型和数量,根据运距和拌和生产量确定,一般情况下自卸车辆的载重量要不低于8吨,吨位太小数量增多,增加调头、装料、卸料时间,影响施工效率。

4.5 摊铺

摊铺也是沥青路面施工的重要一环。摊铺机的摊铺速度要和拌和楼的出料量相协调,摊铺速度快、拌和料跟不上,停机次数多,相应的施工接头就增多,影响路面的平整度等指标。近两年我们按“不停机摊铺”的目标组织沥青路面的摊铺,即每天开始摊铺后,除机械故障等非人为因素停机外,摊铺中途不得停机,以减少横向接缝。8吨以上自卸汽车卸车时,不得碰撞摊铺机和停

机卸料,以保证摊铺的连续性。如路面较宽不能全幅摊铺时,尽可能采用两台摊铺机成梯队排列摊铺,使两幅接缝实现热接,以减少或消除纵缝。一般12米宽以下路面,要全宽一次摊铺完成。根据我们施工经验,选用2000型拌和楼和ABG423摊铺机施工,在摊铺4厘米厚、7米宽的下面层时,摊铺速度一般控制在3米/分钟,厚3厘米的上面层速度控制在4米/分钟,松铺系数控制在1.2-1.25之间(混合料粗采用小值)。摊铺现场要有10人左右的民工,随时处理摊铺出现的问题和接缝。

4.6 碾压

混合料的碾压分初压、复压和终压。初压和复压均由DD-110双钢轮压路机自路面边部向中部、从低部到高部的碾压原则完成。初压不带振,以2-2.5公里/小时的速度、错滚30cm、驱动轮朝向摊铺机的方式碾压1-2遍,碾压温度在135 oC左右;随后紧接着用高频振动复压,速度控制在2.5-3公里/小时,碾压4遍左右,混合料碾压温度在120 oC左右。最后胶轮压路机或DD-110双钢轮压路机不带振碾压1-2遍结束。在碾压过程中,测量和试验人员及时检查,发现问题马上调整解决。压实作业段一般30-50米,并采用斜接茬,即为使摊铺后的混合料在尽可能短的时间内压实,压路机每碾压一趟应向摊铺机靠一定距离,使压实面端大致形成一斜线。

4.7 接缝

面层的接缝是不可避免的,上面层的接缝处理质量,显示出施工单位的施工精细程度和水平,也是面层质量再上台阶的一个关键因素。接缝分纵缝和横缝两种。

在全幅摊铺时仅存在横缝,处理方法有两种。一是在全部混合料摊铺完成后移走摊铺机,放一方木条于摊铺料的端部,压实结束后抽去木条形成垂直断面;二是直接碾压端部形成斜茬,再次摊铺前切割成垂直断面。下次开机摊铺碾压前,将已压好的路面上的混合料清除干净,并用刮板将现摊铺的顶面与已压实的路面刮平衔接,清除掉混合料顶层大料,用筛子筛细料整平后碾压。碾压有两种方法,一是平行于横缝方向碾压,碾压时压路机大部分重量在已压实路面上,新摊铺面仅压20-30cm宽,然后每碾压一次,向新摊铺面伸展20-30cm,直至将整个压路机的轮宽全压在新摊铺面上为止,然后纵向碾压。用三米直尺检查接缝部分,不符合要求立即处理;另一种碾压方式是先从路中央位置向边缘斜压,然后再纵向碾压。

半幅施工的纵缝处理方法基本上同横缝,碾压结合部位时,采用第一种碾压方法。

5.施工注意事项

5.1要重点做好原材料的控制,选择出料稳定、规模较大的石料场;按批检查石料的质量,发现砂石料级配变化,应另外堆放,使用时重新调整配比。

5.2在拌和设备储料仓装车时,每卸一斗料汽车要稍挪动一下位置,以减少集料的离析,并尽量缩小储料仓下落距离。在连续摊铺过程中,自卸汽车应在摊铺机前10-30cm处停下,挂空档靠摊铺机推动前进,防止撞击摊铺机。

5.3当下承层平整度、高程控制较好时,可采用平衡梁法摊铺;否则,则采用走钢丝的方法摊铺。但由于平衡梁法垫木块调整熨平板很麻烦,因此第一次或试验段施工时,最好采用走钢丝的方法摊铺。

5.4摊铺混合料应尽可能的保持连续,开始摊铺时,摊铺机前至少要准备3-5辆车混合料,以减少由于停机造成的施工接头。同时应注意摊铺机螺旋布料器内要有2/3高度的混合料,剩料少时要及时收缩两侧板,以保证摊铺宽度内布料的均匀。

5.5碾压要紧跟摊铺机,碾压温度越高压实效果越好,发现问题也易处理。

5.6钢轮压路机初压边部时,要先留出40cm左右宽度不压,等压完一遍后,将压路机的大部分重量压在已压完的部分上,压路机的一小部分重量压在未碾压的部分上,这样碾压能减少在混合料碾压时向外的推移量。

5.7碾压过程中和摊铺后的混合料温度未达到常温之前,各种机械不能在其上调头、转弯和停放;清洗机械时,不准将废油洒到沥青路面上。

结束语

经过近几年的努力,我们沥青路面的施工质量得到显著提高,经检测,今年建设完成的S307杨小线管白邱至海通、渠村至武寨段公路改建工程等四个工程三米直尺检测平整度最大间隙3毫米以下的达98%以上,路面横坡、高程合格率均在95%以上。路面表面平整密实、无拥包、泛油和明显的纵横向接缝,且级配均匀,无粗细骨料离析现象,达到了较为理想的结果,工程质量上了一个台阶。

篇7:路面基层结合料

浅谈沥青混合料路面裂缝的防治方法

路面裂缝是沥青混凝土道路的常见病害.它的出现不仅使沥青混凝土路面的`品质下降,而且带来路面病害的恶性循环.本文从龟裂、不规则裂缝、横缝、纵缝、反射裂缝等方面,简要剖析了路面产生病害的原因,并提出了相应地防治措施与解决方法.

作 者:努尔巴合提・扎克依汉 作者单位:新疆阿勒泰公路总段布尔津公路段,新疆,阿勒泰,836600刊 名:农村经济与科技英文刊名:RURAL ECONOMY AND SCIENCE-TECHNOLOGY年,卷(期):20(5)分类号:U4关键词:沥青路面 混合料 裂缝 防治

篇8:路面基层结合料

1 无机结合料分类

无机结合料根据其主导性配料,可以简单的划分为“石灰稳定性”、“水泥稳定性”以及“工业废渣性”,而“石灰稳定性”无机结合料主要稳定剂是石灰,一般有石灰稳定土、天然碎石土、天然砂砾土、碎石以及石灰矿渣等。同样的“水泥稳定性”无机结合料的主要稳定剂是水泥,这种无机结合料一般包括水泥稳定碎石、沙砾、石屑以及土等。此外,“工业废渣性”无机结合料一般有石灰煤渣类、石灰粉煤灰类以及水泥粉煤灰类。综上所述,无机结合料的主要特征是将某种材料当做主导配料,并掺合以沙砾或碎石等,从而制成结合性良好的一种复合型材料,其中主导稳定料就是为了保证无机结合料的粘结作用。

2 路基压实度检测试验方法

2.1 路基压实度和承载力的关系

作为道路工程中的主要承载结构,用来表示其承载质量的检测标准主要靠回弹模量以及弯沉量来体现,但是通常在实际施工中,我们往往会用压实度来指导道路工程施工。特别是在有无机结合料使用的情况下,对路基的压实度进行检测更能真实体现道路的施工质量,由于道路路基的主要功能是为了承重,而压实就是靠机械外力对无机结合料进行加压,使其密实,从而有效降低了路基的孔隙率,大大的降低了路基形变的可能性。在这个压实过程里,多种材料经过反复的摩擦力以及粘结力,从而使材料中的固体颗粒完全挤压出其内部的水分以及空隙,致使颗粒间紧密结合,从而有效提升了路基的整体承载力。

2.2 压实度检测方法

压实度指的路基填料的夯实密度,该值为现场实测干密度与试验时所测的标准干密度的比,为保证压实度检测的精确性,并以此对无机结合料进行正确的评价,我们在检测时,应合理有效的处理以下问题,即要对现场无机结合料含水量进行检测,要合理选择无机结合料标准压实试验最大干密度,要保证现场检测的准确性,要通过数学方式对路基的压实度进行合理评估。只要能将以上几个问题处理得当,就能根本保证压实度测定的精确性。

确定无机结合料标准干密度一般都会用击实试验、固体体积测量以及试验路段检测等方法,而在实际施工中,击实试验应用最为广泛,用此试验能够有效确定结合材料以及回填土的最大干密度以及最佳含水量。但是此种检测方法也有不足之处,即其一般只使用在粒径低于25mm的集料,如果集料超标,则必须保证超标含量不高于5%,这样可以有效降低其对检测结果产生的影响,而如果超标颗粒过多,就会对检测结果造成较大影响,虽然能通过数学方式进行修正,但是这样会导致较大的误差,因此在粒径过大过多的集料中不宜使用。

2.3 击实试验的应用

现如今,我国针对无机结合料进行击实试验的方法一般有两种,一种是在上世纪30年代出现的轻型击实试验,第二种诞生于上世纪40年代,叫重型击实试验,重型击实试验应用最为广泛,技术也较为完善与成熟。后期出现的其他方法都是通过以上两种方法演化而来。

在进行击实试验时,由于天然沙砾最大干密度存在较大的变异性,因此,在对此类的无机结合料进行击实时对其进行平行试验不得少于两次,假如两次所测得的干密度差小于0.05以及0.08则可以直接将两次检测结果进行平均,将其平均值当成施工应用的最大标准干密度,以降低现场检测压实度与其存在的差异。

在公路的路基施工过程中,我们会经常碰到无机结合料粒径大于击实试验检测标准的现象,这类无机结合料会对最终的压实度检测结果造成影响,所以,在进行击实试验时,要根据这一情况对现场施工无机结合料的干密度进行合理调整。

3 试验分析

3.1 检测材料的选择

3.1.1 无机结合料材料确定

可根据道路工程的实际情况,选择恰当型号的水泥作为无机结合料的稳定剂,选择时应将水泥的凝固时间作为选择依据,要保证水泥稳定剂的初凝时间在3-4时左右,终凝时间必须大于6时;对沙砾进行选择时,要主要考虑砾石以及砂料含量,要保证沙砾强度在4级以上,而且压碎值要高于30%,含泥量不得高于2%,含砂量应在30%-35%左右,而含砾量应控制在65%-70%之间。

3.1.2 确定恰当的配比

在路基施工中,可以根据不同的施工条件对无机结合料的配比进行恰当调整,在对标准配比进行确定时,要采用标准击实试验以及七天无侧限抗压试验的方法进行确定。

3.1.3 确定颗粒含量

由于粗粒料所占比重会对压实度检测造成影响,所以,在确定颗粒含量时应反复进行试验,来确定最佳的颗粒比列。在试验时,可将5-38mm的颗粒含量作为参考标准,根据不同的比例进行击实试验,试验后经过分析不难看出,5-38mm颗粒比例大约在0.7时,干密度呈现最大,含水量最低,所以,压实效果也最佳。

3.2 压实度试验控制

3.2.1 检测压实度的控制

对水泥稳定性砂砾料进行压实度检测,一般都使用灌砂的方式,根据5-38mm颗粒含量试验的结果,通过数学计算方式对最大干密度进行修正,并根据此值对灌砂法所测得的压实度进行质量控制。

3.2.2 检测干密度的控制

在对5-38mm颗粒含量进行干密度检测时,一般都采用的是干料,然而,在实际施工过程中,现场所取的料通常是湿料,这就导致了试验室的检测结果无法对现场施工测量进行指导,而如果对现场水泥稳定砂砾料进行烘干工作量较大,所以,对于这样的问题,检测人员可通过对比试验进行分析,如果发现湿料干密度以及修正后的干密度所检测的结果差异很小,不会对检测结果产生影响,那么就直接可以对湿料的压实度进行检测而无需修正以控制水泥稳定砂砾料的压实度控制。

3.3 试验时的质量控制点

3.3.1 取样的质量控制

由于大颗粒所占样品比例会直接影响到最终的检测效果,因此在进行现场取样时,一定要注意控制样品中的大颗粒含量,在取样作业时一定要根据相关规范进行操作,从取样区域中心位置逐渐扩大取样坑深度以及取样面积,取样时一定要对取样速度进行控制,尽量避免对路基造成的扰动,从而避免检测失准。

3.3.2 灌砂筒尺寸以及标准砂粒径确定

由于砂重以及标准砂干密度会对最终的压实度产生影响,因此,在检测时,要以碾压层厚度以及沙砾粒径为依据,合理的对灌砂筒尺寸进行确定。同时对于标准砂粒径也应进行控制,应尽量保证其粒径保持在0.25-0.5mm之间,如果标准砂中混入其他杂质,就会对标准密度的检测造成影响,因此,在实际施工检测中,应通过水洗或者筛选的方法对标准砂的洁净度进行控制。

3.3.3 对计量器具的控制

计量器具的精确性时对干密度检测结果造成影响的最为关键的因素,所以,在检测时,要选择合适、恰当的计量器具,同时,计量器具选择时,还要满足于测量时的实际需求。

结语

无机结合料路基路面的压实度检测是对公路施工质量的最为有效的检测方式,在实际施工中,试验室所测得的压实度以及干密度可以用于对施工的指导,而施工中的现场检测可以作为对试验室检测结果的验证,因此,通过对施工前以及施工过程中对无机结合料进行检测,就可以有效保证道路工程路基的最终质量。

摘要:为适应我国国民经济的迅速发展, 我国的公路事业也在不断加紧建设, 而且这种建设幅度还在持续并呈现递增趋势, 规模也在不断扩大, 尤其是各省高速公路的铺筑以及城镇公路、村村通公路等, 但是在公路数量上迅速增长的同时, 我们还应对公路的质量进行严格把关, 本文就对无机结合料在路基路面工程中的压实质量控制的试验进行分析, 以选择正确的检测方法以及质量评定标准提供参考依据。

关键词:无机结合料,路基路面工程,压实质量,测量试验

参考文献

[1]张会琴.无机结合料在路基路面工程应用中压实质量控制试验研究[D].西安:长安大学, 2009.

[2]吴全军.无机结合料在路基路面工程应用中压实质量控制试验研究分析[J].黑龙江交通科技, 2012, 15 (1) :33-34.

[3]刘春桥.无机结合料稳定基层的施工与质量检测分析[J].黑龙江科技信息, 2012, 22 (27) :273.

[4]康志波.路拌法无机结合料稳定土基层在农村公路中的规范化施工[J].交通标准化, 2011, 14 (14) :164-166.

[5]梅中梁.无机结合料在公路基层施工中的应用[J].中国新技术新产品, 2010, 14 (10) :112.

[6]秘国江.浅谈无机结合料稳定土基层试验与检测[J].中国高新技术企业, 2008, 24 (5) :199.

上一篇:帕劳洛克群岛探险初中作文下一篇:英语四级复习与考试心态如何调整