高中物理匀变速直线运动知识点

2024-04-07

高中物理匀变速直线运动知识点(精选11篇)

篇1:高中物理匀变速直线运动知识点

高中物理匀变速直线运动知识点

一、基本关系式

v=v0+at x=v0t+1/2at2 v2-vo2=2ax v=x/t=(v0+v)/2

二、推论

1、vt/2=v=(v0+v)/2

2、△x=at2 { xm-xn=(m-n)at2 }

3、初速度为零的匀变速直线运动的比例式

(1)初速度为0的n个连续相等的时间末的速度之比:

V1:V2:V3: :Vn=1:2:3: :n

(2)初速度为0的n个连续相等时间内全位移X之比:

X1: X2: X3: :Xn=1:2

(3)初速度为0的n个连续相等的时间内S之比:

S1:S2:S3::Sn=1:3:5::(2n—1)

(4)初速度为0的n个连续相等的位移内全时间t之比

t1:t2:t3::tn=1:√2:√3::√n

(5)初速度为0的n个连续相等的位移内t之比:

t1:t2:t3::tn=1:(√2—1):(√3—√2)::(√n—√n—1) 应用基本关系式和推论时注意:

(1)、确定研究对象在哪个运动过程,并根据题意画出示意图。

(2)、求解运动学问题时一般都有多种解法,并探求最佳解法。

三、两种运动特例

(1)、自由落体运动:v0=0 a=g v=gt h=1/2gt2 v2=2gh

(2)、竖直上抛运动;v0=0 a=-g

四、关于追及与相遇问题

1、寻找三个关系:时间关系,速度关系,位移关系。两物体速度相等是两物体有最大或最小距离的临界条件。

2、处理方法:物理法,数学法,图象法。

怎么才能学好物理

1、改变观念

和高中物理相比,初中物理知识相对来说还是比较浅显易懂的,并且内容也不算是很多,也更容易掌握一些。但是能学好初中物理,不见得就能学好高中物理了。如果对于学习物理的兴趣没有培养起来,再加上没有好的学习方法,学习高中物理简直就是难上加难。所以想要学好高中物理,首先就需要改变观念,应该对自己有个正确的认识,从头开始。

2、培养对物理的兴趣

兴趣是最好的老师,想要学好高中物理就要对物理这门学科充满兴趣。那么,怎么培养学习物理的兴趣呢?物理是一门和生活紧密相关的学科,理科生应该在平时的时候多注意物理与日常生活、生产和现代科技密切联系,息息相关的地方。甚至是将物理知识应用到实际生活中去,这样可以大大的激发学习物理的兴趣。

万有引力知识点

1.开普勒第三定律:T2/R3=K(=4π2/GM){R:轨道半径,T:周期,K:常量(与行星质量无关,取决于中心天体的质量)}

2.万有引力定律:F=Gm1m2/r2 (G=6.67×10-11N?m2/kg2,方向在它们的连线上)

3.天体上的重力和重力加速度:GMm/R2=mg;g=GM/R2 {R:天体半径(m),M:天体质量(kg)}

4.卫星绕行速度、角速度、周期:V=(GM/r)1/2;ω=(GM/r3)1/2;T=2π(r3/GM)1/2{M:中心天体质量}

5.第一(二、三)宇宙速度V1=(g地r地)1/2=(GM/r地)1/2=7.9km/s;V2=11.2km/s;V3=16.7km/s

6.地球同步卫星GMm/(r地+h)2=m4π2(r地+h)/T2{h≈36000km,h:距地球表面的高度,r地:地球的半径}

注:(1)天体运动所需的向心力由万有引力提供,F向=F万;

(2)应用万有引力定律可估算天体的质量密度等;

(3)地球同步卫星只能运行于赤道上空,运行周期和地球自转周期相同;

(4)卫星轨道半径变小时,势能变小、动能变大、速度变大、周期变小(一同三反);

(5)地球卫星的最大环绕速度和最小发射速度均为7.9km/s。

篇2:高中物理匀变速直线运动知识点

基本概念:物体在一条直线上运动,如果在相等的时间内速度的变化相等,这种运动就叫做匀变速直线运动。

也可定义为:沿着一条直线,且加速度不变的运动,叫做匀变速直线运动。沿着一条直线,且加速度方向与速度方向平行的运动,叫做匀变速直线运动。

如果物体的速度随着时间均匀减小,这个运动叫做匀减速直线运动。如果物体的速度随着时间均匀增加,这个运动叫做匀加速直线运动。

●最核心公式

末速度与时间关系:Vt=Vo+at

位移与时间关系:x=Vot+at^2/2

速度与位移关系:Vt^2-Vo^2=2as

●重要公式补充

(1)平均速度V=s/t;

(2)中间时刻速度V(t)=(Vt+Vo)/2=x/t;

(3)中间位置速度V(s)=[(Vo^2+Vt^2)/2]1/2;

(4)公式推论Δs=aT^2;备注:式子中Δs为连续相邻相等时间(T)内位移之差,这个公式也是打点计时器求加速度实验的原理方程。

●物体作匀变速直线运动须同时符合下述两条:

⑴受恒外力作用

⑵合外力与初速度在同一直线上。

●重要比例关系

由Vt=at,得Vt∝t。

由s=(at^2)/2,得s∝t^2,或t∝2√s。

篇3:高中物理匀变速直线运动知识点

一、引导学生加深对物理公式推导过程的认识

每一个公式都是在一定的知识基础上,通过分析、推理而归纳出来的。让学生了解公式的推导过程,有助于学生对公式的理解,避免死记硬背,也可以加深理解知识之间的联系。

教师:请同学们在v-t图像上画一个初速度为v0,加速度为a的匀加速直线运动。。(请同学到黑板作图,如图11所示)

教师:在v-t图像上,我们可以找到匀加速直线运动的几个物理量?

学生:v,a,x,t

教师:很好,上节课我们

刚刚学习过了匀变速直线运动的两个基本公式,是哪两个?

教师:很好,这两个基本公式能否从v-t图像上找到?

学生:可以,这两个公式本来就是从图像上推导过来的。

这样展示公式的推导过程,既加深了学生对公式的认识,又理清了新旧知识间的内在联系。

二、引导学生加深对物理公式的正确理解

明确公式中每个字母代表的物理量及其适用单位,是物理教学中的一个重要方面,也是教会学生理解和正确运用公式的前提。当然,教师应该让学生明确公式应用的条件及适用范围。公式是反映物理现象的规律,每一个公式反映一定的物理性质,具有一定的条件,适用于一定的范围,否则会造成公式的滥用。

以匀变速直线运动的速度与位移的关系为例:

教师:在学生推导和理解上面的公式的过程中,学生解决vt,v0,a,t,或者v0,x,a,t四者关系时,既可以选择基本公式,又可以从v-t图像上来解决。接下来给学生播放一段汽车车祸视频,让学生把物理公式和物理知识联系到实际生活中。通过视频可以使学生深刻体会到车速与刹车距离的关系,从而为消t公式的引出做铺垫。

“十次事故九次快”,这是人们在无数次的交通事故中总结出来的安全警语。在公路上经常可以看到一些限速牌,规定了汽车通过该路段的最高时速,并要求驾驶员必须保持一定的行车距离。一旦发生交通事故,我们会看到交警在测量有关距离。其中非常重要的是测量刹车距离。你知道测量刹车距离的目的吗?

学生:看车子是否超速。

教师:刹车过程涉及运动学几个物理量,能从v-t图像上找到它们关系吗?大家讨论一下。

学生:有vt,v0,a,x,在图像上不能找出它们四者关系,因为图像上一定涉及到t这个物理量。

教师:很好。我们要通过vt、v0、a、x来算v看是否超速,v-t图像上又找不到它们四者关系,所以我们必须要来找寻它们四者关系式。

教师:前面我们学的两个基本式里每个都含有我们所需的三个量,多了一个t,你是否能通过这两个式子推导一下来得出我们所需的vt,v0,a,x四者关系呢?请学生板演

通过上述的教学设计可以看出,让学生自行推导理解公式,然后与实际生活相联系,这样让学生进一步强化对公式的理解。

三、指导学生灵活应用物理公式,提高应变能力

学会利用公式去理解、掌握物理概念。很多公式是物理概念的反映。善于利用公式,有助于对物理概念的理解和记忆。

还是以匀变速直线运动的速度与位移的关系为例:

教师:从上面的讲述中我们可以看出,通过两式把t消掉得到了v2-v02=2ax这四者关系,我们把这个式子称为消t公式。下面请同学们来帮交警同志算算这辆汽车是否超速?

例1,在某城市的一条道路上,规定车辆行驶速度不得超过30km/h。在一次交通事故中,肇事车是一辆客车,量得这辆车紧急刹车(车轮被抱死)时留下的刹车痕迹长为7.6m,已知该客车刹车时的加速度大小为7m/s2。

例2,某型号的舰载飞机在航空母舰的跑道上加速时,发动机产生的最大加速度为5m/s2,所需的起飞速度为50 m/s,跑道长100m。通过计算判断,飞机能否靠自身的发动机从舰上起飞?为了使飞机在开始滑行时就有一定的初速度,航空母舰装有弹射装置。对于该型号的舰载飞机,弹射系统必须使它具有多大的初速度?

例3,长100m的列车通过长1 000m的隧道,列车刚进隧道时的速度是10 m/s,完全出隧道时的速度是12m/s,求:(1)列车过隧道时的加速度是多大?(2)通过隧道所用的时间是多少?

这三道例题的设计成递进关系。第一道例题是为了解决视频引出的实际问题,使学生认识到消t公式在实际生活中的应用。第二道例题是为了让学生熟练消t公式的应用和应用条件,同时在该题中还渗透了假设的思想方法。第三道例题是为了锻炼学生根据题目条件合理选取公式。

这种利用公式记住概念,是学习物理知识较好的方法,既可以加深学生对物理概念的理解,又能提高学生理解记忆的能力。

物理的公式教学并不是把公式教给学生,让学生死记硬背下来然后做题。要让学生理解记住物理公式,重在加深学生对物理公式的推导过程,从而更好地理解物理公式。同时,学以致用,要让学生把物理公式应用到具体的物理事件和情境中去,做到举一反三,这样学生又可以反过来利用物理公式记住物理概念,从而提高课堂教学的有效和优效。当然,要值得反思的是课堂上还是要花时间给学生思考、练习,不能急于求成。

摘要:物理公式是物理知识的浓缩,是物理概念的简写。物理公式是物理规律的具体体现形式,是对物理规律的一种量化描述,反映了不同物理量之间的本质联系,正确理解和掌握公式是学习物理规律的关键。根据教学实际,以匀变速直线运动的速度与位移的关系为例,对高中物理公式教学有效性进行探讨。

关键词:高中物理,公式教学,有效,策略

参考文献

[1]陈诗璇.浅议高中物理公式的类比教学法[J].中华少年,2016,(18).

[2]谭洪元,赵洪山.高中物理公式的思维辨析[J].数理化学习:高中版,2011,(1).

[3]徐德军.高中物理公式的分析与甄别[J].理科考试研究,2012,(15).

篇4:高中物理匀变速直线运动知识点

【关键词】物理 匀变速直线运动 教学

匀变速直线运动是直线运动中的一个典型,教师在展开这种运动形式的教学时一定要找到合适的方法与技巧。比起匀速直线运动而言,匀变速直线运动相对更为复杂,变式也更多,学生很容易在思维上对于很多内容产生混淆。教师在教学匀变速直线运动时要让教学过程循序渐进的进行,可以进行知识点间的良好过渡,让学生接受新知更加容易,这样才会更加有助于预设的教学目标的达成。

一、重视对于核心公式的推导教学

匀变速直线运动这部分内容的教学中,对于核心公式的推导是一个绝对的教学重点,这也是学生基础知识的重要构成。很多教师没有在公式推导中投入足够的重视程度,往往是简单的几个推导步骤,没有将公式是怎样得来的清楚的给学生呈现出来。在这样的背景下,学生往往对于公式只是一知半解,没有真正弄清楚公式的实质,在应用时也容易产生差错。教师在这个教学环节上要有所改善,要充分提升对于公式推导的重视程度,并且采取灵活有效的推导策略,这样才能够让学生的基础知识更加牢固。

教师在推导公式时可以把握如下几个要点:(1)不要因为繁琐直接给出公式,要体现极限的思想。(2)从最简单的匀速直线运动位移与时间关系入手,得出位移公式s=vt,然后说明v-t图像面积可以反映位移。(3)利用书中“思考与讨论”讨论如何求小车的位移。根据v-t图像面积可以反映位移的认识结合图像指出Δt越小,对位移估算就越精确。(4)结合图像让学生自行推导求匀变速直线运动v-t图像面积的表达,进而得到位移公式。教师要让推导的过程循序渐进的进行,结合学生的理解与认知程度再给予相应的点拨,这样学生才能够真正在理解的基础上认识与吸收这些公式,才能够夯实自身的理论基础。

二、对于运动过程展开有效分析

在匀变速直线运动的学习中,让学生具备对于运动过程的分析能力是教学的一个重点。匀变速直线运动相对比较复杂,在解决具体问题时往往需要对于运动的整个过程,乃至每一个具体的环节都有清晰的剖析。教师要从一开始就培养学生对于运动过程的分析能力,可以结合一些具体的范例带给学生引导,让学生掌握分析运动过程的一般方法,并且在不断的练习中让自己的分析和探究能力得到提升。

对于匀变速直线运动的过程分析而言,有一个非常重要的辅助手段,那便是画运动示意图。教师要培养学生画运动示意图的习惯和方法,帮助学生建立运动情景,将抽象的物理問题具体化、形象化,尤其是一些相对运动的追及、相遇、相对滑动问题,这一方法显得尤为重要。运用匀变速直线运动规律解决稍微复杂的匀变速直线运动问题,很多学生常常感到很困难,对物理规律的选择,不是试试这个公式,就是套套那个公式,这些都是非常低效的学习方式。教师要提升学生问题分析的成效,要让学生掌握更加有效的方法,画图就是一个典范。因此,培养学生的画图能力会给学生分析很多具体问题带来非常明显的辅助效果。

三、提升学生的图像分析与处理能力

在这部分知识的学习中,需要学生对于几个典型的图像有较好的分析与处理能力,这是教学的核心,也是学生知识应用和问题解答能力的来源。在匀变速直线运动的分析中,需要学生对于位移-时间图像和速度-时间图像有较好的识别能力,这两个图像的有效分析可以给学生解题提供很多重要信息,学生解题的效率和准确性很大程度由学生的图像分析能力决定。教师在教学中要加强对于学生识图和分析图像能力的培养,让学生对于这两个典型图像的一些基本分析方法较为熟悉,并且可以借助具体的范例来深化图像教学。

以速度-时间图像的分析的教学为例。对于v-t图像的读图过程而言,教师要让学生理解几个要点:(1)纵轴上的截距其物理意义是运动物体的初速度v0。(2)图线的斜率其物理意义是运动物体的加速度a;图线是直线表示物体做匀变速直线运动或匀速直线运动;图线是曲线表示物体做变加速运动。(3)图线下的“面积”其物理意义是运动物体在相应的时间内所发生的位移x。(4)两图线相交说明两物体在交点时的速度相等,图线与横轴交叉,表示物体运动的速度反向。学生如果能够对于这几个要点有非常清晰的理解与记忆能力,看到图像后通常能够立刻做出反应与识别,提炼出图像中体现出的核心信息,为问题的解答带来突破口,这才是学生对于这部分知识有良好掌握的一种状态呈现。

【参考文献】

[1] 张明亮. 匀变速直线运动规律的应用[J]. 中学物理,2013(23).

[2] 王凌娆. 匀变速直线运动的规律总结及应用[J]. 中学生数理化(高一版),2014(09).

[3] 蒋勇. 有关匀变速直线运动的速度与位移的关系解析[J]. 数理化解题研究(高中版),2014(05).

篇5:高中物理匀变速直线运动知识点

(25分钟 50分)

一、选择题(本题共6小题,每小题5分,共30分)1.做匀加速直线运动的质点,运动了时间t,下列说法中正确的是()A.它的初速度越大,通过的位移一定越大 B.它的加速度越大,通过的位移一定越大 C.它的末速度越大,通过的位移一定越大 D.它的平均速度越大,通过的位移一定越大

【解析】选D。由公式x=v0t+at可知,在时间t一定的情况下,只有当初速度v0和加速度a

2都较大时,位移x才较大,选项A、B错误;由公式x=t可知,在时间t一定的情况下,只有当初速度v0和末速度v都较大时,位移x才较大,选项C错误;由公式x=t知,在时间t一定的情况下,平均速度越大,位移x一定越大,选项D正确。

2.一物体由静止开始做匀变速直线运动,在时间t内通过的位移为x,则它从出发开始经过4x的位移所用的时间为()A.B.C.2t D.4t 【解析】选C。物体由静止开始做匀变速直线运动:x=at,当从出发开始经过位移4x=a可得t1=2t,故只有C正确。

3.(多选)如图所示为在同一直线上运动的A、B两质点的x-t图象,由图可 知()

2,A.t=0时,A在B的前面

B.B在t2时刻追上A,并在此后跑在A的前面 C.B开始运动的速度比A小,t2时刻后才大于A的速度 D.A运动的速度始终比B大

【解析】选A、B。t=0时,A在原点正方向x1位置处,B在原点处,A在B的前面,A对。t2时刻两图线相交,表示该时刻B追上A,并在此后跑在A的前面,B对。B开始运动的速度比A小,t1时刻后A静止,B仍然运动,C、D错。

4.(多选)物体甲的x-t图象和物体乙的v-t图象如图所示,则这两物体的运动情况是()

A.甲在整个t=6s时间内运动方向一直不变,它通过的总位移大小为4m B.甲在整个t=6s时间内有往返运动,它通过的总位移为零 C.乙在整个t=6s时间内有往返运动,它通过的总位移为零

D.乙在整个t=6s时间内运动方向一直不变,它通过的总位移大小为4m 【解析】选A、C。x-t图象,图象的斜率表示速度,其斜率一直为正,故甲的运动方向不变,通过的总位移大小为4m,A正确,B错误。v-t图象,速度有正负,表示有往返运动。v-t图象中图线与时间轴所围面积表示位移的大小,在整个t=6s时间内乙通过的总位移为零,C正确,D错误。

【易错提醒】应用v-t图象时的常见错误

(1)把v-t图象和x-t图象混淆。把v-t图象中两条直线的交点误认为相遇,在v-t图象中根据直线向上倾斜、向下倾斜判断运动方向等等。

(2)把v-t图象误认为是质点的运动轨迹。v-t图象与坐标轴围成的图形的“面积”在横轴上方为“正”,在横轴下方为“负”;这“面积”的代数和表示对应时间内发生的位移,这“面积”的绝对值之和表示对应时间内的路程。【补偿训练】

1.如图是直升机由地面竖直向上起飞的v-t图象,25s时直升机所在的高度 为()

A.600 m

B.500 m C.100 m D.700 m 【解析】选B。首先分析直升机的运动过程:0~5s直升机做匀加速运动;5~15 s直升机做匀速运动;15~20 s直升机做匀减速运动;20~25 s直升机做反向的匀加速运动,分析可知直升机所能到达的最大高度为题图中t轴上方梯形的面积,即S1=600m。25s时直升机所在高度为S1与图线CE和t轴所围成的面积S△CED的差,即S2=S1-S△CED=(600-100)m=500 m,B正确。2.质点做直线运动的v-t图象如图所示,规定向右为正方向,则该质点在前8s内平均速度的大小和方向分别为()

A.0.25 m/s 向右

C.1 m/s 向右

B.0.25 m/s 向左 D.1 m/s 向左

【解析】选B。由图线可知0~3s内的位移为:x1=×3×2m=3m,方向为正方向;3~8s内的位移为:x2=×(8-3)×2m=5 m,方向为负方向;0~8s内的位移为:x=x1-x2=-2m;该段时间内的平均速度为:v===-0.25 m/s,负号表示方向是向左的。故B正确,A、C、D错误。

5.(2017·曲靖高一检测)一物体在水平面上做匀变速直线运动,其位移与时间的关系为x=12t-3t,则它的速度等于零的时刻t为()A.16 s

B.2 s

C.6 s

D.24 s 2 3 【解析】选B。根据匀变速直线运动位移与时间的关系公式x=v0t+at与x=12t-3t 对比可得:v0=12m/s,a=-6m/s

222根据公式v=v0+at得t=【补偿训练】

=s=2s,故B正确。

某质点的位移随时间变化的规律是x=4t+2t,x与t的单位分别为m和s,则该质点的初速度和加速度分别为()A.4 m/s和2 m/s

B.0和4 m/s C.4 m/s和4 m/s 2

D.4m/s和0 【解析】选C。匀变速直线运动的位移与时间的关系为x=v0t+at,与x=4t+2t对比可知v0=4m/s,a=4m/s,选项C正确。

6.(2017·汕头高一检测)质点从静止开始做匀加速直线运动,从开始运动起,通过连续三段路程所用的时间分别为1s、2 s、3 s,则这三段路程的平均速度之比应为()A.1∶2∶3 C.1∶4∶9 B.1∶3∶6 D.1∶8∶27

222【解析】选C。根据x=v0t+at得,从静止开始,1s内、3 s内、6 s内的位移之比为1∶9∶

236,则通过连续三段路程的位移之比为1∶8∶27,根据平均速度的定义式=知,这三段路程的平均速度之比为1∶4∶9,故C正确,A、B、D错误。【补偿训练】

(多选)一质量为m的滑块在粗糙水平面上滑行,通过频闪照片分析得知,滑块在最初2s内的位移是最后2s内位移的两倍,且已知滑块最初1s内的位移为2.5m,由此可求得()A.滑块的加速度为5m/s B.滑块的初速度为5m/s C.滑块运动的总时间为3s D.滑块运动的总位移为4.5m 【解析】选C、D。根据题意可知,滑块做末速度为零的匀减速直线运动,其逆运动是初速度 2为零的匀加速直线运动,设其运动的总时间为t,加速度为a,设逆运动最初2s内位移为x1,最后2s内位移为x2,由运动学公式得x1=a×2;x2=

2at-

2a(t-2),且

2x2=2x1;2.5=at-a(t-1),联立以上各式并代入数据可解得a=1m/s,t=3s,A错误,C正222确;v220=at=1×3m/s=3 m/s,B错误;x=at=×1×3m=4.5 m,D正确。

二、非选择题(本题共2小题,共20分)7.(10分)某高速列车刹车前的速度为v2

0=50m/s,刹车获得的加速度大小为a=5m/s,求:(1)列车刹车开始后20s内的位移。

(2)从开始刹车到位移为210m所经历的时间。(3)静止前2s内列车的位移。【解题指南】解答本题注意以下两点:(1)首先必须判定刹车时间,避免将运动情景分析错误。(2)匀减速至零的运动可看成初速度为零的匀加速运动。【解析】(1)规定初速度方向为正方向,则a=-5m/s2

由v=v0+at得列车从开始刹车到停止所用时间: t==s=10 s ①

可知刹车后20s时列车已经停止,此时位移: x=v20t+at

=[50×10+×(-5)×102

]m=250 m ②

(2)当位移x′=210m时,由x′=v22

0t′+at′

③ 可得:t1=6s ④ t2=14s(舍去)(3)可将列车运动看成初速度为0的反向匀加速直线运动

则x″=at″=×5×2m=10 m ⑤ 答案:(1)250m(2)6 s(3)10 m 【补偿训练】

一辆沿平直路面行驶的汽车(如图所示),速度为36km/h,刹车后获得加速度的大小是4m/s,求:

222

(1)刹车后3s末的速度。

(2)从开始刹车至停止,汽车滑行的距离。

【解析】汽车刹车后做匀减速滑行,其初速度v0=36km/h=10 m/s,最终速度v=0,加速度a=-4m/s,设刹车滑行ts后停止,滑行距离为x。(1)由速度公式v=v0+at得滑行时间 2t==s=2.5 s 即刹车后经过2.5s停止,所以3 s末的速度为零。

(2)由位移公式得滑行距离x=v0t+at=10×2.5m+×(-4)×2.5m=12.5m。答案:(1)0(2)12.5m 8.(10分)一辆汽车以72km/h的速度正在平直公路上匀速行驶,突然发现前方40m处有需要紧急停车的危险

信号,司机立即采取刹车措施。已知该车在刹车过程中加速度的大小为5m/s,则从刹车开始经过5s时汽车前进的距离是多少?此时是否已经到达危险区域? 【解析】设汽车由刹车开始至停止运动所用的时间为t0,选初速度方向为正方向,由于汽车做匀减速直线运动,加速度a=-5m/s,v0=72km/h=20 m/s

22则由v=v0+at0,得t0===4s 可见,该汽车刹车后经过4s就已停下,其后的时间内汽车是静止的,由运动学公式 x=v0t+at知,刹车后经过5s汽车通过的距离为x=v0t0+a即汽车在4s末恰好未到达危险区域。答案:40m 未到达危险区域 【易错提醒】 2

篇6:高中教案 匀变速直线运动的规律

知识与技能

1.知道匀变速直线运动的v—t图象特点,理解图象的物理意义. 2.掌握匀变速直线运动的概念,知道匀变速直线运动v—t图象的特点. 3.理解匀变速直线运动v—t图象的物理意义,会根据图象分析解决问题,4.掌握匀变速直线运动的速度与时间关系的公式,能进行有关的计算. 教学重点

1.理解匀变速直线运动v—t图象的物理意义

2.掌握匀变速直线运动中速度与时间的关系公式及应用. 教学难点

1.匀变速直线运动v—t图象的理解及应用. 2.匀变速直线运动的速度一时间公式的理解及计算. 教学方法

探究、讲授、讨论、练习

[新课导入] 师:匀变速直线运动是一种理想化的运动模型.生活中的许多运动由于受到多种因素的影响,运动规律往往比较复杂,但我们忽略某些次要因素后,有时也可以把它们看成是匀变速直线运动.例如:在乎直的高速公路上行驶的汽车,在超车的一段时间内,可以认为它做匀加速直线运动,刹车时则做匀减速直线运动,直到停止.深受同学们喜爱的滑板车运动中,运动员站在板上从坡顶笔直滑下时做匀加速直线运动,笔直滑上斜坡时做匀减速直线运动.

我们通过实验探究的方式描绘出了小车的v—t图象,它表示小车做什么样的运动呢?小车的速度随时间怎样变化?我们能否用数学方法得出速度随时间变化的关系式呢?

一、匀变速直线运动

速度一时间图象是以坐标的形式将各个不同时刻的速度用点在坐标系中表现出来.它以图象的形式描述了质点在各个不同时刻的速度.

匀速直线运动的v—t图象,如图2—2—1所示.

思考讨论展示的两个速度一时间图象.在v—t图象中能看出哪些信息呢?思考讨论图象的特点,尝试描述这种直线运动.

师:请大家先考虑左图.

生1:我们能从速度一时间图象中得出质点在各个不同时刻的速度,包括大小和方向. 生2:我从左图中能看出这个直线运动的速度不随时间变化,在不同的时刻,速度值都等于零时刻的速度值.不随时间变化的速度是恒定的,说明质点在做匀速直线运动.速度大小为10m/s,方向与规定的正方向相同.

师:匀速直线运动是速度保持不变的直线运动,它的加速度呢? 生(众生):零.

师:大家观察右图,与左图有什么不同和相似的地方? 生3:在这个图中的速度值大小也是10m/s,但它却是负值,与规定的正方向相反,因为速度值也保持不变,所以它也是匀速直线运动.

生4:匀速直线运动的速度一时间图象是一条平行于时间轴的直线. 师:你能断定这两个图象中所表示的运动方向相反吗? 生5:是的,它们肯定相反,因为一个是正值,与规定的正方向相同,一个是负值,与规定的正方向相反.

老师及时引导,提示.

师:它们是在同一个坐标系中吗?这样的信息对你确定它们的方向有没有帮助? 生6:显然不是啊,这有什么用啊? 生7:有了,有了,两个坐标系中规定的正方向一定是相同的吗?对了,不一定相同,所以不能断定它们的方向一定相反.

师:是的,在两个不同的坐标系中不能确定它们的方向关系.

上节课我们自己实测得到的小车运动的速度一时间图象,如图2—2—2所示.

请大家尝试描述它的运动情况.

生:图象是一条过原点的倾斜直线,它是初速度为零的加速直线运动. 师:大家尝试取相等的时间间隔,看它们的速度变化量. 学生自己画图操作后回答.

生:在相等的时间间隔内速度的增加量是相同的. 老师课件投影图2—2—3,进一步加以阐述.

师:我们发现每过一个相等的时间间隔,速度的增加量是相等的.所以无论Δt(选在什么区间,对应的速度v的变化量△v与时间t变化量△t之比Δx/Δt是一样的,即这是一种加速度不随时间(时间间隔)改变的直线运动.

师:质点沿着一条直线运动,且加速度不变的运动,叫做匀变速直线运动.它的速度一时间图象是一条倾斜的直线.

在匀变速直线运动中,如果物体的加速度随着时间均匀增大,这个运动就是匀加速直线运动;如果物体的速度随着时间均匀减小,这个运动就是匀减速直线运动.

(课件展示)展示各种不同的匀变速直线运动的速度一时间图象,让学生说出运动的性质,以及速度方向、加速度方向.如图2—2—4至图2—2—8所示.

生1:图2—2—4是初速度为v0的匀加速直线运动.

生2:图2—2—5是初速度为v0的匀减速直线运动.速度方向为正,加速度方向与规定的正方向相反,是负的.

生3:图2—2—6是初速度为零的匀加速直线运动,但速度方向与规定的速度方向相反. 生4:图2—2—?是初速度为v0的匀减速直线运动,速度为零后又做反向(负向)匀加速运动。

生5:图2—2—8是初速度为v0的负向匀减速直线运动,速度为零后又做反向(正向)匀加速运动。

教师及时总结和补充学生回答中出现的问题.

师:下面,大家讨论后系统总结我们能从速度一时间图象中得出哪些信息? 生:质点在任一时刻的瞬时速度及任一速度所对应的时刻. 生:比较速度的变化快慢. 生:加速度的大小和方向.

如图2—2—10所示是质点运动的速度图象,试叙述它的运动情况.

答案:表示质点做能返回的匀变速直线运动,第1 s内质点做初速度为零的匀加速直线运动,沿正方向运动,速度均匀增大到4m/s。第1s末到第2s末,质点以4m/s的初速度做匀减速直线运动,仍沿正方向运动,直至速度减小为零;从第2s末,质点沿反方向做匀加速直线运动,速度均匀增大直至速度达到4 m/s;从第3s末起,质点仍沿反方向运动,以4m/s为初速度做匀减速直线运动,至第4s末速度减为零,在2 s末,质点离出发点4 m;在第2 s末到第4s末这段时间内,质点沿反方向做直线运动,直到第4s末回到出发点.

[交流与讨论] 1.为什么v-t图象只能反映直线运动的规律? 参考答案:因为速度是矢量,既有大小又有方向.物体做直线运动时,只可能有两个速度方向.规定了一个为正方向时,另一个便为负值,所以可用正、负号描述全部运动方向.当物体做一般曲线运动时,速度方向各不相同,不可能仅用正、负号表示所有的方向,所以不能画出v-t图象.所以只有直线运动的规律才能用v-t图象描述.任何v-t图象反映的也一定是直线运动规律.

二、速度与时间的关系式

师:数学知识在物理中的应用很多,除了我们上面采用图象法来研究外,还有公式法也能表达质点运动的速度与时间的关系.

从运动开始(取时刻t=0)到时刻t,时间的变化量就是t,所以△t=t一0. 请同学们写出速度的变化量. 学生的黑板板书:△v=v一v0. 因为a=△v/△t不变,又△t=t一0 所以a=△v/△t =(v-v0)/△t,于是解得:v=v0 +at 教师及时评价学生的作答情况,并投影部分在练习本上做的典型情况. 教师强调本节的重点,说明匀变速直线运动中速度与时间的关系式.

师:在公式v=v0+at中,我们讨论一下并说明各物理量的意义,以及应该注意的问题. 生:公式中有起始时刻的初速度,有t时刻末的速度,有匀变速运动的加速度,有时间间隔t师:注意这里哪些是矢量,讨论一下应该注意哪些问题.

生:公式中有三个矢量,除时间t外,都是矢量.

师:物体做直线运动时,矢量的方向性可以在选定正方向后,用正、负来体现.方向与规定的正方向相同时,矢量取正值,方向与规定的正方向相反时,矢量取负值.一般我们都取物体的运动方向或是初速度的方向为正.

教师课件投影图2—2—16.

师:我给大家在图上形象地标出了初速度,速度的变化量.请大家从图象上来进一步加深对公式的理解.

生:at是0~t时间内的速度变化量△v,加上基础速度值——初速度vo,就是t时刻的速度v,即v=vo+at.

师:类似的,请大家自己画出一个初速度为v0的匀减速直线运动的速度图象,从中体会:在零时刻的速度询的基础上,减去速度的减少量at,就可得到t时刻的速度v。

[例题剖析] 例题1:汽车以40km/h的速度匀速行驶,现以0.6m/s2的加速度加速,10s后速度能达到多少?加速多长时间后可以达到80km/h? 例题2:某汽车在某路面紧急刹车时,加速度的大小是6 m/s2,如果必须在2s内停下来,汽车的行驶速度最高不能超过多少? 例题3:一质点从静止开始以l m/s2的加速度匀加速运动,经5 s后做匀速运动,最后2 s的时间质点做匀减速运动直至静止,则质点匀速运动时的速度是多大?减速运动时的加速度是多大? [小结]本节重点学习了对匀变速直线运动的理解和对公式v=vo+at的掌握.对于匀变速直线运动的理解强调以下几点:

1.任意相等的时间内速度的增量相同,这里包括大小方向,而不是速度相等. 2.从速度一时间图象上来理解速度与时间的关系式:v=vo+at,t时刻的末速度v是在初速度v0的基础上,加上速度变化量△v=at得到.

3.对这个运动中,质点的加速度大小方向不变,但不能说a与△v成正比、与△t成反比,a决定于△v 和△t 的比值.

4.a=△v/△t 而不是a=v/t , a=△v/△t =(vt-v0)/△t即v=vo+at,要明确各状态的速度,不能混淆.

5.公式中v、vo、a都是矢量,必须注意其方向.

数学公式能简洁地描述自然规律,图象则能直观地描述自然规律.利用数学公式或图象,可以用已知量求出未知量.例如,利用匀变速直线运动的速度公式或v-t图象,可以求出速度,时间或加速度等.

用数学公式或图象描述物理规律通常有一定的适用范围,只能在一定条件下合理外推,不能任意外推.例如,讨论加速度d=2 m/s2的小车运动时,若将时间t推至2 h,即7 200s,这从数学上看没有问题,但是从物理上看,则会得出荒唐的结果,即小车速度达到了14 400m/s,这显然是不合情理的.

板书设计:§2.2匀速直线运动的速度和时间的关系

篇7:高中物理匀变速直线运动知识点

【知识与技能】

1.知道什么是匀变速直线运动,能从匀变速直线运动的v—t图中理解加速度的意义。2.掌握匀变速直线运动的速度公式,知道它是任何推导出的,知道它的图像的物理意义,会应用这一公式分析和计算。

3.掌握匀变速直线运动的位移公式,会应用这一公式分析和计算。会推出匀变速直线运动的位移和速度的关系式,并会运用它进行计算。

4.能用公式和图像描述匀变速直线运动,体会数学在研究物理问题中的重要性。【典型例题】

例1.以12m/s的速度行驶的汽车,紧急刹车后的加速度大小为5m/s,求:

(1)刹车后1s内所发生的位移和1s末的速度;(2)刹车后6s内的位移。

2例2.某质点的位移随时间变化的关系式是s=4t-2t,s和t的单位分别是m和s,求:

(1)质点1s末的速度和2s末的速度;(2)质点2s内的位移与路程。【巩固练习】

1.匀变速直线运动是(A)加速度不变的运动(B)加速度均匀变化的运动

(C)在相等的时间间隔内位移之差相等的运动(D)速度的变化总是相等的运动 5.以54km/h的速度行驶的火车,因故需要在中途停车.如果停留的时间是1分钟,刹车引起的加速度大小是30cm/s,起动产生的加速度大小是50cm/s.求火车因临时停车所延误的时间.

6.图中所示为直升飞机从地面起飞过程中的v-t图象,试计算飞机能达到的最大高度及25s时飞机所在的高度.

7.汽车以18m/s的速度行驶,紧急刹车时的加速度大小为6m/s,求刹车后4s内汽车的位移.

8.滚珠沿光滑斜面向上作匀减速运动,第2s内滚上30cm,第4s末速度为零.求:(1)滚珠的初速度;(2)滚珠的加速度;

(3)滚珠滚到位移为72cm处的速度. 【课后探究】

1.飞机是靠空气的作用力而起飞的,因此飞机要想起飞,它必须相对于空气达到一定的速度.若遇到顺风天气,则飞机的起飞难度就比较大.因此在送客人上飞机时,一般不说“祝您一路顺风”。

航空母舰上的飞机跑道长度是一定的,为了减少飞机在跑道上的起飞距离,保证飞机安全起飞,有一些航空母航上装有帮助飞机起飞的弹射系统,使飞机在跑道上滑行前获得初速度.

在风平浪静的海面上,有一战斗机要去执行一紧急飞行任务.而该舰的弹射系统出了故障,无法在短时间内修复.已知飞机在跑道上加速时,可能产生的最大加速度为 5 m/s,起飞速度为 50 m/s,跑道长为 100 m .经过计算发现在这些条件下,飞机根本无法安全起飞(请你计算,作出判断).航空母舰不得不在海面上沿起飞方向运动,以便使飞机获得初速度,达到安全起飞的目的,那么航空母舰行驶的速度至少为多大? 思考:当航空母舰和飞机同时运动时,飞机运动的位移还是 l00m 吗? 2

22.中央电视台新闻播出题目为:“但愿比翼飞,互相不干扰”的新闻报道.报道称:人类是从鸟的飞行中受到启发而制造出飞机的.但现在由于飞机在起飞和降落过程中,经常和栖息在机场附近的飞鸟相撞而导致“机毁鸟亡”.单就美国来说,由于美国的军用机场大多数建在海边附近,近几十年来,因飞机和鸟类相撞而造成的“机毁鸟亡”的事故就有 300 多起.鸟类撞伤飞机的事件时有发生,撞死的海鸟不计其数.因此各机场不得不耗费大量的人力、物力寻求各种尽可能的方法来驱赶机场附近的飞鸟.

篇8:高中物理匀变速直线运动知识点

一、自主学习

(一) 匀速直线运动的位移

问题1:匀速直线运动的位移公式?

问题2:在图1的v-t图象中什么表示位移?

(二) 匀变速直线运动的位移

阅读课本第40页“思考与讨论

问题3:材料中A学生如何估算匀变速直线运动的位移?B学生如何评价?

问题4:材料中提出如何提高估算的精确程度?体现了什么科学思想?

将此科学思想方法应用到v-t图象上:一物体做匀变速直线运动的速度一时间图象, 如图甲所示.可采用材料中A学生的方法估算如乙、丙图:

如果把运动过程划分为更多的小矩形面积之和, 估算的精确程度更___;

如果把运动过程划分得非常细, 很多很多的小矩形的面积之和就能的代表物体__的位移了。

结论: (图像中) ____ 就代表做匀变速直线运动的物体从0时刻 (速度为v0) 到t时刻 (速度为v) 这段时间间隔的位移。

问题5:从v-t图象推导匀变速直线运动的位移公式: (面积即位移)

以上问题, 让学生在课前看书预习的过程中填写, 突破了学生看书抓不住重点, 无法突破难点的问题, 在一定程度上达到解读教科书的目的。教学实践证明, 多数学生能够通过阅读教材, 正确回答以上问题。这样做既能培养学生的阅读理解能力, 又节约了课堂教学的时间, 课堂上只需让部分表达能力较好的学生来讲解这些问题, 老师只需重点强调研究过程中体现的科学思想方法:把过程先微分再累加 (积分) 的思想 (无限分割, 逐渐逼近) 。

然后, 我让学生 (是在批阅导学案时选定的学生) 讲解由图象的面积如何推导出位移-时间公式。而对公式的理解和应用, 还有几个重点和难点需强化: (1) 公式中哪几个物理量是矢量?运用时注意方向为“+”还是“—”; (2) 正确理解求匀变速直线运动位移的两种方法 (图像法和公式法) (3) 刹车问题不能硬套公式, 要根据实际情况判断停下所需的时间。这几个问题, 既是重点, 又是学生的易错点。如果采用老师先讲, 学生再做的教学程序, 学生的记忆不够深刻。所以, 我在导学案的“合作探究”部分设置了如下3个例题, 要求学生在课前预习时完成。同样是让学生“先错, 再纠错”的教学步骤。

二、合作探究

例1、一辆汽车以1m/s2的加速度行驶了12s, 驶过了180m。汽车开始加速时的初速度是多少?

例2:一质点以一定初速度沿竖直方向抛出, 得到它的v-t图象如图4所示, 试求出它在前2s内的位移和前4s内的位移。

例3、在平直公路上, 一汽车的速度为15m/s。从某时刻开始刹车, 在阻力作用下, 汽车以2m/s2的加速度运动, 问刹车后5s末车离开始刹车点多远?

导学案在课前批阅的过程中发现, 学生在解答过程中存在的以下典型错误或问题: (1) 解题的书写格式不规范; (2) 对V-t图的面积表示位移的理解不到位, 不能在图象中区别位移的方向; (3) 对减速运动, 不清楚规定初速度的方向为正后, 其加速度为负值; (4) 对刹车这类实际问题, 没有判断车子停下所需的时间就直接套公式计算。在批阅过程中找出学生有代表性的错误的解答, 在课堂上展示并让学生自己讲解, 让其他学生主动发现、纠正错误, 讲不到位的地方再由老师补充。这样安排课堂的目的:一是使课堂的讲解更有针对性而不是面面俱到;二是能锻炼学生大胆发言、表达自己观点的能力;三是由学生讲解, 有一定的表率、榜样作用, 其他学生听课更专注, 更易接受, 而错了的学生印象更深刻。

使用了“导学案”教学, 课堂上取得了较好的教学效果。为了巩固效果, 课后必须强化练习。为此, “导学案”还应设置了“课后练习”环节, 练习要有针对性, 针对课堂上强调的三个问题, 让多数学生学以致用。练习的设置还应有层次性, 让少数学优生有思考的空间。

三、课后练习

1.如图1所示为某物体做直线运动的v-t图象。

(1) 物体在0~2s, 2~5s, 5~8s的时间内, 分别做什么运动?

(2) 计算物体在0~2s, 5~8s运动的加速度的大小, 分别是什么方向?

(3) 用公式法分别计算三个时间段内物体运动的位移

(4) 如何直接用图象法计算0~8s内物体的总位移?

2.某质点的位移随时间的变化关系为x = 6t - 2t2, x单位为米 (m) , t单位为秒 (s) , 那么1s末速度为 ( )

A.6 m/s B.4m/s

C.2 m/sD.1m/s

3.某同学骑电动车以8m/s的速度行驶, 发现前面有障碍物。于是, 刹车, 刹车后做匀减速直线运动, 经过1s前进7m, 求:

(1) 刹车后电动车的加速度大小。

(2) 刹车后3s时电动车的速度大小。

(3) 刹车后5s内电动车的位移大小。

通过“导学案”在课前、课堂以及课后的使用, 学生对这部分内容掌握较好。实践证明, 在以后的练习中学生很少再犯之前的那些错误, 说明这样的教学方式符合学生的认知规律, 是行之有效的。

摘要:本文以高中物理教材中的《匀变速直线运动的位移和时间的关系》为例, 探讨如何根据教学目的编制“导学案”, 以及如何在课前、课堂及课后应用导学案, 开展学生的自主学习和合作学习, 培养学生更多的学习能力。

篇9:1—2 匀变速直线运动

A. 向右做匀加速运动 B. 向右做匀减速运动

C. 向左做匀减速运动 D. 向左做匀加速运动

2. 图1为一物体沿南北方向(规定向北为正方向)做直线运动的速度[-]时间图象,由图可知( )

A. 3s末物体回到[t=0]时的位置

B. 3s末物体的加速度方向发生变化

C. 物体所受合外力的方向一直向南

D. 物体所受合外力的方向一直向北

图1 图2

3. 图2是物体在某段运动过程中的[v-t]图象,在[t1]和[t2]时刻的瞬时速度分别为[v1]和[v2],则时间由[t1]到[t2]的过程中( )

A. 加速度增大

B. 加速度不断减小

C. 平均速度[v=v1+v22]

D. 平均速度[v>v1+v22]

4. 平直马路上有同方向前后行驶的电车和汽车,[t=0]时,两车相距为零,它们的[v-t]图象如图3,[t=]5s时,电车忽然停下来,汽车也立即减速做匀减速直线运动,由图可知( )

A. 汽车会碰上电车

B. 汽车不会碰上电车,汽车停止后两车还相距2.5m

C. 汽车不会碰上电车,汽车停止后两车还相距15m

D. 两车是否相碰,条件不足,无法判定

图3

5. 一石块从楼房阳台边缘向下做自由落体运动到达地面,把它在空中运动的时间分为相等的三段,如果它在这第一段时间内的位移是1.2m,那么它在第三段时间内位移是( )

A. 1.2m B. 3.6m C. 6.0m D. 10.8m

6. 物体做初速度为零的匀加速直线运动,第1s内的位移大小为5m,则该物体( )

A. 3s内位移大小为45m

B. 第3s内位移大小为25m

C. 1s末速度的大小为5m/s

D. 3s末速度的大小为30m/s

7. 一物体由静止开始沿一光滑斜面顶端开始下滑,滑至斜面底端时速度的大小为[v],则物体在斜面中点时的速度为( )

A. [2v4] B.[2v2] C. [v2] D.[v4]

8. 汽车给人类生活带来极大便利,但随着车辆的增多,交通事故也相应增加,重视交通安全问题,关系到千百万人的生命安全与家庭幸福. 为了安全,在行驶途中,车与车之间必须保持一定的距离,因为,从驾驶员看见某一情况到采取制动动作的时间里,汽车仍然要通过一段距离(称为思考距离),而从采取制动动作到车完全静止的时间里,汽车又要通过一段距离(称为制动距离),下表给出了驾驶员驾驶的汽车在不同速度下的思考距离和制动距离等部分数据,某同学分析这些数据,算出了表格中未给出的数据X、Y,该同学计算正确的是( )

[速度/(m·s-1)\&思考距离/m\&制动距离/m\&10\&12\&20\&15\&18\&X\&20\&Y\&80\&25\&30\&125\&]

A. X=40,Y=24 B. X=45,Y=24

C. X=60,Y=22 D. X=50,Y=22

9. 物体沿一直线运动,它在时间[t]内通过的路程为[x],它在中间位置[x2]处的速度为[v1],在中间时刻[t2]时的速度为[v2],则[v1]和[v2]的关系为( )

A. 当物体做匀加速直线运动时,[v1>v2]

B. 当物体做匀减速直线运动时,[v1>v2]

C. 当物体做匀速直线运动时,[v1=v2]

D. 当物体做匀减速直线运动时,[v1

10. 甲、乙两车从同一地点同一时刻沿同一方向做直线运动其速度图象如图4,由此可以判断( )

图4

A. 前10s内甲的速度比乙的速度大,后10s内甲的速度比乙的速度小

B. 前10s内甲在乙前,后10s乙在甲前

C. 20s末两车相遇

D. 相遇前,在10s末两车相距最远

11. 从地面同时竖直上抛甲、乙两小球,甲球上升的最大高度比乙球上升的最大高度多5.5m,甲球落地时间比乙球迟1s,不计空气阻力,求甲、乙两球抛出时的速度大小各为多少. ([g]取10m/s2)

12. 一列长100m的列车以[v1=]20m/s的正常速度行驶,当通过1000m长的大桥时,必须以[v2=]10m/s的速度行驶. 在列车上桥前需提前减速,当列车头刚上桥时速度恰好为10m/s;列车全部离开大桥时又需通过加速恢复原来的速度. 减速过程中,加速度大小为0.25m/s2.加速过程中,加速度大小为1m/s2,则该列车从减速开始算起,到过桥后速度达到20m/s,共用了多长时间.

13. 以10m/s的速度行驶的汽车,驾驶员发现正前方60m处有一辆以4m/s的速度与汽车同方向匀速行驶的自行车,驾驶员以-0.25m/s2的加速度开始刹车,经40s停下,问停下前是否发生车祸.

14. 跳伞运动员做低空跳伞表演,他离开飞机后先做自由落体运动,当距地面125m时打开降落伞,开伞后运动员以大小为14.50m/s2的加速度做匀减速运动,到达地面时的速度为5m/s,求:

(1)运动员离开飞机瞬间距地面的高度;

(2)离开飞机后,经多长时间到达地面. ([g]取10m/s2)

[图5]15. 如图5,物体[A]重[GA=]40N,物体[B]重[GB=]20N,[A]与[B、B]与地的动摩擦因数相同. 用水平绳将物体[A]系在竖直墙壁上,水平力[F]向右拉物体[B],当[F=]30N时,才能将[B]匀速拉出. 求接触面间的动摩擦因数.

篇10:高中物理匀变速直线运动知识点

【学习目标】

1.了解伽利略对自由落体运动的研究思路和方法; 2.能够合理设计实验,并将实验数据用图线法处理。3.学会解决竖直上抛运动问题 【创设问题情景】

1、历史的错误:关于下落物体快慢

阅读教材第一段,提出问题:为什么会有错误的认识呢?

2、伽利略的逻辑推理

阅读教材第三、四段,提出问题:伽利略是怎样论证亚里士多德观点是错误的?

3、猜想与假说

阅读教材“猜想与假说”部分,提出问题:伽利略在研究落体运动过程中遇到了哪些困难?面对这些困难,伽利略是怎样做的?他作出了大胆的科学猜想,猜想的内容是什么?

科学的猜想,或者叫假说,这是对事物认识的模型,是对事物认识的基础,是建立概念描述规律的前提。

4、实验验证

伽利略在实验过程中遇到了怎样的困难,他又是怎样克服的?为什么说,伽利略把他的结论外推到90°需要很大勇气?

实验验证是检验理论正确与否的唯一标准。任何结论和猜想都必须经过实验验证,否则不成理论。猜想或假说只有通过验证才会成为理论。所谓实验验证就是任何人,在理论条件下去操作都能到得实验结果,它具有任意性,但不是无条件的,实验是在一定条件下的验证,而与实际有区别。

5、科学的方法

物理学的研究很注重方法,物理学习也要注意方法,所谓科学方法包括以下几点: 对现象一般观察一提出猜想-运用逻辑推理一实验对推理验证一对猜想进行修证(补充)-推广应用。【学习任务】

一、伽利略的科学方法。

①问题的提出。

②提出假设,逻辑推理。

③利用数学和逻辑进行推理,然后实验验证。

④对假说进行修正和推广。

二、根据前面学过的知识完成竖直上抛运动相关问题:

1、定义:

2、运动性质:初速度为v0,加速度为 -g的 运动。

3、处理方法:

⑴ 将竖直上抛运动全过程分为上升和下降两个阶段来处理。

上升阶段为初速度为v0,加速度为 -g的 运动,下降阶段为。要注意两个阶段运动的对称性。

⑵ 将竖直上抛运动全过程视为 的运动

2v0hm2g4、两个推论: ①上升的最大高度

tmv0g

②上升最大高度所需的时间

5、特殊规律:由于下落过程是上升过程的逆过程,所以物体在通过同一段高度位置时,上升速度与下落速度大小,物体在通过同一段高度过程中,上升时间与下落时间。【补充学习材料】

1、竖直上抛一物体,初速度为30m/s,求:上升的最大高度;上升段时间,物体在2s末、4s末、6s末的高度及速度。(g=10m/s2)

2、某人站在高层楼房的阳台外用20m/s的速度竖直向上抛出一个石块,则石块运动到离抛出点15m处所经历的时间是多少?(不计空气阻力,取g=10m/s)

3、A球由塔顶自由落下,当落下am时,B球自距塔顶bm处开始自由落下,两球恰好同时落地,求塔高。

4.伽利略对自由落体运动的研究,是科学实验和逻辑思维的完美结合,如图2-

5、6-2所示,可大致表示其实验和思维的过程,对这一过程的分析,下列说法正确的是()

图2-

5、6-2 A.其中的甲图是实验现象,丁图是经过合理的外推得到的结论 B.其中的丁图是实验现象,甲图是经过合理的外推得到的结论 C.运用甲图的实验,可“冲淡”重力的作用,使实验现象更明显 D.运用丁图的实验,可“放大”重力的作用,使实验现象更明显

5、关于竖直上抛运动,下列说法正确的是()

A 上升过程是减速过程,加速度越来越小;下降过程是加速运动,加速度越来越大 B 上升时加速度小于下降时加速度 C 在最高点速度为零,加速度也为零

D 无论在上升过程、下落过程、最高点,物体的加速度都为g

6、将物体竖直向上抛出后,在下图中能正确表示其速率v随时间t的变化关系的图线是()

7、物体做竖直上抛运动后又落回原出发点的过程中,下列说法正确的是()A、上升过程中,加速度方向向上,速度方向向上 B、下落过程中,加速度方向向下,速度方向向下 C、在最高点,加速度大小为零,速度大小为零 D、到最高点后,加速度方向不变,速度方向改变

8、从高处释放一粒小石子,经过0.5s,从同一地点再释放一粒小石子,在两石子落地前,它们之间的距离()A.保持不变 B.不断减小

C.不断增大 D.根据两石子的质量的大小来决定

9、某同学身高1.8m,在运动会上他参加跳高比赛,起跳后身体横着越过了1.8m高度的横杆.据此可估算出他起跳时竖直向上的速度大约为(g取10m/s)()A.2m/s B.4m/s C.6m/s D.8m/s

10、以初速度40m/s竖直上抛一物体,经过多长时间它恰好位于抛出点上方60m处(不计空气阻力,g取10m/s)?

11、一个物体从H高处自由落下,经过最后196m所用的时间是4s,求物体下落H高度所用的总时间T和高度H是多少?取g=9.8m/s,空气阻力不计.

12、气球下挂一重物,以v0=10m/s匀速上升,当到达离地高h=175m处时,悬挂重物的绳子突然断裂,那么重物经多少时间落到地面?落地的速度多大?空气阻力不计,取g=10m/s.

2213、一根矩形杆的长1.45m,从某一高处作自由落体运动,在下落过程中矩形杆通过一个2m高的窗口用时0.3s.则矩形杆的下端的初始位置到窗台的高度差为多少?(g取10m/s,窗口到地面的高度大于矩形杆的长)

篇11:高中物理匀变速直线运动知识点

一、学习目标

1.2.3.知道位移速度公式,会用公式解决实际问题。知道匀变速直线运动的其它一些扩展公式。

牢牢把握匀变速直线运动的规律,灵活运用各种公式解决实际问题。

二、课前预习

1、匀变速直线运动的位移速度关系是。

2、匀变速直线运动的平均速度公式有、。

3、匀变速直线运动中,连续相等的时间T内的位移之差为。

4、匀变速直线运动某段时间内中间时刻的瞬时速度等于。某段过程中间位置的瞬时速度等于,两者的大小关系是。(假设初末速度均已知为v0vt)

5、物体做初速度为零的匀加速直线运动,则1T秒末、2T秒末、3T秒末……速度之比为 ;前1T秒、前2T秒、前3T秒……位移之比

;第1T秒、第2T秒、第3T秒……位移之比 ; 连续相等的位移所需时间之比。

三、经典例题

1、某飞机起飞的速度是50m/s,在跑道上加速时可能产生的最大加速度是4m/s,求飞机从静止到起飞成功需要跑道最小长度为多少?

2、物体由静止从A点沿斜面匀加速下滑,随后在水平面上做匀减速直线运动,最后停止于C点,如图所示,已知AB=4m,BC=6m,整个运动用时10s,则沿AB和BC运动的加速度a1、a2大小分别是多少?

3、一质点做匀加速直线运动,在连续相等的两个时间间隔内通过的位移分别为24m和64m,每个时间间隔是2S,求加速度a。

2例

4、如下图:某质点做匀加速直线运动从A到B经过1S,从B到C也经过1S,AC间距离为10m,求质点经过B位置时的速度。

5、完全相同的三个木块,固定在水平地面上,一颗子弹以速度v水平射入,子弹穿透三块木块后速度恰好为零,设子弹在木块内做匀减速直线运动,则子弹穿透三木块所用的时间之比是 ;如果木块厚度不同,子弹穿透三木块所用的时间相同,则三木块的厚度之比是(子弹在三木块中做匀减速直线运动的加速度是一样的)

四、巩固练习

1、某型号的舰载飞机在航空母舰的跑道上加速时,发动机产生的最大加速度为5m/s,所需的起飞速度为50m/s,跑道长100m。通过计算判断,飞机能否靠自身的发动机从舰上起飞?为了使飞机在开始滑行时就有一定的初速度,航空母舰装有弹射装置。对于该型号的舰载飞机,弹射系统必须使它具有多大的初速度?

2、汽车从甲地由静止出发,沿直线运动到丙地,乙地在甲丙两地的中点,汽车从甲地匀加速直线运动到乙地,经过乙的速度为60km/h,接着又从乙地匀加速到丙地,到丙地时的速度为120km/h,求汽车从甲地到丙地的平均速度。

3、一个做匀加速直线运动的物体,初速度v0=2.0m/s,它在第3秒内通过的位移为4.5m,则它的加速度为多少?

4、一质点做初速度为零的匀加速直线运动,若在第3秒末至第5秒末的位移为40m,则质点在前4秒的位移为多少?

5、观察者站在列车第一节车厢前端一侧的地面上,列车由静止开始匀加速直线运动,测得第一节车厢通过他用了5秒,列车全部通过他用了20秒,则列车一共有几节车厢?(车厢等长且不计车厢间距)

参考答案

该学案可以结合与之配套的教案(一种非常适合学生自学的详细教案,模拟真实的课堂教学情境,力争无坡度引入)使用,例题答案见教案。

2vt2v0v0vt22as0,初速度不能为零,所以不

1、不能、39m/s 据公式s2a2vt2v0v0vt22as39m/s 能靠自身发动机起飞。s2a2、45km/h 整个过程并不是一个完整的匀加速直线运动,两段过程的加速度并不一样。用2vvtvt2v0ss计算即可知,则不能对整个过程用v0,只能用原始定义式v,甲到

t22a乙是匀加速,则由s时间。最后用公式v2v0vtt计算出从甲到乙的时间,同样用此公式可以算出从乙到丙的2s即可计算出结果45km/h。t23、1m/s

第3秒位移4.5m/s,据公式vtv有v2.54.5m/s则avtv04.521m/s2 t2.5vvt4020m/s,由公式s0t有224、40m/s

由vtv可得v42s020440m 25、16

方法一:根据初速度为零的匀加速直线运动连续相等位移的时间之比为(1:(21):(32):(nn1)一节车厢的时间为t0=5秒,则n节总时间为t1t0(21)t0(32)t0(nn1)t0nt0=20 n=16 方法

二、连续相等的时间内位移之比为1:3:5……:(2n-1),20内共有4个5秒,则连续四个5秒的位移之比为1:3:5:7,则有7+5+3+1=16个单位车厢长度。方法三:一节车厢长度s1v0t121ata25,2022秒内总长度s2v0t

上一篇:水调歌头改写散文下一篇:王书记 工作总结