地铁车站施工风险管理

2022-11-03

第一篇:地铁车站施工风险管理

地铁车站施工经验

地铁施工施工工序浅析

一、引言

地铁具有运量大、快捷、安全、准时、舒适等特点,是城市交通的主要发展方向。世界上第一条地铁是1863年在伦敦修建的,迄今已有近一个半世纪。这一个半世纪中,随着土建施工技术、机械制造技术、通信及信号技术等诸多领域的飞速发展,地铁事业亦取得了长足进步。从地铁运营的里程上看,欧洲和北美发达国家占领先地位,但近20年发展中国家的地铁事业也呈蓬勃发展之势。

我国1971年北京建成第一条地铁,目前上海、广州、深圳、南京等多个城市均已部分建成并正在兴建地铁网络,我国地铁事业正进入一个发展高潮。

上海早在1958年就已经开始筹建地铁,经过长期摸索、克服了种种艰难,终于在1995年4月28日地铁一号线建成试运营,历时38年。其后,2000年7月地铁二号线建成、2001年底明珠一期建成,目前在建或即将开工的有一号线北延伸(共和新路高架)、莘闵线、明珠二期、M8线、二号线西延伸、明珠一期北延伸、R4线等等。上海地铁建设进入了前所未有的高速发展阶段。

在上海软土地区,地层基本为饱和含水流塑或软塑粘土层,抗剪强度低,含水量高达40%以上,灵敏度在4~5,压缩性大都属高压缩,并具有较大的流变性,这种软弱流变的地质条件决定了上海地区的基坑工程中环境保护问题更为突出。在上海曾出现一些深基坑周围地层移动引起附近建筑和设施破坏的工程事故,造成了严重的社会影响和经济损失,因此控制深基坑施工过程中的风险贯穿于施工的全过程。

土建施工在车站施工中所占的周期、投资都比较大,而且是车站施工中风险比较集中的阶段,尤其应引起足够重视。

地铁土建施工涉及到诸多工序,以下按工序介绍:

二、 围护结构

围护结构的主要作用是与支撑一起形成支护体系,支挡坑内外的不平衡土压力,保持基坑的稳定。因此,围护结构应具有足够的强度、刚度和稳定性。在上海地铁车站工程中,主要应用的有两类围护结构:地下连续墙和SMW(Soil Mixing Wall)工法。

2.1 地下连续墙

地下连续墙是在基坑四周通过成槽、钢筋混凝土施工等工艺形成的具有较好强度、刚度和抗渗性的地下连续壁。地下连续墙具有刚度大、抗渗性能好、施工过程中无振动、无噪音等特点。地下连续墙作为地铁车站深基坑的挡土围护结构,施工时对周围环境影响小,适宜在城市建筑密集区域作业。一般地下连续墙适用于开挖深度14米以上的深基坑。

根据地下连续墙在施工阶段和使用阶段的作用,地下连续墙可以分为单墙体系和双墙体系。双墙体系中,地下墙在施工阶段作为挡土结构与支撑一起形成支护体系;在使用阶段与内衬墙共同工作形成受力体系,承受结构荷载。单墙体系中,地下墙在施工阶段作为挡土结构与支撑一起形成支护体系;在使用阶段单独作为承重体系的一部分,承受结构荷载。 2.1.1 地下连续墙施工工艺 地下连续墙工艺流程: 导墙施工

成槽 成槽过程中应使用泥浆护壁,泥浆于现场配制。 泥浆置换、清底 吊放锁口管 钢筋笼吊放 混凝土浇捣 锁口管拔出

地下连续墙施工前先要构筑导墙,导墙净宽应比连续墙宽度稍宽约4cm,顶部比地面高4~5cm。一般导墙深度约1.5米,遇障碍物或暗浜等特殊情况时,应先行处理,考虑导墙加深并要求导墙落到原状土上。

地下连续墙分幅成槽和浇捣混凝土,每次成槽宽度约2~6米,平面形状有“—”形、“L”形和“T”形等。槽段有先行幅和后行幅之分,先行幅在槽段两头放置锁口管。地下连续墙接头常用的有:预制接头、刚性接头、柔性防水接头和预留注浆孔接头等。 2.1.2 地墙施工控制要点

1、 导墙轴线和标高的复测

导墙轴线决定着地下连续墙的位置;导墙顶标高将影响到钢筋笼的入槽标高。在单墙结构地铁车站中,进而将影响到钢筋连接器与底板、中楼板和顶板钢筋的连接。因此,导墙的轴线和标高,施工单位必须报验。

2、 成槽泥浆性能指标的控制:

成槽泥浆的比重、粘度、含砂量等项指标,不仅影响槽壁的稳定,同时也影响地下连续墙混凝土的密实性和防水性能。因此,在地墙成槽和混凝土浇筑过程中,必须逐幅槽段进行抽检,将泥浆指标控制在设计要求或规范规定的范围内。

3、 成槽深度、垂直度

成槽深度、垂直度,必须控制在设计或规范允许范围内,一般应控制地墙垂直度高于3/1000,对于单墙结构车站,尤其应严格控制地墙的垂直度;成槽达到设计标高后,应进行清槽,以提高地墙的承载能力,减小沉降量。

4、 钢筋笼

在钢筋品种、规格、数量符合设计要求的前提下,对单墙结构地下连续墙,应重点控制: a. 钢筋连接器与底、中、顶板对应位置的准确性;

b. 钢筋笼入槽时笼顶标高即吊筋长度控制,以确保钢筋连接器位置的准确。

5、 混凝土浇筑 检查商品混凝土的配合比、强度和抗渗等级、坍落度,必须符合设计要求;检查导管埋入混凝土面的深度,避免因埋管过浅造成夹泥断墙事故;计算地墙混凝土的充盈系数,判断地墙施工质量。

2.1.3. 减少地下连续墙施工中对周围环境影响的若干措施

1、减小槽幅宽度

2、加固槽壁土体,一般用搅拌桩或注浆等方法加固。

3、做高导墙抬高泥浆液面或降水加大槽内外液面高差。

4、在保护对象和槽壁间设置隔离桩。

2.2 SMW工法

SMW工法是指将土与水泥浆搅拌后形成搅拌桩墙体,在墙体中插入高强度劲性芯材(一般为型钢)使之与搅拌桩墙体形成的复合挡土墙。

SMW工法作为基坑围护结构于1976年由日本竹中土木株式会社与成幸工业株式会社开发成功并应用。1986年日本材料协会编制了SMW工法的施工规范,使SMW工法的应用出现了一个高潮。据统计,至1993年,这一工法占日本基坑围护结构的50%,目前占到80%,已成为基坑围护的主要工法。

国内应用搅拌桩作围护和地基加固始于80年代,但当时使用的是纯搅拌桩,未加型钢。明珠二期兰村路站是目前国内以SMW工法作为围护结构的最大的基坑工程,该基坑围护结构全长700多米、最深达26米。

SMW工法作为一种新型的围护结构,具有以下特点:对周围环境影响小、高止水性、可在各种地层中使用、大厚度和大深度、施工速度快、造价低、环境污染小。

2.2.1 SMW工法施工工艺

SMW工法施工工艺流程:(搅拌桩施工工艺见搅拌桩节) SWM工法工艺流程图

2.2.2 SMW工法施工控制要点

1、 在搅拌机过程中,注入地层的浆液有一部份会流返回地面,须沿挡向施作一沟槽。沟槽边设固定支架,以便固定插入的H型钢。

2、 在搅拌成桩时,所需容量70~80%的水泥浆宜在下行钻进时灌入,其余的20~30%宜在螺旋钻上行回程时灌入。此时所需水泥浆仅用于充填钻具撤出留下的空隙。螺旋钻上拔的灌浆,对于饱和疏松的土体具有特别的意义,因为这种地层中的柱体易产生空隙。螺旋钻上行时,螺钻最好反向旋转,且不能停止,以防产生真空,有真空就可能导致柱体墙的坍塌(非饱和土体)。

3、 施工应按跳孔顺序进行,为保证围护结构的连续性和接头施工质量,两桩搭接部分应重复套钻。

4、 在搅拌桩的施工过程中,要特别注意水泥浆液的注入量和搅拌沉入及提升量及提升速度。下钻进的速度应比上提时的速度慢一倍左右,以便尽可能保证水泥土的充分搅拌,又可获得较高的贯入速度。在砂土互层或土性变化较大的场地施工时,应根据各种土质的情况选择水泥浆液的配合比,以便得到较均匀的墙体,确保工程质量。 (5) H型钢的回收,通过在插入的H钢表面涂一层减摩材料,从而使H型钢便于拔出回收。针对不同工程,不同水泥浆液配合比,在施工前作H型钢的拉拔试验,以确保H型钢的顺利回收。基坑开挖时围护墙体会产生弯曲变形,弯曲后H型钢的回收会比较困难,因此若考虑型钢回收则开挖过程中应尽量减小围护结构的变形。

(6) 水泥浆液中的掺加剂:国内工程多掺入一定量的木质素,以减小水泥浆液在注浆过程的堵塞现象。也可在水泥浆液中掺加膨润土,利用膨润土的保水性以增加水泥土的变形能力。不致因墙体变形而过早开裂,从而影响墙体的抗渗性。日本公司在施工时,材料的配比基本是1m3土体注入水泥75~200kg,膨润土10~30kg,水灰比w/c为0.3~0.8,根据工程类别及土性选择使用。

2.2.3 SMW工法施工控制要点

1、在搅拌机过程中,注入地层的浆液有一部份会流返回地面,须沿挡向施作一沟槽。沟槽边设固定支架,以便固定插入的H型钢。

2、在搅拌成桩时,所需容量70~80%的水泥浆宜在下行钻进时灌入,其余的20~30%宜在螺旋钻上行回程时灌入。此时所需水泥浆仅用于充填钻具撤出留下的空隙。螺旋钻上拔的灌浆,对于饱和疏松的土体具有特别的意义,因为这种地层中的柱体易产生空隙。螺旋钻上行时,螺钻最好反向旋转,且不能停止,以防产生真空,有真空就可能导致柱体墙的坍塌(非饱和土体)。

3、施工应按跳孔顺序进行,为保证围护结构的连续性和接头施工质量,两桩搭接部分应重复套钻。

4、 在搅拌桩的施工过程中,要特别注意水泥浆液的注入量和搅拌沉入及提升量及提升速度。下钻进的速度应比上提时的速度慢一倍左右,以便尽可能保证水泥土的充分搅拌,又可获得较高的贯入速度。在砂土互层或土性变化较大的场地施工时,应根据各种土质的情况选择水泥浆液的配合比,以便得到较均匀的墙体,确保工程质量。

5、H型钢的回收,通过在插入的H钢表面涂一层减摩材料,从而使H型钢便于拔出回收。针对不同工程,不同水泥浆液配合比,在施工前作H型钢的拉拔试验,以确保H型钢的顺利回收。基坑开挖时围护墙体会产生弯曲变形,弯曲后H型钢的回收会比较困难,因此若考虑型钢回收则开挖过程中应尽量减小围护结构的变形。

6、水泥浆液中的掺加剂:国内工程多掺入一定量的木质素,以减小水泥浆液在注浆过程的堵塞现象。也可在水泥浆液中掺加膨润土,利用膨润土的保水性以增加水泥土的变形能力。不致因墙体变形而过早开裂,从而影响墙体的抗渗性。日本公司在施工时,材料的配比基本是1m3土体注入水泥75~200kg,膨润土10~30kg,水灰比w/c为0.3~0.8,根据工程类别及土性选择使用。

三、地基加固

由于上海地区土质松软、含水量高、流变性强,因此对于较深的基坑,若不采取措施则开挖变形将较大。由于地铁基坑大多处于城市建筑物、管线较密集地区,对变形控制要求非常高,因此在基坑深度大、周围环境复杂时,应考虑对基坑进行加固。 基坑加固方法有很多种,这里主要介绍在地铁工程中应用较多的几种:注浆法、深层搅拌法、旋喷法等。广意上讲此三种工法均属于注浆工法,此处所讲的注浆法是指狭义上的注浆法即通过注浆管进行的单液浆或双液浆施工方法。

3.1注浆加固

注浆法是指将注浆管置于(打入法、钻孔法、振冲法等)所要加固的地层中,通过注浆管注入浆液,使之与土体形成复合体,增加土体强度。

根据注浆进入土体的压力、掺和方式的不同,注浆可分为劈裂注浆和压密注浆。当注浆压力比较大时,浆液将沿作土体的薄弱处注入,沿径向流动,最终形成狼牙棒式的注浆体,这种方法称之为劈裂注浆。当压力较小时,浆液压力不足以劈裂土体,注浆体呈柱状,主要通过挤密作用加强土体,此方法称之为压密注浆。

根据浆液成分和配比的不同,可分为单液浆和双液浆。单液浆主要材料为水泥(可掺加适量的粉煤灰),而双液浆主要为水泥(适量粉煤灰)和水玻璃溶液的混合液。由于水泥浆和水玻璃液混合后会迅速凝固并产生强度,因此双液浆可用于工期紧、早期强度要求比较高的基坑加固。 3.1.1注浆工艺流程:

1、 注浆孔定位

2、浆液配置

3、机架就位

4、注浆管钻进(或打入、振入)

5、浆体注入边提升注浆管

6、机架移位 3.1.2注浆控制要点

1、 控制浆液配比

正式施工之前,根据搅拌罐容积和设计配合比,配制标准水泥浆液,测得标准条件下水泥浆比重和粘度。施工过程中应随机抽检水泥浆比重、粘度,以检查水泥掺量是否符合设计要求。

2、 控制注浆量

应配置浆液流量自动记录装置,如实记录浆液注入量。若无流量计,则在正式施工前,应对搅拌罐的容积进行标定,根据配合比、水灰比要求和加固深度、设计孔距等项数据,通过计算确定每孔水泥浆液注入量,作为施工标准和检查依据。

3、控制施工参数

首先是加固深度部位的控制,复核钻杆长度,使其满足加固深度要求;其次,施工中随机检查施工参数的执行情况,如注浆压力、注浆量、拔管间距等,发现问题,及时整改。

4、加固效果检验

确定检验方法,应满足设计单位提出的检验指标的要求,通常要求加固后土层的PS值达到1.0~1.5Mpa。要求进行静力触探检验,检验点位应随机抽样确定。

3.2搅拌桩加固 搅拌桩是指利用特殊的搅拌头或钻头,钻进地基至一定深度后,喷出固化剂,使其沿着钻孔深度与地基土强行拌和而形成的加固土桩体。固化剂通常采用水泥或石灰,可以是浆体或粉体。 搅拌桩适用于加固淤泥、淤泥质土和含水量较高而地基承载力小于120Kpa的粘土、粉土等软土地基。搅拌桩施工时无振动、无噪声、无泥浆污染、适合于在城市建筑物等密集地区进行地基加固。

根据机械中搅拌头数量可分为:单轴机、两轴机、三轴机和多轴机。每种机械在加固过程中的挤土和涌土性能均不相同,应引起足够重视。 3.2.1搅拌桩加固工艺流程

1、 定位

2、 搅拌下沉

3、 喷浆提升

4、 重复搅拌下沉

5、重复搅拌提升

6、清洗

7、移位

3.3旋喷加固

旋喷加固是通过旋喷管将高压喷射流注入土体内,使之与土体充分混合并重新结构从而提高土体强度的一种加固方法。 3.3.1旋喷加固的特点

1、受土层、土的粒度、土的密度、硬化剂粘性、硬化剂硬化时间的影响较小,可以广泛应用于淤泥、软弱粘土、砂土甚至砂卵石地层等。

2、 加固体强度较高,可达100~2000Kpa。

3、 可以有计划地在预定地范围内注入必要地浆液,形成一定距离地桩,或连成一片地排桩或薄地帷幕,加固深度可以自由调节。

4、 可以形成垂直的墙体亦可以根据需要形成水平或倾斜墙体。

旋喷法可分为单管旋喷、二重管旋喷和三重管旋喷。单管时仅喷射高压浆体;二重管旋喷同时喷射高压浆体和高压空气;三重管旋喷喷射喷射高压浆体、高压空气以及高压水。其中二重管旋喷加固半径可达100cm,三重管旋喷加固半径可达80~200cm。

3.3.2旋喷加固工艺

旋喷加固可分为两个阶段:第一阶段为成孔阶段,即用普通或专用钻机,驱动密封良好的喷射管和喷射头进行成孔,成孔时可采用水冲或振动的方法。

第二阶段为喷射加固阶段,即用高压浆体(以及高压水和空气)以较高的压力从喷嘴中向土中喷射。同时一边喷射一边提升,使浆体与周围土体混合,形成圆柱状的加固体。 旋喷加固控制要点:

(1) 旋喷桩浆液的固化剂可选用

425、525号普通硅酸盐水泥,水泥浆液的水灰比应根据土体加固强度的需要选为1:1~1.5:1。水泥浆液中可添加水玻璃等化学辅助材料和掺合料,以及速凝、早强、悬浮等外加剂,浆液配比应通过试验确定。

(2) 钻机安放应保证足够的平整度和垂直度,钻杆倾斜度不得大于1%,钻孔孔位与设计位置的偏差不得大于50mm;

(3) 水泥浆拌制系统应配有可靠的计量装置;喷浆系统应配备流量表、压力计等检测装置;在喷浆过程中对提升速度应有控制装置和措施。

(4) 施工前应对浆液流量、喷浆压力、喷嘴提升速度等进行标定。

(5) 水泥浆宜在旋喷前一小时内搅拌,旋喷过程中冒浆量应控制在10~25%。相邻两桩施工间隔时间应不小于48小时,间距应不小于2m。

(6) 成桩过程中钻杆的旋转和提升必须连续不中断,拆卸钻杆续喷时,注浆管搭接长度不得小于100mm;

(7) 在高压喷射注浆过程中出现异常情况时,应及时查明原因并采取措施进行补救,排除故障后复喷高度不得小于500mm; (8) 对泥浆的沉淀和排放应进行周密的设计和处理,确保施工过程中场地的清洁和不污染环境;

四、降水

1、深基坑降地下水的作用:

(1) 保持开挖面的干燥,便于开挖施工 (2) 增加基坑稳定性

(3) 改善基坑土体的特性,增加土体强度 (4) 防止坑底的隆起和破坏

降水工艺有很多种,如电渗法、喷射法、真空法等,有轻型井点、深井井点等。在选取时需根据不同的土层特性及基坑深度确定。见下表:

土层名称 渗透系数(m/d) 土的有效粒径(mm) 采用的降水方法 备注 粘土 0.001 0.003 电渗法 一般可用名排水,挖掘较深时可用电渗法 重粉质粘土 0.001~0.05 粉质粘土 0.05~0.1 粉土 0.1~0.5 0.003~0.025 真空法、喷射井点、深井法 上海地区使用较多 粉砂 0.5~1.0 细砂 1~5 0.1~0.25 普通井点法、喷射井点、深井法 中砂 5~20 0.25~0.5 粗砂 20~50 0.5~1 砾石 >50 多层井点或深井法 有时需水下挖掘

当土层的渗透系数较低时应采用真空井点系统,以便在井点周围形成部分真空,增加流向井点管的水力坡度。上海地铁深基坑采用较多的为真空深井法。

采用深井井点时,应根据土层渗透系数的不同开一截滤管或多截滤管。滤管周围应均匀填充填料,以保证水可以透过填料,而土体颗粒不会透过从而堵塞滤孔。填料应根据土体颗粒组成确定。 为防止真空泄漏,应在孔口一定高度内用粘土回填密实。

降水施工的注意事项:

(1) 应根据工程地质和水文地质条件、场地的施工条件、周围环境条件、机具及材料供应条件等,合理地选用轻型井点、喷射井点、深井井点、真空深井井点等井点类型,以及井点构造措施。 (2) 井点降水以不影响邻近建筑物及地下管线的安全为原则,必要时应采取回灌措施。 (3) 基坑降水必须在坑内外根据需要设置数量足够观测孔,并在坑外设置地面沉降观测点; (4) 若遇承压水,应对坑底稳定性进行验算。必要时,应采用降承压水的措施,并应符合下列规定:

正式降承压水前应做抽水试验,确定降水参数;

井点布置应综合考虑基坑周围环境条件、地质条件和现场施工条件,当基坑周围环境容许时,宜在基坑外设置井点;

施工中应将基坑内的降水和抽取承压水分成两个独立的系统,并根据各自的技术要求制定降水组织设计。

承包商应对各工况下坑底抗承压水头的安全系数进行验算,并根据验算结果制定详细的降水和封井计划。

(5) 应对成井口径、井深、井管配置、砂料填筑、洗井试抽、出水量等关键工序做好详细的纪录,每道工序完成后应进行检查和确认;

(6) 应指定专人负责抽水、观测,并详细记录水位、水量变化情况;

五、 开挖及支撑

1、开挖

下图为上海地区软土的流变试验,从图中可以知道: 上海软土流变试验曲线

在土体主压力较小时( )蠕变变形很小,主要是弹性蠕变;不排水土体的流变要比排水土体的流变性显著,当 (此应力约相当于14~15m的深基坑挡墙被动区土体的压应力)不排水的土样蠕变到最后会发生破坏,即呈破坏型;而排水土样蠕变则呈衰减型,蠕变是收敛和稳定的;当土体主应力达到或超过发生不收敛蠕变的极限应力水平时,从开始蠕变到蠕变速率急剧增大而发生破坏只有几天的时间,这说明在应力水平高的情况下,土体会在一定的承载时间内,以不易察觉的蠕变速度发生破坏。

从上述的试验结果的分析中可知,在处于具有流变地层的深基坑中,土的流变特性不仅会影响到基坑的稳定,而且对于基坑的变形控制也至关重要,这在控制基坑变形要求高的基坑工程中尤为突出。同时,在流变特性的分析中,我们可以取得有关控制软土深基坑变形的几点重要启示:

(1) 分层分块开挖能够有效地调动地层的空间效应,以降低应力水平、控制流变位移。 (2) 减少每步开挖到支撑完毕的时间,即无支撑暴露时间,可明显控制挡墙的流变位移,这在无支撑暴露时间小于24小时效果尤其明显。

(3) 解决软土深基坑变形控制问题的出路在于规范施工步序和参数,并将其作为实现设计要求的保证。

地铁深基坑施工工序及其参数可分为两种:

(1) 长条形深基坑开挖(车站基坑标准段) 如下图所示,其特点是基坑宽度较窄,一般为20左右,条形深基坑开挖施工技术要点是按有限长度L分段开挖和浇筑底板。每段开挖中又分层、分小段、限时完成每小段的开挖和支撑工作。每层厚度为hi,每小段宽度b,每小段开挖及支撑的工作在Tr时间内完成。主要施工参数见下图。 车站标准段深基坑的开挖参数

车站深基坑端头井斜撑部分的开挖步序和参数

(2) 基坑角部斜撑部分(端头井部分)的开挖 如下图所示,先自基坑角点沿垂直于斜撑方向向基坑内分步开挖,每步挖土适当限定宽度,每步开挖与支撑工作在限定时间内完成,两个斜撑范围内的三角形土体开挖后,再挖除坑内余留的土体。如每步斜条状开挖长度大于20m时则先挖中间再挖两端。其主要施工参数如下图所示。

从上面的基坑开挖方式中可以看出,基坑开挖分层数、每一层的厚度、每小段的开挖顺序、尺寸和无支撑暴露时间等是和软土流变变形直接相关的重要施工参数。当这些参数和地基土参数、支护结构参数一起被作为基坑设计依据并在施工中得以切实实施,软土基坑变形就能够真正得以合理而准确的预测和控制。 变形控制的主要措施有:

(1) 调整后继开挖步序和参数,这是运用软土基坑工程时空效应规律,控制基坑变形的一个十分重要的方法。当基坑变形或变形速率超过警戒值,应用考虑时空效应的计算方法,可以找出后继开挖中满足环境保护要求的施工参数。

(2) 利用双液分层注浆注浆控制基坑挡墙位移或保护对象的位移,注浆时要结合跟踪监测数据,谨慎合理地选用注浆参数。

(3) 局部增设支撑或调整支撑位置。

深基坑开挖过程的控制要点:

(1) 基坑开挖必须按设计要求分段开挖和浇筑底板。每段开挖中又分层、分小段,并限时完成每小段的开挖和支撑。因此,主要施工参数有:分段、分层、分小段;每小段宽度,每小段开挖的无支撑暴露时间以及每小段开挖厚度。

(2) 车站端头井的开挖,应首先撑好标准段内的2根对撑,再挖斜撑范围内的土方,最后挖除坑内的其余土方。斜撑范围内的土方,应自基坑角点沿垂直于斜撑方向向基坑内分层、分段、限时地开挖并架设支撑。对长度大于20m的斜撑,应先挖中间再挖两端。主要施工参数有:每小段宽度,每小段开挖的无支撑暴露时间以及每层开挖厚度。

(3) 基坑开挖过程中严禁超挖,分层开挖的每一层开挖面标高不得低于该层支撑的底面或设计基坑底标高。

(4) 基坑纵向放坡不得大于安全坡度,并进行必要的人工修坡。应对暴露时间较长或可能受暴雨冲刷的纵坡采用坡面保护措施,严防纵向滑坡。

(5) 开挖过程中应及时封堵地下连续墙接缝或墙体上的渗漏点。 (6) 坑底开挖与底板施工

设计坑底标高以上30cm的土方,应采用人工开挖,局部洼坑应用砾石砂填实至设计标高。 坑底应设集水坑,以及时排除坑底积水。集水坑与基坑挡墙内侧的距离应大于1/4基坑宽度。 在开挖到底后,必须在设计规定时间内浇筑混凝土垫层(包括砼垫层以下的砾石砂垫层或倒滤层)。垫层所用混凝土的强度以及达到强度的时间必须满足设计要求。 必须在设计规定的时间内浇筑钢筋混凝土底板。

2、支撑

在深基坑的施工支护结构中,常用的支撑系统按其材料分可以有钢支撑和钢筋混凝土支撑等种类。其优缺点比较如下表。 钢支撑 钢筋混凝土支撑 优点 ◆便于安装和折除 ◆材料的消耗量小

◆可以及时施加预应力以减少无支撑暴露时间,合理地控制软土基坑变形 ◆有利于缩短工期 ◆整体刚度好 ◆节点构造处理相对简单 ◆结构稳定性好 缺点 ◆整体刚度较弱 ◆稳定性差

◆节点构造处理难度大 ◆制作时间长于钢支撑,不利于减少无支撑暴露时间 ◆拆除工作比较繁重 ◆材料的回收利用率低 ◆工期相对较长

就支撑结构的发展方向而言还是应该推广使用钢支撑,努力实现钢支撑杆件的标准化、工具化,建立钢支撑制作、安装、维修一体化的施工技术力量,提高支撑结构的施工水平。但还需强调指出,支撑系统应因地制宜,在特定条件下,钢筋混凝土支撑仍有其存在和优化的必要。上海地铁深基坑工程中绝大部分使用钢支撑。

支撑结构体系由围檩、支撑杆或支撑桁架、立柱、立柱桩等组成。深大基坑设计和施工中,必须对支撑系统中各节点,特别是多支撑交汇的关键节点的构造细节,做深入分析和谨慎处理,严防“一点失稳、全盘皆垮”的灾害性事故。

围檩 支撑结构的围檩直接与围护壁相连,围护壁上的力通过围檩传递给支撑结构体系。在采用地下连续墙的地铁地铁车站深基坑中,常常不设围檩而直接将支撑撑于地下墙面上,这种支撑布置要和地下墙相配,通常每道在一幅地下墙上设两根对撑。

支撑杆 是支撑结构中的主要受压杆件,由于受自重和施工荷载的作用,支撑杆属于一种压弯杆件。支撑杆相对于受荷面来说有垂直于荷载面和倾斜于荷载面二种,对于斜支撑杆要注意支撑杆和地下墙(或围檩)连接节点的力的平衡。

立柱和立柱桩 支撑杆和支撑桁架需要有立柱来支承,立柱通常采用H型钢或钢格构柱。立柱下要有立柱桩支承,立柱桩可以借用工程桩、也可以单独设计用于支承立柱。立柱和立柱桩可有效地保证支撑的稳定性,但立柱的沉降或回弹会引起支撑次应力,降低支撑稳定性。实测数据表明,基坑开挖到15m的坑底回弹范围通常是坑底以下12m深度内,因此建议立柱桩要穿越这一回弹区域。

支撑安装和制作要点

(1) 在开挖每一层的每小段的过程中,当开挖出一道支撑的位置时,即在支撑两端墙面上测定出该道支撑两端与地下墙(或围檩)的接触点,以保证支撑与墙面垂直且位置准确,对这些接触点要整平表面,画出标志,并量出两个相对应的接触点间的支撑长度,以使地面上预先按量出长度配置支撑,并配备支撑端头配件以便于快速装配。而在地面上要有专人负责检查和及时提供开挖面上所需要的支撑及其配件,支撑在使用前应进行试装配,以保证支撑有适当的长度和足够的安装精度,对不符合技术要求的支撑配件一律弃用。

(2) 支撑就位后应及时准确施加预应力,在施加预应力进程中要将钢支撑接头处连接螺栓拧紧三次以上以保持预应力。所施加的支撑预应力的大小应由设计单位根据设计轴力予以确定。通常取值为:第一道支撑预加轴力应大于设计轴力的50%;第二道及其下各道支撑预加轴力为设计轴力的80%。对于施加预应力的油泵装置要经常校验,以使之运行正常,所量出预应力值准确。每根支撑施加的预应力值要记录备查。

(3) 为防止支撑施加预应力后和地墙(或围檩)不能均匀接触而导致偏心受压,首次施加预应力后立即在空隙处以速凝的细石混凝土填实。

预应力复加

(1) 在第一次加预应力后12小时内观测预应力损失及墙体水平位移,并复加预应力至设计值; (2) 当昼夜温差过大导致支撑预应力损失时,应立即在当天低温时段复加预应力至设计值; (3) 墙体水位移速率超过警戒值时,可适量增加支撑轴力以控制变形,但复加后的支撑轴力和挡墙弯矩必须满足设计安全度要求;

(4) 当采用被动区注浆控制挡墙位移时,应在注浆后1~2h内对在注浆范围的支撑复加预应力至设计值,以减少挡墙外移所造成的预应力损失。

六、 内部结构

车站内部结构施工主要包括以下几部分:

板 顶板、中板、底板;侧墙 双墙体系中侧墙与地墙共同作用,单墙体系中无侧墙;梁柱体系等。

结构施工中控制要点如下:

1、底板施工

(1)底板施工前应将坑底软弱土清除干净,并用砾石、砂、碎石或素混凝土填平。 (2)素混凝土垫层标高、厚度及强度满足设计要求,面层应无蜂窝、麻面和裂缝。 (3)底板与地下连续墙的接触面必须进行凿毛、清洗,并在漏水处进行堵漏处理。

(4)底板钢筋与地下墙体底板相接时,应将钢筋连接器全部凿出弯正,连接时必须用测力扳手控制其旋紧程度。

(5)底板混凝土浇捣必须按顺序连续不断完成,采用高频震动器震捣密实,不得出现漏震或少震现象。

(6)底板混凝土浇捣完成的同时,及时收水、压实、抹光,终凝后及时养护,不少于14天。

2、侧墙施工

(1)侧墙施工前必须将地下墙凿毛处理,并按设计做好防水施工。 (2)对地下连续墙的墙面渗漏应按规范及设计要求进行处理。 (3)侧墙内模及支架应有足够的强度、刚度和侧向稳定性。

(4)应根据设计要求设置施工缝和诱导缝,并保证其稳固、可靠、不变形、不漏浆。 (5)立内模之前,应对防水层、钢筋及预埋件工程进行检查,合格后办理隐蔽工程验收,进行下一道工序施工。

(6)一次立模浇捣高度超过3m时,应采取合理立模补强措施。 (7)混凝土掺加微膨胀剂时要满足14天的养护要求。

(8)侧墙混凝土浇灌时应分层(每层高不超过30cm),浇捣连续不间断完成,分层浇捣时注意不出现漏震或过震。

(9)侧墙混凝土浇捣完成后,注意及时浇水养护,不少于14天。 (10)侧墙外模板的拆除时间不应少于7天。

3、中楼板施工

(1)应根据设计要求设置施工缝和诱导缝,并经验收后方可浇筑混凝土。 (2)中楼板梁、板的模板支架应采用满堂支架,其密度应满足强度和变形要求。 (3)中楼板预埋件、预留孔洞的设置经监理检查验收后,方可浇筑中楼板混凝土。 (4)中楼板底标高应考虑支架、搭板沉降及施工误差后,仍能满足下部建筑限界要求。 (5)中楼板达到设计要求的拆模强度后方可拆模。

4、顶板施工

除严格遵循上节中楼板施工要求外,还应在施工过程中采取如下措施: (1)跨度在8m以上的结构,必须在混凝土强度达到100%时方可拆除模板; (2)顶板混凝土终凝前应对顶面混凝土压实、收浆成细毛面; (3)终凝后应及时养护,并尽量采用蓄水养护,养护时间不少于14d; (4)顶板上堆放设备、材料等附加荷载前必须进行强度验算。

(5)养护期结束后应立即施作顶板防水层和防水保护层,采用砂浆或混凝土作保护层时应进行养护。

第二篇:地铁车站的施工方法

目前国内外修建地铁车站的施工方法有明挖法、盖挖法、暗挖法、盾构法等。主要阐述了修建地铁车站施工方法的原理、施工流程、优缺点,为我国各大城市修建地铁车站时选择合理的施工方法提供有益的参考。

关键词:地铁车站;施工方法;施工流程;优缺点;适用条件

伴随着我国社会主义经济建设的迅猛发展与综合国力的增强,城市的规模也不断的增大,城市人口流量还在增加、再加上机动车辆呈现逐年上涨的趋势,交通状况不断恶化。为了改善交通环境,采取了各种措施,其中兴建地下铁道得到了普遍的认可,如最近几年在北京、广州、深圳等城市便兴建了大量的地下铁道。由于在城市中修建地下铁道,其施工方法受到地面建筑物、道路、城市交通、水文地质、环境保护、施工机具以及资金条件等因素的影响较大,因此各自所采用的施工方法也不尽相同。下面将就城市地下铁道施工方法分别加以介绍。施工方法的选择应根据工程的性质、规模、地质和水文条件、以及地面和地下障碍物、施丁设备、环保和工期要求等因素,经全面的技术经济比较后确定。

1、明挖法

明挖法是指挖开地面,由上向下开挖土石方至设计标高后,自基底由下向上顺作施工,完成隧道主体结构,最后回填基坑或恢复地面的施工方法。

明挖法是各国地下铁道施工的首选方法,在地面交通和环境允许的地方通常采用明挖法施工。浅埋地铁车站和区间隧道经常采用明挖法,明挖法施工属于深基坑工程技术。由于地铁工程一般位于建筑物密集的城区,因此深基坑工程的主要技术难点在于对基坑周围原状十的保护,防止地表沉降,减少对既有建筑物的影响。明挖法的优点是施工技术简单、快速、经济,常被作为首选方案。但其缺点也是明显的,如阻断交通时间较长,噪声与震动等对环境的影响。

明挖法施工程序一般可以分为4大步:维护结构施工→内部土方开挖→工程结构施工→管线恢复及覆土,如图1.

上海地铁M8线黄兴路地铁车站位于上海市控江路、靖宇路交叉口东侧的控江路中心线下。该车站为地下2层岛式车站,长166.6 m,标准段宽17.2 m,南、北端头井宽21.4 m.标准段为单柱双跨钢筋混凝土结构,端头井部分为双柱双跨结构,共有2个风井及3个出人口。车站主体采用地下连续墙作为基坑的维护结构,地下连续墙在标准段深26.8m.墙体厚0.6m.车站出人口、风井采用SMW桩作为基坑的维护结构。

2、盖挖法

盖挖法是由地面向下开挖至一定深度后,将顶部封闭,其余的下部工程在封闭的顶盖下进行施工。主体结构可以顺作,也可以逆作。

在城市繁忙地带修建地铁车站时,往往占用道路,影响交通当地铁车站设在主干道上,而交通不能中断,且需要确保一定交通流量要求时,可选用盖挖法。 2.1盖挖顺作法

盖挖顺作法是在地表作业完成挡土结构后,以定型的预制标准覆萧结构(包括纵、横梁和路面板)置于挡土结构上维持交通,往下反复进行开挖和加设横撑,直至设计标高。依序由下而上,施工主体结构和防水措施,回填土并恢复管线路或埋设新的管线路。最后,视需要拆除挡上结构外露部分并恢复道路。施工顺序如图2.

在道路交通不能长期中断的情况下修建车站主体时,可考虑采用盖挖顺作法。

工程实例:深圳地铁一期工程华强路站位于深圳市最繁华的深南中路与华强路交叉口西侧,深南中路行车道下。该地区市政道路密集,车流量大,最高车流量达3865辆/h.车站主体为单柱双层双跨结构,车站全长224.3 m,标准断面宽18.9 m,基坑深约18.9 m,西端盾构并处宽22.5 m,基坑深约18.7 m.南侧绿地内东西端各布置一个风道。主体结构施工工期为2年,其中围护结构及临时路面施工期为7个月。为保证深南中路在地铁站施工期间的正常行车,该路段主体结构施工采用盖挖顺作法施工方案。

2.2 盖挖逆作法

盖挖逆作法是先在地表面向下做基坑的维护结构和中间桩柱,和盖挖顺作法一样,基坑维护结构多采用地下连续墙或帷幕桩,中间支撑多利用主体结构本身的中间立柱以降低工程造价。随后即可开挖表层土体至主体结构顶板地面标高,利用未开挖的土体作为土模浇筑顶板。顶板可以作为一道强有力的横撑,以防止维护结构向基坑内变形,待回填土后将道路复原,恢复交通。以后的工作都是在顶板覆盖下进行,即自上而下逐层开挖并建造主体结构直至底板,如图3.

如果开挖面积较大、覆土较浅、周围沿线建筑物过于靠近,为尽量防止因开挖基坑而引起临近建筑物的沉陷,或需及早恢复路面交通,但又缺乏定型覆盖结构,常采用盖挖逆作法施工。

工程实例:南京地铁南北线一期工程的区间隧道在地质条件和周围环境允许的情况下,以造价、工期、安全为目标,经过分析、比较,选择了全线区间施工方法。其中,三山街站,位于秦淮河古河道部位,位于粉土、粉细砂、淤泥质粘土土层中。因为是第1个车站,又位于十字路口,因此采用地下连续墙作围护结构。除人口结构采用顺作法外,其余均为盖挖逆作法。

2.3 盖挖半逆作法

盖挖半逆作法与逆作法的区别仅在于顶板完成及恢复路面后,向下挖土至设计标高后先浇筑底板,再依次向上逐层浇筑侧墙、楼板。在半逆作法施工中,一般都必须设置横撑并施加预应力,如图4.

3、暗挖法暗挖法是在特定条件下,不挖开地面,全部在地下进行开挖和修筑衬砌结构的隧道施工力一法。暗挖法主要包括:钻爆法、盾构法、掘进机法、浅埋暗挖法、顶管法、沉管法等。其中尤以浅埋暗挖法和盾构法应用较为广泛,因此,本文着重介绍这两种方法。 3.1浅埋暗挖法(浅埋矿山法)

浅埋暗挖法即松散地层的新奥法施工,新奥法是充分利用围岩的自承能力和开挖面的空间约束作用,采用锚杆和喷射混凝土为主要支护手段,对围岩进行加固,约束围岩的松弛和变形,并通过对围岩和支护的量测、监控,指导地下工程的设计施工。浅埋暗挖法是针对埋置深度较浅、松散不稳定的上层和软弱破碎岩层施工而提出来的,如深圳地铁区间隧道大部分采用了浅埋暗挖法施工。

浅埋暗挖法的施工技术特点:围岩变形波及地表;要求刚性支护或地层改良;通过试验段来指导设计和施工。

浅埋暗挖法施工隧道时,应根据工程特点、围岩情况、环境要求以及施工单位的自身条件等,选择适宜的开挖方法及掘进方式。施工中区间隧道常用的开挖方法是台阶法、CRD工法、眼镜工法等;城市地铁车站、地下停车场等多跨隧道多采用柱洞法测洞法或中洞法等工法施工。

地下铁道是在城市区域内施工,对地表沉降的控制要求比较严格,所以更要强调地层的预支护和预加固,所采用的施工方法有超前小导管预注浆、开挖面深孔注浆、管棚超前支护。浅埋暗挖法的施工工艺可以概括为“管超前、严注浆、短开挖、强支护、快封闭、勤量测”18个字,其工艺流程见图5.

工程实例:北京地铁东单车站东南风道与车站主体结构正交,北侧在长安街下,中部及南侧穿过居民区,风道全长43.4 m.采用浅埋暗挖洞桩法施工,在基本维持环境原状条件的情况下从地面居民生活区和人防设施下面顺利通过。

3.2盾构法

修建地铁随道盾构法施工是以盾构这种施工机械在地面以下暗挖隧道的一种施工方法。盾构(shield )是一个既可以支承地层压力又可以在地层中推进的活动钢筒结构。钢筒的前端设置有支撑和开挖土体的装置,钢筒的中段安装有顶进所需的千斤顶;钢筒的尾部可以拼装预制或现浇隧道衬砌环。盾构每推进一环距离,就在盾尾支护下拼装(或现浇)一环衬砌,并向衬砌环外围的空隙中压注水泥砂浆,以防止隧道及地面下沉。盾构推进的反力由衬砌环承担。盾构施工前应先修建一竖井,在竖井内安装盾构,盾构开挖出的土体由竖井通道送出地面。盾构法施工工艺见下图6所示。

按盾构断面形状不同可将其分为:圆形、拱形、矩形、马蹄形4种。圆形因其抵抗地层中的土压力和水压力较好,衬砌拼装简便,可采用通用构件,易于更换,因而应用较为广泛;按开挖方式不同可将盾构分为:手工挖掘式、半机械挖掘式和机械挖掘式3种;按盾构前部构造不同可将盾构分为:敞胸式和闭胸式2种;按排除地下水与稳定开挖面的方式不同可将盾构分为:人工井点降水、泥水加压、土压平衡式,局部气压盾构,全气压盾构等。 盾构法的主要优点:除竖井施工外,施工作业均在地下进行,既不影响地面交通,又可减少对附近居民的噪声和振动影响;盾构推进、出土、拼装衬砌等主要工序循环进行,施T易于管理,施工人员也比较少;土方量少;穿越河道时不影响航运;施工不受风雨等气候条件的影响;在地质条件差、地下水位高的地方建设埋深较大的隧道,盾构法有较高的技术经济优越性。

工程实例:北京地铁五号线即采用了盾构法施工地铁五号线是一条贯穿北京市中心的南北向地下交通大动脉。南起丰台区宋家庄,向北经蒲黄榆、祟文门、东单、东

四、雍和宫止于昌平区太平庄北站,全长27.7 km.由于该路段地上大型建筑物密集,交通流量大,地下管网复杂,为减少对城市经济和市民生活的影响,经专家论证,决定在雍和宫至北新桥约700 m长的试验段率先采用盾构施工方法。该盾构为大直径土压平衡盾构机。

4、沉管法

沉管法是将隧道管段分段预制,分段两端设临时止水头部,然后浮运至隧道轴线处,沉放在预先挖好的地槽内,完成管段间的水下连接,移去临时止水头部,回填基槽保护沉管,铺设隧道内部设施,从而形成一个完整的水下通道。

沉管隧道对地基要求较低,特别适用于软土地基、河床或海岸较浅,易于水上疏浚设施进行基槽开外的工程特点。由于其埋深小,包括连接段在内的隧道线路总长较采用暗挖法和盾构法修建的隧道明显缩短。沉管断面形状可圆可方,选择灵活。基槽开挖、管段预制、浮运沉放和内部铺装等各工序可平行作业,彼此干扰相对较少,并且管段预制质量容易控制。基于上述的优点,在大江、大河等宽阔水域下构筑隧道,沉管法称为最经济的水下穿越方案。

按照管身材料,沉管隧道可分为2类:钢壳沉管隧道(有可分为单层钢壳隧道和双层钢壳隧道)和钢筋馄凝土沉管隧道。钢壳沉管隧道在北美采用的较多,而钢筋混凝土沉管隧道则在欧亚采用较多。

沉管隧道施工主要工序:管节预制→基槽开挖→管段浮运和沉放→对接作业→内部装饰。

上程实例:广一州珠江隧道是我国第一条公路与地铁合用的越江隧道,公路隧道全长1 238.5 m.河中段隧道埋置在河床下。不影响水面通航,河中沉管段全长457 m.该沉管为多孔矩形钢筋混凝土结构,其中包括两个双车道机动车孔、一个地铁孔、一个电缆管廊。沉管断面为典型矩形断面,外形尺寸为33 mx7.956 m(宽x高),底板厚1.2 m、顶板厚1.0 m,两外侧墙分别为0.7 m和0.55 m、最长管节的混凝土量达12 000砰。管段的基底坐落在河床的风化花岗岩层上。开槽时采用了炸礁施工。基础处理采用灌砂法。

5、混合法

可以根据地铁隧道的实际情况,在地铁隧道的施工过程中采用以上2种或2种以上的方法同时使用,称其为混合法。

工程实例:北京地铁东四站位于朝阳门内大街与东四南大街交叉日上,处于繁华的市中心,有多路公交车经过。车站主体顺东四南大街,呈南北走向,东四南大街规划道路红线宽70 m,现状路宽为22 m,朝内大街已改造完,道路红线宽60 m,两方向客流均衡,交通十分繁忙;且远期六号线顺朝内大街,呈东西走向,在此站换乘。本车站两端为明挖段,结构形式为3层三跨框架结构;中间为暗挖段,结构形式为单层三拱两柱结构。车站总长度197 m,暗挖段长为96.80 m,明挖段长为100. 20m。

6、结束语

随着我国地下铁道建设事业的发展,原有的施工技术不断地发展与提高的同时,新的施工方法也被应用到施工当中,施工技术水平得到不断提升,其中有些施工技术已经达到世界先进水平。另外,由于城市交通流量的增加导致城市道路已拥挤不堪,加上城市环境的要求越来越严格,城市内封路施工已不现实了。因此,暗挖技术,如盾构法、浅埋暗挖法将是今后研究和实践的主攻方向。

第三篇:地铁车站施工的成本控制

引言:随着世博会的结束上海又将迎来新一轮的轨道交通建设和前一轮建设高峰相比,这一轮的建设工程密集度将有所降低,而欲加入建设的施工队伍又不会明显减少,这样势必造成施工企业间更加激烈的商务竞争,加上业主跟严格的招投标价格控制,施工单位如何在满足各项要求的前提下,控制施工成本,提高经济效益,这就要求项目管理者对工程项目全过程进行有效的成本控制建立科学的管理体系,完善各项管理制度,细化各环节的控制,下面笔者根据近几年来的地铁车站施工中的经验谈几点体会。

一、 地铁车站施工的特点

和其他市政工程相比,地铁车站施工具有以下特点:

1、 总工期长而有效工期紧

地铁工程基本都是市重大工程,工期都是“后墙不倒”但由于普遍存在业主前期动迁管线搬迁及交通翻交的滞后,所以实际总工期往往要超出合同工期很多,有的甚至是合同工期的三倍,而大部分时间土建施工单位都处在等工状态,因此土建的实际有效施工期又非常的紧迫,往往需要非常规的“赶工”来完成业主的节点工期

2、 合同要求严

业主为了规避风险,合同条件相对较严,其中不但规定了所有因业主的原因造成的等工,以及施工期间材料价格上涨,均不予增加费用外,还规定了所有措施费一次性包干,包括对周边建筑物管线的保护及维修,这样就给图纸意外的工作量签证带来了很大的苦难

3、 盈利空间小

地铁施工在上海是一个成熟的工艺,业主对各施工单位的实际施工成本都非常了解,所以招标限价往往已贴近施工成本,而由于施工总工期长,施工单位又面临了材料设备人工的价格上涨因素,加上各施工单位间的激烈竞争,所以盈利空间非常小

4、 施工难度大

我公司基本承担了施工难度较大的车站,如两线三线换乘,基坑开挖深度大,往往需要采用逆筑法施工,工程往往地处闹市,交通翻交复杂,周边管线建筑物较多,且紧邻基坑,因此施工难度非常大

二、 成本管理

在以上这些不利的前提下,如何既能确保工程质量与进度,又能控制和把握好合理的造价,从而以最低的施工成本获取最大的社会效益和经济效益,抓好管理是基础,成本控制是中心,根据工程特点,我们采用了以“目标成本动态管理”为核心的全过程施工成本控制方法,收到了较好的效果

(一) 投标阶段

一个工程的盈利投标价格的确定是关键,怎么才能使投标价格是公司实际成本相符,我们制定了专业招投标人员与施工第一线相配合共同参与招投标的原则,首先专业技术人员根据施工规范,结合施工第一线施工员的施工经验,编制合理的技术方案,专业预算员根据技术方案按定额编制预算价格,由项目经理部负责按以往施工经验及价格水平编制实际施工成本,根据预算价格和实际成本间的差异做相应调整,期间结合使用各类投标技巧,比如对于单价包干合同,我们有意识的降低那些今后可能技术优化,工程量减少的工序的单价,如地基加固,井点降水,而抬高今后可能增加工程量的工序单价,如地墙封堵墙等,经过调整后,使投标价格基本符合公司实际施工成本,最终由公司领导根据市场营销策略最终定价,这样做的最大好处是,避免了以往只是由专业的招投标人员在办公室里“闭门造车”而使投标价格远离实际成本

(二) 施工前阶段

开工前应主要做好以下两项工作

1、 编制合理可行的目标成本

项经部根据中标价格,以投标前预测的成本为依据,下浮10%左右,作为实际施工的目标成本,施工中始终围绕目标成本,进行成本控制,这样就使得工程最终的盈利目标(即中标价格与投标预测成本价之差)得以实现

2、 经营风险分析及相应对策

目标成本一旦确定后,在今后的整个施工过程中,始终要围绕这个目标开展各项工作,在实施过程中,可能会遇到什么困难,怎么解决,事先应制定相应对策,这就需要对工程特点及合同内容进行分析,排列出主要的经营风险点,并制定相应的对策,如地铁12号线利津路车站,我们在施工前对合同内容进行了细致的研究,结合工程本身的特点,排列出了以下几项主要经营风险点并制定相应的对策

风险1:前期工期严重滞后,造成后期非常规赶工

对策:合理安排各施工阶段的人力机械材料使用

风险2:工期长,材料价格上涨幅度大

对策:充分利用公司材料供应站的优势,在材料价格相对较低时,利用相对充裕的工程预付款,及时购进钢材等主要材料,

风险3:基坑周围被居民楼包围,距离非常近,房屋结构差,施工过程中,不可避免的会对这些房屋产生影响,而合同中,把房屋维修的责任全部归为乙方负责

对策:规范施工操作规程,提高地下连续墙的施工质量,减少漏水,泥土流失,加快基坑开外及支撑速度,改原坑外降水为坑内降水,总之运用施工和技术的手段,从源头上控制施工对周边房屋的影响,在施工前,对周边建筑物事先进行入户监测,在施工过程中加强监测,发现险情立即采取相应措施,以减少后期对房屋的维修成本,

风险4:工程量变更较大

地体车站的招标图,和实际施工图往往有较大的变更,而中标合同往往又是总价包干合同,在这种情况下,怎样在符合合同条款的情况下,使得这些变更工作量成为工程盈利,也是事先应做好的准备,否则,这些变更工作量反而会成为一个巨大的亏损点,

对策:及时收集第一手资料,做好重大变更设计手续,与设计院及业主沟通,尽量使每一项变更都能以设计蓝图形式出现,这样在决算时,就可利用合同条款中“重大设计变更”这一点增加费用,对一些小的局部变更,也应根据合同条款,在可索赔范围内,做好索赔签证手续

(三) 施工阶段

1、 责任制的落实

成本控制的成败关键在于施工阶段的过程控制,过程控制的有效开展,前提是落实各项责任制,项经部成立以项目经理为第一责任人,由经营主管、技术负责、生产副经理、安全文明施工主管为成员的项目成本控制领导小组,项经部其他成员包括材料员,设备员,质量员,等全员参与目标成本过程控制,将目标成本逐项分解到各岗位和部门,明确岗位职责和操作流程,责任到人,纳入每个人的绩效考核,

2、 动态管理制度

施工过程中有很多不可预见因素,因此必须对整个成本进行过程上的动态管理,必须建立详细和可操作的动态成本信息系统,以及保持动态的监控,必须在各部门建立起动态成本台账,确保各部门发生的成本能及时反映,必须在各阶段对动态成本进行分析和总结,通过实际成本和目标成本的实时比较,进行盈亏分

析,找出实际操作中的薄弱环节和失误,及时做出相应的对策,在下阶段的施工中,予以纠正补救,必要时也可及时调整成本控制计划,使之能真实反映成本控制现状,

3、 目标成本过程控制的主要方法

1) 慎重选择分包商。对主要的分包商,如结构、地墙、土方开挖、支撑、井点降水采用公司内部招投标形式,成立以项目经理为组长,公司各职能部门为组员的评标小组,对参与投标的分包商的资质,管理能力,人员材料设备情况进行考核,综合考虑他们的商务报价及技术方案,最终确定一家施工能力强,价格相对合理的分包队伍

2) 抓好分包合同管理。在签订分包合同时,应善于规避总包合同风险,应善于把业主对总包的“不合理”要求全部或部分转移到分包合同中去,使分包和总包共同承担工程经营风险,在合同执行过程中,应有效控制各类合同外工程量签证,总包应做到事前把关,主动监控,严格审核,杜绝工程量重复计算,减少不必要的工程费用支出,避免目标成本失控

3) 材料设备成本控制。严格执行主要材料及大型设备供应商招投标制度,在质量、价格、供货时间均能满足要求的前提下,择优确定供货单位,必须建立材料的定价签约进货验收相分离的制度,在材料设备使用上,应根据工程的不同阶段,及时列出所需材料及设备清单,按工程实际进度,合理安排采购数量,及具体进场时间,防止挤压或造成窝工现象,规范收发料制度,及废旧材料处置制度,最大限度的减少材料损耗,合理调配工地现场的大型机械设备,使其发挥最大的效能,

4) 优化设计方案。对于固定总价的合同,应该在保证工程安全的前提下,减少诸如井点降水,地基加固,封堵墙,减小地墙及结构的含筋量,而对于固定单价合同,则应找出充分理由,使业主,设计增加那些投标单价相对较高的工序工程量,如地墙,地基加固,

5) 加快施工进度。适当增加人力及材料设备的投入,以收到成倍缩短工期的效果,从而在整体上大大降低,如周转材料及大型设备的使用成本,也能有效降低项经部的管理费,

6) 提高施工质量。特别是地墙结构的施工质量,减少由于地墙渗水而造成的堵漏,甚至是抢险的费用,减少结构的后续修补费用,这些费用控制不好,往往是造成工程亏损的重要因素,

7) 合理使用工程款。原则上不向分包队伍支付各类预付款,工程进度款支付不大于70%,对于主材供应商,如钢筋混凝土,应让他们承担更大的资金压力,原则上应避免出现支出大于收入的现象,以减少财务成

本,

8) 以开展节约型工地为抓手,努力降低工程的管理费用,做到节约每一度电,每一滴水,每一张纸,对项经部管理人员的数量应根据施工不用阶段及时做动态调整,降低工资发放总额,

9) 有效控制文明施工的费用支出。随着政府对工地文明施工的要求日益提高,文明施工费用占工程成本的比例越来越大,如何做到既能满足社会要求,又能最大限度的降低这些费用,是有待进一步研究的课题,我们应根据相关的文明施工要求,事先制定相应的文明施工管理办法,明确各项工作的具体要求,做到不求形式上的奢华,但求实际效果,真正做到文明施工为工程服务。

(四) 决算阶段

一个工程最终是否盈利,和决算的质量密切相关,应根据不用的合同形式,制定不同的决算策略,对于总价包干合同,关键是利用合同条款中所有对于我有利的部分,尽最大努力,增加工程量签证,特别是那些由于业主延长工期而造成的等工费用及材料设备上涨费用,而对于单价包干的合同,关键是早出一切合理的理由,特别是从设计变更的角度使业主调高单价,要善于与业主,投资监理建立良好的人际关系,让他们充分理解施工的难度,从而使得决算价格尽量向施工方倾斜,这样才能提高决算质量,真正做到整个工程“即节流又开源”做到利润的最大化

结束语

总之,只有要地铁工程施工中,将成本管理贯穿于施工的整个过程,在工程建设的各个阶段各个环节,始终贯彻目标成本动态管理,采用各种手段,完善各项管理制度,才能真正做到以最低的工程成本获取最大的社会效益和经济效益,为企业的可持续发展做出贡献。

第四篇:地铁车站通风排烟系统典型施工说明

摘 要:文章介绍了地铁车站通风排烟系统的典型施工说明,通过对管材、保温、防腐及防火措施、管道支吊托架、风阀风口、风管安装、水系统安装、设备安装等系统安装的各个方面进行说明,对于地铁车站功能比较相似的场所,具有一定的参考意义,为地铁车站通风排烟的安装施工提供了一种典型的施工说明。

关键词:车站;通风排烟;施工

1 管材

1.1 风管

车站风管均采用镀锌钢板。风管穿墙需用不燃材料做好防火封堵,变电所和电阻室房间的送风管应用离心玻璃棉进行保温,保温层外用0.5mm铝板做保护层。风管与风管及风管与配件、部件连接采用法兰连接。

车站内通风系统的钢板材料厚度按如表1选用。其中δ≤1.2mm采用镀层质量为235g/m3的热镀锌钢。钢板厚度、法兰等附件规格按表执行。

表1

穿气瓶间的风管(不含为其服务的风管),采用9mm纤维增强硅酸盐防火板包覆。

1.2 水管

车站冷凝水管PP-R管,PP-R管等级为S4。PP-R管材与管件DN100时采用管材连接。凝结水管试压压力不得小于0.9MPa。热熔连接的管道,水压试验时间应该24h后进行。

2 保温、防腐及防火措施

(1)风管。保温材料选用离心玻璃棉板,比重为48kg/m3,其保温层厚度如下:

空调送风管和回排风管设在具有空调的房间内δ=40mm(无吊顶空调房间内,回风管不保温),空调送风管和回排风管设在无空调的房间内(以及所有位于新风道内的风管)δ=50mm。分体空调冷媒管采用橡塑保温。

(2)水管。水管保温材料采用橡塑复合保温材料,当穿越变电所房间时在保温材料外包裹无甲醛玻璃棉管壳(容重80kg/m3),保温层外贴专用防火防潮铝箔作为保护层,厚度40mm。

(3)所有穿越墙体(楼板)的的管道敷设后安装后其孔洞周围采用与墙体(楼板)耐火等级相同的不燃材料密。

3 管道吊、支托架

(1)风管支吊架按国标03K132规定制作。所有水平或垂直风管必须设置吊、支、托架,应设置于保温层外部,但不得损坏风管保温层,且不得设于风口、风阀、检查门及自控机构处。(2)管道吊、支、托架均为槽钢或角钢,固定点采用绝热木质管卡,必须进行防腐处理,对构件表面进行清理除锈,涂防锈底漆和面漆各两遍。金属支吊架采用热浸镀锌防腐处理。 (3)风管垂直安装时,吊、支、托架间距小于4m,且每根立管固定件不小于2个。防火阀、排烟防火阀安装时必须单独配置风管吊、支托架。(4)水管支吊架必须设于保温层外部,水管穿越支吊架处应加酚醛垫块,支吊架间距视管径大小按规范而定。

4 风阀、风口

(1)送风管各类风阀及风口不应安装在电器设备轮廓线投影范围的正上方,在各类风口安装需与土建装修工程配合进行,其要求是横平,竖直,整齐,美观,对有调节和转动装置的风口,装后应转动灵活,对同类型风口应对称布置,同方向风口调节装置置于同一侧。(2)风管阀门要有固定的独立支撑,安装调节阀时,必须注意将手柄配置在便于操作的部位,转动部件要保持转动灵活。与风机联动的风阀均为消防负荷。(3)风量调节阀,防火阀、排烟口其执行器手柄位置对应的天花板处应设检查孔,由建筑装饰时做成可拆装的活动天花板。(4)建筑装修设计时风管的风口型式,风口数量等须与装修相配合。

5 风管安装

(1)所有穿越墙体(楼板)的管道敷设后及附件安装后其孔洞周围采用与墙体(楼板)耐火等级相同的不燃材料密封。(2)穿越变形缝的风管两侧,以及风机通风进、出口连接处,应设200mm的软接。(3)风管安装时应注意风管和配件的可拆卸接口及法兰不得装在墙和楼板内,风管的纵向闭合缝必须交错布置,且不得在风管底部。(4)风管安装的水平度允许偏差每米不应大于3mm,总偏差不应大于20mm,风管穿越高噪声的机房时,其通过墙壁或悬吊于楼板下的风管以及风管支架应做隔声处理。

6 水系统安装

(1)管道安装前必须将管内的污物及锈蚀清除干净,施工时严禁垃圾、杂物、焊渣等落入,安装停顿期间对管道开口应采取封闭保护措施。(2)所有凝结水管路保持不小于1%的坡度,坡向排水地点.(3)水管穿越变形缝处需设置300mm长的同管径承压1.6MPa的不锈钢伸缩管。

7 设备安装

(1)设计中所选用的设备在安装时应严格按照厂家的安装使用说明书要求安装。设备预留基础,地脚螺栓,预埋件必须与到货设备核实后进行施工。所有运转设备均设减振基础。其中大型设备的减振器及减振台架均由设备厂家配套供货。(2)风机前后设软接和消声器,设备采用刚性支吊架安装,分体空调、新风机等设备安装需做减振处理。风机、新风机等振动设备进出口均设保温型软接,排烟风机前后设置耐火软节。风机的软接头(包括耐火软接头)由设备厂家自带。(3)多联机室内机,定位尺寸按施工图执行。其凝结水管道敷设应注意坡向排水点。并保证不小于0.01的坡度。(4)通风机底座采用减振装置时,其基础顶面宜附设底座水平方向的限位装置,但不得妨碍底座垂直方向的运动。(5)设备及管理用房通风空调系统送风机的出口和排风机的入口处设置管式消声器,土建风道中设置大型片式消声器。管道式消声器宜在预埋钢板上焊接吊杠。(6)通风机房的隔墙应做隔声吸声处理。通风机房的外门应采用隔声防火门。(7)风道上的测孔在调试验收完毕后应进行封堵。(8)在施工安装过程中,应对已安装完毕的设备、管路系统和土建结构及装饰等进行成品保护。(9)风道内短边长度大于400mm的孔洞应采取安全防护措施。(10)风管穿越墙体防护套管设置2mm厚钢板,长度大于墙体2cm;风管穿越楼板时防护套管设置9mm后防火板,长度大于楼板2cm。套管与风管间用不燃材料封堵。

8 其他

(1)设计施工图高程、标高以米计,其余均以毫米计。标高以公共区装修完成面为±0.00。(2)管线标高均为未保温前的管底标高,风机设备标高一般为中心标高。(3)所有临空高度大于0.5m的孔洞、错台等的边缘周围应设置不低于1.1m高的不锈钢管作安全护栏。(4)严格按国家相关验收规范和厂家技术要求进行设备调试。(5)如设有吊顶,则风口的安装高度与吊顶平齐;如不设吊顶,则风口安装短管的长度以装下相关的辅助设备(调节闸,滤网等)及风口为原则。(6)所有设备订货均需满足FAS、BAS系统接口要求,所有设备的安装应便于调试、日常使用、检修。

第五篇:地铁暗挖车站土方开挖施工作业指导

厦门市轨道交通2号线一期工程土建2标 【建业路站、湖滨中路站、体育中心站、育秀东路站】

地铁暗挖车站土方施工作业

指导书

编制:

审核:

审批:

厦门市轨道2号线二标项目部

二O一五年八月

厦门市轨道2号线二标 施工作业指导书

目录

1 编制目的(黑体四号) ···························································································2 编制依据 ·············································································································3 适用范围 ·············································································································4 施工方法及工艺要求 ······························································································

4.1施工工艺流程 ·······························································································

4.2. 施工方法 ··································································································5 质量保证措施 ·······································································································6 安全、文明施工保证措施 ·······················································································7 环境保护措施 ······································································································

厦门市轨道2号线二标 施工作业指导书

地铁暗挖车站土方施工作业指导书

1 编制目的

为使施工人员充分了解施工图纸及工程特点,明确施工任务、操作方法、质量标准及安全措施,有效科学组织施工,确保暗挖车站土方的施工质量达到设计及施工规范要求,针对本工程施工特点,特制定本作业指导书。

2 编制依据

1、设计文件、设计施工图及变更图

2、《厦门市轨道交通2号线一期工程施工图设计系统对土建的要求》(中铁第四勘察设计院集团有限公司,2014.10)

3、建筑基坑支护工程技术规程(GB120-99)

4、建筑地基基础工程施工质量验收规范(GB50202-2002)

5、建筑地基处理技术规范(JGJ79-2002)

6、建筑工程施工质量验收统一标准(GB50300-2001)

7、地下铁道工程施工及验收规范(GB50299-2003)

8、《建筑结构荷载规范》(GB50009-2012)

9、《建筑基坑工程技术规范》(YB9258-97)

10、《建筑基坑支护技术规程》(JGJ120-2012)

11、《地下铁道工程施工及验收规范》GB50299-1999

12、福建省标准《建筑地基基础技术规范》(DBJ13-07-2006)

13、《厦门市轨道交通2号线一期工程施工图设计》

3 适用范围

适用于2号线二标的建业路站、湖滨中路站、体育中心站以及育秀东路站及其附属工程的土方开挖施工。

4 施工方法及工艺要求

盖挖逆作法是由地面向下开挖至一定深度后,先施工围护结构、中间桩和柱、主体结构顶板,然后在顶板的保护下从上向下开挖土体,并从上至下施作主体结构的侧墙、中板、横梁、纵梁、底板等。施工原则为:分区、分层、分段、分块,对称均衡开挖,

厦门市轨道2号线二标 施工作业指导书

边挖快支,严禁超挖,快速封闭底板,做好防水。

4.1施工工艺流程

盖挖施工工艺流程图

4.2. 施工方法 4.2.1主要施工步骤

施工准备—测量放线—围护结构施工—中间柱施工—施工结构顶板—回填

土、恢复路面—自上而下挖土—自上而下施工主体结构。

4.2.2施工工艺流程

开挖施工工艺流程如下图所示

厦门市轨道2号线二标 施工作业指导书

施工工艺流程

4.2.3施工准备

1)

完成地质补勘专项工作。

2)

基坑范围内地表建筑物已清除,地下管线已进行迁改或釆取了保护措施,作业面已具备施工条件。

3)

相应方案已编制并审批完毕,手续齐全。

厦门市轨道2号线二标 施工作业指导书

4)

已按照施工方案,合理安排了施工人员、材料、机械设备等。 4.2.4施工测量放线与控制

依据甲方提供的平面、高程控制点(经复核无误)进行本工程的平面及高程控制网的布设,布设完毕后及开始进行施工放样,放样结果须经监理及第三方测量单位复核。

1)

施工放样前将施工测量方案报告监理审批。内容包括施测方法、操作规程、观测仪器设备的配置和测量专业人员的配备等。

2)

固定专用测量仪器和工具设备,建立专业测量组,专人观测和成果整理。 3)

建立测量复核制度,按“三级复核制”的原则进行施测。每次施测后,须经测量工程师及技术主管复核。

4)

施工所用的导线点、水准点、轴线点要设置在工程施工影响范围之外、坚固稳定、不易受破坏且通视良好的地方。定期对上述各桩点进行检测,测量标志旁要有明显持久的标记或说明。定期对导线点、水准点进行复核。

5)

用于本工程的测量仪器和设备,应按照规定的曰期、方法送到具有检定资格的部门检定和校准,合格后方可投入使用。

6)

用于测量的图纸资料,测量技术人员必须认真核对,必要时应到现场核对,确认无误无疑后,方可使用,如发现疑问作好记录并及时上报,待得到答复后,才能按图进行测量放样。

7)

原始观测值和记事项目,应在现场用钢笔或铅笔记录在规定格式的外业手簿中。测量技术人员要认真整理内业资料,保证所有测量资料的完整。资料必须一人 计算,另外一人复核。抄录资料,亦须认真核对。

8)

积极和测量监理工程师进行联系、沟通和配合,满足测量监理工程师提出的测量技术要求及意见,并把测量结果和资料及时上报监理及第三方监测单位,测量监理工程师经过内业资料复核和外业实测确定无误后,方可进行下步工序的施工。

4.2.5 围护结构施工

在做好各种准备工作后,将施工基坑围护结构,围护结构有钻孔灌注桩、地下连续墙等承载能力大、刚度大的支护结构,具体施工作业,根据施工图的围护结构类型,见相应的作业指导书。

4.2.6基坑降水

根据基坑围护结构的不同,选择进行坑内降水和坑外降水。

厦门市轨道2号线二标 施工作业指导书

降水方法适用条件:开挖基底低于地下水位的基坑,如果环境条件允许,应根据基坑地质条件及工程特点,釆取措施降低地下水位至开挖面下50-100cm,然后才能开挖。基坑降水的主要方法有管丼降水、轻型丼点降水、喷射丼点降水、电渗丼 点降水。电渗丼点降水一般用于淤泥或淤泥质粘土等渗透系数非常小的地层;喷射丼点降水深度大,但需要双层丼点管,安装工艺复杂,造价高;轻型丼点设备简单, 安装快捷,是常用方法,但降水速度慢,影响半径小;管丼降水深度大,降水速度 大。

管丼降水一般布置在基坑开挖范围外或基坑内部边坡平台上,分为疏干丼和降压丼。疏干丼用于降低潜水水位,降压丼用于降低承压水位。基坑开挖中一般釆用管丼疏干丼降水,并可以先开挖地下水位50cm以上的土方,然后形成边坡平台,在基坑内部边坡平台上进行丼点降水,降低造价。

4.2.7中间柱施工

中间柱是盖挖逆作法施工的地下车站之重要的工程构件。中间柱由中柱及基础中桩两部分组成,一般为永久立柱,为主体结构的承载结构。

为了减少围护结构及中间桩柱的入土深度,可以在做围护结构和中间桩柱之前,用暗挖法预先做好它们下面的底纵梁,以扩大承载面积。当然,这必须在工程地质条件允许暗挖施工时才可能实现,而且在开挖最下一层土和浇注底板前,由于围护结构和中间桩柱都无入土深度,故必须釆取措施,如设置横撑以增加它们的稳定性。

4.2.8施工顶板及顶板回填恢复路面

顶板回填碾压密实度应满足地面工程设计要求,如设计无要求时,按下表要求。 基坑回填碾压密实度表

每层回填做成不少于2%的横坡和向未填方向形成纵下坡,以利雨期排水。回填时集中力量,取、运、填、平、压各环节紧跟作业,抓紧晴天突击作业。

4.2.9基坑开挖

基坑开挖在降水施工完毕并降水20天后,进行土方施工。由于盖挖法施工时已 经

厦门市轨道2号线二标 施工作业指导书

限定了出土口的位置,土方开挖必须根据出土口的位置,向下、左右单方向推进 开挖,基坑开挖竖向分层、对称平衡开挖。

开挖过程中应充分发挥机械的施工效率。一个工作面上,釆用小型挖掘机进行作业,并配置小型的出土车进行出土作业,每台挖机均设专人指挥。

1)

基坑顶有动载时,坑顶缘与动载间应留有1m的护道,如地质、水文条件不良,或动载过大,应进行基坑开挖边坡验算,根据检算结果确定釆用增宽护道或其 他加固措施。

2)

土方开挖过程中注意保护坑内降水丼,确保降水、排水系统的正常运转。 3)

开挖中须遵循“在完成上步支护前不得继续开挖”的原则,当开挖一段后及时网喷支护,然后进行下一段的开挖,直至支护完毕。

4)

基坑开挖过程中严禁超挖,基坑纵向放坡不得大于安全坡度,严防纵向滑坡。(安全坡度须按照设计图纸规定取值,无规定时,参照《建筑边坡工程技术规范》

GB50330-2002 进行计算)

5)

加强基坑稳定的观察和监控量测工作,以便发现施工安全隐患,并通过监测反馈及时调整开挖程序。

6)

为防止超欠挖,基坑内设计坡面0.2m范围内的土方釆用人工开挖。 ⑹各项技术、质量资料齐备,操作、安全已交底,规章制度已建立。 4.2.10基底处理

当基底以下地质不符合地基承载力要求时,应通过变更设计釆取处理措施,处理方法随地基土质不同而异。

如遇到地基软硬不均、溶洞、裂隙、泉眼等特殊情况,应釆用换土法、土桩法、砂桩法、重锤夯实法、强夯法、旋喷法、塑料排水法、振动水冲法、化学液体加固法等特殊的处理方法。对于粉质土、黄土、砂土、小粒径等基底,也可釆用旋喷桩加固。

4.2.11基坑监测

为了基坑开挖施工的安全,保证工程质量,为使周围已有建筑物、市政设施、地下管线等不受损伤、少受干扰,必须对基坑开挖全过程进行系统监测。

基坑放坡开挖监测工作主要为:地表沉降值、坡面位移值、地下水位监测值。通过监测,随时掌握边坡的稳定状态、安全程度,为设计和施工提供信息。

1)

基坑土体、地表建筑物及地下管线沉降观测:釆用精密的水准仪进行量测。主

厦门市轨道2号线二标 施工作业指导书

要釆用精密水准测量方法进行,沉降观测点直接设置在被观测对象的特征点上,并在远离基坑或稳定的位置设置基准点。施工初期每天观测1-2次,施工后期可每 隔7天观测1次。

2)

降水观测:利用丼点降水丼作为水位观察丼,釆用水位仪进行监测,施工出去每天观测1次,后期可1-2天观测一次。根据水位变化情况调整抽水泵的开闭。

3)

在基坑开挖支护施工过程中,每次监测结果及时向项目部和监理工程师报告。提交阶段成果资料包括:沉降观测成果表、水平位移观测成果表、水位监测成果表,当基坑变形出现异常情况时,加密监测次数,对监测数据进行分析研究,提出基坑安全的合理化建议。

4.2.12 施工注意事项

1)

施工过程中严格遵循“从上到下、分层分块、分区分段、阶梯流水开挖”的原则,落实“分层、分步、对称、平衡、限时”五个要点,保证“竖向分层、纵向分区分段、随挖随支护”。

2)

对测量控制定位桩、水准点应注意保护。挖土、运土、机械行驶时,不得碰撞,并应定期复测检查其是否移位、下沉;平面标高和边坡坡度应符合设计要求。

3)

配备足够人力、物力、机械,加强工序之间的衔接,尽量缩短基坑暴露时间。 4)

降水丼在施工过程中要做好保护,避免因损坏而影响基坑降水。 5)

基坑边坡,在开挖后要防止扰动或被雨水冲刷,造成失稳。

6)

基坑开挖后,如不能很快的浇筑垫层,应预留150-250mm厚土层,在施工下道工序前再挖至设计标高。

7)

深基坑开挖或降低地下水过程中,应定期对邻近建筑物、道路、管线及支护系统进行观察和测试,是否发生变形、下沉或移位,如发现异常情况,应釆取防护措施。

5 质量保证措施

1)

建立质量保证体系,现场技术管理和质量管理各方面管理制度。

2)

认真做好图纸会审,设计交底,施工技术交底,工程技术资料档案和技术培训等方面工作,为质量提供技术保证。

3)

测量放样实行三级放样复核制度,并经监理复测,确认。 4)

内业资料,做到及时、准确、完整、标准。

5)

每段基坑底挖土结束后,按隐蔽工程组织验收,若不符合标准,应及时整改,

厦门市轨道2号线二标 施工作业指导书

并加强中间检查,督促施工人员严格按规范施工。

6)

基坑开挖过程中,如发现地面沉降超限、坡体位移超限等异常情况,立即停止施工,并分析原因进行处理,情况紧急时必须及时报告监理、设计单位、业主等。

7)

土方机械,不得碰撞和碾压已支护完毕的边坡及降水丼。

8)

基坑支护必须紧跟开挖,必须按照边挖边支护的原则,如支护施工延后,挖土施工应相应顺延。

9)、 常见问题及纠偏预防措施 9.

1边坡塌方

在挖方过程中或挖方后,边坡土局部或大面坍塌。

1)

结合开挖面土体力学特性,按照设计规定的边坡坡度确定开挖边坡坡度。 2)

釆用机械挖方时,应根据不同土质,不同的坡度值,放出基坑边线,边挖边修坡,每次修坡深度不超过1m。

3)

在坡顶堆土时,土堆至挖方上边缘的距离要根据挖方深度、堆积土数量和土的特性确定。任何情况下不得小于1.2m,土堆高度不得超过1.5m。

4)

在受地下水、地表水影响的基坑,应根据不同深度、不同土质确定排水方法。 9.

2基坑超挖、基底扰动

基坑开挖后,地基不平,使局部或全部地基面高程低于设计标高,基底原状土受到扰动。

1)

加强测量复核,要设高程控制桩,指派专人负责经常复测标高; 2)

机械挖方时须由专人指挥,当机械挖至还剩30cm时,应由人工开挖。 3)

当出现超挖或扰动时,及时报告监理、设计等单位,一起解决处理。 9.

3管道破裂

车站施工时经常遇到有地下管线,因此在施工中须釆取以下措施对其变形加以控制:

1)

施工前认真核实与施工有关联的地下管线资料,调查清楚各管线类型、规格、 埋深、材质、接头形式、节长和管线基础等资料,并做好详细的支吊、保护方案,经监理批准后实施管线支吊。

2)

支吊加固的不同管线建立与各自产权单位的联系卡片,向管理单位咨询支吊保护的技术要点,对可能破坏的各类管线,结合施工现场及工程施工阶段分别制定相应的

厦门市轨道2号线二标 施工作业指导书

应急措施,并取得相应管理单位的认可。

3)

严格按照施工组织设计施工,根据管线的分布及特点,建立各自的安全区域,挂牌标志,严禁机械设备碰撞。

4)

对各种管线进行全程监测,并根据监测结果及时反馈,指导施工,确保各类管线闸阀始终处于正常工作状态。一旦出现渗水、漏气等异常情况,立即查明原因、 釆取措施,并与管理单位取得联系,确保管线安全。

5)

不良地质地段必须釆取特殊的施工技术措施,如地层改良、缩短循环进尺等, 以防沉降超限。

9. 4基坑开挖引起涌砂或坑底底鼓失稳

基坑涌砂或基底底鼓失稳主要是因为基坑内外水位差较大,桩未进入不透水层或嵌固深度不足,坑内降水引起土体失稳。对此,釆用以下处理措施:

1)

立即停止基坑内降水或挖土。 2)

对基底实施注浆加固。 3)

必要时可进行基坑堆料反压。 4)

加强基坑外降水。 9.5 触电事故

1)

现场临时用电线路的安装、维修、拆除应由取得特殊工种上岗证的专职电工进行操作。

2)

所有电线路釆用“三相五线制”,机电设备必须按“一机一闸一漏一箱”设保护装置。场内禁止使用裸体导线,架设的电力线路应符合有关规定要求。

3)

变压器设置围栏,设门加锁,专人管理,悬挂警示牌,变压器必须设接地保护装置,其接地电阻不得大于40。

4)

室内配电拒、配电箱前设绝缘垫,并安装漏电保护装置。各类电器开关箱和电器设备,按规定设接地或接零保护装置,禁止电源开关箱内存放工具、杂物,并加锁。

5)

检修电器设备时必须停电作业,电源箱或开关握柄上应挂有警示牌或派人看 管,严禁带电作业。

6)

施工现场用的手持照明灯使用36V以下的安全电压,在暗挖施工中使用的照明灯必须使用12V以下的安全电压。

7)

生活照明用电严禁个人私自拉接线路,私自安装插座和大功率电器。

- 10

上一篇:大手牵小手全家一起走下一篇:地铁安全监理工作总结