地铁车站防水施工流程

2022-11-04

第一篇:地铁车站防水施工流程

地铁车站质量控制之防水混凝土施工

本条文简要介绍地铁车站施工质量控制,主要是防水混凝土施工质量控制的主要措施。

一、施工准备阶段质量控制

(一)质量控制目标确定

1 施工前施工管理人员必须全面学习、熟悉和审查施工图纸及其有关设计资料,研究现场条件、各分项工程及工程结构形式特点;熟悉地质、水文等勘察资料。 2 调查研究、收集有关资料:包括社会调查、自然调查、地上地下构筑物调查、技术经济条件调查。

3 根据补充调查和收集的资料,改进工程施工方案和确定质量控制重点目标。

(二)质量保证计划

1 由项目经理组织编制实施性施工组织设计,评估质量风险,制定质量保证计划和措施。

2 对关键部位、特殊工艺、危险性较大分项工程分别编制专项施工方案和质量保证措施。

3 按投标文件指定的规范、标准及其他有关的规定严格控制工程施工质量。

二、过程质量控制要点

(一)模板支架施工 地铁车站工程中,有关模板支架施工质量控制,说法错误的是(顶板结构应先铺设模板后支立支架)。

1 依据施工方案和质量目标,选择模板支架体系,并按有关规范进行设计和验算。 2 模板支架安装。模板面必须平整,洁净、无损坏,并涂脱模剂;排架立杆间距必须按施工组织设计施工,不得擅自加大间距。结构梗斜和底梁模板支立位置应正确、牢固、平整;顶板结构应先支立支架后铺设模板,并预留10~30mm沉落量;墙体结构应根据放线位置分层支立模板,内模板与顶模板连接好并调整净空合格后固定,外侧模板应在钢筋绑扎完后支立。

3 变形缝、止水带安装。端头模板应钉填缝板,填缝板与嵌入式止水带中心线应和变形缝中心线重合,并用模板固定牢固。止水带不得穿孔或用铁钉固定。留置垂直施工缝时,端头必须安放模板,设置止水带。诱导缝、变形缝、止水带、遇水膨胀止水条的固定和安装,必须由项目技术员、质检员验收。

(二)混凝土浇筑

地铁车站工程中,防水混凝土灌注时的自由倾落高度不应大于(2)m。 1 车站结构的防水混凝土配合比应经试验确定,拌合时严格控制称量误差在允许范围内。

2 防水混凝土拌合物在运输后如出现离析,必须进行二次搅拌。当坍落度损失后不能满足施工要求时应加入原水灰比的水泥浆或二次掺加减水剂进行搅拌,严禁直接加水。 3 泵送混凝土应符合下列规定:①确定合理的浇筑坍落度,根据混凝土的坍落度大小确定振捣时间。坍落度大时减少振捣时间,防止过振;坍落度小时延长振捣时间,防止漏振;②混凝土不得发生离析现象;③混凝土必须保证供应,连续作业;④输送泵管路拐弯宜缓,接头严密,输送混凝土接长管路时分段进行,接好一段,泵出混凝土后方可接长下一段;⑤输送泵间歇时间预计超过45min或混凝土出现离析现象,应立即冲洗管内残留混凝土;⑥输送混凝土中,受料斗内应保持足够数量的混凝土。

4 防水混凝土灌注时的自由倾落度高度不应大于2m。灌注高度超过3m时,应采用串筒、溜槽或振动溜管下落。

5 防水混凝土每层灌注厚度:插入式振捣器不应大于300mm,表面振捣器不应大于200mm。

6 混凝土灌注过程中应随时观测模板、支架、钢筋、预埋件和预留孔洞等情况,发现问题,及时处理。

(三)养护与拆模

承重结构顶板拆模时间应满足,跨度在2~8m的结构混凝土强度达到设计强度的(75%)。

1 混凝土终凝后应及时养护,垫层混凝土养护期不得少于7d,结构混凝土养护期不得少于14d。 2 结构拆模时间:非承重侧墙模板,在混凝土强度达到2.5MPa时方可拆除;承重结构顶板和梁,跨度在2m及其以下的混凝土强度达到设计强度50%,跨度在2~8m的结构混凝土强度达到设计强度70%,跨度在8m以上的结构混凝土强度达到100%设计强度方可拆除。

(四)主体结构防水施工

关于明挖法施工的地下车站结构防水措施,属于主体防水措施的是(自防水混凝土)。

关于明挖法施工的地下车站结构防水措施,属于施工缝防水措施的有(遇水膨胀止水带,中埋式止水带,外贴式止水带,外涂防水涂料)。

1 地铁车站工程实践表明,车站(主体结构、变形缝)防水施工质量直接影响运行安全,因此必须重点进行控制。

2 地铁车站主体结构应以混凝土结构自防水为主,以接缝防水为重点,辅以防水层加强防水,并应满足结构使用要求,防水混凝土的施工配合比应通过试验确定,试配混凝土的抗渗等级应比设计要求提高一级。防水混凝土除应满足抗渗等级要求外,尚应根据地下工程所处的环境和工作条件,满足抗压、抗裂、抗冻和抗侵蚀等耐久性要求。

3 明挖法施工地下车站结构防水应符合表2K320091-1 的规定。 1)工程部位:主体 防水措施:防水混凝土(必选)、防水砂浆、防水卷材、防水涂料、膨润土防水材料

防水等级一级:应选一至两种 2)工程部位:施工缝

防水措施:遇水膨胀止水条、外贴式止水带、中埋式止水带、水泥基渗透结晶型防水材料(必选)、预埋注浆管 防水等级一级:应选两种 3)工程部位:后浇带

防水措施:补偿收缩防水(必选)、外贴式止水带、预埋注浆管、防水涂料、遇水膨胀止水条、防水密封材料 防水等级一级:应选两种

4)工程部位:变形缝

防水措施:中埋式止水带(必选)、外贴式止水带、可卸式止水带、防水密封材料、外贴防水卷材、预埋注浆管 防水等级一级:应选两至三种

4 喷锚暗挖法施工车站防水必须按照设计要求严格施工质量,防水措施应符合表2K320091-2一级防水的要求。 1)工程部位:主体

防水措施:防水混凝土(必选)、塑料防水板、防水卷材、膨润土防水材料

防水等级一级:应选一至两种 2)工程部位:内衬砌施工缝

防水措施:遇水膨胀止水条、外贴式止水带、中埋式止水带、水泥基渗透结晶型防水材料、防水涂料、预埋注浆管 防水等级一级:应选两种 3)工程部位:内衬砌变形缝

防水措施:中埋式止水带(必选)、外贴式止水带、可卸式止水带、防水嵌缝材料、预埋注浆管 防水等级一级:应选两种

(五)接缝的防水处理

地铁车站工程施工中,后浇混凝土养护期不应少于(28)d。

1 地铁车站结构变形缝防水处理质量也是直接影响运行安全的重要因素,施工中作为重点控制。

2 施工缝防水应符合下列规定: 1)复合墙结构的环向施工缝设置间距不宜大于24m,叠合墙结构的环向施工缝设置间距不宜大于12m;

2)墙体水平施工缝应留在高出底板表面不小于 300mm 的墙体上;拱(板)墙结合的水平施工缝宜留在拱(板)墙接缝线以下150~300mm 处;施工缝距孔洞边缘不应小于300mm。

3)水平施工缝浇灌混凝土前,应先将其表面浮浆和杂物清除,先铺净浆或涂刷界面处理剂、水泥基渗透结晶型防水涂料,再铺30~50mm厚的1:1水泥砂浆,并应 及时浇筑混凝土;垂直施工缝浇筑混凝土前,应将其表面凿毛并清理干净,并应涂刷混凝土界面处理剂或水泥基渗透结晶型防水涂料,同时应及时浇筑混凝土。

4)盖挖逆作法施工的结构板下墙体水平施工缝,宜采用遇水膨胀止水条(胶),并配合预埋注浆管的方法加强防水。 3 变形缝防水应符合下列规定:

1)变形缝处的混凝土厚度不应小于300mm,当遇有变截面时,接缝两侧各500mm范围内的结构应进行等厚等强处理;

2)变形缝处采取的防水措施应能满足接缝两端结构产生的差异沉降及纵向伸缩时的密封防水要求;

3)变形缝部位设置的止水带应为中孔型或Ω型,宽度不宜小于300mm; 4)顶板与侧墙的预留排水凹槽应贯通。 4 后浇带防水应符合下列规定:

1)后浇带应设在受力和变形较小的部位,间距宜为 30~60m,宽度宜为700—1000mm;

2)后浇带可做成平直缝、阶梯形或楔形缝;后浇带应采用补偿收缩防水混凝土浇筑,其强度等级不应低于两侧混凝土;后浇带应在两侧混凝土龄期达到 42d后再施工;

3)后浇带两侧的接缝宜采用中埋式止水带、外贴式止水带、预埋注浆管、遇水膨胀止水条(胶)等方法加强防水。

第二篇:北京地铁呼家楼车站防水施工技术研究

摘要:北京地铁呼家楼车站应用了复合式衬砌的方法进行防水施工,该施工技术采用400g/m2土工布缓冲层和2mm厚ECB塑料防水板作为隔水层,操作方便,防水效果好,能够很好地解决车站后期渗漏,加快了施工进度,保证了防水质量,具有推广价值。

关键词:复合式衬砌防水 防水隔离层 土工布缓冲层 ECB 塑料防水板 结构自防水 特殊部位防水

随着国民经济的发展,城市建设的日益繁荣,城市交通的紧张状况也就日益严重,城市地下铁路建设在我国正快速发展,北京、上海、天津、广州、深圳等城市已拥有地铁,沈阳等城市也开始修建城市地铁。我国大城市多在沿海或沿江河地区,地下水位高,因此做好地下工程防水施工,提高防水质量,做到不渗不漏十分重要。

呼家楼站是北京地铁十号线的中间站,是一座结构设计独特、技术难度较大的地铁站,车站位于东三环与朝阳北路交叉路口,呈南北走向,结构为分离岛式车站。另与规划的东西走向的M6线在本站成“十字换乘关系”。车站长120m,共设5个出入口。

车站防水等级为一级,结构不允许出现渗水,内衬表面不得有湿渍。车站风井结构防水等级为二级,顶部不允许滴漏,其他部位不允许漏水,结构表面可有少量湿渍,总湿渍面积不应大于总防水面积的6/1000;任意100m2防水面积上的湿渍不超过4处,单个湿渍的最大面积不大于0.2m2。 1地铁工程防水存在的主要问题 1.1防水材料问题

地下工程常用防水材料有涂料类和卷材两种,由于地铁车站为一级防水,防水质量要求高,涂料类防水材料在结构初支基面不平整、不干净,潮湿或灰尘较大的情况下施工,和基面容易形成两层皮,无法保证防水效果,因此,地铁防水施工通常采用卷材类防水材料。

目前北京地铁施工中普遍采用复合式衬砌防水,由缓冲层与防水板组成,外包在车站二次衬砌结构外侧,形成闭合封闭体,起到隔水作用。 1.2结构自防水问题

由于车站采用C30、P10现浇钢筋混凝土结构,混凝土标号高、抗渗等级高,造成单位体积混凝土的水泥用量多,从而使水化热高,混凝土的收缩量加大,致使混凝土产生裂缝,削弱了混凝土的自防水能力。

另一方面,在车站的高直边墙、拱部混凝土浇注过程中难以振捣,导致混凝土不密实,如拱顶封口只能靠泵送压力压入混凝土填充,密实度难以保证,容易形成渗漏孔隙。

混凝土的配合比、和易性、入模温度及供应的及时性等因素影响混凝土质量,处理不当也会使混凝土不密实,产生缝隙,造成后期渗漏。

1.3变形缝、施工缝、穿墙管等部位防水问题

变形缝、施工缝、穿墙管等部位是地下工程防水的薄弱环节,处理不当极易产生渗漏水,尤其是穿墙管,防水处理不当容易把地下水引进结构内。 2呼家楼车站防水施工方法

呼家楼车站采用复合式衬砌防水,即由初期支护、防水隔离层、二次衬砌构成3道防水防线。其中防水层不仅起防水作用,在整体结构中还起到隔离初期支护喷射混凝土与二次衬砌模筑混凝土,防止二衬混凝土开裂。

由于二次衬砌混凝土在浇注完成硬化过程中,混凝土内部存在收缩应力、温度应力,混凝土在收缩过程中与外侧喷射混凝土产生摩擦,由于喷射混凝土表面粗糙,约束其变形,产生拉应力,容易致使二衬混凝土开裂,因此,在初支护喷射混凝土与二衬混凝土之间设置表面光滑的防水层,可以大大减小拉应力的产生,有效的保护二衬混凝土的防水质量。 2.1防水隔离层 目前北京地铁工程使用的防水材料有LDPE膜、EVA膜、PVC板、ECB板。经已有工程的检验LDPE膜、EVA膜较薄(0.8mm),抗刺穿能力弱,二衬钢筋施工过程中容易破坏;PVC板在热熔焊接时产生有毒气体,危害人体健康,且焊接质量不易保证,现已较少使用。ECB板在抗拉、断裂延伸率、就抗刺穿性能上均优于前者,新建工程已广泛使用。

呼家楼车站外包防水层材料选用400g/m2土工布缓冲层和2mm厚ECB塑料防水板组成,其耐老化,耐细菌腐蚀,易操作且焊接时无毒气,适宜在潮湿基面上施工,施工采用无钉铺设工艺(见图1)。

2.1.1基面要求

①铺设防水板的基面表面应无明流水,否则应进行初支护背后注浆或表面刚性封堵处理,待基层表面无明水时,再施工做下道工序。

②铺设防水板的基面应平整;处理方法可采用喷射混凝土或砂浆抹面的方法,一般宜采用水泥砂浆抹面的处理方法,处理后的基面应满足:D/L≤1/8;D为相邻两凸面间凹进去的最大深度,L为相邻两凹凸间的最小距离。

③基面不得有尖锐的毛刺部位、不得有铁管、钢筋、铁丝等凸出物存在,否则应从根部进行凿除,然后在凿除部位采用1:2.5的水泥砂浆进行覆盖处理。

④变形缝两侧各50cm范围内的基面全部采用1:2.5的水泥砂浆找平,以便于背帖式止水带的安装,从而保证防水分区的效果。

2.1.2土工布缓冲层铺设及塑料垫片固定 400g/m2土工布具有一定的密实度和柔软性,在铺设缓冲层时,基层表面应平整无明水,用L≥32mm射钉将塑料垫片钉在土工布上固定缓冲层,缓冲层应分段铺设长度根据施工现场安排而定。塑料垫片的排列从上而下,拱顶间距为50cm,两侧边墙间距为80cm~100cm,底板间距为150cm~200cm,呈梅花状布置。

①土工布搭接5cm,搭接边用热风焊枪点粘焊接或射钉固定,间隔30cm~50cm。

②缓冲层的铺贴方向无一定要求,但一定要铺贴平整,以便为ECB防水层创造平整的基面,从而获得平整的防水层。

用的塑料圆垫片的布设位置须根据砼基面状况而定。只要可能,就选择基底面的低处来作固定点,以免防水层在此处绷紧吊空或浇筑二衬混凝土时弄破。钉子应被埋在垫圈的凹槽内,而不致与防水卷材接触破坏防水层。

2.1.3ECB卷材铺设

顶、底纵梁背后的ECB防水板卷材宜采用纵向铺设的方法,以减少T形接缝,尽量避免十字接缝。铺设时,一般予留出大于400mm余量,当浇注二次混凝土时,卷材不致被拉破、拉裂。

①当用特制电烙铁或热风枪将ECB焊在塑料园垫片上时,位置要对准,不得用力过大和时间过长,以免破坏防水层;焊接应牢固可靠,避免防水板脱落。

②防水板之间接缝采用双焊缝进行热熔焊接,搭接宽度为10cm。焊接完毕后采用检漏器进行充气检测,充气压力为0.25MPa,保持该压力不少于5min,允许压力下降20%。如压力持续下降,应查出漏气部位并对漏气部位进行全面的手工补焊。

③在卷材间用热熔焊机自动焊接时,要随时注意将接缝处的一侧卷材定位,以免错位后造成防水层被拉过紧,出现防水层鼓胀造成不平整,或形成单焊缝。

在施工过程中,尽量避免手工焊接,在部分接缝无条件用热熔焊机焊接时再采用手工焊接,手工焊道上应在补加一道宽度不小于7cm的加强层。

④所有防水板甩茬预留长度均应超过预留搭接钢筋顶端不小于40cm,以便下一次防水板铺设搭接。 2.1.4施工注意事项

①施工过程中不得穿带钉子的鞋在防水板上走动。

②钢筋绑扎过程中防止钢筋端头刺破防水层,钢筋焊接时应在防水板与钢筋之间用石棉布进行隔离,防止焊接烧伤防水板。

③混凝土浇注时严禁振捣棒接触防水板。

④施工过程必须加强对防水板的检查,发现破损要做好标记,及时进行修补。 2.2衬砌结构自防水

呼家楼车站二次衬砌采用C30、P10防水混凝土施工,迎水面钢筋保护层厚度不小于50mm。在浇注过程中严格施工,鉴于结构拱顶不易浇注密实,每隔4m~5m埋设一道二衬背后注浆管,对二衬背后与防水板之间进行注浆填充。

2.3施工缝、变形缝、穿墙管防水 2.3.1施工缝

根据车站混凝土浇注顺序,施工缝有环向和纵向两种。在施工过程中采取嵌缝胶和预埋注浆管的方法进行防水。

①遇水膨胀嵌缝胶应具有缓胀性能,属不定型产品,挤出后固化成型,成型后的宽度为15mm~20mm,高度为8mm~10mm,采用专用注胶器均匀挤出粘结在施工缝表面,粘贴部位为结构中线两侧各10cm位置。

②粘贴嵌缝胶的施工缝表面需要先凿毛,将疏松、起皮、浮灰等凿除并清理干净,使施工缝表面坚实、基本平整、干燥、无污物。

③嵌缝胶粘贴完毕后,应避免施工过程中遇水,否则提前膨胀后会导致嵌缝胶的止水能力下降。

④注浆管每隔4m~5m间距引出一根注浆导管,利用注浆导管进行注浆,使浆液从注浆管孔隙内均匀渗出,填充两道嵌缝胶范围内的空隙,达到止水的目的。注浆导管的开孔部位应做好临时封堵,避免浇筑混凝土时杂物进入堵塞导管。 ⑤注浆导管应在结构内的钢筋内穿行一段距离后再引出结构表面,引出位置应距施工缝不小于20cm间距。不必将直接穿过背水面嵌缝胶直接引出。以免影响嵌缝胶的防水密封效果。 2.3.2变形缝

呼家楼车站变形缝的处理方法如下:结构变形缝采用30cm~35cm宽中埋式注浆PVC止水带、30cm~35cm宽的背贴式止水带进行防水处理,同时在顶拱、侧墙结构内表面预留凹槽,设置镀锌钢板接水盒。

底板和侧墙变形缝两侧的结构厚度不同时,此时需要将变形缝两侧的结构做等厚度处理,在距变形缝不小于30cm以外的部位再进行变断面的处理,这样不但利于柔性防水层的铺设质量,而且可设置背贴式止水带,确保了变形缝部位的防水效果。

(1)中埋式注浆止水带施工要求。①中埋式注浆止水带可采用合成树脂类PVC止水带,止水带的宽度为30cm~35cm。②注浆止水带采用热熔对接法连接,同时应保证对接部位注浆管的畅通。对接部位的抗拉强度应不小于母材强度的80%,要求对接部位接缝严密、不透水。③注浆止水带的注浆导管引出间距6m~8m,引出位置以便于后期注浆操作为主。注浆导管应进行临时封堵,避免后期施工过程中异物进入堵塞注浆管。④注浆导管宜在结构内穿行一段距离后再引出,即注浆导管引出位置应距变形缝30cm~40cm。

(2)背贴式止水带施工要求。

①背贴式止水带采用宽度为30cm~35cm宽的塑料止水带。

②塑料止水带采用热熔对接焊接接头,接头部位的拉伸强度不小于母材强度的80%。

③为保证背贴式止水带与混凝土咬合密实,在止水带两侧齿条之间设置注浆花管。 3 结束语

(1)通过车站防水施工证明,北京地铁呼家楼车站采用的复合式衬砌防水技术能够满足车站一级防水的要求,400g/m2土工布缓冲层和2mm厚ECB塑料防水板材料性能良好,形成了全封闭防水系统。

(2)通过充气试验,ECB防水板使用热合机焊接焊缝严密牢固,气密性好,工艺先进、成熟。

(3)施工缝采用嵌缝胶结合注浆管加强防水,能够很好地解决施工缝渗漏水问题。

第三篇:大连地铁2号线车站主体防水技术

摘 要:介绍了大连地铁2 号线车站主体底板、侧墙、顶板的防水施工技术,对施工缝、穿墙管、变形缝等部位的防水措施进行了重点阐述。该工程针对不同的防水部位,设计采用了自粘改性沥青防水卷材、钢板橡胶止水带、水泥基渗透结晶型防水涂料、单组分聚氨酯密封胶等防水材料,收到了良好的效果。 关键词:大连地铁;防水;明挖法;施工

1 工程概况

大连地铁 2 号线后革站处于土革站与规划岚岭路交叉口东侧,为地下双层岛式车站,车站主体基本为东西走向,起讫里程为DK35 +174.547 ~DK35 +347.747,全长 173.2 m。该车站有效站台长 118 m、宽10 m,车站标准段总宽 18.5 m,车站底板最大埋深17.29 m,顶板覆土 3.42~4.18 m,采用明挖法施工。车站围护结构采用砂浆锚杆喷射混凝土分级放坡形式,并采用坑内排水的方案。

2防水设计

本工程防水设计遵循“以防为主、刚柔结合、多道设防、因地制宜、综合治理”的原则,车站主体防水等级设计为一级,设计标准不允许有渗水,结构表面无湿渍。工程所采用的防水材料主要有:自粘改性沥青防水卷材、钢板橡胶止水带、水泥基渗透结晶型防水涂料、单组分聚氨酯密封胶等。

3 车站主体防水施工技术

车站主体结构标准段防水构造见图1。主体结构采用的主防水材料为 4 mm 厚自粘改性沥青防水卷材(执行 GB/T 23457—2009《预铺/湿铺防水卷材》标准)。自粘改性沥青防水卷材施工顺序:基面处理→卷材检查→卷材铺设弹线(底、墙、顶)→底板铺设卷材→侧墙铺设卷材→顶板铺设卷材→防水卷材层质量检查→验收。

卷材铺设基面要求:1)基层表面应坚实、干净、平整,不得有酥松、起砂、积水和明水流;2)所有阴阳角部位均采用 1∶2.5 水泥砂浆倒角,阴角做成 5 cm×5cm 的倒角,阳角采用水泥砂浆圆顺处理,R≥30 mm。

3.1 底板防水施工工艺

1) 基面达到铺设要求后,先在铺设卷材位置弹线。

2) 卷材铺设时,每幅卷材端部错开不少于 30cm,自粘层向上,卷材采用双面胶固定在垫层上。

3)卷材与卷材的搭接宽度为 80 mm,卷材之间的搭接缝采用80 mm宽、1.2 mm 厚的双面胶条封缝。底板卷材应铺至侧墙立面牛腿施工缝上 30 mm 处,并用钢板压条固定。底板与侧墙相交处应做防水附加层,附加层宽度不少于 50 cm。

4)卷材施工完毕,经检查验收符合质量标准后,应及时施工保护层。 3.2侧墙防水施工工艺

1)侧墙卷材铺设方法,与底板相同。

2)侧墙铺设卷材时,自粘层向内(与主体结构粘贴),PE 膜向外(与围护结构面接触)。

3)上下两幅卷材搭接时,上幅在外、下幅在内,上幅卷材压下幅卷材,铺设平顺、舒展,无皱褶,无隆起,密贴、牢固。

4)立墙面卷材延伸到顶板不小于 60 cm 处。 3.3顶板防水施工工艺

顶板铺设卷材前,先涂刷聚合物水泥浆进行基面处理,涂刷厚度0.1~0.2 mm。卷材铺设方法及要求与底板相同,自粘层向下,验收合格后及时施工保护层。

4细部节点防水施工技术 4.1施工缝防水处理

1)明挖结构施工缝采用钢板橡胶(丁基橡胶)止水带+防水附加层+注浆管进行防水处理;无法安装钢板橡胶止水带的施工缝(例如与既有结构接口部位的施工缝等),采用双道缓膨胀遇水膨胀胶+预埋注浆管+背贴式止水带的方法进行防水处理。

2)钢板橡胶止水带宽 200 mm、厚 5 mm,钢板厚0.8 mm,防水加强层选择与主体结构外包防水层相同的自粘改性沥青防水卷材。注浆管为橡胶材质,注浆导管采用PVC 软管,注浆材料选用超早强自流平水泥浆或高渗透环氧树脂灌浆料。

3)水平施工缝、环向施工缝浇筑混凝土前,应先将表面的浮浆和杂物清除干净,再涂刷净浆(或混凝土界面处理剂、水泥基渗透结晶型防水涂料等),然后浇筑 30~50 mm 厚的 1∶1 水泥砂浆。水平施工缝防水做法见图2。

4)预埋注浆管时,定位应准确,并固定牢固。注浆管安装长度每段不超过 6 m,两端安装注浆导管,注浆导管必须与基面密贴,任何部位都不得悬空。注浆导管与注浆管应连接牢固、严密,末端安装塞子进行临时封闭。注浆导管埋入混凝土内的部分至少有一处与钢筋绑扎牢固,露出长度不小于150 mm,导管引出端设置在易于注浆施工的位置。图 3 为注浆管安装示意图。

4.2穿墙管防水处理

穿墙管件(如接地电极或穿墙管等),采用止水法兰+遇水膨胀止水条进行加强防水处理,同时对穿过防水层的部位进行密封处理。图 4 为穿墙管防水处理示意图。

4.3 变形缝防水处理

变形缝采用中埋式止水带+背贴式止水带及单组分聚氨酯密封胶进行防水处理。图 5 为底板变形缝防水构造。

变形缝施工工艺: 1)首先安设钢边橡胶止水带,止水带中间空心圆环与变形缝中心线重合并安设到混凝土衬砌厚度的一半处,做到平、直、顺。止水带之间连接橡胶采用粘结法,钢板采用焊接法,要求连接缝严密牢固。钢边橡胶止水带两侧钢板设置预留孔,预留孔间距 250mm,两侧错开布置,以便用铁丝穿孔和钢筋固定牢固。

2)变形缝一侧混凝土达到强度后拆模,拆模时防止破坏钢边橡胶止水带;变形缝缝间填设闭孔交联型泡沫塑料板材,要求填缝紧密平直,与设计缝宽相同。

3) 拆模后,清除槽体内 (深30mm)和封口处的预埋泡沫板,要求混凝土面平顺、干净、干燥,两侧钢筋不允许侵入槽体内。

4)槽体用胶枪内嵌单组分聚氨酯密封胶,先打底胶后填密封胶,并用隔离层将密封胶与槽内上下嵌缝材料隔开,使其只能与槽内两侧混凝土粘结。

5) 底板变形缝槽口内填充聚合物防水砂浆。顶板、侧墙变形缝槽口设不锈钢接水槽,并用 M8 不锈钢膨胀螺栓固定在结构上,侧墙用单组分聚氨酯密封胶封堵钢板与混凝土间缝隙,防止槽体内的水流出。

6) 底板变形缝内的中埋式止水带采用盆式安装方法,止水带两翼与水平方向的夹角控制在15°~20°之间。

7)止水带局部无法安装(如遇钢筋无法穿越)时,采用遇水膨胀止水胶进行过渡连接处理。止水胶应与止水带纵向搭接不少于50 mm,而且要求粘结在止水带的迎水面一侧。止水胶固定在施工缝表面的预留凹槽内。

5 结语

地铁工程进行防水设计时,应遵循“以防为主、刚柔结合、多道设防、因地制宜、综合治理”的原则,针对不同的部位,设计采用不同的防水材料。施工缝、穿墙管、变形缝等细部节点,属防水的薄弱环节,应加强防水处理。正确的防水设计加上严格的施工质量控制,地铁工程的防水才能取得预期的效果。

参考文献:

[1]孟宪云.大连市地铁2号线施工图[R]. [2] 国家人民防空办公室.GB 50108—2008 地下工程防水技术规范[S].北京:中国计划出版社,2009. [3]住房和城乡建设部.GB 50490—2009城市轨道交通技术规范[S].北京:中国建筑工业出版社,2009

第四篇:地铁车站施工经验

地铁施工施工工序浅析

一、引言

地铁具有运量大、快捷、安全、准时、舒适等特点,是城市交通的主要发展方向。世界上第一条地铁是1863年在伦敦修建的,迄今已有近一个半世纪。这一个半世纪中,随着土建施工技术、机械制造技术、通信及信号技术等诸多领域的飞速发展,地铁事业亦取得了长足进步。从地铁运营的里程上看,欧洲和北美发达国家占领先地位,但近20年发展中国家的地铁事业也呈蓬勃发展之势。

我国1971年北京建成第一条地铁,目前上海、广州、深圳、南京等多个城市均已部分建成并正在兴建地铁网络,我国地铁事业正进入一个发展高潮。

上海早在1958年就已经开始筹建地铁,经过长期摸索、克服了种种艰难,终于在1995年4月28日地铁一号线建成试运营,历时38年。其后,2000年7月地铁二号线建成、2001年底明珠一期建成,目前在建或即将开工的有一号线北延伸(共和新路高架)、莘闵线、明珠二期、M8线、二号线西延伸、明珠一期北延伸、R4线等等。上海地铁建设进入了前所未有的高速发展阶段。

在上海软土地区,地层基本为饱和含水流塑或软塑粘土层,抗剪强度低,含水量高达40%以上,灵敏度在4~5,压缩性大都属高压缩,并具有较大的流变性,这种软弱流变的地质条件决定了上海地区的基坑工程中环境保护问题更为突出。在上海曾出现一些深基坑周围地层移动引起附近建筑和设施破坏的工程事故,造成了严重的社会影响和经济损失,因此控制深基坑施工过程中的风险贯穿于施工的全过程。

土建施工在车站施工中所占的周期、投资都比较大,而且是车站施工中风险比较集中的阶段,尤其应引起足够重视。

地铁土建施工涉及到诸多工序,以下按工序介绍:

二、 围护结构

围护结构的主要作用是与支撑一起形成支护体系,支挡坑内外的不平衡土压力,保持基坑的稳定。因此,围护结构应具有足够的强度、刚度和稳定性。在上海地铁车站工程中,主要应用的有两类围护结构:地下连续墙和SMW(Soil Mixing Wall)工法。

2.1 地下连续墙

地下连续墙是在基坑四周通过成槽、钢筋混凝土施工等工艺形成的具有较好强度、刚度和抗渗性的地下连续壁。地下连续墙具有刚度大、抗渗性能好、施工过程中无振动、无噪音等特点。地下连续墙作为地铁车站深基坑的挡土围护结构,施工时对周围环境影响小,适宜在城市建筑密集区域作业。一般地下连续墙适用于开挖深度14米以上的深基坑。

根据地下连续墙在施工阶段和使用阶段的作用,地下连续墙可以分为单墙体系和双墙体系。双墙体系中,地下墙在施工阶段作为挡土结构与支撑一起形成支护体系;在使用阶段与内衬墙共同工作形成受力体系,承受结构荷载。单墙体系中,地下墙在施工阶段作为挡土结构与支撑一起形成支护体系;在使用阶段单独作为承重体系的一部分,承受结构荷载。 2.1.1 地下连续墙施工工艺 地下连续墙工艺流程: 导墙施工

成槽 成槽过程中应使用泥浆护壁,泥浆于现场配制。 泥浆置换、清底 吊放锁口管 钢筋笼吊放 混凝土浇捣 锁口管拔出

地下连续墙施工前先要构筑导墙,导墙净宽应比连续墙宽度稍宽约4cm,顶部比地面高4~5cm。一般导墙深度约1.5米,遇障碍物或暗浜等特殊情况时,应先行处理,考虑导墙加深并要求导墙落到原状土上。

地下连续墙分幅成槽和浇捣混凝土,每次成槽宽度约2~6米,平面形状有“—”形、“L”形和“T”形等。槽段有先行幅和后行幅之分,先行幅在槽段两头放置锁口管。地下连续墙接头常用的有:预制接头、刚性接头、柔性防水接头和预留注浆孔接头等。 2.1.2 地墙施工控制要点

1、 导墙轴线和标高的复测

导墙轴线决定着地下连续墙的位置;导墙顶标高将影响到钢筋笼的入槽标高。在单墙结构地铁车站中,进而将影响到钢筋连接器与底板、中楼板和顶板钢筋的连接。因此,导墙的轴线和标高,施工单位必须报验。

2、 成槽泥浆性能指标的控制:

成槽泥浆的比重、粘度、含砂量等项指标,不仅影响槽壁的稳定,同时也影响地下连续墙混凝土的密实性和防水性能。因此,在地墙成槽和混凝土浇筑过程中,必须逐幅槽段进行抽检,将泥浆指标控制在设计要求或规范规定的范围内。

3、 成槽深度、垂直度

成槽深度、垂直度,必须控制在设计或规范允许范围内,一般应控制地墙垂直度高于3/1000,对于单墙结构车站,尤其应严格控制地墙的垂直度;成槽达到设计标高后,应进行清槽,以提高地墙的承载能力,减小沉降量。

4、 钢筋笼

在钢筋品种、规格、数量符合设计要求的前提下,对单墙结构地下连续墙,应重点控制: a. 钢筋连接器与底、中、顶板对应位置的准确性;

b. 钢筋笼入槽时笼顶标高即吊筋长度控制,以确保钢筋连接器位置的准确。

5、 混凝土浇筑 检查商品混凝土的配合比、强度和抗渗等级、坍落度,必须符合设计要求;检查导管埋入混凝土面的深度,避免因埋管过浅造成夹泥断墙事故;计算地墙混凝土的充盈系数,判断地墙施工质量。

2.1.3. 减少地下连续墙施工中对周围环境影响的若干措施

1、减小槽幅宽度

2、加固槽壁土体,一般用搅拌桩或注浆等方法加固。

3、做高导墙抬高泥浆液面或降水加大槽内外液面高差。

4、在保护对象和槽壁间设置隔离桩。

2.2 SMW工法

SMW工法是指将土与水泥浆搅拌后形成搅拌桩墙体,在墙体中插入高强度劲性芯材(一般为型钢)使之与搅拌桩墙体形成的复合挡土墙。

SMW工法作为基坑围护结构于1976年由日本竹中土木株式会社与成幸工业株式会社开发成功并应用。1986年日本材料协会编制了SMW工法的施工规范,使SMW工法的应用出现了一个高潮。据统计,至1993年,这一工法占日本基坑围护结构的50%,目前占到80%,已成为基坑围护的主要工法。

国内应用搅拌桩作围护和地基加固始于80年代,但当时使用的是纯搅拌桩,未加型钢。明珠二期兰村路站是目前国内以SMW工法作为围护结构的最大的基坑工程,该基坑围护结构全长700多米、最深达26米。

SMW工法作为一种新型的围护结构,具有以下特点:对周围环境影响小、高止水性、可在各种地层中使用、大厚度和大深度、施工速度快、造价低、环境污染小。

2.2.1 SMW工法施工工艺

SMW工法施工工艺流程:(搅拌桩施工工艺见搅拌桩节) SWM工法工艺流程图

2.2.2 SMW工法施工控制要点

1、 在搅拌机过程中,注入地层的浆液有一部份会流返回地面,须沿挡向施作一沟槽。沟槽边设固定支架,以便固定插入的H型钢。

2、 在搅拌成桩时,所需容量70~80%的水泥浆宜在下行钻进时灌入,其余的20~30%宜在螺旋钻上行回程时灌入。此时所需水泥浆仅用于充填钻具撤出留下的空隙。螺旋钻上拔的灌浆,对于饱和疏松的土体具有特别的意义,因为这种地层中的柱体易产生空隙。螺旋钻上行时,螺钻最好反向旋转,且不能停止,以防产生真空,有真空就可能导致柱体墙的坍塌(非饱和土体)。

3、 施工应按跳孔顺序进行,为保证围护结构的连续性和接头施工质量,两桩搭接部分应重复套钻。

4、 在搅拌桩的施工过程中,要特别注意水泥浆液的注入量和搅拌沉入及提升量及提升速度。下钻进的速度应比上提时的速度慢一倍左右,以便尽可能保证水泥土的充分搅拌,又可获得较高的贯入速度。在砂土互层或土性变化较大的场地施工时,应根据各种土质的情况选择水泥浆液的配合比,以便得到较均匀的墙体,确保工程质量。 (5) H型钢的回收,通过在插入的H钢表面涂一层减摩材料,从而使H型钢便于拔出回收。针对不同工程,不同水泥浆液配合比,在施工前作H型钢的拉拔试验,以确保H型钢的顺利回收。基坑开挖时围护墙体会产生弯曲变形,弯曲后H型钢的回收会比较困难,因此若考虑型钢回收则开挖过程中应尽量减小围护结构的变形。

(6) 水泥浆液中的掺加剂:国内工程多掺入一定量的木质素,以减小水泥浆液在注浆过程的堵塞现象。也可在水泥浆液中掺加膨润土,利用膨润土的保水性以增加水泥土的变形能力。不致因墙体变形而过早开裂,从而影响墙体的抗渗性。日本公司在施工时,材料的配比基本是1m3土体注入水泥75~200kg,膨润土10~30kg,水灰比w/c为0.3~0.8,根据工程类别及土性选择使用。

2.2.3 SMW工法施工控制要点

1、在搅拌机过程中,注入地层的浆液有一部份会流返回地面,须沿挡向施作一沟槽。沟槽边设固定支架,以便固定插入的H型钢。

2、在搅拌成桩时,所需容量70~80%的水泥浆宜在下行钻进时灌入,其余的20~30%宜在螺旋钻上行回程时灌入。此时所需水泥浆仅用于充填钻具撤出留下的空隙。螺旋钻上拔的灌浆,对于饱和疏松的土体具有特别的意义,因为这种地层中的柱体易产生空隙。螺旋钻上行时,螺钻最好反向旋转,且不能停止,以防产生真空,有真空就可能导致柱体墙的坍塌(非饱和土体)。

3、施工应按跳孔顺序进行,为保证围护结构的连续性和接头施工质量,两桩搭接部分应重复套钻。

4、 在搅拌桩的施工过程中,要特别注意水泥浆液的注入量和搅拌沉入及提升量及提升速度。下钻进的速度应比上提时的速度慢一倍左右,以便尽可能保证水泥土的充分搅拌,又可获得较高的贯入速度。在砂土互层或土性变化较大的场地施工时,应根据各种土质的情况选择水泥浆液的配合比,以便得到较均匀的墙体,确保工程质量。

5、H型钢的回收,通过在插入的H钢表面涂一层减摩材料,从而使H型钢便于拔出回收。针对不同工程,不同水泥浆液配合比,在施工前作H型钢的拉拔试验,以确保H型钢的顺利回收。基坑开挖时围护墙体会产生弯曲变形,弯曲后H型钢的回收会比较困难,因此若考虑型钢回收则开挖过程中应尽量减小围护结构的变形。

6、水泥浆液中的掺加剂:国内工程多掺入一定量的木质素,以减小水泥浆液在注浆过程的堵塞现象。也可在水泥浆液中掺加膨润土,利用膨润土的保水性以增加水泥土的变形能力。不致因墙体变形而过早开裂,从而影响墙体的抗渗性。日本公司在施工时,材料的配比基本是1m3土体注入水泥75~200kg,膨润土10~30kg,水灰比w/c为0.3~0.8,根据工程类别及土性选择使用。

三、地基加固

由于上海地区土质松软、含水量高、流变性强,因此对于较深的基坑,若不采取措施则开挖变形将较大。由于地铁基坑大多处于城市建筑物、管线较密集地区,对变形控制要求非常高,因此在基坑深度大、周围环境复杂时,应考虑对基坑进行加固。 基坑加固方法有很多种,这里主要介绍在地铁工程中应用较多的几种:注浆法、深层搅拌法、旋喷法等。广意上讲此三种工法均属于注浆工法,此处所讲的注浆法是指狭义上的注浆法即通过注浆管进行的单液浆或双液浆施工方法。

3.1注浆加固

注浆法是指将注浆管置于(打入法、钻孔法、振冲法等)所要加固的地层中,通过注浆管注入浆液,使之与土体形成复合体,增加土体强度。

根据注浆进入土体的压力、掺和方式的不同,注浆可分为劈裂注浆和压密注浆。当注浆压力比较大时,浆液将沿作土体的薄弱处注入,沿径向流动,最终形成狼牙棒式的注浆体,这种方法称之为劈裂注浆。当压力较小时,浆液压力不足以劈裂土体,注浆体呈柱状,主要通过挤密作用加强土体,此方法称之为压密注浆。

根据浆液成分和配比的不同,可分为单液浆和双液浆。单液浆主要材料为水泥(可掺加适量的粉煤灰),而双液浆主要为水泥(适量粉煤灰)和水玻璃溶液的混合液。由于水泥浆和水玻璃液混合后会迅速凝固并产生强度,因此双液浆可用于工期紧、早期强度要求比较高的基坑加固。 3.1.1注浆工艺流程:

1、 注浆孔定位

2、浆液配置

3、机架就位

4、注浆管钻进(或打入、振入)

5、浆体注入边提升注浆管

6、机架移位 3.1.2注浆控制要点

1、 控制浆液配比

正式施工之前,根据搅拌罐容积和设计配合比,配制标准水泥浆液,测得标准条件下水泥浆比重和粘度。施工过程中应随机抽检水泥浆比重、粘度,以检查水泥掺量是否符合设计要求。

2、 控制注浆量

应配置浆液流量自动记录装置,如实记录浆液注入量。若无流量计,则在正式施工前,应对搅拌罐的容积进行标定,根据配合比、水灰比要求和加固深度、设计孔距等项数据,通过计算确定每孔水泥浆液注入量,作为施工标准和检查依据。

3、控制施工参数

首先是加固深度部位的控制,复核钻杆长度,使其满足加固深度要求;其次,施工中随机检查施工参数的执行情况,如注浆压力、注浆量、拔管间距等,发现问题,及时整改。

4、加固效果检验

确定检验方法,应满足设计单位提出的检验指标的要求,通常要求加固后土层的PS值达到1.0~1.5Mpa。要求进行静力触探检验,检验点位应随机抽样确定。

3.2搅拌桩加固 搅拌桩是指利用特殊的搅拌头或钻头,钻进地基至一定深度后,喷出固化剂,使其沿着钻孔深度与地基土强行拌和而形成的加固土桩体。固化剂通常采用水泥或石灰,可以是浆体或粉体。 搅拌桩适用于加固淤泥、淤泥质土和含水量较高而地基承载力小于120Kpa的粘土、粉土等软土地基。搅拌桩施工时无振动、无噪声、无泥浆污染、适合于在城市建筑物等密集地区进行地基加固。

根据机械中搅拌头数量可分为:单轴机、两轴机、三轴机和多轴机。每种机械在加固过程中的挤土和涌土性能均不相同,应引起足够重视。 3.2.1搅拌桩加固工艺流程

1、 定位

2、 搅拌下沉

3、 喷浆提升

4、 重复搅拌下沉

5、重复搅拌提升

6、清洗

7、移位

3.3旋喷加固

旋喷加固是通过旋喷管将高压喷射流注入土体内,使之与土体充分混合并重新结构从而提高土体强度的一种加固方法。 3.3.1旋喷加固的特点

1、受土层、土的粒度、土的密度、硬化剂粘性、硬化剂硬化时间的影响较小,可以广泛应用于淤泥、软弱粘土、砂土甚至砂卵石地层等。

2、 加固体强度较高,可达100~2000Kpa。

3、 可以有计划地在预定地范围内注入必要地浆液,形成一定距离地桩,或连成一片地排桩或薄地帷幕,加固深度可以自由调节。

4、 可以形成垂直的墙体亦可以根据需要形成水平或倾斜墙体。

旋喷法可分为单管旋喷、二重管旋喷和三重管旋喷。单管时仅喷射高压浆体;二重管旋喷同时喷射高压浆体和高压空气;三重管旋喷喷射喷射高压浆体、高压空气以及高压水。其中二重管旋喷加固半径可达100cm,三重管旋喷加固半径可达80~200cm。

3.3.2旋喷加固工艺

旋喷加固可分为两个阶段:第一阶段为成孔阶段,即用普通或专用钻机,驱动密封良好的喷射管和喷射头进行成孔,成孔时可采用水冲或振动的方法。

第二阶段为喷射加固阶段,即用高压浆体(以及高压水和空气)以较高的压力从喷嘴中向土中喷射。同时一边喷射一边提升,使浆体与周围土体混合,形成圆柱状的加固体。 旋喷加固控制要点:

(1) 旋喷桩浆液的固化剂可选用

425、525号普通硅酸盐水泥,水泥浆液的水灰比应根据土体加固强度的需要选为1:1~1.5:1。水泥浆液中可添加水玻璃等化学辅助材料和掺合料,以及速凝、早强、悬浮等外加剂,浆液配比应通过试验确定。

(2) 钻机安放应保证足够的平整度和垂直度,钻杆倾斜度不得大于1%,钻孔孔位与设计位置的偏差不得大于50mm;

(3) 水泥浆拌制系统应配有可靠的计量装置;喷浆系统应配备流量表、压力计等检测装置;在喷浆过程中对提升速度应有控制装置和措施。

(4) 施工前应对浆液流量、喷浆压力、喷嘴提升速度等进行标定。

(5) 水泥浆宜在旋喷前一小时内搅拌,旋喷过程中冒浆量应控制在10~25%。相邻两桩施工间隔时间应不小于48小时,间距应不小于2m。

(6) 成桩过程中钻杆的旋转和提升必须连续不中断,拆卸钻杆续喷时,注浆管搭接长度不得小于100mm;

(7) 在高压喷射注浆过程中出现异常情况时,应及时查明原因并采取措施进行补救,排除故障后复喷高度不得小于500mm; (8) 对泥浆的沉淀和排放应进行周密的设计和处理,确保施工过程中场地的清洁和不污染环境;

四、降水

1、深基坑降地下水的作用:

(1) 保持开挖面的干燥,便于开挖施工 (2) 增加基坑稳定性

(3) 改善基坑土体的特性,增加土体强度 (4) 防止坑底的隆起和破坏

降水工艺有很多种,如电渗法、喷射法、真空法等,有轻型井点、深井井点等。在选取时需根据不同的土层特性及基坑深度确定。见下表:

土层名称 渗透系数(m/d) 土的有效粒径(mm) 采用的降水方法 备注 粘土 0.001 0.003 电渗法 一般可用名排水,挖掘较深时可用电渗法 重粉质粘土 0.001~0.05 粉质粘土 0.05~0.1 粉土 0.1~0.5 0.003~0.025 真空法、喷射井点、深井法 上海地区使用较多 粉砂 0.5~1.0 细砂 1~5 0.1~0.25 普通井点法、喷射井点、深井法 中砂 5~20 0.25~0.5 粗砂 20~50 0.5~1 砾石 >50 多层井点或深井法 有时需水下挖掘

当土层的渗透系数较低时应采用真空井点系统,以便在井点周围形成部分真空,增加流向井点管的水力坡度。上海地铁深基坑采用较多的为真空深井法。

采用深井井点时,应根据土层渗透系数的不同开一截滤管或多截滤管。滤管周围应均匀填充填料,以保证水可以透过填料,而土体颗粒不会透过从而堵塞滤孔。填料应根据土体颗粒组成确定。 为防止真空泄漏,应在孔口一定高度内用粘土回填密实。

降水施工的注意事项:

(1) 应根据工程地质和水文地质条件、场地的施工条件、周围环境条件、机具及材料供应条件等,合理地选用轻型井点、喷射井点、深井井点、真空深井井点等井点类型,以及井点构造措施。 (2) 井点降水以不影响邻近建筑物及地下管线的安全为原则,必要时应采取回灌措施。 (3) 基坑降水必须在坑内外根据需要设置数量足够观测孔,并在坑外设置地面沉降观测点; (4) 若遇承压水,应对坑底稳定性进行验算。必要时,应采用降承压水的措施,并应符合下列规定:

正式降承压水前应做抽水试验,确定降水参数;

井点布置应综合考虑基坑周围环境条件、地质条件和现场施工条件,当基坑周围环境容许时,宜在基坑外设置井点;

施工中应将基坑内的降水和抽取承压水分成两个独立的系统,并根据各自的技术要求制定降水组织设计。

承包商应对各工况下坑底抗承压水头的安全系数进行验算,并根据验算结果制定详细的降水和封井计划。

(5) 应对成井口径、井深、井管配置、砂料填筑、洗井试抽、出水量等关键工序做好详细的纪录,每道工序完成后应进行检查和确认;

(6) 应指定专人负责抽水、观测,并详细记录水位、水量变化情况;

五、 开挖及支撑

1、开挖

下图为上海地区软土的流变试验,从图中可以知道: 上海软土流变试验曲线

在土体主压力较小时( )蠕变变形很小,主要是弹性蠕变;不排水土体的流变要比排水土体的流变性显著,当 (此应力约相当于14~15m的深基坑挡墙被动区土体的压应力)不排水的土样蠕变到最后会发生破坏,即呈破坏型;而排水土样蠕变则呈衰减型,蠕变是收敛和稳定的;当土体主应力达到或超过发生不收敛蠕变的极限应力水平时,从开始蠕变到蠕变速率急剧增大而发生破坏只有几天的时间,这说明在应力水平高的情况下,土体会在一定的承载时间内,以不易察觉的蠕变速度发生破坏。

从上述的试验结果的分析中可知,在处于具有流变地层的深基坑中,土的流变特性不仅会影响到基坑的稳定,而且对于基坑的变形控制也至关重要,这在控制基坑变形要求高的基坑工程中尤为突出。同时,在流变特性的分析中,我们可以取得有关控制软土深基坑变形的几点重要启示:

(1) 分层分块开挖能够有效地调动地层的空间效应,以降低应力水平、控制流变位移。 (2) 减少每步开挖到支撑完毕的时间,即无支撑暴露时间,可明显控制挡墙的流变位移,这在无支撑暴露时间小于24小时效果尤其明显。

(3) 解决软土深基坑变形控制问题的出路在于规范施工步序和参数,并将其作为实现设计要求的保证。

地铁深基坑施工工序及其参数可分为两种:

(1) 长条形深基坑开挖(车站基坑标准段) 如下图所示,其特点是基坑宽度较窄,一般为20左右,条形深基坑开挖施工技术要点是按有限长度L分段开挖和浇筑底板。每段开挖中又分层、分小段、限时完成每小段的开挖和支撑工作。每层厚度为hi,每小段宽度b,每小段开挖及支撑的工作在Tr时间内完成。主要施工参数见下图。 车站标准段深基坑的开挖参数

车站深基坑端头井斜撑部分的开挖步序和参数

(2) 基坑角部斜撑部分(端头井部分)的开挖 如下图所示,先自基坑角点沿垂直于斜撑方向向基坑内分步开挖,每步挖土适当限定宽度,每步开挖与支撑工作在限定时间内完成,两个斜撑范围内的三角形土体开挖后,再挖除坑内余留的土体。如每步斜条状开挖长度大于20m时则先挖中间再挖两端。其主要施工参数如下图所示。

从上面的基坑开挖方式中可以看出,基坑开挖分层数、每一层的厚度、每小段的开挖顺序、尺寸和无支撑暴露时间等是和软土流变变形直接相关的重要施工参数。当这些参数和地基土参数、支护结构参数一起被作为基坑设计依据并在施工中得以切实实施,软土基坑变形就能够真正得以合理而准确的预测和控制。 变形控制的主要措施有:

(1) 调整后继开挖步序和参数,这是运用软土基坑工程时空效应规律,控制基坑变形的一个十分重要的方法。当基坑变形或变形速率超过警戒值,应用考虑时空效应的计算方法,可以找出后继开挖中满足环境保护要求的施工参数。

(2) 利用双液分层注浆注浆控制基坑挡墙位移或保护对象的位移,注浆时要结合跟踪监测数据,谨慎合理地选用注浆参数。

(3) 局部增设支撑或调整支撑位置。

深基坑开挖过程的控制要点:

(1) 基坑开挖必须按设计要求分段开挖和浇筑底板。每段开挖中又分层、分小段,并限时完成每小段的开挖和支撑。因此,主要施工参数有:分段、分层、分小段;每小段宽度,每小段开挖的无支撑暴露时间以及每小段开挖厚度。

(2) 车站端头井的开挖,应首先撑好标准段内的2根对撑,再挖斜撑范围内的土方,最后挖除坑内的其余土方。斜撑范围内的土方,应自基坑角点沿垂直于斜撑方向向基坑内分层、分段、限时地开挖并架设支撑。对长度大于20m的斜撑,应先挖中间再挖两端。主要施工参数有:每小段宽度,每小段开挖的无支撑暴露时间以及每层开挖厚度。

(3) 基坑开挖过程中严禁超挖,分层开挖的每一层开挖面标高不得低于该层支撑的底面或设计基坑底标高。

(4) 基坑纵向放坡不得大于安全坡度,并进行必要的人工修坡。应对暴露时间较长或可能受暴雨冲刷的纵坡采用坡面保护措施,严防纵向滑坡。

(5) 开挖过程中应及时封堵地下连续墙接缝或墙体上的渗漏点。 (6) 坑底开挖与底板施工

设计坑底标高以上30cm的土方,应采用人工开挖,局部洼坑应用砾石砂填实至设计标高。 坑底应设集水坑,以及时排除坑底积水。集水坑与基坑挡墙内侧的距离应大于1/4基坑宽度。 在开挖到底后,必须在设计规定时间内浇筑混凝土垫层(包括砼垫层以下的砾石砂垫层或倒滤层)。垫层所用混凝土的强度以及达到强度的时间必须满足设计要求。 必须在设计规定的时间内浇筑钢筋混凝土底板。

2、支撑

在深基坑的施工支护结构中,常用的支撑系统按其材料分可以有钢支撑和钢筋混凝土支撑等种类。其优缺点比较如下表。 钢支撑 钢筋混凝土支撑 优点 ◆便于安装和折除 ◆材料的消耗量小

◆可以及时施加预应力以减少无支撑暴露时间,合理地控制软土基坑变形 ◆有利于缩短工期 ◆整体刚度好 ◆节点构造处理相对简单 ◆结构稳定性好 缺点 ◆整体刚度较弱 ◆稳定性差

◆节点构造处理难度大 ◆制作时间长于钢支撑,不利于减少无支撑暴露时间 ◆拆除工作比较繁重 ◆材料的回收利用率低 ◆工期相对较长

就支撑结构的发展方向而言还是应该推广使用钢支撑,努力实现钢支撑杆件的标准化、工具化,建立钢支撑制作、安装、维修一体化的施工技术力量,提高支撑结构的施工水平。但还需强调指出,支撑系统应因地制宜,在特定条件下,钢筋混凝土支撑仍有其存在和优化的必要。上海地铁深基坑工程中绝大部分使用钢支撑。

支撑结构体系由围檩、支撑杆或支撑桁架、立柱、立柱桩等组成。深大基坑设计和施工中,必须对支撑系统中各节点,特别是多支撑交汇的关键节点的构造细节,做深入分析和谨慎处理,严防“一点失稳、全盘皆垮”的灾害性事故。

围檩 支撑结构的围檩直接与围护壁相连,围护壁上的力通过围檩传递给支撑结构体系。在采用地下连续墙的地铁地铁车站深基坑中,常常不设围檩而直接将支撑撑于地下墙面上,这种支撑布置要和地下墙相配,通常每道在一幅地下墙上设两根对撑。

支撑杆 是支撑结构中的主要受压杆件,由于受自重和施工荷载的作用,支撑杆属于一种压弯杆件。支撑杆相对于受荷面来说有垂直于荷载面和倾斜于荷载面二种,对于斜支撑杆要注意支撑杆和地下墙(或围檩)连接节点的力的平衡。

立柱和立柱桩 支撑杆和支撑桁架需要有立柱来支承,立柱通常采用H型钢或钢格构柱。立柱下要有立柱桩支承,立柱桩可以借用工程桩、也可以单独设计用于支承立柱。立柱和立柱桩可有效地保证支撑的稳定性,但立柱的沉降或回弹会引起支撑次应力,降低支撑稳定性。实测数据表明,基坑开挖到15m的坑底回弹范围通常是坑底以下12m深度内,因此建议立柱桩要穿越这一回弹区域。

支撑安装和制作要点

(1) 在开挖每一层的每小段的过程中,当开挖出一道支撑的位置时,即在支撑两端墙面上测定出该道支撑两端与地下墙(或围檩)的接触点,以保证支撑与墙面垂直且位置准确,对这些接触点要整平表面,画出标志,并量出两个相对应的接触点间的支撑长度,以使地面上预先按量出长度配置支撑,并配备支撑端头配件以便于快速装配。而在地面上要有专人负责检查和及时提供开挖面上所需要的支撑及其配件,支撑在使用前应进行试装配,以保证支撑有适当的长度和足够的安装精度,对不符合技术要求的支撑配件一律弃用。

(2) 支撑就位后应及时准确施加预应力,在施加预应力进程中要将钢支撑接头处连接螺栓拧紧三次以上以保持预应力。所施加的支撑预应力的大小应由设计单位根据设计轴力予以确定。通常取值为:第一道支撑预加轴力应大于设计轴力的50%;第二道及其下各道支撑预加轴力为设计轴力的80%。对于施加预应力的油泵装置要经常校验,以使之运行正常,所量出预应力值准确。每根支撑施加的预应力值要记录备查。

(3) 为防止支撑施加预应力后和地墙(或围檩)不能均匀接触而导致偏心受压,首次施加预应力后立即在空隙处以速凝的细石混凝土填实。

预应力复加

(1) 在第一次加预应力后12小时内观测预应力损失及墙体水平位移,并复加预应力至设计值; (2) 当昼夜温差过大导致支撑预应力损失时,应立即在当天低温时段复加预应力至设计值; (3) 墙体水位移速率超过警戒值时,可适量增加支撑轴力以控制变形,但复加后的支撑轴力和挡墙弯矩必须满足设计安全度要求;

(4) 当采用被动区注浆控制挡墙位移时,应在注浆后1~2h内对在注浆范围的支撑复加预应力至设计值,以减少挡墙外移所造成的预应力损失。

六、 内部结构

车站内部结构施工主要包括以下几部分:

板 顶板、中板、底板;侧墙 双墙体系中侧墙与地墙共同作用,单墙体系中无侧墙;梁柱体系等。

结构施工中控制要点如下:

1、底板施工

(1)底板施工前应将坑底软弱土清除干净,并用砾石、砂、碎石或素混凝土填平。 (2)素混凝土垫层标高、厚度及强度满足设计要求,面层应无蜂窝、麻面和裂缝。 (3)底板与地下连续墙的接触面必须进行凿毛、清洗,并在漏水处进行堵漏处理。

(4)底板钢筋与地下墙体底板相接时,应将钢筋连接器全部凿出弯正,连接时必须用测力扳手控制其旋紧程度。

(5)底板混凝土浇捣必须按顺序连续不断完成,采用高频震动器震捣密实,不得出现漏震或少震现象。

(6)底板混凝土浇捣完成的同时,及时收水、压实、抹光,终凝后及时养护,不少于14天。

2、侧墙施工

(1)侧墙施工前必须将地下墙凿毛处理,并按设计做好防水施工。 (2)对地下连续墙的墙面渗漏应按规范及设计要求进行处理。 (3)侧墙内模及支架应有足够的强度、刚度和侧向稳定性。

(4)应根据设计要求设置施工缝和诱导缝,并保证其稳固、可靠、不变形、不漏浆。 (5)立内模之前,应对防水层、钢筋及预埋件工程进行检查,合格后办理隐蔽工程验收,进行下一道工序施工。

(6)一次立模浇捣高度超过3m时,应采取合理立模补强措施。 (7)混凝土掺加微膨胀剂时要满足14天的养护要求。

(8)侧墙混凝土浇灌时应分层(每层高不超过30cm),浇捣连续不间断完成,分层浇捣时注意不出现漏震或过震。

(9)侧墙混凝土浇捣完成后,注意及时浇水养护,不少于14天。 (10)侧墙外模板的拆除时间不应少于7天。

3、中楼板施工

(1)应根据设计要求设置施工缝和诱导缝,并经验收后方可浇筑混凝土。 (2)中楼板梁、板的模板支架应采用满堂支架,其密度应满足强度和变形要求。 (3)中楼板预埋件、预留孔洞的设置经监理检查验收后,方可浇筑中楼板混凝土。 (4)中楼板底标高应考虑支架、搭板沉降及施工误差后,仍能满足下部建筑限界要求。 (5)中楼板达到设计要求的拆模强度后方可拆模。

4、顶板施工

除严格遵循上节中楼板施工要求外,还应在施工过程中采取如下措施: (1)跨度在8m以上的结构,必须在混凝土强度达到100%时方可拆除模板; (2)顶板混凝土终凝前应对顶面混凝土压实、收浆成细毛面; (3)终凝后应及时养护,并尽量采用蓄水养护,养护时间不少于14d; (4)顶板上堆放设备、材料等附加荷载前必须进行强度验算。

(5)养护期结束后应立即施作顶板防水层和防水保护层,采用砂浆或混凝土作保护层时应进行养护。

第五篇:地铁车站的施工方法

目前国内外修建地铁车站的施工方法有明挖法、盖挖法、暗挖法、盾构法等。主要阐述了修建地铁车站施工方法的原理、施工流程、优缺点,为我国各大城市修建地铁车站时选择合理的施工方法提供有益的参考。

关键词:地铁车站;施工方法;施工流程;优缺点;适用条件

伴随着我国社会主义经济建设的迅猛发展与综合国力的增强,城市的规模也不断的增大,城市人口流量还在增加、再加上机动车辆呈现逐年上涨的趋势,交通状况不断恶化。为了改善交通环境,采取了各种措施,其中兴建地下铁道得到了普遍的认可,如最近几年在北京、广州、深圳等城市便兴建了大量的地下铁道。由于在城市中修建地下铁道,其施工方法受到地面建筑物、道路、城市交通、水文地质、环境保护、施工机具以及资金条件等因素的影响较大,因此各自所采用的施工方法也不尽相同。下面将就城市地下铁道施工方法分别加以介绍。施工方法的选择应根据工程的性质、规模、地质和水文条件、以及地面和地下障碍物、施丁设备、环保和工期要求等因素,经全面的技术经济比较后确定。

1、明挖法

明挖法是指挖开地面,由上向下开挖土石方至设计标高后,自基底由下向上顺作施工,完成隧道主体结构,最后回填基坑或恢复地面的施工方法。

明挖法是各国地下铁道施工的首选方法,在地面交通和环境允许的地方通常采用明挖法施工。浅埋地铁车站和区间隧道经常采用明挖法,明挖法施工属于深基坑工程技术。由于地铁工程一般位于建筑物密集的城区,因此深基坑工程的主要技术难点在于对基坑周围原状十的保护,防止地表沉降,减少对既有建筑物的影响。明挖法的优点是施工技术简单、快速、经济,常被作为首选方案。但其缺点也是明显的,如阻断交通时间较长,噪声与震动等对环境的影响。

明挖法施工程序一般可以分为4大步:维护结构施工→内部土方开挖→工程结构施工→管线恢复及覆土,如图1.

上海地铁M8线黄兴路地铁车站位于上海市控江路、靖宇路交叉口东侧的控江路中心线下。该车站为地下2层岛式车站,长166.6 m,标准段宽17.2 m,南、北端头井宽21.4 m.标准段为单柱双跨钢筋混凝土结构,端头井部分为双柱双跨结构,共有2个风井及3个出人口。车站主体采用地下连续墙作为基坑的维护结构,地下连续墙在标准段深26.8m.墙体厚0.6m.车站出人口、风井采用SMW桩作为基坑的维护结构。

2、盖挖法

盖挖法是由地面向下开挖至一定深度后,将顶部封闭,其余的下部工程在封闭的顶盖下进行施工。主体结构可以顺作,也可以逆作。

在城市繁忙地带修建地铁车站时,往往占用道路,影响交通当地铁车站设在主干道上,而交通不能中断,且需要确保一定交通流量要求时,可选用盖挖法。 2.1盖挖顺作法

盖挖顺作法是在地表作业完成挡土结构后,以定型的预制标准覆萧结构(包括纵、横梁和路面板)置于挡土结构上维持交通,往下反复进行开挖和加设横撑,直至设计标高。依序由下而上,施工主体结构和防水措施,回填土并恢复管线路或埋设新的管线路。最后,视需要拆除挡上结构外露部分并恢复道路。施工顺序如图2.

在道路交通不能长期中断的情况下修建车站主体时,可考虑采用盖挖顺作法。

工程实例:深圳地铁一期工程华强路站位于深圳市最繁华的深南中路与华强路交叉口西侧,深南中路行车道下。该地区市政道路密集,车流量大,最高车流量达3865辆/h.车站主体为单柱双层双跨结构,车站全长224.3 m,标准断面宽18.9 m,基坑深约18.9 m,西端盾构并处宽22.5 m,基坑深约18.7 m.南侧绿地内东西端各布置一个风道。主体结构施工工期为2年,其中围护结构及临时路面施工期为7个月。为保证深南中路在地铁站施工期间的正常行车,该路段主体结构施工采用盖挖顺作法施工方案。

2.2 盖挖逆作法

盖挖逆作法是先在地表面向下做基坑的维护结构和中间桩柱,和盖挖顺作法一样,基坑维护结构多采用地下连续墙或帷幕桩,中间支撑多利用主体结构本身的中间立柱以降低工程造价。随后即可开挖表层土体至主体结构顶板地面标高,利用未开挖的土体作为土模浇筑顶板。顶板可以作为一道强有力的横撑,以防止维护结构向基坑内变形,待回填土后将道路复原,恢复交通。以后的工作都是在顶板覆盖下进行,即自上而下逐层开挖并建造主体结构直至底板,如图3.

如果开挖面积较大、覆土较浅、周围沿线建筑物过于靠近,为尽量防止因开挖基坑而引起临近建筑物的沉陷,或需及早恢复路面交通,但又缺乏定型覆盖结构,常采用盖挖逆作法施工。

工程实例:南京地铁南北线一期工程的区间隧道在地质条件和周围环境允许的情况下,以造价、工期、安全为目标,经过分析、比较,选择了全线区间施工方法。其中,三山街站,位于秦淮河古河道部位,位于粉土、粉细砂、淤泥质粘土土层中。因为是第1个车站,又位于十字路口,因此采用地下连续墙作围护结构。除人口结构采用顺作法外,其余均为盖挖逆作法。

2.3 盖挖半逆作法

盖挖半逆作法与逆作法的区别仅在于顶板完成及恢复路面后,向下挖土至设计标高后先浇筑底板,再依次向上逐层浇筑侧墙、楼板。在半逆作法施工中,一般都必须设置横撑并施加预应力,如图4.

3、暗挖法暗挖法是在特定条件下,不挖开地面,全部在地下进行开挖和修筑衬砌结构的隧道施工力一法。暗挖法主要包括:钻爆法、盾构法、掘进机法、浅埋暗挖法、顶管法、沉管法等。其中尤以浅埋暗挖法和盾构法应用较为广泛,因此,本文着重介绍这两种方法。 3.1浅埋暗挖法(浅埋矿山法)

浅埋暗挖法即松散地层的新奥法施工,新奥法是充分利用围岩的自承能力和开挖面的空间约束作用,采用锚杆和喷射混凝土为主要支护手段,对围岩进行加固,约束围岩的松弛和变形,并通过对围岩和支护的量测、监控,指导地下工程的设计施工。浅埋暗挖法是针对埋置深度较浅、松散不稳定的上层和软弱破碎岩层施工而提出来的,如深圳地铁区间隧道大部分采用了浅埋暗挖法施工。

浅埋暗挖法的施工技术特点:围岩变形波及地表;要求刚性支护或地层改良;通过试验段来指导设计和施工。

浅埋暗挖法施工隧道时,应根据工程特点、围岩情况、环境要求以及施工单位的自身条件等,选择适宜的开挖方法及掘进方式。施工中区间隧道常用的开挖方法是台阶法、CRD工法、眼镜工法等;城市地铁车站、地下停车场等多跨隧道多采用柱洞法测洞法或中洞法等工法施工。

地下铁道是在城市区域内施工,对地表沉降的控制要求比较严格,所以更要强调地层的预支护和预加固,所采用的施工方法有超前小导管预注浆、开挖面深孔注浆、管棚超前支护。浅埋暗挖法的施工工艺可以概括为“管超前、严注浆、短开挖、强支护、快封闭、勤量测”18个字,其工艺流程见图5.

工程实例:北京地铁东单车站东南风道与车站主体结构正交,北侧在长安街下,中部及南侧穿过居民区,风道全长43.4 m.采用浅埋暗挖洞桩法施工,在基本维持环境原状条件的情况下从地面居民生活区和人防设施下面顺利通过。

3.2盾构法

修建地铁随道盾构法施工是以盾构这种施工机械在地面以下暗挖隧道的一种施工方法。盾构(shield )是一个既可以支承地层压力又可以在地层中推进的活动钢筒结构。钢筒的前端设置有支撑和开挖土体的装置,钢筒的中段安装有顶进所需的千斤顶;钢筒的尾部可以拼装预制或现浇隧道衬砌环。盾构每推进一环距离,就在盾尾支护下拼装(或现浇)一环衬砌,并向衬砌环外围的空隙中压注水泥砂浆,以防止隧道及地面下沉。盾构推进的反力由衬砌环承担。盾构施工前应先修建一竖井,在竖井内安装盾构,盾构开挖出的土体由竖井通道送出地面。盾构法施工工艺见下图6所示。

按盾构断面形状不同可将其分为:圆形、拱形、矩形、马蹄形4种。圆形因其抵抗地层中的土压力和水压力较好,衬砌拼装简便,可采用通用构件,易于更换,因而应用较为广泛;按开挖方式不同可将盾构分为:手工挖掘式、半机械挖掘式和机械挖掘式3种;按盾构前部构造不同可将盾构分为:敞胸式和闭胸式2种;按排除地下水与稳定开挖面的方式不同可将盾构分为:人工井点降水、泥水加压、土压平衡式,局部气压盾构,全气压盾构等。 盾构法的主要优点:除竖井施工外,施工作业均在地下进行,既不影响地面交通,又可减少对附近居民的噪声和振动影响;盾构推进、出土、拼装衬砌等主要工序循环进行,施T易于管理,施工人员也比较少;土方量少;穿越河道时不影响航运;施工不受风雨等气候条件的影响;在地质条件差、地下水位高的地方建设埋深较大的隧道,盾构法有较高的技术经济优越性。

工程实例:北京地铁五号线即采用了盾构法施工地铁五号线是一条贯穿北京市中心的南北向地下交通大动脉。南起丰台区宋家庄,向北经蒲黄榆、祟文门、东单、东

四、雍和宫止于昌平区太平庄北站,全长27.7 km.由于该路段地上大型建筑物密集,交通流量大,地下管网复杂,为减少对城市经济和市民生活的影响,经专家论证,决定在雍和宫至北新桥约700 m长的试验段率先采用盾构施工方法。该盾构为大直径土压平衡盾构机。

4、沉管法

沉管法是将隧道管段分段预制,分段两端设临时止水头部,然后浮运至隧道轴线处,沉放在预先挖好的地槽内,完成管段间的水下连接,移去临时止水头部,回填基槽保护沉管,铺设隧道内部设施,从而形成一个完整的水下通道。

沉管隧道对地基要求较低,特别适用于软土地基、河床或海岸较浅,易于水上疏浚设施进行基槽开外的工程特点。由于其埋深小,包括连接段在内的隧道线路总长较采用暗挖法和盾构法修建的隧道明显缩短。沉管断面形状可圆可方,选择灵活。基槽开挖、管段预制、浮运沉放和内部铺装等各工序可平行作业,彼此干扰相对较少,并且管段预制质量容易控制。基于上述的优点,在大江、大河等宽阔水域下构筑隧道,沉管法称为最经济的水下穿越方案。

按照管身材料,沉管隧道可分为2类:钢壳沉管隧道(有可分为单层钢壳隧道和双层钢壳隧道)和钢筋馄凝土沉管隧道。钢壳沉管隧道在北美采用的较多,而钢筋混凝土沉管隧道则在欧亚采用较多。

沉管隧道施工主要工序:管节预制→基槽开挖→管段浮运和沉放→对接作业→内部装饰。

上程实例:广一州珠江隧道是我国第一条公路与地铁合用的越江隧道,公路隧道全长1 238.5 m.河中段隧道埋置在河床下。不影响水面通航,河中沉管段全长457 m.该沉管为多孔矩形钢筋混凝土结构,其中包括两个双车道机动车孔、一个地铁孔、一个电缆管廊。沉管断面为典型矩形断面,外形尺寸为33 mx7.956 m(宽x高),底板厚1.2 m、顶板厚1.0 m,两外侧墙分别为0.7 m和0.55 m、最长管节的混凝土量达12 000砰。管段的基底坐落在河床的风化花岗岩层上。开槽时采用了炸礁施工。基础处理采用灌砂法。

5、混合法

可以根据地铁隧道的实际情况,在地铁隧道的施工过程中采用以上2种或2种以上的方法同时使用,称其为混合法。

工程实例:北京地铁东四站位于朝阳门内大街与东四南大街交叉日上,处于繁华的市中心,有多路公交车经过。车站主体顺东四南大街,呈南北走向,东四南大街规划道路红线宽70 m,现状路宽为22 m,朝内大街已改造完,道路红线宽60 m,两方向客流均衡,交通十分繁忙;且远期六号线顺朝内大街,呈东西走向,在此站换乘。本车站两端为明挖段,结构形式为3层三跨框架结构;中间为暗挖段,结构形式为单层三拱两柱结构。车站总长度197 m,暗挖段长为96.80 m,明挖段长为100. 20m。

6、结束语

随着我国地下铁道建设事业的发展,原有的施工技术不断地发展与提高的同时,新的施工方法也被应用到施工当中,施工技术水平得到不断提升,其中有些施工技术已经达到世界先进水平。另外,由于城市交通流量的增加导致城市道路已拥挤不堪,加上城市环境的要求越来越严格,城市内封路施工已不现实了。因此,暗挖技术,如盾构法、浅埋暗挖法将是今后研究和实践的主攻方向。

上一篇:读书可以让你走得更远下一篇:第四章营业税税收筹划