第三章外加剂范文

2022-05-25

第一篇:第三章外加剂范文

外加剂试验要点

外加剂试验方法

一、 支持性规范

1、试验依据: GB 8076-2008《混凝土外加剂》

GB 8077-2000《混凝土外加剂匀质性试验方法》

GB 50080-2002《普通混凝土拌合物性能试验方法标准》 GB 50081-2002《普通混凝土力学性能试验方法标准》

2、评定依据: GB 8076-2008《混凝土外加剂》

二、检验频率

同厂家、同品种、同编号的掺量小于1%的外加剂每50t为一批,大于1%(含1%)的外加剂每100t为一批,不足50t/100t也按一批计。每一批取样量不少于0.2t水泥所需用的减水剂用量,每批取样充分混匀,分两等分,一份进行试验,一份密封保存6个月。

三、 主要仪器及技术参数

1、主要仪器:压力试验机、单卧轴混凝土强制性搅拌机、数显混凝土含气量测定仪、电子台秤、电子称、电子天平、5L容量筒、坍落度筒、钢尺。

四、配合比要求;

水泥:规范要求的标准水泥;(需按GB 8076-2008附录A进行化学指标及物理性能检验,水泥每桶重24.5Kg~25.5Kg。有效储存期为生产之日期起半年。)

砂:符合GB/T 14684中Ⅱ区砂要求,但细度模数为2.6~2.9,含泥量小于1%;

石子:符合GB/T 14685要求的公称粒径为5mm~20mm的碎石或卵石,采用二级配,其中5mm~10mm占40%,10mm~20mm占60%,满足连续级配要求,针片状物质含量小于10%,空隙率小于47%,含泥量小于0.5%。如有争议,以碎石结果为准。

水:符合JGJ 63混凝土拌合水的技术要求。 配合比:按JGJ55进行设计,

1)水泥用量:掺高性能减水剂或泵送剂的基准混凝土和受检混凝土的单位水泥用量360kg/m3;掺其他外加剂的基准混凝土和受检混凝土单位水泥用量为330kg/m3。

2)砂率:掺高性能减水剂或泵送剂的基准砼和受检砼的砂率为43%~47%,掺其他外加剂的基准砼和受检砼的砂率为36%~40%;但掺引起剂减水剂或引起剂的受检砼的砂率应比基准砼的砂率底1%~3%, 3)外加剂参量:按生产厂家指定参量。 4)掺高性能减水剂或泵送剂的基准砼和受检砼的塌落度控制在(210±10)mm,用水量为塌落度在(210±10)mm时的最小用水量,掺其他外加剂的基准砼和受检砼的塌落度控制在(80±10)mm,用水量包括液体外加剂,砂、石材料中所含的水量。

拌和机采用容量60L的单卧轴式强制搅拌机。拌和机的拌合量应不少于20L,不宜大于45L。

出料后,应先在铁板上翻拌至均匀,再进行试验,各种砼试验材料及环境温度均应保持在(20±3)℃。

五、各项试验操作步骤

1、坍落度和坍落度1h经时变化量测定:

每批砼取一个试样,坍落度和坍落度1小时经时变化量均以三次 试验结果的平均值表示。三次试验的最大值和最小值与中间之差有一个超过10mm时,将最大值和最小值一并舍去,取中间值作为该批试验结果,最大值和最小值与中间值之差均超过10mm时,则应重做。坍落度及坍落度1小时经时变化量测定值以mm表示,结果表达修约到5mm。

砼坍落度按照GB/T50080测定。但坍落度为(210±10)mm的砼,分两层装料,每层高度为筒高的一半,每层用插捣棒插捣15次。测定1h后砼坍落度,应将搅拌的砼留下足够一次砼坍落度的试验用量,并装入用湿布擦过的试样筒内,容器加盖,静置1小时(从加水时间开始计算),然后倒出,翻拌均匀,按坍落度测定方法测定坍落度,计算出机时和1小时后的坍落度之差,即为坍落度1h经时变化量。按下式计算:

SlSl0Sl1h

2、减水率测定

减水率为坍落度基本相同时,基准砼和受检砼单位用水量之差与基准砼单位用水量之比。按下式计算: WRW0W1100 W0减水率以三批试验结果的算术平均值计,精确到1%。若三批试验的最大值或最小值中有一个与中间值之差超过15%时,则把最大值与最小值一并舍去,取中间值作为该组试验的减水率。若两个测值与中间值之差均超过15%时,则该批试验无效,应重做。

3、泌水率比

先用湿布润湿容积为5L的带盖筒,将砼拌合物一次装入,在震动台上震动20s然后用抹刀轻轻抹平,加盖以防水分蒸发。试样表面应比筒口底约20mm。自抹面开始计时,在前60min,每隔10min用吸液管吸出泌水一次,以后每隔20min吸水一次,直至连续3次无泌水为止。每次吸水前5min,应将筒底一侧垫高约20mm,是筒倾斜,以便于吸水。吸水后,将筒轻轻放平盖好。将每次吸出的水都注入带塞量筒。最后计算出总的泌水量,精确至1g,基准砼和受检砼按相同方法测定泌水率,按下式计算泌水率: BVW100

(W/G)GW泌水率比按下式计算,应精确至1%: RBBt100 Bc试验时,从每批混凝土拌合物中取一个试样,泌水率取三个试样的算术平均值,精确到0.1%,若三个试样的最大值或最小值有一个与中间值之差超过15%时,则把最大值与最小值一并舍去,取中间值作为该组试验的泌水率,如果最大值和最小值与中间值之差均大于中间值的15%时,则应重做。

4、含气量测定和含气量1h经时变化量测定

按GB50080用气水混合式含气量测定仪,按仪器说明进行操作,但拌合物应一次装满并稍高于容器,用振动台振实15~20s。当要求测定含气量1h经时变化量时,应将搅拌的砼留够一次含气量试验的数量。并装入用湿布擦过的试样筒内,容器加盖,静置1小时(从加水时间开始计算),然后倒出,翻拌均匀,再按照含气量测定方法测定含气量。计算出机时和1h之后的含气量差值,即得到含气量的经时变化量。按下式计算:

AA0A1h

5、凝结时间差测定

凝结时间采用贯入阻力仪测定,仪器精度10N,将砼拌合物用5mm圆孔筛筛出砂浆,拌匀后装入上口内径为160mm,下口内径为150mm,净高150mm的刚性不渗水的金属圆筒,试样表面应略低于筒口约10mm,用振动台振实,约3~5s,置于18~22℃的环境中,容器加盖。一般基准砼在成型后3h~4h,掺早强剂的在成型后1~2h掺缓凝剂的在成型后4~6h开始测定,以后每隔0.5h或1h测定一次,但在临近初、终凝时,可以缩短测定间隔时间。每次测点应避开前一测孔,其净距为试针直径的两倍,但至少不小于15mm,试针与容器边缘之距离不小于25mm。测定初凝时间用截面积为100mm2的试针,测定终凝时间用20mm2的试针。测试时,将砂浆试样筒置于贯入阻力仪上,测针端部与砂浆便面接触,然后再8~12s内均匀的使测针贯入砂浆23~27mm深度。记录贯入阻力,精确至10N,记录测量时间,精确至1min。贯入阻力按下式计算,精确到0.1Mpa。

P R

A根据计算结果,以贯入阻力值为纵坐标,测试试件为横坐标,绘制贯入阻力值与时间关系曲线,求出贯入阻力值达3.5 Mpa时,对应的时间作为初凝时间,贯入阻力达28 Mpa时,对应的时间作为终凝时间。从水泥与水接触时开始计算凝结时间。

试验时,每批砼拌合物取一个试样,凝结时间取三个试样的平均值。若三个批试验的最大值或最小值之中有一个与中间值之差超过30min,把最大值与最小值一并舍去,取中间值作为该组试验的凝结时间,若两测值与中间值之差均超过30min,该组试验结果无效,则应重做。凝结时间以min表示,并修约到5min。基准砼与受检砼按相同方法测试,凝结试件差按下式计算:

TTtTc

6、抗压强度比试验

受检砼和基准砼的抗压强度按GB/T50081进行试验和计算,试件制作时,用振动台震动15~20s,试验预养温度为17~23℃,试验结果以三批试验测值的平均值表示,若三批试验中有一批的最大值或最小值与中间值的差值超过中间值的15%,则把最大值和最小值一并舍去,取中间值作为该批的试验结果,如有两批测值与中间值的差均超过中间值的15%,则试验结果无效,应重做。抗压强度比以掺外加剂砼与基准砼同龄期抗压强度之比表示,按下式计算:

Rfftfc

7、水泥净浆流动度试验方法

在水泥净浆搅拌机中,加入一定量的水泥、外加剂和水进行搅拌,将拌好的净浆注入截锥圆模内,提起截锥圆模,测定水泥净浆在玻璃平面上自由流淌的最大直径。 1)仪器

水泥净浆搅拌机; 截锥圆模:上口直径36mm,下口直径60mm,高度为60mm,内壁光滑无接缝的金属制品;玻璃板(400×400×5mm);秒表;钢直尺,(300mm);刮刀;药物天平,(称量100g,分度值0.1g);药物天平(称量1000g,分度值1g)。

2)试验步骤

①将玻璃板放置在水平位置,用湿布将玻璃板,截锥圆模,搅拌器及搅拌锅均匀擦过,使其表面湿而不带水渍。将截锥圆模放在玻璃板的中央,并用湿布覆盖待用。

②称取水泥300g,倒入搅拌锅内,加入推荐掺量的外加剂及87g或105g水,搅拌3min。

③将拌好的净浆迅速注入截锥圆模内,用刮刀刮平,将截锥圆模按垂直方面提起 ,同时开启秒表计时,任水泥净浆在玻璃板上流动,至30s,用直尺量取流淌部分互相垂直的两个方向的最大直径,取平均值作为水泥净浆流动度。 3)结果表示

①表达净浆流动度时,需注明用水量,所用水泥的标号、名称、型号及生产厂和外加剂掺量。

②试样数量不应少于三个,结果取平均值,误差为±5mm。

第二篇:外加剂适应性

浅谈混凝土外加剂对水泥的适应性

1 外加剂在不同水泥中的应用效果:工作中采用净浆流动度及流动度经时损失来检验外加剂对水泥的适应性。

在工作实践中,外加剂与水泥适应性比较好的判别标准归纳为:1) 混凝土和易性明显改善,密实性好;2) 减水效果显著,混凝土龄期强度大幅度增长;3) 能有效地控制坍落度经时损失。 水泥适应性差表现为:1) 混凝土在搅拌过程中出现异常凝结; 2) 减水效果不明显;3) 新拌混凝土坍落度损失较大;4) 混凝土泌水率增加,分层离析现象严重。

2 影响外加剂对水泥适应性的因素

2.1 水泥矿物成分对适应性的影响 影响水泥适应性的主要因素是水泥中铝酸三钙C3A及硅酸三钙C3S的含量,大量试验验证,C3A含量低而C3S含量较高的适应性较好,混凝土强度也高,而C3A含量越高,掺用外加剂后应用效果越差。由于C3A水化反应快,减水剂进入到水泥后,首先被C3A吸附,在减水剂掺量不变的条件下,C3A含量高的水泥由于大量吸附了减水剂,必然使得溶液中减水剂浓度迅速下降,用于分散C3S和C2S等其它组份的含量显著减少,工作状态明显变差,因此C3A含量高的水泥减水效果较差。

2.2 调凝剂对水泥适应性的影响

水泥常用的调凝剂为石膏,石膏品种又分为:二水石膏、半水石膏和硬石膏,这几种石膏都可作水泥调凝剂,但是硬石膏溶解性差,对有的外加剂如糖钙、木钙等,不但不能促进石膏溶解,反而使水泥因缺少调凝成分而产生混凝土假凝或急凝现象,原因是水泥中用硬石膏或者是工业废料石膏作调凝剂。研究资料表明:调凝剂影响水泥的适应性还与石膏的细度及用量有关,如石膏研磨细度不够会影响石膏的溶解性,即使应用二水石膏也会产生急凝现象,在C3A含量高的水泥中,调凝石膏仍按常用量掺加,不论选用何种石膏,混凝土凝结时间也会提前,这主要是水泥中C3A水化最快,C3A含量较高,少量石膏不能满足它的吸附,从而影响了石膏的调凝效果。但有的水泥C3A含量并不高,采用的是溶解性较好的二水石膏,石膏的用量和细度也合格,却仍会出现不正常凝结现象,经研究发现主要是石膏研磨温度的影响,水泥生产厂为了缩短熟料冷却时间,经常将温度较高的熟料与石膏同磨,二水石膏在150℃高温下脱水成为半水石膏,温度再高至160℃以上,半水石膏还会成为溶解性差的硬石膏,从而影响了水泥的适应效果。 2.3 粉煤灰、磨细矿渣等掺合料对水泥适应性的影响

掺合料的种类、细度对减水剂的适应性都有影响。由于火山灰质掺合料具有较大的内比表面积,吸附量大,一般来说,减水剂对掺矿渣掺合料水泥的适应性好,而对掺火山灰质混合材的适应性差。对于掺粉煤灰掺合料的水泥,不同品种的粉煤灰,对适应性影响差异很大,优质细粉煤灰,超细粉煤灰中含有球状玻璃体,对减水剂的吸附量小,适应性好。对粗粉煤灰,含碳量高的适应性差。

可以得出胶料中所含部分成分对减水剂的吸附量由强到弱为:C3A>二水石膏>煤矸石>C2A>矿渣。 另外,减水剂与水泥适应性的影响因素还有水泥组份中碱含量,碱含量大,流动度小;水泥越新鲜,适应性越差;水泥温度越高,适应性越差;减水剂自身特性等等。 3 解决外加剂对水泥适应性的措施

3.1 改变外加剂的掺入时间,即采用滞水法或二次掺加法、载体流化剂法。3.2 适当增加外加剂掺量也有一定的效果。3.3 在不影响工作性条件下,适当调整混凝土水灰比,以便保证石膏有一定的溶解度。3.4 采用复合缓凝组份,取长补短,或普通减水剂与高效减水剂同掺,主要是因为不同分子结构的相互作用,应用技术效果会明显提高,不但能够降低生产成本,而且弥补了产品单一所带来的缺陷。3.5 采用缓释剂或加入引气剂。3.6 萘系减水剂坍损大,可换用氨基磺酸盐类或聚羧酸系类减水剂,可减小损失

什么是水泥与外加剂适应性?有哪些改善措施?

A:水泥与外加剂适应性就是水泥和所用外加剂在使用过程中是否匹配,即将经检验符合有关标准的某种外加剂掺加到用按规定可以使用该品种外加剂的水泥所配制的混凝土中,若能够产生应有的效果,我们就认为该水泥与这种外加剂是适应的;相反,如果不能产生应有的效果,则该水泥与这种外加剂之间存在不适应性。产生原因归纳起来有:

熟料矿物成分: 熟料中C3A,对减水剂分子的吸附程度很高,削弱有效外加剂掺量。 水泥的碱含量: 水泥中Na2O和K2O含量,对适应性会产生很大影响,尤其是混凝土坍落度损失增大。

石膏形态: 无水或半水石膏表面极易与减水剂分子形成吸附膜层,使之无法溶出为水泥浆体所需要的SO4-离子,无法快速与水化铝酸盐生存难溶的水化硫铝酸钙,造成C3A大量水化,出现相当数量的相互连接的水化铝酸钙结晶体,导致混凝土坍落度损失过快,重者混凝土异常快凝。

水泥细度: 水泥颗粒对减水剂分子具有吸附性,水泥颗粒越细、比表面积越大, 即对减水剂吸附量也越大。

水泥新鲜度: 越新鲜的水泥所带的正电性较强,对外加剂的吸附能力就大。 水泥温度: 水泥温度越高,水泥水化反应加快,混凝土坍落度损失也越快。

改善措施(除水泥):

外加剂采用后掺法或分批添加法: 适当增加减水剂掺量:

复合一定量的反应性高分子材料: 适当复配保水、保塑的组分:

降低早期对外加剂的吸附量。 弥补被吸附的外加剂量。 减轻外加剂因吸附程度。 减缓水化速度。包括选用聚羧酸类等。 水泥企业粉磨系统优质高产、节能降耗的技术分析

水泥粉体状态与控制方法 : 水泥的群体颗粒具有高比表面积(单位质量物质的二相界面面积)与多分散性(某一样品中每一颗粒都不尽相同)两大特征。 1.1 水泥细度: 水泥的粒度就是水泥的细度。水泥细度直接影响着水泥的凝结、水化、硬化和强度等一系列物理性能。

(1)当水泥磨得很细时,如80μm方孔筛筛余小于1%,控制意义就不大了。国外水泥普遍磨得很细,所以在国外水泥标准中几乎全部取消了这一指标。

(2)当粉磨工艺发生变化时,细度值也随之发生变化。如开流磨筛余值偏大,圈流磨筛余值偏小,

有时很难根据细度来控制水泥强度。

(3)细度值是指0.08mm筛的筛余量,即水泥中≥80μm颗粒的含量(%)。众所周知,≥64μm的水泥颗粒的水化活性已很低了,所以用≥80μm颗粒含量的多少进行水泥质量控制,还不能全面反映水

泥的真实活性。

1.2 水泥的平均粒度:在水泥粉磨过程中,不是均匀的单颗粒,而是包含不同粒径的颗粒体--粒群,所以在评述水泥细度时若只用筛余这一简单的表示方法,差不多有90%多的水泥颗粒都通过筛孔成了筛下物,然而这些筛下物的颗粒大小并不清楚,故筛余量相同时比表面积也会出现很悬殊的现象。

平均粒度有几种表示法,如算术平均直径、几何平均直径、调和平均直径等。

水泥颗粒的平均粒度是表征水泥颗粒体系的重要几何参数,但所能提供的粒度特性信息则非常有限,因为两个平均粒度相同的粒群,完全可能有不一样的粒度组成(颗粒级配)。

1.3水泥比表面积:国外大多规定比表面积指标,一般都采用勃氏比表面积仪测定。我国的硅酸盐水泥和熟料的国家标准规定已与国外标准一致。水泥比表面积与水泥性能之间存在着较好的关系。但用比表面积控制水泥质量时,主要还有下述两方面的不足:

(1)比表面积对水泥中细颗粒含量的多少反应很敏感,有时比表面积并不很高,但由于水泥颗粒

级配合理,水泥强度却很高。

(2)掺有混合材料的水泥比表面积不能真实反映水泥的总外表面积,如掺有火山灰质混合材料,

水泥比表面积往往会产生偏高现象。

1.4 水泥的颗粒级配(粒度分布):即使筛分细度相同或比表面积相近,水泥的性能有时也会表现出较大的差异,原因是粒度分布可能不同(颗粒形状的因素也很重要),因此研究水泥粒度的表征、探索其与水泥强度之间更精确的定量关系,有着重要的意义。

国内外长期试验研究证明,水泥颗粒级配是水泥性能的决定因素,目前比较公认的水泥最佳颗粒级配为:3~32μm颗粒对强度的增长起主要作用,其粒度分布是连续的,总量应不低于65%;16~24μm的颗粒对水泥性能尤为重要,含量愈多愈好;小于3μm的细颗粒,易结团,不要超过10%;大于64μm的

颗粒活性很小,最好没有。

此外,水泥粒度分布(颗粒级配)不当,还会影响水泥水化时的需水量(和易性)。若为了达到水泥砂浆的标准稠度而提高了用水量,则最终会降低硬化后的水泥或混凝土的强度。因此掌握水泥颗粒级配的指标是很重要的。 表示水泥粒度分布即颗粒级配的方法有列表法、作图法、矩阵法和函数法。 1.5水泥颗粒形貌: 20世纪90年代,人们开始研究水泥颗粒形貌对水泥性能的影响。水泥颗粒如果放在电子显微镜下观察,它的形貌并不是圆的,犹如破碎堆积的石灰石,有棱角小的,有棱角大的,有片状的,有针状的。水泥颗粒的形貌与粉磨工艺有关。

水泥颗粒形貌通常用圆度系数(f)表示,圆形颗粒的圆度系数等于1,其它形状则都小于1。 国外水泥的圆度系数,大多在0.67左右。中国建材科学研究院测定的我国部分大、中型水泥企业水泥的圆度系数平均值为0.63,波动在0.51~0.73之间。同时在对水泥颗粒形貌的研究中还发现:水泥磨机的研磨能力愈强,f值愈大;高细磨水泥f最大;带辊压机预粉碎的磨机磨制的水泥f值也较大。 试验研究表明,将水泥颗粒的圆度系数由0.67提高到0.85时,水泥砂浆28d抗压强度可提高20%~30%。 水泥颗粒特征及粉磨工艺对水泥强度的影响

摘要:介绍了国内某大型现代干法水泥厂的粉磨设备、粉磨工艺、水泥颗粒特征和熟料、水泥的物理性能。通过对该厂水泥颗粒特征和熟料、水泥物理性能等实际生产数据的解析,以实例证实了水泥颗粒特征及粉磨工艺对水泥性能的影响程度。通过调整水泥粉磨设备和粉磨工艺,使水泥粒度分布接近于理想分布,水泥强度可以显著提高。试验表明80μm筛余或比表面积均难以准确反映水泥的粒度分布。通过分析,从水泥性能的角度给出了水泥厂粉磨设备、粉磨工艺和水泥产品颗粒分布的一个参考标准。介绍了该工厂水泥粉磨过程的质量检验、质量控制方法。该厂经验表明,按GB/T 17671—1999检验的水泥强度与水泥的比表面积在许多时候没有明确的相关关系,30μm筛余或45μm筛余是水泥粉磨过程适宜的控制指标,在使32μm筛余或45μm筛余处于控制范围的同时,还应该对RRB分布曲线的特征粒径 和均匀性系数(n)进行控制,定期检查和控制水泥的粒度分布是非常必要的。 本文介绍了国内某大型现代干法水泥厂(中日合资企业,)的粉磨设备、工艺、水泥颗粒特征和熟料、水泥的物理性能。通过对该工厂水泥颗粒特征和熟料、水泥性能的分析,以及对工业生产实际数据的分析,证实了水泥颗粒特征及粉磨工艺对水泥性能的影响程度。同时介绍水泥粉磨过程的质量控制方法和控制指标。希望更直接地为有关方面提供借鉴。 1 粉磨设备、工艺概况

该工厂的水泥粉磨采用CKP立磨+球磨联合闭路粉磨系统,CKP立磨规格为CKP-170;球磨双仓规格为φ3.9m×12m。旋风式选粉机。系统产量115t/h×2。

熟料和石膏经过破碎机一次破碎至≤40mm的颗粒占95%以上,喂入CKP立磨,出CKP立磨的物料≤10mm的颗粒占95%以上,约10%返回CKP立磨,约90%出CKP立磨的物料和选粉机回粉共同进入球磨。出球磨物料和粉煤灰共同进入选粉机,选粉机的选粉效率约60%,循环负荷率约260%。水泥品种等级大部分为P.O 42.5R,少量为P.II 42.5R,两个品种水泥平均电耗39kwh/t-cem。使用占水泥重量比0.02%-0.03%左右的助磨剂。

2 水泥的颗粒特征

2.1 颗粒形貌:使用JCM-35C型扫描电镜及配套的统计计算软件对P.O 42.5R和P.II 42.5R水泥进行了水泥颗粒圆形度分析。P.O 42.5R水泥的颗粒圆形系数0.58,P.II 42.5R水泥的颗粒圆形系数0.54。我国部分大中型水泥企业水泥的圆形系数平均值为0.63,波动在0.51-0.73之间。国外水泥的圆形系数大约在0.67左右。比较起来,该工厂水泥的圆形

系数有待进一步提高。

2.2 颗粒分布、细度 :使用负压筛测定15μm、20μm、32μm、45μm、63μm筛余,使用回归分析的方法求得RRB(Rosin-Rammlar-Bennet)公式中的两个参数:特征粒径 和均匀性系数(n)。因为回归的相关系数(r)高达0.999,可以很准确地计算任意孔径筛余。

P.II 42.5R水泥的特征粒径 =19.7μm,均匀性系数n=1.28,比表面积327m2/kg。P.O 42.5R水泥的特征粒径 =19.1μm,均匀性系数n=1.27,比表面积366m2/kg。两种水泥的粒度分布基本一致。计算得到的不同尺寸颗粒含量为:0~1μm的颗粒占2%;0~3μm的颗粒占9%;3~32μm的颗粒占76%;大于45μm的颗粒占5%;大于63μm的颗粒占1%。上述数据已经非常接近理想数值。 1#熟料的特征粒径 =25.5μm,均匀性系数n=1.11;2#熟料的特征粒径 =23.3μm,均匀性系数n=1.06; 3 熟料、水泥检验结果 3.1 样品制备方法、检验方法 3.1.1 熟料样品制备方法、检验方法 熟料样品按JC/T853-1999《硅酸盐水泥熟料》规定的方法进行制备和检验。 3.1.2 水泥检验方法 按GB175-1999规定的方法检验。 3.2 熟料、水泥检验结果 与熟料28天抗压强度比较,P.II 42.5R水泥28天抗压强度高约6MPa,P.O 42.5R水泥28天抗压强度高约4MPa。这一差别主要是由于化验室小磨与生产设备粉磨产品的粒度分布不同造成的。 4 水泥粉磨过程的质量控制方法和控制经验 4.1 水泥粉磨过程的质量控制方法 15μm、20μm、32μm、45μm、63μm筛余采用德国产进口负压筛和筛网按日本方法测定。德国产进口负压筛的工作原理和设备结构与国内负压筛基本一致,区别在于德国产进口负压筛的筛网尺寸为内径70mm,测定时称样量为1g。这一区别使得德国产进口负压筛与国产负压筛比较,工作时风量较大,筛孔不易堵塞。该设备8min-10min即可完成32μm筛余的测定,4min-6min即可完成45μm筛余的测定。该设备机械加工精度很高,故障率极低,操作简便,测定时间短,测定结果稳定、准确,可以用于

例行生产控制。 国内许多水泥企业采用激光粒度分析仪测定水泥的粒度分布。该工厂对同一个样品使用负压筛和激光粒度分析仪进行了平行的粒度分布检验,结果表明:对于10μm以上的水泥颗粒,激光粒度分析仪可以得到与负压筛非常一致的检验结果;对于10μm,特别是5μm以下的颗粒,激光粒度分析仪的检验结果比负压筛略高。其中一个主要原因是非常细小的水泥颗粒在范德华(Vander Waals)力的作用下集结为颗粒团,使用负压筛检验时颗粒团不易被分散;使用激光粒度分析仪检验时,颗粒团在有机介质中被充分分散。激光粒度分析仪作为水泥企业定期检验水泥粒度分布的一种方法是适宜的,但是由于其测定操作复杂,时间长,仪器故障率高,不适合例行质量控制使用。

4.2 水泥粉磨过程的质量控制经验

4.2.1 细度 :该工厂以32μm筛余作为粉磨过程例行控制的依据。在32μm筛余处于控制目标范围时,80μm筛余为0.2%-0.4%,几乎没有波动,如果以80μm筛余作为粉磨过程例行控制的依据,那么几乎无法对粉磨设备作出任何调整。由于设备故障原因,32μm筛余曾经偶然发生很大波动,由原来的控制目标值16%变为20%。单独对该部分水泥进行检验,28天抗压强度比细度正常时下降约4MPa,此时水泥80μm筛余并没有明显变化,仅由0.3%变为0.8%。这一事实表明,在水泥细度较细时,80μm筛余很难反映水泥的粉磨情况,不宜作为水泥粉磨过程的质量控制指标。该工厂的生产经验表明,以32μm筛余或45μm筛余作为水泥粉磨过程的质量控制指标是适宜的。国外多数先进水泥企业对水泥粉磨过程也正是

采取的这一质量控制方法。 4.2.2 比表面积:在该工厂,虽然每4h进行一次比表面积测定,但是比表面积的测量值仅供参考,并不作为粉磨过程例行控制的依据。通过对出磨水泥数据的统计分析发现,强度与比表面积之间没有很好的相关关系。比表面积对被测样品中的细粉非常敏感,该工厂P.O 42.5R和P.II 42.5R水泥的粉磨工艺参数一致,因为P.O 42.5R水泥掺入了12%含有较多细粉的粉煤灰,致使P.O 42.5R的比表面积比P.II 42.5R高出30m2/kg。但是P.O 42.5R和P.II 42.5R水泥中的熟料部分粉磨程度是基本一致的。许多研究[5-7]也表明,比表面积不能很好反映水泥的颗粒分布等粉体状态。在实施新水泥标准之前,我国许多水泥企业不重视比表面积的测定;实施新标准以后对于水泥粉磨过程认识有所提高,许多水泥企业开始重视比表面积的测定。但是该工厂的经验表明,以比表面积作为粉磨过程例行控制

的依据是非常粗略的。 4.2.3 颗粒分布:与水泥的物理性能特别是强度密切相关的水泥中熟料及混合材的粒度分布。熟料的粒度分布与熟料的水化速度、一定时间内的水化程度、标准稠度需水量、混凝土的水灰比密切相关。熟料与混合材的粒度分布共同决定了水泥颗粒的最紧密堆积密度。许多资料[

7、8]也强调了水泥颗粒分布的重要性,并提出了水泥颗粒分布的理想数据。如果不考虑粉磨设备、煤磨电耗等因素的影响,我们应该使水泥的粒度分布接近理想数据,并在例行控制中测定水泥的粒度分布,以水泥的粒度分布作为粉磨过程例行控制的依据。我国多数水泥厂的现实情况是,使用80μm筛余或比表面积作为粉磨过程例行控制的依据,对水泥的粒度分布较少关注,80μm筛余或比表面积与颗粒分布均没有很好的相关关系。 该工厂的经验表明,在粉磨设备及其运转参数没有明显改变时,32μm筛余或45μm筛余能够很好地反映颗粒分布。使用32μm筛余或45μm筛余为粉磨过程例行控制的依据,在粉磨设备及其运转参数发生明显改变时,可能通过简单的调节,比如选粉机的转数(风量),使32μm筛余或45μm筛余保持在控制目标之内。因此,使用32μm筛余或45μm筛余为粉磨过程例行控制的依据,在粉磨设备及其运转参数发生明显改变时并不能很好反映粒度分布。曾经发现,在32μm筛余没有明显改变的情况下,45μm筛余发生了明显增加,此时检验水泥粒度分布发生明显变化,强度降低。 使用RRB公式可以很好地对水泥颗粒分布进行拟合,控制RRB公式中的两个参数特征粒径 和均匀性系数(n)即可达到控制粒度分布的目的。该工厂测定15μm、20μm、32μm、45μm、63μm筛余,通过回归分析求得RRB公式,相关系数(r)很高,可以达到0.98以上。该工厂定期或在怀疑粒度分布有问题时使用该方法测定粒度分布。 有一种比较简便的方法可以大致判断粒度分布是否正常,如果使用32μm筛余或45μm筛余作为粉磨过程例行控制的依据,并且32μm筛余或45μm筛余处于正常控制范围,可以增加测定另一个小于63μm的筛余,这个筛余的尺寸与例行质量控制筛余的尺寸至少相差10μm。将测得的筛余与以往粒度分布正常的数据进行比较,如果增加测定的筛余数据与以往粒度分布正常的数据具有明显区别,则提示粒度分布可能具有明显变化。例如该工厂正常情况下,32μm筛余大约16%±1.5%,45μm筛余大约5%±1.5%,如果32μm筛余处于正常控制范围,45μm筛余超出目标值3%,则提示粒度分布可能具有明显变化。 4.2.4 助磨剂 :该工厂在水泥粉磨时添加占水泥重量比0.02%-0.03%的助磨剂,使用效果良好。曾经发生助磨剂的短时间中断,尽管此时调整选粉机转数,使水泥的32μm筛余仍然处于控制范围之内,但是水泥的RRB公式中的两个参数特征粒径 和均匀性系数(n)发生了明显变化,即水泥的颗粒分布发生了明显变化,水泥强度也随之明显降低。 5 结论 5.1 水泥粉磨设备、粉磨工艺合理,水泥粒度分布接近理想分布,则水泥强度可以明显提高。在该工厂与熟料28天抗压强度比较,P.II 42.5R水泥28天抗压强度高约6MPa,P.O 42.5R水泥28天抗压强度高约4MPa。 5.2 与水泥物理性能特别是强度密切相关的是水泥的粒度分布,80μm筛余或比表面积均难以准确反映水泥的粒度分布。测定32μm筛余或45μm筛余为粉磨过程例行控制的依据是适宜的。在使32μm筛余或45μm筛余处于控制范围的同时,还应该对RRB分布曲线的特征粒径 和均匀性系数(n)进行控制,定期检查和控制水泥的粒度分布是必要的。 5.3 立磨+球磨是一种较好的水泥粉磨设备,粉磨产品质量好,电耗合理。 5.4 合理选用助磨剂有利于改善水泥的粒度分布,减轻过粉磨现象,减少小于3μm以下颗粒的数量。 5.5 与激光粒度分析仪比较,负压筛更适合于例行质量控制。在即将颁布的国家标准GB/T 1345-××××《水泥细度检验方法》中已经列入了45μm负压筛的检验方法。 谈混凝土外加剂与水泥的适应性及对混凝土性能的影响

1.0 前言 对水泥混凝土的要求也越来越高,不仅要求混凝土可调凝、早强、高强、大流动度、高密实性、高耐久性、低水化热、轻质,而且要求制备成本低、成型容易、养护简便……。

混凝土外加剂的特点是品种多、掺量少,在改善或提高新拌和硬化混凝土的性能中起着重要的作用,新拌混凝土工作性能明显改善;能有效控制混凝土的凝结时间与坍落度损失;后期强度有较大的增长;增加混凝土的密实性,抗渗、抗冻、抗炭化等耐久性指标有较大的提高,硬化混凝土有较好的体积稳定性等。 2.0 混凝土外加剂与水泥的适应性

混凝土外加剂与水泥的适应性问题,涉及水泥化学、高分子材料学、表面物理化学和电化学等多方面的知识。从工程实践的情况来看,问题仍然很多,如同品种同掺量的外加剂,对不同品种的水泥,效果差异极大,甚至同一种水泥,但不同时期效果也有差别,使用同一批外加剂的水泥净浆流动度时大时小,其混凝土的坍落损失有时忽大忽小,甚至有时泌水、有时又不泌水、凝结时间的差异也很大,时而还会出现促凝现象等等,这些就是外加剂与水泥的适应性问题。 2.1外加剂与水泥不相适应

主要表现在减水效果低下或增加流动性的效果不好、凝结速度太快或缓凝、坍落度损失快,甚至降低混凝土强度等,这种种不适应的问题与外加剂的品种、作用机理、原材料的选用与制造工艺、胶凝材料的成份、细度、水泥磨细阶段工艺的差异有关,其他如环境温度、加料方式和外加剂用量也会产生影响。 2.2外加剂品种与性能的影响

外加剂特别是化学合成的高效减水剂性能对水泥净浆流动的影响。如萘系高效减水剂的性能涉及磺化程度与磺化产物,缩合工艺与程度,分子量大小,平衡离子,分子结构等各种因素。水泥等无机矿物颗粒由于范德华力、不同电荷的静电互相作用、水化颗粒的表面化学作用,导致粒子形成聚集结构,束缚一部分水,不能用于滑润水泥粒子,也不能立即用于水化。加入高效减水剂等外加剂后,由于吸附作用和电荷斥力,使水泥粒子分散,絮凝结构解体,释放束缚水并阻止粒子的表面相互作用,使水泥浆体的流动性增大,其增加的大小与其技术性能及掺量有关。

聚羧酸盐(PC)及氨基磺酸盐(AS)、羰基磺酸盐类(SAF)、萘系(NS)的流动度大,木质素磺硫酸盐类(LS)流动度小,效果差。NS是使水泥料粒子形成双电层的静电斥力而分散,SA是使水泥颗粒表面的外加剂层互相作用的空间斥力而分散,SAF与PC是静电斥力和空间斥力两种力的作用而分散,因而效果更好。 2.3 水泥矿物组份与化学成份的影响

水泥胶结料的矿物质成份和化学成份对外加剂吸附量的多少,对于流动性及强度增长有很大的影响。外加剂吸附量越少的水泥浆体的流动度值越大。C3A、C4AF混水后,ζ电位呈正值,较多地吸附外加剂。C3S、C2S混水后ζ电位呈负值,吸附量较少。在水泥矿物中C3A需水量大,水化快,放热大,吸附外加剂量最大,依次为C4AF、C3S、C2S。C3A含量对相容性的影响远比C4AF大,这是由于高效减水剂优先吸附于C3A或其初期水化物的表面,C3A的水化速度比C4AF快。水泥中C3A、C4AF含量低对外加剂适应好,混凝土体积稳定性好,开裂趋势减少。

2.4水泥细度与颗粒形貌的影响

水泥过细比表面积增加,需水量大,更加降低了液相中残留外加剂浓度,增加了液体粘度,塑化效果变差,混凝土坍落度损失更快;水泥过细水化速度快水化热高,容易产生裂缝。

2.5掺合料的影响

根据国家标准,允许在水泥中掺入一定量的掺合料,常用掺合料有水淬高炉矿渣、粉煤灰、沸石粉、火山灰、煤碱石、窑皮等,掺合料性能不同,也会影响外加剂对水泥的适应性。

2.6调凝剂的影响

调凝剂(石膏)的形态、细度、用量、研磨温度等均有影响。

石膏又分为二水石膏、半水石膏、硬石膏。根据有关标准,三种石膏都可作水泥调凝剂使用,而其中硬石膏溶解性能较差,一些外加剂如糖钙、木钙等与硬石膏同用,不但不能促进石膏溶解,反而会降低硬石膏的溶解度,使水泥因缺少调凝成份而产生速凝等异常凝结。就是半水石膏,也由于CaSO4.1/2H20→CaSO4.2H2O的结晶,水泥与水拌合后,反应就十分迅速,而且消耗大量水,不同水泥与高效减水剂相容性上的差别,这也是其中一个重要原因。

石膏研磨细度不够,会影响石膏的溶解性,即使运用二水石膏也会产生速凝等现象。

在C3A含量偏高的水泥中,调凝剂仍按常规用量(3—5%),无论选用何种石膏,凝结时间都会提前,这主要是水泥中C3A水化快,C3A含量增加,少量石膏不能满足它生成胶状钙矾石,从而影响了石膏的调凝效果。尽管水泥和外加剂都合格,但影响水泥与外加剂的适应性,使混凝土工作性变差,坍落度损失加大。

水泥厂为了缩短熟料冷却时间,经常将温度较高的熟料与石膏同磨,二水石膏在150℃高温下会脱水成为半水石膏,温度再高至160℃以上,半水石膏还会成为溶解性较差的硬石膏,影响水泥的适应效果,使混凝土流动性变差,甚至出现假凝。 2.7碱含量的影响

水泥中的碱主要来源于所用原材料,特别是石灰和粘土。含碱量越低,相容性越好,高含碱量则会加速水泥的早期水化速率,导致需水量增大并且加快工作度损失,塑性效果变差。

2.8新鲜水泥存放时间与温度的影响

陈国忠等通过试验认为:新鲜水泥在生产后12天内对外加剂吸附量较大,大部分15天后趋于正常。由于新鲜水泥干燥度高,而且温度相当高(达80℃—90℃),早期水化快、水化时发热量大,所以需水量大,而且对外加剂的吸附量也大,同等掺量时,流动度变小,必然会产生对混凝土的需水量大、坍落度损失快、凝结时间短等许多怪现象。这完全是因为水泥存放时间的不同,导致混凝土的性能技术指标出现较大差异,如能注意到这些问题,有了这方面的认识和经验,出现此类现象也就不足为怪了。

在外加剂已供施工现场的情况下,可通过调整增加掺量来解决新鲜水泥与外加剂不兼容的问题,其调整幅度视水泥新鲜的程度和对外加剂的适应性而定。 3.0 混凝土外加剂对混凝土性能的影响

3.1现代混凝土施工技术的发展离不开外加剂,特别是高效减水剂在高强与高性能混凝土技术的发展中所起主导作用。

3.2混凝土外加剂的发展促进混凝土技术的发展。

根据混凝土设计与施工的要求,研究、开发了混凝土外加剂,外加剂技术的发展又促进了混凝土施工技术的发展。使混凝土技术从塑性混凝土向 -干硬性混凝土- 流态化混凝土- 高性能混凝土方向发展。

正在研发中的聚羟酸类,象高效AE减水剂以及与超塑化剂精细配制的复合高效外加剂等新型高效减水剂可称为外加剂的第三代产品。它克服了第二代外加剂存在着坍落度经时损失大的缺点并兼顾耐久性的指标,将混凝土的高强、高施工性能、高耐久性三者结合起来。另外,它们还需进一步提高在低水灰比下的减水率,满足有的混凝土工程不仅提出高性能,而且要求能满足高功能化的要求。新型第三代高效减水剂具有20%以上高减水率,在60-90分钟的输送时间内具有能保持坍落度及所需稳定的含气量,能使用现场的成套设备或用商品混凝土设备制造出各项指标符合合要求的高性能混凝土。用它也可制造出单位用水量少,流动性高,穿透钢筋网片性能良好,能不振捣、自充填、不分离的高性能不振捣混凝土,并在使用中进一步改良与发展。

3.3选择与水泥相适应,能满足设计与施工要求的相应外加剂。

不同生产工艺、种类或配方与掺量的外加剂对水泥适应性有差别,应通过试验确定,选用质量稳定、适应性好的外加剂;同时根据不同设计与施工要求,选择相应的各类外加剂,如高效减水剂或缓凝高效减水剂、泵送剂、防水剂……等;根据设计与施工要求,结合现场实际使用材料,进行试配,确定合理施工配合比与外加剂适宜掺量。 3.4 大剂量高效减水剂对新拌混凝土稳定性的影响[2]

随着高强混凝土和泵送工艺日益广泛的应用,原来掺量不仅减水率达不到要求,而且由于水灰比减小、浇筑时工作度要求增大,新拌混凝土的工作度损失加剧,不能满足较长距离运输的施工要求,因此高效减水剂的掺量逐渐增大,研究与应用的实践表明:大掺量高效减水剂使混凝土在水胶比很低的条件下,仍能具有较大的流动性,可以成型密实,生产强度与耐久性良好的高强和高性能混凝土。另一方面,在大掺量高效水剂条件下,新拌混凝土的工作度损失率看来也减小了,其机理是:新拌混凝土中水泥的的硫酸钙含量与形态,影响液相中SO4-的浓度,是其流变行为的控制因素之一,低水胶比混凝土由于溶解硫酸盐产生SO4-离子的水分少,而需要控制的C3A量又多,相对而言,有较多的C3A就地水化。因为缺少硫酸根离子,高效减水剂分子上的磺酸根基因就会与C3A结合,使液相里的高效减水剂量下降,逐渐失去对水泥的分散作用,加速其工作度的损失。增大高效减水剂的掺量,使液相里的SO4-离子量增加,故工作度损失率减小。

但是,每一种高效减水剂——水泥之间的搭配,都有一相应的饱和浓度。对于大多数高效减水剂——水泥的体系,其饱和浓度约为0.8——1.2%。在配制高强与高性能混凝土时,高效减水剂的掺量通常要接近或等于其饱和掺量,但需要特别注意控制高效减水剂的适宜剂量,需要与其外加剂和矿物掺合料使用,才能获得预期的效果,对于不同的高效减水剂品种,产生这种现象的敏感性不一样,有时掺量在增减0.1%——0.2%范围内变动,就会从减水率还不够理想跃变为稳定性不佳的另一极端,这种情况给混凝土配制和施工质量控制都带来不便,或者说更高的要求。 3.5其他因素对混凝土性能的影响。

要配制品质优良新拌混凝土与获得良好的硬化混凝土,必须注意满足对原材料选择,合理的配合比以及施工要求。

3.5.1水泥的矿物组份和化学成份以及物理技术指标 选择满足设计与施工技术要求的水泥品种。如配制高性能混凝土用的水泥,最好使用C3A含量低、C2S含量高的水泥,混凝土流动性大,坍落度与扩展度的经时变化也少,如果使用的水泥C3A<3%,C4AF<7%,C3S在40-50%,C2S在50-40%,这样的水泥制作高性能混凝土效果会较好。

3.5.2保证砂、石质量,原材料用量准确

砂的含泥量与细度模数必须符合要求,碎石的含泥量及针片状不超标,最好选用连续级配或单粒级石子,粒径适中;原材料质量保证,用量准确;

3.5.3通过设计与试配,确定合理的配合比,必要时需进行适当调整。

施工配合比虽然是设计问题,但它是影响混凝土性能的关键因素,如泵送混凝土适当提高砂率可提高混凝土可泵送性,但砂率过高也会影响混凝土的保塑性能,增加混凝土坍落度的经时损失率。降低水灰比可以提高混凝土强度,而在较低水灰比条件下配制掺外加剂混凝土应有一最低用水量,这不但是保证混凝土有一定工作性,更重要的是保证水泥在水化时,石膏有足够的溶解用水,石膏在缺水时会大大影响溶解度,影响外加剂对水泥适应性。

高效减水剂掺量过多时,水泥浆的流动度大,浆体稀薄,不足以维持与集料的粘聚,往往会引起混凝土离析、泌水,此时可以适量增加用砂量,增加胶凝材料用量或是适量减少高效减水剂用量或用水量,产生离析的混凝土拌和物有害于工程质量。 3.5.4注意水泥的出厂及进货时间。

砂、石、水泥及外界的温度对水泥与外加剂适应性都有着不同程度的影响。特别是刚出厂的水泥温度有时高达80℃-90℃,在高温情况下,需水量与外加剂吸附量增大,坍落度减少,坍落度损失加快,适当增加外加剂的掺量,增加混凝土中外加剂残留率也有比较明显的效果。

3.5.5掺入部分活性掺合料

试验证明具有一定活性的水硬性材料或自硬性材料,如硅灰、磨细矿渣粉、粉煤灰等在满足一定的技术要求条件下与外加剂同掺,不但节约水泥,改善混凝土工作性,提高混凝土强度,还能改善外加剂对水泥的适应性。 3.5.6保证施工质量

保证制摸质量、防止漏浆与支架变型、钢筋变位;施工中混凝土要振捣密实,防止漏振或振捣过度;及时利用原浆收光面层,在初凝前再进行二次压实收面,可减少塑性裂缝;混凝土浇注后表面泛白或8小时内及时浇水养护或喷养护剂,最好加薄膜密封养护或复盖湿麻袋养护,养护日期不少于14天,以免因施工质量不佳而引起与外加剂无关的异常现象。

第三篇:外加剂比对检测说明2

关于威高广场外加剂比对检测及相关说明

威海万通置业有限公司、中建二局有限公司(沪)威高广场迪尚大道项目部:

就威高广场迪尚大道工程,甲方指定使用安徽混凝土外加剂一事,我公司实验室,就有关数据作出如下检测项目:

一、产品类型:

1、 安徽扬子江砼外加剂有限公司生产的WJB砼复合液,掺量为水泥用量的3%。

2、 山东鲁南外加剂厂生产的JFA-5砼高强泵送剂,掺量为水泥用量的1.5%。

二、检测项目:

(一)、水泥净浆流动度

1、 检测结果:

①、 宝桥PO42.5R水泥 A、 WJB平均值为178mm B、 JFA-5平均值为232mm

②、烟台山水PO42.5R水泥 A、WJB平均值为199mm B、JFA-5平均值为231mm 推理:经过两种不同的外加剂对同品种水泥的检测结果可以看出,WJB型虽然掺量大,但其流动度远远不及JFA-5型流动度大。

(二) 、固含量

1、

2、 WJB型为20% JFA-5型为43%

推理:WJB型固含量低,表明含水率大,反之JFA-5型固含量高,则含水量低。

(三) 、水泥适应性检测

1、 WJB型和宝桥PO42.5R水泥的初始流动度为183mm,30分钟为133mm,经时损失为28%,60分钟为123mm,经时损失为33%,和烟台山水PO42.5R水泥的初始流动度为200mm,30分钟为169mm,经时损失为16%,60分钟为159mm,经时损失为21%.

2、 JFA-5型和宝桥PO42.5R水泥的初始流动度为228mm,30分钟为213mm,经时损失为7%,60分钟为203mm,经时损失为11%,和烟台山水PO42.5R水泥的初始流动度为233mm,30分钟为220mm,经时损失为6%,60分钟为208mm,经时损失为11%. 推理:根据GB50119-2003中,其流动度越大则说明水泥和外加剂的适应性越好。从检测结果中可以看出,WJB型对两种水泥的适应性远不及JFA-5型。尤其WJB型的经时损失也大于JFA-5型。WJB型的经时损失大于JFA-5型,经时的损失的加快会直接影响砼坍落度的损失和砼的凝结时间。经时损失的增大,表明水泥水化速度的加快,也会使混凝土收缩加快。 (四)、减水率

1、

2、 WJB减水率为17%(掺3%) JFA-5减水率为25%(掺1.5%)

推理:依据JGJ55-2000《普通混凝土配合比设计规程》,JGJ/T10-95《混凝土泵送施工技术规程》,威高广场基础底板不仅为大体积混凝土工程,而且浇注方法为泵送,设计等级为C35P

10、C35P

8、C35P6等,试配坍落度为180-200mm,用水量为10/3×(20+53)=243kg/m³。如用WJB型掺3%,按减水率17%计算,则每立方砼用水量为:243×(1-17%)=202kg,用PO42.5R水泥水灰比为0.44~

0.46,则每立方砼水泥用量为459~440kg,如采用JFA-5型掺1.5%,减水率25%时,则每立方砼用水量为:243×(1-25%)=182kg,同样用PO42.5R水泥水灰比不变,则每立方砼水泥用量为414~396kg.GB/T50476-2008《混凝土结构耐久性设计规范》及GB50496-2009《大体积混凝土施工规范》中,对混凝土水泥用量及单方混凝土用水量也作了相应规定,因此用WJB型很难满足要求,关于再增加掺量来提高减水率,还需再进行研究。

(五)、关于其他性能指标,因设备、环境、时间等因素,暂不能出具检测结果。

对于安徽扬子江砼外加剂有限公司生产的WJB砼复合液,以前没有了解,通过我公司初步检测,效果比山东鲁南外加剂厂的产品有差距,特别是坍落度的损失,由于该工程施工时间在夏季高温季节,一般都在30℃,基坑温度一般在50-60℃之间,在此温度下,如采用此外加剂,依据现行检测结果推断,直接导致砼在20分钟内坍落度的损失到130mm, 由于我公司运输时间为15-20分钟,也就是说,搅拌车刚到达施工现场,坍落度的损失就不能满足要求,根本无法达到泵送要求,根本无法施工;同时指定的产品不在本省内,供货时间存在不确定性,以前有的工程甲方指定使用江西某家的产品,厂方承诺通知后三天到货,结果是8天才到货;同时若我公司采用两种外加剂,势必增加使用难度,直接影响施工进度。

同时,若更换外加剂,我公司应及时对产品进行大量的检测和实验,依据检测结果再作出混凝土配合比,现据施工日期很近,请贵方予以及时确定,否则由于时间原因而影响贵公司的工期。

威海市都城混凝土有限公司

2011年6月15日

第四篇:外加剂泄漏事故应急处理办法

为了减少混凝土的用水量,提高混凝土的性能,在生产混凝土时,需掺入部份外加剂以改变混凝土性能,我搅拌站目前使用的外加剂是由氨基磺酸系高效减水剂和萘系减水剂以及水按一定比例复合配制而成,复配过程无化学反应,只是物理混合过程。为了避免在储存、使用过程中意外泄漏而造成环境污染事故,特制定此应急管理办法:

1、外加剂化学性质

氨基磺酸系高效混凝土减水剂为芳香族磺酸甲醛缩合物,一般是由含有磺酸基和氨基的单体,如三聚氰胺、尿素、苯酚、水杨酸、苯磺酸、苯甲酸等一类的单体,通过滴加甲醛,在含水的条件下与甲醛加热缩合而成,我公司所用氨基是以对氨基苯磺酸钠及苯酚为主要原料,在含水的条件下与甲醛加热缩合而成的高效减水剂。萘系减水剂是由工业萘或煤焦油中的萘、蒽、甲基萘等馏分,经磺化、水解、缩合、中和、过滤、干燥而制成。萘系减水剂一般为棕色粉末。由于外加剂中含有氨和萘有毒成份,但经过缩合后只有很少量处于游离状态存在,无明显刺激味道,对皮肤无烧伤作用,食用后会对人体有害。

1、泄漏应急处理

如在生产现场发现外加剂泄漏,应立即向值班调度汇报,调度首先安排机修人员进行堵漏处理,减少泄漏量。同时注意疏散泄漏污染区人员至安全区,禁止无关人员进入污染区,建议应急处理人员戴自给式呼吸器,穿化学防护服。不要直接接触泄漏物,在确保安全情况下堵漏。用大量水冲洗,经稀释的洗水放入废水系统。用沙土、蛭石或其它惰性材料吸收,然后以少量加入大量水中,调节至中性,再放入废水系统。如大量泄漏,利用围堤收容,然后收集、转移、回收或无害处理后废弃。

2、防护措施

呼吸系统防护:可能接触其蒸气时,应该佩带防毒面具。紧急事态抢救或逃生时,建议佩带自给式呼吸器。

眼睛防护:戴化学安全防护眼镜。

防护服:穿工作服。

手防护:戴防化学品手套。

其它:工作现场禁止吸烟、进食和饮水。工作后,淋浴更衣。保持良好的卫生习惯。

3、急救措施

皮肤接触:立即用水冲洗至少15分钟。

眼睛接触:立即提起眼睑,用流动清水或生理盐水冲洗至少15分钟。

吸入:迅速脱离现场至空气新鲜处。保持呼吸道通畅。呼吸困难时给输氧。呼吸停止时,立即进行人工呼吸。就医。

食入:误服者立即漱口,口服清水进行稀释,并立即送医院就医。

4、预防措施

当班机修人员要坚持每班不定时的巡查外加剂管道及储存容器,检查是否有泄漏情况发生,发现隐患立即整改。

第五篇:广东外加剂项目实施方案

广东外加剂项目

实施方案

泓域咨询/ / 规划设计/ / 投资分析

广东外加剂项目实施方案

近几年我国外加剂产量增长速度惊人,已跃居世界外加剂产量前茅,并有逐年大幅提高的趋势。据中国建筑材料联合会混凝土外加剂分会发布的 2013 年我国混凝土外加剂产品调查结果显示:2013 年混凝土外加剂总产量达 1225.25 万吨,折合外加剂销售产值达到 496.61 亿元。

该水泥外加剂项目计划总投资 19213.58 万元,其中:固定资产投资14293.77 万元,占项目总投资的 74.39%;流动资金 4919.81 万元,占项目总投资的 25.61%。

达产年营业收入 43128.00 万元,总成本费用 34368.76 万元,税金及附加 361.65 万元,利润总额 8759.24 万元,利税总额 10329.06 万元,税后净利润 6569.43 万元,达产年纳税总额 3759.63 万元;达产年投资利润率 45.59%,投资利税率 53.76%,投资回报率 34.19%,全部投资回收期4.42 年,提供就业职位 831 个。

本报告所描述的投资预算及财务收益预评估均以《建设项目经济评价方法与参数(第三版)》为标准进行测算形成,是基于一个动态的环境和对未来预测的不确定性,因此,可能会因时间或其他因素的变化而导致与未来发生的事实不完全一致,所以,相关的预测将会随之而有所调整,敬请接受本报告的各方关注以项目承办单位名义就同一主题所出具的相关后

续研究报告及发布的评论文章,故此,本报告中所发表的观点和结论仅供报告持有者参考使用;报告编制人员对本报告披露的信息不作承诺性保证,也不对各级政府部门(客户或潜在投资者)因参考报告内容而产生的相关后果承担法律责任;因此,报告的持有者和审阅者应当完全拥有自主采纳权和取舍权,敬请本报告的所有读者给予谅解。

......

外加剂的分类:混凝土外加剂是一种在混凝土搅拌之前或拌制过程中加入用以改善混凝土性能的材料,掺量不大于水泥质量 5%,其特点是掺量少、作用大。如果将水泥比作施工工地(混凝土)的“粮食”,那么外加剂可以说是施工工地(混凝土)的“油”,是不可或缺甚至极为重要组成部分。从分类来看,外加剂分为减水剂、引气剂、膨胀剂等多个细分品种,不过以减水剂为主。

广东外加剂项目实施方案目录

第一章

申报单位及项目概况

一、项目申报单位概况

二、项目概况

第二章

发展规划、产业政策和行业准入分析

一、发展规划分析

二、产业政策分析

三、行业准入分析

第三章

资源开发及综合利用分析

一、资源开发方案。

二、资源利用方案

三、资源节约措施

第四章

节能方案分析

一、用能标准和节能规范。

二、能耗状况和能耗指标分析

三、节能措施和节能效果分析

第五章

建设用地、征地拆迁及移民安置分析

一、项目选址及用地方案

二、土地利用合理性分析

三、征地拆迁和移民安置规划方案

第六章

环境和生态影响分析

一、环境和生态现状

二、生态环境影响分析

三、生态环境保护措施

四、地质灾害影响分析

五、特殊环境影响

第七章

经济影响分析

一、经济费用效益或费用效果分析

二、行业影响分析

三、区域经济影响分析

四、宏观经济影响分析

第八章

社会影响分析

一、社会影响效果分析

二、社会适应性分析

三、社会风险及对策分析

附表 1:主要经济指标一览表

附表 2:土建工程投资一览表

附表 3:节能分析一览表

附表 4:项目建设进度一览表

附表 5:人力资源配置一览表

附表 6:固定资产投资估算表

附表 7:流动资金投资估算表

附表 8:总投资构成估算表

附表 9:营业收入税金及附加和增值税估算表

附表 10:折旧及摊销一览表

附表 11:总成本费用估算一览表

附表 12:利润及利润分配表

附表 13:盈利能力分析一览表

第一章

申报单位及项目概况

一、项目申报单位概况

(一)项目单位名称

xxx 有限公司

(二)法定代表人

任 xx

(三)项目单位简介

展望未来,公司将围绕企业发展目标的实现,在“梦想、责任、忠诚、一流”核心价值观的指引下,围绕业务体系、管控体系和人才队伍体系重塑,推动体制机制改革和管理及业务模式的创新,加强团队能力建设,提升核心竞争力,努力把公司打造成为国内一流的供应链管理平台。

公司经过多年的不懈努力,产品销售网络遍布全国各省、市、自治区;完整的产品系列和精益求精的品质使企业的市场占有率不断提高,除国内市场外,公司还具有强大稳固的国外市场网络;项目承办单位一贯遵循“以质量求生存,以科技求发展,以管理求效率,以服务求信誉”的质量方针,努力生产高质量的产品,以优质的服务奉献社会。公司生产的项目产品系列产品,各项技术指标已经达到国内同类产品的领先水平,可广泛应用于国民经济相关的各个领域,产品受到了广大用户的一致好评;公司设备先进,技术实力雄厚,拥有一批多年从事项目产品研制、开发、制造、

管理、销售的人才团队,企业管理人员经验丰富,其知识、年龄结构合理,具备配合高端制造研发新品的能力,保障了企业的可持续发展;在原料供应链及产品销售渠道方面,已经与主要原材料供应商及主要目标客户达成战略合作意向,在工艺设计和生产布局以及设备选型方面采用了系统优化设计,充分考虑了自动化生产、智能化节电、节水和互联网技术的应用,产品远销全国二十余个省、市、自治区,并部分出口东南亚、欧洲各国,深受广大客户的欢迎。

公司注重建设、培养人才梯队,与众多高校建立了良好的校企合作关系,学校为企业输入满足不同岗位需求的技术人员,达到企业人才吸收、培养和校企互惠的效果。公司筹建了实习培训基地,帮助学校优化教学科目,并从公司内部选拔优秀员工为学生授课,让学生亲身参与实践工作。在此过程中,公司直接从实习基地选拔优秀人才,为公司长期的业务发展输送稳定可靠的人才队伍。公司的良好人才梯队和人才优势使得本次募投项目具备扎实的人力资源基础。

(四)项目单位经营情况

上一,xxx 科技发展公司实现营业收入 34302.05 万元,同比增长8.50%(2688.20 万元)。其中,主营业业务水泥外加剂生产及销售收入为28064.25 万元,占营业总收入的 81.82%。

根据初步统计测算,公司实现利润总额 6809.71 万元,较去年同期相比增长 893.27 万元,增长率 15.10%;实现净利润 5107.28 万元,较去年同

期相比增长 469.60 万元,增长率 10.13%。

上营收情况一览表

序号 项目 第一季度 第二季度 第三季度 第四季度 合计 1

营业收入

7203.43

9604.57

8918.53

8575.51

34302.05

2

主营业务收入

5893.49

7857.99

7296.70

7016.06

28064.25

2.1

水泥外加剂(A)

1944.85

2593.14

2407.91

2315.30

9261.20

2.2

水泥外加剂(B)

1355.50

1807.34

1678.24

1613.69

6454.78

2.3

水泥外加剂(C)

1001.89

1335.86

1240.44

1192.73

4770.92

2.4

水泥外加剂(D)

707.22

942.96

875.60

841.93

3367.71

2.5

水泥外加剂(E)

471.48

628.64

583.74

561.28

2245.14

2.6

水泥外加剂(F)

294.67

392.90

364.84

350.80

1403.21

2.7

水泥外加剂(...)

117.87

157.16

145.93

140.32

561.28

3

其他业务收入

1309.94

1746.58

1621.83

1559.45

6237.80

上主要经济指标

项目 单位 指标 完成营业收入

万元

34302.05

完成主营业务收入

万元

28064.25

主营业务收入占比

81.82%

营业收入增长率(同比)

8.50%

营业收入增长量(同比)

万元

2688.20

利润总额

万元

6809.71

利润总额增长率

15.10%

利润总额增长量

万元

893.27

净利润

万元

5107.28

净利润增长率

10.13%

净利润增长量

万元

469.60

投资利润率

50.15%

投资回报率

37.61%

财务内部收益率

20.57%

企业总资产

万元

47519.51

流动资产总额占比

万元

32.68%

流动资产总额

万元

15530.74

资产负债率

48.78%

二、项目概况

(一)项目名称及承办单位

1、项目名称:广东外加剂项目

2、承办单位:xxx 有限公司

(二)项目建设地点

xx 产业示范园区

广东,简称粤,中华人民共和国省级行政区,省会广州。因古地名广信之东,故名广东。位于南岭以南,南海之滨,与香港、澳门、广西、湖南、江西及福建接壤,与海南隔海相望。下辖 21 个地级市、65 个市辖区、20 个县级市、34 个县、3 个自治县。广东是岭南文化的重要传承地,在语言、风俗、生活习惯和历史文化等方面都有着独特风格。广东也是目前中国人口最多的省份。考古证实广东于先秦已存在高度文明,是中华文明发

源地之一。广东是中国的南大门,处在南海航运枢纽位置上,早在 3000~5000 年前广东就已经形成以陶瓷为纽带的贸易交往圈,并通过水路将其影响扩大到沿海和海外岛屿。改革开放后,广东成为改革开放前沿阵地和引进西方经济、文化、科技的窗口,取得骄人的成绩。自 1989 年起,广东国内生产总值连续居全国第一位,成为中国第一经济大省,经济总量占全国的 1/8,已达到中上等收入国家水平、中等发达国家水平。广东省域经济综合竞争力居全国第一。广东珠三角 9 市将联手港澳打造粤港澳大湾区,成为与纽约湾区、旧金山湾区、东京湾区并肩的世界四大湾区之一。2019 年,广东省全年实现地区生产总值 107671.07 亿元,比上年增长 6.2%。

(三)项目提出的理由

各种混凝土外加剂的应用改善了新拌和硬化混凝土的性能,促进了混凝土新技术的发展,促进了工业副产品在胶凝材料系统中更多的应用,有助于节约资源和环境保护,已经逐步成为优质混凝土必不可少的材料。20世纪 30 年代,国外就开始使用木质素磺酸盐减水剂,60 年代初,日本和西德先后研制成萘系和三聚氰胺系高效减水剂,从 90 年代开始,日本和欧洲开始使用聚羧酸系高性能减水剂,混凝土外加剂进入了迅速发展和广泛应用时代。在欧洲,90%的混凝土中使用各种混凝土外加剂,其中 70%是各种类型的减水剂。我国外加剂的起步较国外稍晚,20 世纪 50 年代开始木质素磺酸盐和引气剂的研究和应用,70 年代以后,外加剂的科研、生产和应用取得重大进展,2000 年前后逐渐开始对高性能减水剂进行研究,以聚羧酸

系减水剂为代表的高性能减水剂在近 5 年的时间里应用量连续翻番增长。国家基础建设保持高速增长,铁路、公路、机场、煤矿、市政工程、核电站、大坝等工程对混凝土外加剂的需求一直很旺盛,我国的混凝土外加剂行业也一直处于高速发展阶段。

近几十年以来,我国混凝土工程技术取得了很大进步,混凝土拌合物性能从干硬性到塑性和大流动性、混凝土强度从中低强度到中高强度、混凝土的综合性能从普通性能开始向高性能方向发展。混凝土外加剂技术的应用与发展,对混凝土工程的巨大技术进步,起了决定性作用,没有混凝土外加剂技术的应用与发展,就不可能有现代混凝土技术的发展。

(四)建设规模与产品方案

项目主要产品为水泥外加剂,根据市场情况,预计年产值 43128.00 万元。

近几年我国外加剂产量增长速度惊人,已跃居世界外加剂产量前茅,并有逐年大幅提高的趋势。据中国建筑材料联合会混凝土外加剂分会发布的 2013 年我国混凝土外加剂产品调查结果显示:2013 年混凝土外加剂总产量达 1225.25 万吨,折合外加剂销售产值达到 496.61 亿元。

外加剂生产企业逐年向规模化发展,年产万吨的企业已经有 200多家,年产 3 万吨-4 万吨的企业有近 50 家,其中年产值超亿元的外加剂生产企业有近 100 家。

近几年许多新建、在建的生产企业起点显着提高,表现在投资力度大、生产规模大、生产设备先进、技术力量强、企业管理制度完善、管理水平日益提高、质量控制手段完备、相应的试验仪器及检验设备齐全。

随着我国化学合成外加剂与复合外加剂生产技术和水平的不断发展、产品的性价比更为合理、外加剂研发和应用技术水平的日益提高,外加剂大量、广泛用于各种混凝土的施工,特别是高质量的外加剂正在为诸多的国家重点工程、大型工程所用。我国外加剂不但能够满足各种混凝土的施工技术要求,也能够达到混凝土的质量要求。

由于中国建筑市场十分庞大,全世界水泥产量的一半消耗在中国,所以吸引了国外许多生产企业相继进入中国市场。目前,已进入国内市场的相关企业主要有:SIKA 公司、BASF 公司、福斯乐公司、意大利马贝公司、日本的触媒公司、韩国 LG 公司等。目前这些公司主要采用的推广方式是销售他们在境外生产的产品,有的公司也已经开始或将要在国内建立生产线、设厂生产或复配。事实上,这些国外公司的进

入,一方面有力地推动了外加剂行业在我国的发展与进步,缩短了我国外加剂方面与国外的差距,另一方面,对提高我国混凝土外加剂行业的整体水平将有深远的影响和促进作用。

但随着国内外加剂企业的技术进步,特别是聚羧酸系减水剂技术,以及新型外加剂产业链逐渐建立完善并成熟,国内外加剂技术在某些方面已经达到了国际的先进水平,甚至国际的领先水平。另外,国内企业更能适应我国原材料多变等环境,促使某些国外品牌逐渐退出了国内市场。也有一些外资企业为适应国内市场情况,选择了与国内企业合资的方式,借助国内企业的特点,取得了良好的效果。

随着全球可持续发展的战略要求,随着科学发展观的深入人心,整个混凝土外加剂行业对节能节材、绿色环保及人体健康意识日益增强。在确保外加剂产品质量的同时,注重节约能源和保护资源正在成为行业的工作重点。不少企业已经把节水、节电、节油等列入企业内部重点考核指标,一些优秀企业对研究开发绿色环保型外加剂新产品、新技术方面加大投资力度,给其他企业做出了典范。

从 1986 年起,为了确保外加剂产品质量、促进应用技术水平的发展与提高、规范市场、保证工程质量,我国针对使用量比较大、应用面比较广的各种混凝土外加剂相继制订了一系列混凝土外加剂产品国

家(行业)标准和混凝土外加剂应用技术规范。此后大部分标准与规范都进行了修订,这对提高产品质量、规范市场、确保工程质量起到了重要作用。目前我国已制定的混凝土外加剂国家标准或行业标准比较齐全。

今后我分会的工作重点将是加强对各种新型外加剂、环保型外加剂、特别是对高性能外加剂的研发,进一步促进外加剂应用技术的不断完善与应用水平的提高,这也是我国混凝土新技术不断向前发展的关键。

合成高效减水剂是混凝土外加剂中最为重要的一类产品,可以单独使用,也可以与其他产品复配使用。我国高效减水剂产量位居世界第一。其中,萘磺酸盐甲醛缩合物高效减水剂占到全部合成高效减水剂产量的 80%左右。我国萘系高效减水剂生产工艺成熟稳定,产品已经接近国外的水平,但是半数以上的企业规模太小。性能更好的高浓高效减水剂(Na2SO4 的含量小于 5%)的用量还不到 5%。

我国合成高效减水剂产品多样化,是目前高效减水剂技术发展的特色之一。从原来较为单一的萘系产品向氨基磺酸盐、新型三聚氰胺、脂肪族、聚羧酸盐等多品种共同发展。新型高效减水剂生产工艺比萘

系简单,投资比萘系少,在性能上又具有明显的特点,具有较好的技术经济效益,可与国外产品质量相比。

基于我国经济持续、快速发展,以及各种基础设施建设规模的不断扩大,特别是高速铁路网、高速公路网、桥梁、隧道、机场、港口、大坝、高层建筑等建设项目正大规模开展,混凝土工程量巨大。无疑,聚羧酸系高性能减水剂将成为今后我国混凝土外加剂主流技术的发展方向,它的市场将面临一个极大的发展机遇,未来较长时间内,它的生产与应用仍将继续保持高速增长的趋势。2013 年聚羧酸系减水剂年产量首度超过了总量的 50%,达到了 52%,从 2007 年的 14%到 52%,仅用量了 6 年的时间,增长迅速,并且这一趋势还在加速。

我国混凝土外加剂品种很多,如能够降低混凝土用水量、提高混凝土强度的高效减水剂,用于调整混凝土凝结时间的缓凝剂、促凝剂,减少混凝土收缩开裂时使用的膨胀剂、减缩剂,能提高混凝土的抗冻融性能、延长混凝土的使用寿命的引气剂,在冬季负温条件下施工时使用的防冻剂等,基本能够满足我国现有条件下施工的各种混凝土性能的要求。国外有的品种在国内几乎都有,目前在国家标准和行业标准里已经对 14 种外加剂产品的性能有了明确规定。

混凝土施工技术的发展促进了各种外加剂的升级换代。混凝土膨胀剂的年产量稳步增加,2009 年约 126.36 万吨,2011 年约 135 万吨,2013 年约 150 万吨。混凝土膨胀剂也由高碱高掺(15%~20%)、中碱中掺(10%~12%)逐步向低碱低掺(6%~8%)发展。

传统外加剂生产过程中,计量、温度控制、反应时间控制、加料等过程都是人工操作,常常出现误差和错误,轻则造成质量波动,重者出现废品。利用自动化控制技术,改进传统生产工艺是我国混凝土外加剂生产技术提高的重要途径之一,也是我国混凝土外加剂生产企业发展的方向。特别是高速客运专线对外加剂企业的生产提出了严格的要求,促使了外加剂企业的生产由人工生产向自动化生产转变。

采取灵活的定价办法,项目承办单位应当依据原辅材料的价格、加工内容、需求对象和市场动态原则,以盈利为目标,经过科学测算,确定项目产品销售价格,为了迅速进入市场并保持竞争能力,项目产品一上市,可以采取灵活的价格策略,迅速提升项目承办单位的知名度和项目产品的美誉度。

(五)项目投资估算

项目预计总投资 19213.58 万元,其中:固定资产投资 14293.77 万元,占项目总投资的 74.39%;流动资金 4919.81 万元,占项目总投资的 25.61%。

(六)工艺技术

投资项目的成品及包装材料分别贮存于各分类仓库内;仓库应符合所存物品的存放条件、建立责任体系、保证存放安全;项目承办单位建立健全 ISO9000 质量管理和质量保证体系和检验手段,确保项目所需物品存储纳入这一体系统一管理。项目所需原料来源应稳定可靠,建成后应保证原料的质量和连续供应。投资项目原料采购后应按质量(等级)要求贮存在原料仓库内,同时,对辅助材料购置的要求均为事先检验以保证辅助材料的质量和生产需要,不合格原材料不得进入公司仓库,应严把原材料质量关,确保生产质量。所需原料应经济易得,就不同原料的投资、成本、生产效率进行比较,选择最为适合、最经济的原料。

遵循“高起点、优质量、专业化、经济规模”的建设原则,积极采用新技术、新工艺和高效率专用设备,使用高质量的原辅材料,稳定和提高项目产品质量,制造高附加值的产品,不断提高企业的市场竞争力。工艺技术生态效益与清洁生产原则:项目建设与地方特色经济发展相结合,将项目建设与区域生态环境综合整治相结合,纳入当地的社会经济发展规划,并与区域环境保护规划方案相协调一致;投资项目建设应与当地区域自然生态系统相结合;按照可持续发展的要求进行产业结构调整和传统产业的升级改造,大幅度提高资源利用效率,减少污染物产生和对环境的压力,项目选址应充分考虑建设区域生态环境容量。在项目建设和实施过程中,

认真贯彻执行环境保护和安全生产的“三同时”原则,注重环境保护、职业安全卫生、消防及节能等法律法规和各项措施的贯彻落实。

(七)项目建设期限和进度

项目建设周期 12 个月。

该项目采取分期建设,目前项目实际完成投资 13579.31 万元,占计划投资的 70.68%。其中:完成固定资产投资 9158.99 万元,占总投资的67.45%;完成流动资金投资 4420.32,占总投资的 32.55%。

项目建设进度一览表

序号 项目 单位 指标 1

完成投资

万元

13579.31

1.1

——完成比例

70.68%

2

完成固定资产投资

万元

9158.99

2.1

——完成比例

67.45%

3

完成流动资金投资

万元

4420.32

3.1

——完成比例

32.55%

(八)主要建设内容和规模

该项目总征地面积 54167.07 平方米(折合约 81.21 亩),其中:净用地面积 54167.07 平方米(红线范围折合约 81.21 亩)。项目规划总建筑面积 60125.45 平方米,其中:规划建设主体工程 37914.62 平方米,计容建筑面积 60125.45 平方米;预计建筑工程投资 5358.48 万元。

项目计划购置设备共计 130 台(套),设备购置费 4597.91 万元。

(九)设备方案

项目承办单位在选择设备时,要着眼高起点、高水平、高质量,最大限度地保证产品质量的需要,努力提高产品生产过程中的自动化程度,降低劳动强度提高劳动生产率,节约能源降低生产成本和检测成本。以甄选优质供应商为原则;选择设备交货期应满足工程进度的需要,售后服务好、安装调试及时、可靠并能及时提供备品备件的设备生产厂家,力求减少项目投资,最大限度地降低投资风险;投资项目主要工艺设备及仪器基本上采用国产设备,选用生产设备厂家具有国内一流技术装备,企业管理科学达到国际认证标准要求。

项目拟选购国内先进的关键工艺设备和国内外先进的检测设备,预计购置安装主要设备共计 130 台(套),设备购置费 4597.91 万元。

第二章

发展规划、产业政策和行业准入分析

一、发展规划分析

(一)建设背景

外加剂的分类:混凝土外加剂是一种在混凝土搅拌之前或拌制过程中加入用以改善混凝土性能的材料,掺量不大于水泥质量 5%,其特点是掺量少、作用大。如果将水泥比作施工工地(混凝土)的“粮食”,那么外加剂可以说是施工工地(混凝土)的“油”,是不可或缺甚至极为重要组成部分。从分类来看,外加剂分为减水剂、引气剂、膨胀剂等多个细分品种,不过以减水剂为主。

外加剂的使用:外加剂最佳掺量是通过混凝土试配结果确定,根本原则是在满足混凝土性能要求前提下采用最低掺量。生产厂家产品说明书中提供的是某种外加剂使用时的掺量范围,而使用单位必须通过混凝土试配确定外加剂合理掺量。

减水剂的性能及原理:减水剂是外加剂的主要品种,主要作用是延缓水泥凝结时间,原理是掺加混凝土外加剂的水泥颗粒表面吸附着一层减水剂,一定程度上阻挡了水泥对水的吸收速度;同时混凝土外加剂加速水泥水化初期速度,水化产物增多带来水化膜较厚,一定程

度上阻碍水分子进一步渗入水泥颗粒内部进行水化,从而延缓了水泥凝结硬化时间,从而减少单位用水量。

在用水量不变情况下,当高效减水剂占水泥质量的掺量<05%时,对水泥凝结时间的影响甚微,几乎没有变化。但当高效减水剂占水泥重量的掺量>05%时,一般会延缓水泥凝结时间 25~3 小时。

2019 年在响水爆炸事件发生后,国务院应急管理部会议指导下,《江苏省化工产业安全环保整治提升方案》出台,全国范围内安全生产整治开展,各省份高规格安全生产核查整治行动持续推进。整体来看除消除短期安全隐患之外,长期目标都是淘汰安全环保不合规的低端落后产能,并最终实现产业的转型升级,符合“经济高质量发展道路”的引导方向。

2018 年初,混凝土外加剂行业产能过剩情况比较突出,行业前十的企业市场占有率只有 132%,三家龙头企业建研集团科之杰、江苏苏博特和广东红墙,市场占有率分别只有 348%、343%和 11%。

混凝土外加剂行业上游主要原材料是环氧乙烷,受此影响行业归属被认定为小化工行业。在环保和生产安全监管持续趋严影响下,化工企业“退城入园”门槛一再提升,混凝土外加剂行业内小公司数量不断减少,大企业集中度提升,行业强者恒强的竞争格局进一步显现。

自 2006 年城市建设用混凝土要求全部采用商品混凝土后,混凝土减水剂需求量开始显著增长,随后几年里基本保持 20%左右的复合增速。虽然减水剂已在混凝土中得到广泛应用,但就目前而言并没有实现 100%渗透率,预计目前约 60%左右,与国外相比仍有一定提升空间。

混凝土的核心原材料砂石受环保影响供应不够稳定,质量也欠佳,对减水剂的用量提出了更高的要求。外加剂的使用量也受到混凝土其他原材料如砂石骨料质量的影响,通常来说骨料中常含有粘土(山砂更严重),粘土对减水剂有强烈的吸附,其吸附量是水泥的约 50 倍,只有它饱和后,剩余的才会分配给其他物质,因此使用含泥量越高的砂石骨料拌制混凝土,对外加剂用量也越大。而当前随着环保治理趋严下,砂石骨料的品质质量都有一定下降;同时,市场越来越多转向使用机制砂,因此搅拌站对减水剂的要求和用量也提出了更高要求。

减水剂在我国发展历史:1962 年,日本发明萘系减水剂,随后逐步得到全面推广应用。我国相对起步较晚,上个世纪 70 年代以后,我国混凝土外加剂的科研、生产和应用才取得重大进展;90 年代以后以萘系减水剂为代表的各种高效减水剂逐步应用于各种工程;2000 年前后,以聚羧酸系减水剂为代表的高性能减水剂进入我国并逐步得到推广,其凭借减水率高等性能优势形成了对传统萘系减水剂的快速替代。

2003 年,我国萘系减水剂占比约 66%,聚羧酸减水剂占比仅约 3%,2017 年聚羧酸减水剂占比达到 776%。

目前我国从事混凝土外加剂业务的企业较多,进入资金壁垒并不算高。市场上存在大量不具备合成能力、仅通过外购粉剂复配后出售的小企业,或虽具备一定合成能力,但在研发服务方面能力相对较弱。由于混凝土外加剂产品的运输费用经济性限制,混凝土外加剂行业存在较明显的区域性特征,使得各地规模相对较小的企业同样可以在市场上拥有一席之地。

据不完全统计,截止到 2016 年,我国外加剂生产厂家接近 6000多家,其中化学合成生产企业有 500 多家、膨胀剂生产企业有 100 多家。其中,年产万吨企业已经有 300 多家,年产 3~4 万吨企业有近 60家,其中年产值超亿元外加剂生产企业有近 100 家。整体来看,行业集中度较低,而部分小企业规模较小,通过购买母液复配或 OEM 方式,占据了主要终端市场。

(二)行业分析

各种混凝土外加剂的应用改善了新拌和硬化混凝土的性能,促进了混凝土新技术的发展,促进了工业副产品在胶凝材料系统中更多的应用,有助于节约资源和环境保护,已经逐步成为优质混凝土必不可

少的材料。20 世纪 30 年代,国外就开始使用木质素磺酸盐减水剂,60年代初,日本和西德先后研制成萘系和三聚氰胺系高效减水剂,从 90年代开始,日本和欧洲开始使用聚羧酸系高性能减水剂,混凝土外加剂进入了迅速发展和广泛应用时代。在欧洲,90%的混凝土中使用各种混凝土外加剂,其中 70%是各种类型的减水剂。我国外加剂的起步较国外稍晚,20 世纪 50 年代开始木质素磺酸盐和引气剂的研究和应用,70年代以后,外加剂的科研、生产和应用取得重大进展,2000 年前后逐渐开始对高性能减水剂进行研究,以聚羧酸系减水剂为代表的高性能减水剂在近 5 年的时间里应用量连续翻番增长。国家基础建设保持高速增长,铁路、公路、机场、煤矿、市政工程、核电站、大坝等工程对混凝土外加剂的需求一直很旺盛,我国的混凝土外加剂行业也一直处于高速发展阶段。

目前,全国外加剂品种齐全,混凝土外加剂总产量达 722.52 万吨。各种合成减水剂产量约 484.68 万吨,各种高效减水剂(萘系、三聚氰胺系、氨基磺酸盐、脂肪族和蒽系减水剂)占全部合成减水剂总量的67%,聚羧酸系高性能减水剂占 26%,普通减水剂(木质素磺酸盐减水剂)占 7%。2009 年其他外加剂的产量分别为引气剂 1.6317 万吨、膨胀剂 126.362 万吨、速凝剂 100.71 万吨(其中固体速凝剂占 74.32%,

液体速凝剂占 25.68%)、缓凝剂(葡萄糖酸钠、糖钙、糖蜜等)9.15万吨。据估算,上述外加剂销售产值达到 277.8 亿元。

高效减水剂是在混凝土工作性大致相同时,具有较高减水率的一种外加剂,2009 年全国总产量为 322.79 万吨,其中萘系占高效减水剂总产量的 82.53%、脂肪族占 12.85%、氨基磺酸盐占 2.85%、蒽系占1.32%、三聚氰胺系占 0.45%。萘系产量占全部合成减水剂总产量的55%,与 2007 年相比有所下降;聚羧酸系减水剂占全部合成减水剂的26%,与 2007 年相比有所上升,但萘系仍然是减水剂中使用量大面广的品种。2009 年脂肪族减水剂产量比 2007 年增长 29.93 万吨,增加较多,这是由于脂肪族减水剂价格较为便宜,主要用于外加剂的复配,河南、浙江两省为脂肪族减水剂生产的大省。

以聚羧酸盐类为主要成分的高性能减水剂具有一定的引气性、较高减水率和良好的坍落度保持性能,是环保型的外加剂。国外 20 世纪90 年代开始使用,日本现在的使用率占高效减水剂的 60%~70%,欧美约占 20%左右。

从 2000 年前后,我国混凝土工程界逐渐认识聚羧酸系减水剂。近几年来,在高速铁路建设的带动下,高性能减水剂发展迅猛,并得到了大量推广应用。2007 年国内年产量为 41.43 万吨,2009 年依据各省

聚羧酸外加剂生产量累加计算,产量为 126.83 万吨,增长幅度达到206%。聚羧酸外加剂生产量比较大的省市是山西省、江苏省和浙江省。

GB50119《混凝土外加剂应用技术规范》编制组对全国主要的 7 家聚羧酸原料生产企业的原料销售数量进行调查显示,这 7 家企业 2009年聚羧酸原料销售约 15 万吨,折合聚羧酸减水剂母液约 80 万吨。此外,还有一些国外的企业也生产和销售聚羧酸外加剂原料。

膨胀剂的主要特性是掺入混凝土后起抗裂防渗作用,它的膨胀性能可补偿混凝土硬化过程中的收缩,在限制条件下成为自应力混凝土。我国生产膨胀剂主要品种有:U 型膨胀剂(生、熟明矾石,硬石膏等组成)、复合膨胀剂(CEA)、铝酸钙膨胀剂(AEA-高强熟料、天然明矾石、石膏)、EA-L 膨胀剂(生明矾石、石膏等组成)、FN-M 膨胀剂(硫铝酸盐混凝土膨胀剂)、CSA 微膨胀剂(硫铝酸盐等)、脂膜石灰膨胀剂(石灰、硬脂酸等)。2009 年,膨胀剂年产量约 126.36 万吨,生产企业 100 多家。一些上规模的企业年产量 3 万~5 万吨,少数厂家的年产量达到 10 万吨,甚至 20 万吨以上。生产企业集中在湖北、安徽、江西、天津、山西等省市。

速凝剂是调节混凝土(或砂浆)凝结和硬化速度的外加剂,它能加速水泥的水化作用,显著缩短凝结时间,用于喷射混凝土施工。速

凝剂按产品形态,可分为固态和液态;按其碱的含量来分,可分为有碱、无碱和低碱。2009 年,全国速凝剂年产量约 100.71 万吨,生产厂60 多家,主要分布在华北、华东、中南地区。2009 年由于铁路、公路、煤炭行业建设大规模增长,速凝剂产量较 2007 年有大幅度增长。特别是高速铁路对液体无碱速凝剂的需求,使得 2009 年液体速凝剂产量达到 25.86 万吨,成为外加剂发展的亮点之一。

木质素磺酸盐减水剂是常用的普通型减水剂,其减水率为 8%~10%,可以直接使用,也可作为复合型外加剂原料之一,因价格较便宜,使用还是较广泛的。木质素磺酸盐类减水剂 2009 年的产量约 35.06 万多吨,产品包括木钙、木镁、木钠等。从我国应用木质素磺酸盐减水剂来说,各地是不平衡的,南方利用较多,如上海利用它配制成中效泵送剂,较广泛的用于商品混凝土;2009 年四川省木钙产量有大幅度增加。木质素磺酸盐减水剂是利用造纸厂的造纸废液生产的普通减水剂,变废为宝,并且解决了对环境造成污染的难题;产品质量稳定、价格适中、应用范围广,是一种应该大力推广使用的外加剂产品。

目前主要使用的缓凝剂产品有糖钙、糖蜜、葡萄糖酸钠、柠檬酸等。用作缓凝剂的还有羟基羧酸(酒石酸、葡萄糖酸、水杨酸、乙酸、马来酸、单宁酸、已糖酸等)、碳水化合物(蔗糖)或其他一些化合

物。2009 年缓凝剂总产量已达 9.15 万吨,四川米易和内蒙古集宁都有糖钙专业生产厂。

引气剂是一种在搅拌时能够在砂浆和混凝土中引入大量均匀分布的、封闭的微小气泡,并能使气泡保留在硬化混凝土中的外加剂。引气减水剂是兼有引气和减水两种功能的外加剂,引气剂和引气减水剂主要用来改善塑性砂浆和混凝土和易性,减少泌水和离析,同时大幅度提高砂浆和混凝土的耐久性。目前国内应用量较多的引气剂是松香热聚合物。皂甙类引气剂具有良好的性能,目前在上海、杭州等地都有工厂在生产。2009 年全国引气剂总产量为 1.63 万吨,比 2007 年增长 1.29 万吨。

复合型外加剂是根据工程需要,以上述的各种组分为主,再加入其他组分复合而成,如防冻剂、早强减水剂、泵送剂、防水剂、引气减水剂、缓凝减水剂、缓凝高效减水剂、水下混凝土用外加剂、灌浆剂等。这些复合型的外加剂生产设备较为简单、投资少、效益较好。我国有一大部分外加剂厂是生产这种类型的外加剂。混凝土外加剂大多数以复合外加剂加入混凝土。

(三)市场分析预测

近几十年以来,我国混凝土工程技术取得了很大进步,混凝土拌合物性能从干硬性到塑性和大流动性、混凝土强度从中低强度到中高强度、混凝土的综合性能从普通性能开始向高性能方向发展。混凝土外加剂技术的应用与发展,对混凝土工程的巨大技术进步,起了决定性作用,没有混凝土外加剂技术的应用与发展,就不可能有现代混凝土技术的发展。

混凝土外加剂的特点是:掺量小、作用大。其对混凝土作用有四点:一是改善新拌混凝土的工作性能;二是提高硬化混凝土的力学性能;三是改善混凝土的耐久性;四是节约水泥,可获得良好的经济效益。现代混凝土施工新技术,如泵送混凝土、流态混凝土、自密实混凝土、高强高性能混凝土、水下不分散混凝土、喷射混凝土等的快速发展与广泛应用,无不显示了外加剂的重要作用。可以这样说,外加剂的应用是现代混凝土的最显着的标志。换句话说,现代混凝土技术实际上就是现代外加剂技术。事实上,外加剂已经成为现代混凝土中不可或缺的组分之一。

近年来,我国建筑行业快速发展,混凝土需求量越来越大、质量要求也越来越高、性能要求越来越综合化、多样化,对外加剂品种、性能要求也越来越高,我国混凝土外加剂行业也有了很大发展,并且,

随着建设工程量的不断增加,我国混凝土外加剂的生产和应用仍具有很大的发展潜力和空间,品种会进一步增加。外加剂应用技术水平的高低,足以影响我国混凝土技术发展的快慢,二者相辅相成、相互依存。没有混凝土技术的发展需求,混凝土外加剂的发展就缺少动力,反之,没有外加剂产品及其应用技术的发展,混凝土技术也达不到今天的水平。

然而如果外加剂使用不当,则往往不能达到预期效果,甚至会出现质量事故。因此,长期以来,行业一直注重对混凝土外加剂及其应用技术的研究,加强向工程界宣传混凝土外加剂新产品、新技术、新工艺,大力培训技术人员,使之能准确掌握各种外加剂的性能,并针对具体工程如何正确选择使用各种不同性能的外加剂,使其发挥最佳效果,取得应有的经济和社会效益。这对于提高我国混凝土总体质量水平、推动混凝土工程的技术进步、促进高性能混凝土等高新技术的进一步健康发展、保证我国外加剂产业的健康发展具有重要意义。

据不完全统计,目前我国外加剂生产厂家接近 2000 多家,其中化学合成生产企业有 500 多家、膨胀剂生产企业有 100 多家。

目前我国外加剂品种齐全,达 30 多种,国外有的外加剂品种国内几乎都有,且产品牌号有 200 多个。特别是高效减水剂从原来较为单

一的萘系高效减水剂逐步向多品种、新品种、高端品种方向发展,如:聚羧酸系高性能减水剂、蜜胺系及改性蜜胺系高效减水剂、氨基磺酸盐高效减水剂、脂肪族高效减水剂等。

在各种高效减水剂中,2013 年聚羧酸系减水剂、萘系高效减水剂、脂肪族高效减水剂产量分别为 497.81 万吨、357.59 万吨和 68.17 万吨。近几年,聚羧酸系高性能减水剂发展迅猛,总量比例由 2007 年的 14.6%持续提高到 2013 年的 52.2%。

二、产业政策分析

实现高质量发展,是对经济新方位的科学判断。中国特色社会主义进入了新时代,基本特征就是经济已由高速增长阶段转为高质量发展阶段。推动高质量发展成为当前和今后较长时期确定发展思路、制定经济政策、实施宏观调控的根本要求。2017 年我国 GDP 规模首次突破 80 万亿元,稳居世界第二,对世界经济贡献率超过 30%,成为世界经济发展的“动力源”和“稳定器”。但是,中国连续 40 年的高速增长,也暴露出一些矛盾,突出问题是大而不强,环境质量下降,资源消耗过大,人力红利丧失,产能明显过剩,资金依赖性强,经济增长出现不可持续性。“三期叠加”“经济发展新常态”“高速增长阶段转为高质量发展阶段”的科学判断,在适应把握引领经济新常态中,形成完整系统的经济建设思想体系。为推动经济

社会高质量发展,紧扣高质量发展要求,聚焦振兴实体经济、强化创新发展等系列重大决策部署,采取多项举措,用创新的思维、务实的作风、改革的办法,切实把高质量发展的目标落得更准、抓得更细、压得更实,努力创造更多高质量发展的新成果。坚持质量第一、效益优先,创新驱动、融合带动,集群集约、绿色低碳,统筹协调、突出重点,把特色优势产业和战略性新兴产业作为主攻方向,大力推进先进制造业发展,培育壮大具有较强竞争力的大企业大集团。立足我省资源禀赋和产业基础,以战略性新兴产业和未来产业为引领,推动产业迈向产业链价值链中高端,铸造现代产业体系的核心动能。以技术改造为抓手,大力推动传统产业转型升级,提升产业发展层次。以融合发展为主战场,积极发展数字经济,推动数字经济与实体经济融合发展,培育高质量发展新引擎。

近年来,我市认真贯彻落实党中央促进民营经济发展的决策部署,以务实的作风、实际的行动帮扶民营企业、服务民营企业,推动民营经济不断发展壮大。截至 2018 年 10 月,全区民营企业数量达 10585 家,个体工商户 38615 户。同时,民营经济对全区经济贡献率达 64.3%,占全区税收收入的 81.2%,解决了 80%以上的城镇劳动就业,占 90%以上的规模工业企业数量。

当今高速增长的中国经济又一次面临世界经济风云变幻的新一轮挑战,为确保中国经济的顺利发展,离不开相关工业的支撑和发展;建设好项目,将有助于发挥项目承办单位集聚效应、资源共享、充分协作、合理竞争,

同时,在一定程度上还有助于快速提高当地项目产品制造工业的技术水平和行业市场竞争能力,对于项目产品制造企业为国家实现产业振兴计划、推进产业结构调整和优化升级,都具有十分重要的现实意义。考虑到项目建设地的投资环境、劳动力条件和政策优势,项目承办单位决定在项目建设地实施投资项目建设,投资项目的生产规模和工艺技术装备将达到国际先进水平,有利于进一步提升产品质量,丰富产品品种并可以配合其他相关产品形成突出优势,使市场占有率以及竞争力得到进一步巩固和增强。

扎实做好“六稳”工作,筑牢经济平稳运行基础。坚持质量第一、效益优先,深入推进供给侧结构性改革,切实打好高质量发展组合拳,加快推进我市经济提质增效、转型升级。

三、行业准入

xxx 有限公司于 20xx 年 xx 月通过 xxx 有限公司所在地相关部门立项和其它必要审批流程,达到行业准入条件。

推动中小企业协调发展,建立中小企业跨区域交流合作机制,鼓励东中西部地区中小企业利用各自比较优势开展合作,缩小地区间发展差距。推进城乡中小企业协调发展。推动军民融合发展,促进中小企业进入武器装备科研、生产和服务领域。鼓励和引导中小企业承担社会责任,营造和谐发展环境。要激发中小企业创业创新活力,就是要鼓励创办小企业,开发新岗位,以创业促就业,力争使中小企业数量持续增加,向社会提供更多的就业机会和岗位。要最大限度减少对微观事物的管理,市场机制能有

效调节的经济活动一律取消审批,对保留的行政审批事项规范管理、提高效率;直接面对基层、量大面广、属于能交由市场解决或交由地方管理更方便有效的经济社会事项,一律下放地方和基层管理。同时,注重放管结合,切实防止审批事项边减边增、明减暗增现象发生。进一步加大商事制度改革的政策宣传。尽快建立与商事制度改革相配套的后续市场监管体系,加强部门间的沟通衔接,明确监管责任,规范监管行为。

引导民营企业建立品牌管理体系,增强以信誉为核心的品牌意识。以民企民资为重点,扶持一批品牌培育和运营专业服务机构,打造产业集群区域品牌和知名品牌示范区。

第三章

资源开发及综合利用分析

一、资源开发方案

该项目为非资源开发类项目,其生产经营过程未对环境资源进行开发,无资源开发方案。

二、资源利用方案

(一)土地资源

该项目选址位于 xx 产业示范园区。

园区鼓励标准厂房建设。深入推进实施 135 工程,合理确定产业园区标准厂房建设总体布局、规模以及有关配套设施。紧紧围绕产业特性、行业特点、企业特征进行规划建设,突出标准厂房建设的实用性。完善标准厂房集中区域内道路、电力、通讯、给排水及污水处理等基础配套设施,满足入驻企业生产经营基本需要。坚持谁投资、谁所有、谁受益的原则,鼓励和引导各类企业、组织及自然人投资建设产业园区标准厂房。园区不断创新建设发展模式。充分发挥市场机制作用,探索建立政府引导、业主开发、政企共建、项目先行等建设模式,积极培育 1-2 家具有品牌影响力和核心竞争力的产业园区开发运营商和产业园区管理上市公司。园区招商引资要坚持市场主导与政府引导相结合,从政府部门主导招商引资向专业化、市场化的招商引资运作机制转变。探索推行市县共建,政府与企业共建,企业与企业联建,引进国际国内企业承建,鼓励社会团体承建等多种

联建方式,实现资源整合、功能互补、人才互动。强化土地集约利用,严格执行土地使用标准,加强土地开发利用动态监管。对产业园区闲置土地进行清理整顿,鼓励开展产业园区新增用地的前期开发和存量用地的二次开发,鼓励对现有工业用地通过追加投资、转型改造,提高单位土地面积投资强度和使用效率。

项目建设方案力求在满足项目产品生产工艺、消防安全、环境保护卫生等要求的前提下尽量合并建筑;充分利用自然空间,坚决贯彻执行“十分珍惜和合理利用土地”的基本国策,因地制宜合理布置。所选场址应避开自然保护区、风景名胜区、生活饮用水源地和其他特别需要保护的环境敏感性目标。项目建设区域地理条件较好,基础设施等配套较为完善,并且具有足够的发展潜力。

企业管理经验丰富。项目承办单位是以相关行业为主营业务的民营企业,拥有一大批高素质的生产技术、科研开发、工程管理和企业管理人才,其项目产品制造技术和销售市场已较为成熟,在生产制造的精细化管理方面、质量控制方面均具有丰富的经验,具有管理优势;在项目产品的生产和工程建设方面积累了丰富的经验,为投资项目的顺利实施提供了管理上的有力保障。产品品牌优势明显。品牌是企业的无形资产;随着项目承办单位规模的扩大,公司将创品牌列为系统工程来做,通过广告宣传、各类国内会展、各种促销手段等形式来扩大品牌的知名度,按照“质量一流、

服务至上”的原则来创出品牌的美誉度;经过这些市场运作,不仅可提高企业的整体形象,而且还能体现出品牌更大的价值。

根据测算,投资项目固定资产投资强度完全符合国土资源部发布的《工业项目建设用地控制指标》(国土资发【2008】24 号)中规定的产品制造行业固定资产投资强度≥1259.00 万元/公顷的规定;同时,满足项目建设地确定的“固定资产投资强度≥4500.00 万元/公顷”的具体要求。投资项目占地产出收益率完全符合国土资源部发布的《工业项目建设用地控制指标》(国土资发【2008】24 号)中规定的行业产品制造行业占地产出收益率≥5000.00 万元/公顷的规定;同时,满足项目建设地确定的“占地产出收益率≥6000.00 万元/公顷”的具体要求。

拟建项目用地位置周围 5.00 千米以内没有地下矿藏、文物和历史文化遗址,项目建设不影响周围军...

上一篇:对素描的总结范文下一篇:读书之趣作文范文