近代物理实验心得

2022-07-04

第一篇:近代物理实验心得

近代物理实验总结

这学期我做了七个近代物理实验,分别是能谱和相对论动能动量关系的验证、声光效应与光拍法测光速、光泵磁共振、氦氖激光器的模分裂和模竞争、法拉第效应、液晶物性和塞曼效应。

这门课选取的都是在物理学发展史上的著名实验和在实验方法和技术上有代表性的实验。对于我做的实验我有以下体会:

一、实验内容涵盖广泛,涉及电磁学、光学及原子物理等很多领域。

二、实验原理比较复杂。很多实验涉及量子力学、原子物理中我不懂的知识。

三、实验仪器设备比较先进。除了示波器近代物理实验中还用到许多精密的、科研中常用到的仪器,如在氦氖激光器的模分裂和模竞争用到的扫描干涉仪、塞满效应里用到的摄谱仪等。

经过这学期的实验课,我个人得到了不少的收获,一方面加深了我对一些实验理论的认识,另一方面也提高了实验操作能力。下面我总结一下我的体会和在实验中遇到的问题。

一、教材和讲义中的实验原理都往往叙述很详细,但我们在写预习报告时却不应把书上的内容都抄写一遍,而是应该在理解了教材上的实验原理和公式推导的基础上,总结和概括书上的内容,这样的预习报告才会对实验操作有指导作用。但很多时候我们并没有完全理解教材上的内容,所以对实验具体做什么和这样做的目的并没有很好的掌握,只是参照实验室里的操作说明一步步的进行,对整个实验过程没有融会贯通。具体操作的步骤上出问题不能自己解决,经常去问老师。这个是我在实验中遇到的最大的问题。比如在实验中我知道要提高某一物理量的值就能得到实验结果,但反应到仪器上,我可能就不知道这个值要如何去改变,或者我不知道某个实验参数为什么那么选择。这给我的启示是应该在预习时多多思考实验原理是如何反应在实验具体操作步骤上的,这样在老师讲解过程中也能更有的放矢。

二、我这学期的实验里有4个实验要用到示波器,示波器尽管在普物实验课上多次使用了,但我觉得我并没有真正熟悉和理解示波器,这造成了经常要不停地调示波器,费时费力。还有调光路从普物实验时就是我的天敌,等高共轴、按着光传播的顺序依次调整各个仪器的道理我也明白,可是操作时总是控制不了光路,法拉第效应、声光效应与光拍法测光速和塞曼效应这三个实验都要用到调光路,尤其是声光测速里光路图很复杂,用到了许多小镜子,我调了许久才得到基本满足要求的光路,光路有偏差就造成了实验数据的误差。所以近代物理实验不仅要求对原理的理解和操作技巧,更需要耐心和仔细才能更好地完成实验。

三、做完实验后处理实验报告也很重要,正确的实验操作是得到合适的实验数据的基础,在系统误差一定的情况下,实验数据处理得恰当与否,会直接影响偶然误差的大小。所

1/ 2

以对实验数据的处理是实验的重要内容之一。由于不理解实验仪器的精度,造成处理数据时弄错了数据的有效位数,比如我做的第一个实验能谱和相对论动能动量关系的验证,需要寻峰并记录道数,我采用的是软件的自动寻峰功能并记录了电脑上显示的道数,但是仪器显示了峰的倒数是有一位小数的,而实验中道数的有效位数只能是整数,所以明确实验条件是得到正确的实验数据的基础。

最后,这学期做近代实验收获挺大的,动手能力也得到了提高,理解了一些经典的物理实验,加深了我对物理的兴趣。

2/ 2

第二篇:大学近代物理实验总结(特全)

近代物理实验总结论文

班 级:电科11-2班 姓 名: 仝 帅 学 号:201120906046 指导老师: 丁昌江

1 近代物理实验总结论文

班级:电科11-2班

姓名:仝帅

学号:201120906046

前言 ....................................................................................................... 3

二、光电效应实验 .............................................................................. 4

三、电光效应实验 .............................................................................. 5

四、密立根油滴测电子电荷 .............................................................. 6

五、微机夫兰克—赫兹实验 .............................................................. 6

六、迈克尔逊干涉仪 .......................................................................... 7

七、微波迈克尔逊干涉实验 .............................................................. 8

八、微波布拉格晶体衍射实验 .......................................................... 8

九、椭圆偏振仪测量薄膜厚度实验 .................................................. 9

十、光泵磁共振实验 .......................................................................... 9 十

一、核磁共振实验 ........................................................................ 10 十

二、微波顺磁共振实验 ................................................................ 11 十

三、光栅光谱实验 ........................................................................ 11 十

四、学习中的困难 ........................................................................ 11

1、实验仪器的不熟悉和仪器存在缺点 .................................... 11

2、实验原理弄不清楚 ................................................................ 12

3、依赖性 .................................................................................... 12

4、专业知识的不牢靠 ................................................................ 13 十

五、实验的改进和反思 ................................................................ 13 十

六、学习中的收获和快乐 ............................................................ 13

前言

本学期,根据课程的安排我首次接触了近代物理实验,包括微波迈克尔逊干涉实验、微波布拉格晶体衍射实验、椭圆偏振仪测量薄膜厚度实验、光泵磁共振实验、核磁共振实验、微波顺磁共振实验、光栅光谱实验等等。虽然实验课不算多,但我从中学到了很多,也是自己在大学实验学习形式的一次飞跃,从大一的听老师讲解和指导、大二的依赖到大三近代物理实验的独立探究。

物理学离不开实验,我感觉物理系给我最深的印象便是实验,尤其是近代物理实验更是一门综合性和技术性很强的课程,其实在物理实验中,影响实验现象的因素很多,产生的物理实验现象有时候也很复杂。要感谢老师们通过精心设计实验方案,严格控制实验条件等多种途径,以最佳的实验方式呈现物理问题,使我们能够达到预想的实验效果,也考验了我们的实际动手能力和分析解决问题的综合能力,物理实验课程的学习让我受益匪浅。

首先,我通过做实验了解了许多实验的基本原理和实验方法,加深了对理论课知识的理解,还学会了基本物理量的测量和数据处理分析的方法、基本实验仪器的使用等;其次,锻炼了我的实验操作动手能力,并且我也深深感受到做实验要具备科学认真的态度和创造性的思维。

物理系课程设置上选取的都是在物理学发展史上的著名实验和在实验方法和技术上有代表性的实验。对此我有以下体会:

一、实验内容涵盖广泛,涉及物理学的各学科,很多实验都与我们的理论课有关。

二、实验仪器设备很丰富!

但实验中也存在着很多问题,实验仪器有的由于老化就会造成实验很难成功,或者结果存在这很大的误差。就这些问题可能造成学生对实验的误读或者对实验结果的不能真正的了解!实验结果不准确!

一、微机声光效应实验

当超声波在介质中传播时,将引起介质的弹性应变作时间和空间上的周期性的变化,并且导致介质的折射率也发生相应变化。当光束通过有超声波的介质后就会产生衍射现象,这就是声光效应。有超声波传播的介质如同一个相位光栅! 本实验探讨了超声波通过介质时会造成介质的局部压缩和伸长而产生弹性应变,该应变随时间和空间作周期性变化,使介质出现疏密相间的现象,如同一个相位光栅。当光通过这一受到超声波扰动的介质时就会发生衍射现象。这种现象称之为声光效应。在实验中,应用CCD光强分布测量仪等,通过改变超声波的频率和功率。分别实现了对激光束方向的控制和强度的调制;定量给出了声光偏转量的关系曲线和声光调制测量的关系曲线。本文就声光效应中的声光偏转原理和声光调制原理的现象及有关物理量进行定性或定量的分析。

二、光电效应实验

当一定频率的光照射到某些金属表面上时, 可以使电子从金属表面逸出,这种现象称为光电效应。根据爱因斯坦的光电效应方程有

hν=1/2 mvm2+ W

(1) 其中ν为光的频率,h为普朗克常数,m和vm是光电子的质量和最大速度,W为电子摆脱金属表面的约束所需要的逸出功。

当阳极A电势为正,阴极K电势为负时,光电子被加速。当K电势为正,A电势为负时,光电子被减速;而当A、K之间的电势差足够大时,具有最大动能的光电子也被反向电场所阻挡,光电流将为零。此时,有

e U0 =1/2 mvm

2式中e为电子电量,U0 称为截止电压。

U0 =(hν-W)/e= h/e(ν-ν0)

式(4)表明,截止电压U0是入射光频率ν的线性函数,其直线的斜率等于h/e。可见,只要用实验方法测量不同频率光的截止电压,做出U0-ν图形,从图中求得直线的斜率h/e,即可求出普朗克常数h。另外,从直线和坐标轴的交点还可求出截止频率ν0 。

其中h/e=(nΣviUvi-ΣviΣUvi)/( nΣvi2-(Σvi)2)

4

三、电光效应实验

本实验的目的是:

①掌握晶体电光调制的原理和试验方法;

②了解电光效应引起的晶体光学性质的变化,观察汇聚偏振光的干涉现象; ③学习测量晶体半波电压和电光常数的实验方法。

通过本实验我们不仅可以获得关于电光效应的基本知识,还对偏振光的干涉、信号的调制和传递有了具体的了解,对于示波器的使用及有关光路的调节有了更深一步的掌握。本实验通过列表法及图像法来处理实验数据,并对误差进行了分析在实验进行过程中进一步巩固所学的知识并吸取了更多的经验。

1. 该实验的误差来源主要有以下几个方面:

①.由于人为原因导致光路不垂直,造成实验误差; ②.对仪器读数时造成的误差; ③.有仪器本身的误差造成的误差。

2. 通过本实验,我基本掌握了晶体电光效应的实验方法。刚开始做实验的时候,因为上学期做过有关示波器的实验,所以对基本的示波器原理还有一些经验,但对于光路调节没只有在书上看到过示意图,所以还不是很熟悉,对各种光路仪器的用处都不了解,但后来在老师的讲解下才懂得了其使用方法。我觉得这是因为预习不够充分引起的,一方面对仪器的原理了解不够,一方面没有考虑到仪器的具体使用。做物理实验首先要理解其原理,再者怎么样利用实验仪器测出自己所需要的数据,如果不知道测什么,那么做实验也是白做的。相对于仪器的使用方法,我认为运用电光效应的思想方法更加重要。我觉得调节的光路是否等高共轴市实验成败的关键,通过巧妙调节近可能的减小误差,达到实验的成功。

5 我感觉上物理实验课的老师都比较有耐心,帮助我们解决实验中出现的各种情况,上课的时候讲解仔细,力求让我们明白这实验的目的和精髓。老师都比较负责。

四、密立根油滴测电子电荷

实验目的:

1. 通过对带电油滴在重力场和静电场中运动的测量,验证电荷的不连续性,并测定电荷的电荷值e。

2. 通过实验过程中,对仪器的调整、油滴的选择、耐心地跟踪和测量以及数据的处理等,培养学生严肃认真和一丝不苟的科学实验方法和态度。

3. 和构思。

本实验中,至于油滴匀速下降的速度vg,可用下法测出:当两极板间的电压V为零时,设油滴匀速下降的距离为l,时间为t ,则 学习和理解密立根利用宏观量测量微观量的巧妙设想vgl

tg32d18l最后得到理论公式:q

bV2gt(1)gpa

五、微机夫兰克—赫兹实验

实验原理 :

设氩原子的基态能量为E1,第一激发态的能量为E2,初速为零的电子在电位差为V0的加速电场的作用下,获得能量为eV0,具有这种能量的电子与氩原子发生碰撞,当电子能量eV0

在充氩的夫兰克—赫兹管中,电子由热阴极发出,阴极K和栅极G之间的加速电压VGK使电子加速。在板极A和栅极G之间加有减速电压VAG,管内电位分布如图二所示,当电子通过KG空间进入GA空间时,如果能量大于eVAG就能达到板极形成板流。电子在KG空间与氩原子发生了非弹性碰撞后,电子本身剩余的能量小于eVAG,则电子不能到达板极,板极电流将会随栅极电压增加而减少。实验时使VGK逐渐增加,仔细观察板极电压的变化我们将观察到如图三所示的IA~VGK曲线。

随着VGK的增加,电子能量增加,当电子与氩原子碰撞后还留下足够的能量,可以克服GA空间的减速场而到达板极A时,板极电流又开始上升。如果电子在KG空间得到的能量eV0=2E时,电子在KG空间会因二次弹性碰撞而失去能量,而造成第二次板极电流下降。

在VGK较高的情况下,电子在跑向栅极的路程中,将与氩原子发生多次非弹性碰撞。只要VGK=nV0(n=1,2,„..),就发生这种碰撞。在IA~VGK曲线上将出现多次下降。对于氩,曲线上相邻两峰(或谷)对应的VGK之差,即为原子的第一激发电位。

如果氩原子从第一激发态又跃迁到基态,这就应当有相同的能量以光的形式放出,其波长可以计算出来:hυ=eV0 实验中确实能观察到这些波长的谱线

六、迈克尔逊干涉仪

把迈克尔逊干涉仪的M1和M2调到垂直,移动M1可以改变空气膜的厚度,当M1接近M2’时厚度减小,直至二者重合时厚度为零,继续同向移动,M1还可以穿越M2’的另一侧形成空气膜。等倾干涉 :2d=Kλ(k=1,2,

3、、、、、、)

=(2k+1) λ/2(k=0,1,2,

3、、、、、、)

7 等厚干涉:相长干涉条件:2d-θ2d=kλ;若θ很小,θ2d可以忽略。移动M1可以使M1和M2’相交!在交线处d=0。

由于实验太多的限制,课本上的实验就不一一介绍了!

七、微波迈克尔逊干涉实验

通过用微波源代替光源,研究迈克尔逊干涉的基本原理,并测定微波的波长。微波的迈克尔逊干涉和光学的迈克尔逊干涉的基本原理相同,只是用微波代替光波而己。

本实验的目的是了解一下迈克尔逊干涉的实验原理,并且利用干涉现象测出微波的波长。试验中调整发射喇叭和接收喇叭的方位,移动全反射板,观察当微安表达到最大数值时(此时出现干涉加强,波程差是真个波长的整数倍,相位差是2*PI)记下对应位置最表的数据即可,在移动全反射板时切忌双向移动(单向移动记录数据),这样可以减小误差,尤其是回程差。本试验在操作上并不是很困难,很易于实现,易于成功。

八、微波布拉格晶体衍射实验

惠更斯一菲涅耳原理指出:从同一波束面上各点所发出的子波(称为散射)经传播而在空间某点相遇时,也可相互迭加而产生干涉现象。这就是解释衍射现象的理论基础。

本实验是以方形点阵的模拟晶体(立方晶体)为研究对象,用微波向模拟晶体入射,观察从不同的晶面上点阵的反射波产生干涉符合的条件,即下面我们要讨论的布拉格公式

本实验用一束微波代替X射线,观察微波照射到人工制作的晶体模型时的衍射现象,用来模拟发生在真实晶体上的布拉格衍射,并验证著名的布拉格公式。该实验利用了微波分光仪完成了微波迈克尔逊干涉实验。该报告主要介绍了上述实验的原理,并进行了数据处理和误差分析,在最后还提出了一种实验仪器的改进方案。

利用X射线照射晶体通过晶体后X射线会发生衍射。布拉格父子通过对衍射现象的研究,找到了衍射束的出射角度与内部晶体结构点阵的关系。当微波照到

8 模拟点阵晶体时,组成晶体的每一个点阵粒子都会向各个方向发射子波,这样点阵粒子构成的周多散射中心发出的子波就会发生干涉,叠加。掠入射时道理一样,只有那些满足布拉格衍射定律的波束干涉才能加强,并且强度为最大值。本实验也易于操作,可能数据处理有些麻烦。不过这也正是好好提高自己的分析数据、处理数据能力的好时候、更是理论联系实际的桥梁。

实验中我们需要同时转动两臂达到同样的角度,实验时我们采用两人同时转动左右臂的方法,虽然效果不错,但是费时费力,我觉得可以采用联动装置使左右臂同时运动相同的角度,为达到这样的目的,我们可以采用,一根可以自由手动伸缩的杆连接左右臂,当杆伸缩的时候,左右臂将转动相同的角度,杆的伸缩长度与转动角度的对应关系可以通过具体计算得到!

综上所述,晶体在布拉格衍射中实际上是起着x射线衍射光栅的作用。X射线结构分析学就是利用x射线在点阵上的衍射现象来研究晶体点阵的间隔和相互位置的排列,以达到对晶体结构的了解。

九、椭圆偏振仪测量薄膜厚度实验

椭偏法测量的基本思路是:起偏器产生的线偏振光经取向一定的1/4波片后成为特殊的椭圆偏振光,把它投射到待测样品表面时,只要起偏器取适当的透光方向,被待测样品表面反射出来的将是线偏振光.根据偏振光在反射前后的偏振状态变化,包括振幅和相位的变化,便可以确定样品表面的许多光学特性。

一束自然光通过起偏器后变成了线偏振光,在经过一个波片,变成了椭圆偏振光。这样的椭圆偏振光入射到待测薄膜表面上时反射光的偏振状态会发生变化。测出这种变化就测出了薄膜厚度。本实验目的是了解椭圆偏振发测量薄膜参数的基本原理,初步掌握椭圆偏振一的使用方法,并对薄膜厚度进行测量。试验中操作并不困难,主要是一起可能有时会出点问题,而且击鼓样的强弱又是并不好判断,试验后可以根据测的数据在计算机上直接模拟就可以的出最后答案。

十、光泵磁共振实验

本实验目的是:

9 1. 观测铷的光抽运信号及光磁共振信号。 2. 测量铷原子的郎德g因子。 3. 测量地磁场

光泵磁共振利用光抽运效应来研究电子超精细结构塞曼子能级间的磁共振。光抽运是用圆偏振光激发气态原子,打破原子在所研究能级间的热平衡分布,造成能级间所需要的粒子数差,以便在低浓度条件下提高磁共振信号强度。光泵磁共振采用光探测方法,探测原子对光量子的吸收,而不是像一般的磁共振直接探测原子对射频量子的吸收,因而大大提高了探测灵敏度。光泵磁共振进一步加深人们对原子磁矩、g因子、能级结构、能级寿命、塞曼分裂、原子间相互作用等的认识,是研究原子结构的强有力的工具,而光抽运技术在激光、原子频标和弱磁场测量等方面也有重要应用。

本实验的目的是了解光抽运的原理,掌握光泵磁共振实验技术,并测量气体铷(Rb)原子的g因子和地磁场。 实验过程中必须要注意:

1. 实验时必须先预热,待池温、灯温指示灯点亮后,方可进行实验。 2.在观察磁共振信号,测量g因子和地磁场时应该尽量减小扫场的大小。

十一、核磁共振实验

在加不同大小扫场情况下仔细观察水样品的核磁共振现象,记录每种情况下的共振峰形和对应的频率!

本实验的目的是了解核磁共振的基本原理,观察核磁共振的共振信号,计算磁感应强度(B),并与测量值比较。

这次实验通过扫频法观察氢核的核磁共振现象,并测量g因子。实验过程中,发现调节样品在磁铁中的空间位置时,扫描频率的尾数出现较大的变化,但对g因子的测量并无巨大的影响。调节边限振荡器的频率“粗调”电位器时,当频率调节至共振频率附近,图像会有明显的变化,出现大致的共振信号,然后旋动频率调节“细调”旋钮,在此附近捕捉信号,调节出较好的共振信号,最后降低扫描幅度,调节频率“微调”至信号等宽,同时调节样品在磁铁中的空间位置以得到微波最多的共振信号。这样可以快速、准确地找到扫描频率,测得实验数据;

10 由于本实验的仪器问题和共振状态下的(υH)很难准确调节达到,所以需要耐心细致的调节,方能看到最后结果。

十二、微波顺磁共振实验

电子顺磁共振又称电子自旋共振。由于这种共振跃迁只能发生在原子的固有磁矩不为零的顺磁材料中,因此被称为电子顺磁共振;因为分子和固体中的磁矩主要是自旋磁矩的贡献所以又被称为电子自旋共振。简称“EPR”或“ESR”。由于电子的磁矩比核磁矩大得多,在同样的磁场下,电子顺磁共振的灵敏度也比核磁共振高得多。在微波和射频范围内都能观察到电子顺磁现象,本实验使用微波进行电子顺磁共振实验。

十三、光栅光谱实验

本实验的实验目的是了解光栅的原理,掌握多功能光栅光谱一起的使用方法;理解相光的实验原理;通用光栅光谱仪进行发射光谱的实验,加深对相关理论的理解与把握,同时学会实验的操作方法和实验数以一个,急需要在电脑上操作一下就可以很容易的的出实验数据。但是需要注意预热的时间问题数据的处理。

十四、学习中的困难

1、实验仪器的不熟悉和仪器存在缺点

通过这个实验我知道了在做实验之前必须先熟悉实验仪器的使用,这样做实验就能成功了一半。其次是实验仪器存在缺点的话就很可能得不到实验结果。这样的话我们可以探索一下改进的方法,促进实验的成功。

实验仪器的不熟悉,不理解这个仪器为什么和怎样工作的。这造成了在实验时随便调试仪器费时费力,却不明白为什么达不到想要的实验现象。这就要求我 11 们在做实验之前必须先熟悉实验仪器的原理和使用。

2、实验原理弄不清楚

和许多同学一样,抄写实验原理时,由于有的物理内容没有接触过,所以就很难弄懂。这样就造成了在抓这一本实验课本到实验室,直接翻到实验步骤就开始做实验,常常做完实验了,得到了实验结果还不知道这结果用来干嘛。就像真空镀膜这个实验,实验操作简单,但是原理很复杂。还有核磁共振实验,由于实验原理弄不清楚,在数据处理时遇到了困难,造成了测出了发生共振时波峰和波谷的频率却不知道到用来干嘛。

很多时候我并没有完全理解实验原理,所以对实验具体做什么和这样做的目的并没有很好的掌握,只是参照实验室里的操作说明一步步的进行,对整个实验过程没有融会贯通。。比如在实验中我知道要提高某一物理量的值就能得到所要的实验结果,但反应到仪器上,我可能就不知道这个值要如何去改变,或者我不知道某个实验参数为什么那么选择。这给我的启示是应该在预习时多多思考实验原理是如何反应在实验具体操作步骤上的,这样在老师讲解过程中也能更有的放矢。

3、依赖性

由于在大一大二习惯性地依赖老师指导,造成了这坏习惯在我们身上扎根,遇到困难就不想往下做,直接找同学或者老师帮忙。这样造成了实验并没有得到什么收获和进步。

对老师指导的依赖性,常常具体操作的步骤上出问题时不愿意自己思考解决的办法,遇到困难就不想往下做,直接找同学或者老师帮忙。这种惰性造成我没有深刻理解实验方法,这个是我在实验中遇到的最大的问题,必须养成独立思考和解决问题的习惯。

4、专业知识的不牢靠

由于专业知识的不牢靠造成了在实验预习时实验原理的理解模糊和数据在处理时的不准确,比如在实验误差的计算不知道改用什么方法,实验结果的总结也不会。

十五、实验的改进和反思

1、 凡事都有美中不足之处,我认为近物教学仍然有需要改进地方。我觉得老师需要统一思想,尽量让学生自己独立完成实验,不要一有问题就帮忙解决,这样虽然会提高效率,但是会助长一种依靠老师完成实验的风气。

2、实验仪器有的由于老化就会造成实验很难成功,或者结果存在这很大的误差。比如实验室里的氢光源光强太弱,还有的实验仪器螺丝松动,不好固定,经常实验到半实验仪器突然晃动,造成了实验失败得从头再来。

3、实验报告评分时可不必要求把必做实验所有内容都做完,而把评分重点更多的放在实验记录上,特别是“发现问题——思考过程——解决问题”这一块。这样可以促进我们对实验的反思和进一步理解和掌握。

十六、学习中的收获和快乐

我觉得一部分老师的教学方式非常好。他们鼓励我们要自己解决问题,尽量不要依靠老师。一旦我们遇到困难但没人帮助的时候,我们只有靠自己去摸索,在摸索的过程当中我们学会了课堂上老师不可能教的技巧,比如如何搜索文献,如何查找英文学术单词,如何建立一个总体上的思路等等。虽然采用这样的方式做出成果比别人慢,但是收获更多。

回想起来,为什么我的实验报告一直拿不来高分,为什么我实验内容完成的总是比人家少——我一大部分时间都在不停的为自己的马虎大意买单。但是我想,我收获的肯定比没有犯过错误的人多。低级的错误犯过了,以后再犯的可能性就小了很多;高级的错误犯过了,自己懂的知识就比原来多了很多!

我是在这些课程是体验到了物理学习的快乐,并不仅仅局限于课本理

13 论上的知识,加深了理论上的理解,更加帮助于去理解生活中的规律。实验的选择也很有趣,有些实验看上去觉得没什么,只有真正去做才能感受到其中的快乐。

1、大学物理实验让我养成了课前预习的好习惯,让我深深地懂得预习的重要性。只有在课前进行了认真的预习,才能在课上更好地学习收获的更多、掌握的更多。教材和讲义中的实验原理都往往叙述很详细,但我们在写预习报告时却不应把书上的内容都抄写一遍,而是应该在理解了教材上的实验原理和公式推导的基础上,总结和概括书上的内容,这样的预习报告才会对实验操作有指导作用。这学期我很好的做到了这点。

2、做完实验后处理实验报告也很重要,正确的实验操作是得到合适的实验数据的基础,在系统误差一定的情况下,实验数据处理得恰当与否,会直接影响偶然误差的大小。所以对实验数据的处理是实验的重要内容之一。大学物理实验教会了我处理数据的能力。包括:

① 了解了误差与不确定度的基本概念,并在实验中应用,学会了用不确定度对直接测量和间接测量的结果进行评估。

② 学会了一些处理式样数据的方法,如列表法,作图法等。 ③ 掌握了一些基本物理量和物理参数的测量方法,如电流,电压,磁场,光强,折射率,电子电荷,普朗克常量等。

④ 理解了常用的物理实验手段等!

⑤ 还掌握了许多仪器的使用方法,尤其要说的是示波器,它在物理实验中应用非常广泛,在这学期的微波与铁磁和连续与脉冲核磁共振试验中还用到它!

第三篇: 虚拟仿真技术在近代物理实验教学中的探讨

李明标

(渤海大学数理学院,辽宁 锦州 121013)

摘要:分析了近代物理实验教学中引入虚拟仿真技术的意义,探索仿真实验辅助近代物理实验的教学路线,形成了电子教案理论指导-虚拟仿真软件预习操作-物理实验测量检验的物理实验教学新模式,归纳总结了教改实施的效果。

关键词:近代物理实验;虚拟仿真;教学模式;实施效果 Discussion of virtual simulation technology in modern physics experiment teaching

Li Ming-biao

(College of Mathematics and Physics, Bohai University, Jinzhou 121013, China)

Abstract: In this paper, the significance of introducing virtual simulation technology into modern physics experiment teaching is first investigated. Then, the teaching route of simulation experiment to assist modern physics experiment is explored. A new model of physics experiment teaching has been formed, which is instruction of electronic teaching casephysical experiment measurement test. Finally, the effect of educational reform is summarized.

Key word: Modern physics experiments; Virtual simulation; teaching model; Effect of implementation

中图分类号:G642.0 文献标识码:A 0、引 言

虚拟仿真技术对高等教育发展有着广泛的影响,为高等教育提供了先进的教学手段,改变了以往传统的教学方式。在教育部《大学物理实验课程教学基本要求》中明确提出,在教学模式和方法上要“充分利用包括网络技术、多媒体教学软件等在内的现代教育技术,营造多元化的教学模式”等基本要求。将虚拟仿真技术引入实验教学,对促进近代物理实验教学方法的改革起到了很大的作用。在培养学生的实验基本技能上,实际动手操作实验仪器将是必要的,但在虚拟仿真实验在软件设计引导下,对复杂的物理实验虚拟仿真更直观并且容易[1]做到,对探索性、创新性的实验,虚拟仿真实验模式将更为有效,尤其对实验结果的整理与分析,以及实验报告的撰写等诸多环节,都可采用先进的数据分析处理软件获得正确的结论,并在计算机上完成。如果说普通物理实验以打好实验基础为主,近代物理实验则注重培养分析、解决物理问题的能力,那么虚拟仿真技术在近代物理实验中的优势更明显。为此,应用虚拟仿真实验系统教学,建立近代物理实验教学新模式,符合教育部《基本要求》,适合当今教育发展需求,紧跟时代发展步伐。

一、探索仿真实验辅助近代物理实验的教学模式

近代物理实验作为高等院校的专业课程实验,教学内容复杂、任务量大,受到仪器设备、实验材料等因素的制约,这是在组织实验教学中面临的最突出问题。如何合理有效的利用有限的师资和设备资源,在有限的时间和空间内获得良好的教学效果,是我们研究探讨的重要课题。为了解决这一矛盾, 在实验教学中引入模拟仿真实验教学手段,探索仿真实验辅助教学的新模式。

开发制作近代物理实验电子教案,实现辅助实验讲解,调动学生参与实验的积极性,提高实验操作效率;应用交互式仿真实验软件,指导学生的预习、复习,打破传统实验教学呆板单一的模式,为实验教学提供更为宽松自由,方便灵活的空间;在实验上,仿真实验拓展了有限的课堂教学时间,为学生展示实验原理、验证设计思路;利用仿真实验对实验相关的理论进行分析,对实验的历史背景和意义进行讲解,对实验的现象进行演示,使仿真实验成为连接理论教学与实验教学纽带,形成电子教案理论指导-模拟仿真软件预习操作-物理实验测量检验的仿真实验辅助教学、理论与实践相结合的一种崭新教学模式。虚拟教学课件的设计由简单到复杂,操作由简到繁,内容由少到多,使教学内容循序渐进,不断深入。从打好实验基础到实验技能的养成,再到实验技能的提高,教学内容具有明显的层次性,这就使

收稿日期:

基金项目:辽宁省教育厅教学改革项目(辽教发[2016]23号),渤海大学教改(2017A类)项目 作者简介:李明标(1965- ),男,副教授,主要从事实验技术教学及科研工作。 学生实验能力的提高也分层次进行。随着实验层次的不断提高,学生的实验能力不断提高,做实验的精神状态也发生了变化,由过去等教师讲,等教师教,出了问题等教师解决变为依靠自己钻研解决问题。随的教学改革的不断深入,实现从以教师为中心向以学生为中心教师辅助指导的教学模式转变,以灌输式教学向边学边做的研究性教学模式转变,提高学生综合素质和实验操作技能。

二、虚拟仿真近代物理实验教学模式实施取得的效果

通过两年的教学实践,虚拟仿真技术辅助实验教学的模式取得了良好的效果,激发了学生学习兴趣、提高了学习效率,增加了学生学习和实践操作能力。

(1)改革传统实验教学模式。将虚拟仿真技术运用于物理实验教学,改变以教师为中心的传授式教学模式,通过教师指导虚拟实验设计和学生自主学习活动,发挥教师的主导作用和学生的主体作用。虚拟仿真技术加强了学生在学习活动中的思考和创新,它不仅使学生能够有效地通过观察提出假想,而且提供的优良交互性实验教学系统,能够为学生提供必要的学习反馈,学生可以通过屏幕提示逐步思考、选择,由浅入深的探索物理现象的本质,提高学生的分析和理解能力。

(2)激发学生学习热情。应用虚拟仿真技术, 以图文声像并茂形象地传递实验内容,把涉及到的知识、现象、全部过程都反复再现在学生面前。对书本中较抽象难于解释的内容进行图形化、形象化处理,使学生耳闻目睹,仿佛身临其境,激发了学生们学习实验的兴趣。

[3]学生在预习完实验相关内容后,可通过仿真实验课件进行模拟操作,避免实验室中实际操作时的失误,提高实验操作效率。

(3)提学生高学习效率。虚拟仿真技术教学将文字、图像、图形、声音等信息进行处理、存储,突出了形象性和感染力, 弥补了传统实验教学方式的不足,使人通过多个感官来获取信息, 提高信息传播效率。应用虚拟仿真技术,丰富了教学内容,突破时空限制,恰如其分地演示一些复杂的、抽象的、远离人们日常生活经验的、不便直接观察的自然过程和现[2]象,全方位、多角度地展示科学内涵,使学生既能看得见,又能听得到,还能用手操作,再通过讨论、交流,用自己分析得出结论,知识的获得远远好于传统教学的效果。

(4)建设了辅助教学平台。虚拟仿真技术教学为师生提供了一个崭新的学习平台,学生可以通过查阅电子教案、预习课件、对相关实验进行充分预习,然后回答预习检测题,当答对一定比例的检测题后,方可进入下一阶段,即虚拟仿真实验,在完成仿真实验的过程中,学生预习时发现问题可随时向教师提出、发表自己的看法,并同教师进行讨论,教师也便于了解学生的实验操作动态,以保证学生在后续物理实验中操作的正确性。虚拟实验完成后,再进行物理实验,分析比较仿真实验和物理实验的步骤、数据及结果,加深对实验原理的理解。

(5)节约实验经费。虚拟仿真实验可以解决实验室仪器数量不足的问题,并可避免仪器易损坏。模拟大型实验“仪器”操作及复杂的物理现象,节约其实验的材料费。通常的实验仪器、实验方法远远无法满足现代物理理论的发展的要求,比如晶体结构研究、核实验、辐射实验等,运用虚拟仿真技术,可以将目前新技术所产生的大量信息通过虚拟仿真软件直接地表现出来,展示于学生眼前,便于他们当今高科技的了解和掌握。

三、结 语

结合学校实验设备具体情况,把虚拟仿真技术引入传统近代物理实验教学中,实现传统的教学方式向现代教学方式转化,将硬件实验验证方式向多元化实验方式转移,实验将不再受任何约束、限制,学生可在计算机上进行虚拟仿真实验,为学生创建良好的实验环境。通过虚拟仿真实验的方法引入新的概念和规律,把理论教学与实验教学有机地融为一体,改革

[4]传统的实验教学模式,丰富教学内容,师生互动、调动学生学习实验的积极性和主动性,提高实验教学质量,节约实验经费开支,建立具有一定推广价值的人才培养实践教学新模式,促进了学生研究能力、创新意识和综合素质的全面提高。

参考文献:

[1]韩振海.VirtualLab 虚拟仿真在物理光学中的应用[J].河西学院学报,2016,32(5):32-38 [2]腾香.近代物理虚拟仿真实验系统的开发研究与实践[J].渤海大学学报,2015,36(3):204-207 [3]任骏原,腾香,李金山.数字逻辑电路Multisim仿真技术[M].北京:电子工业出版社,2013.

[4]李明标,陈维石,孙爽,舒天爽.单摆法测量空气密度实验分析[J].渤海大学学报,2016,37(4):322-325

第四篇:物理实验技能心得

初中物理实验技能学习心得

这次有幸参加陕西省教育厅举办,陕西教育学院承办的”国培计划”--初中物理实验技能专项培训的学习,是我受益匪浅,改变了我对初中物理试验教学的认识。本文就此谈谈我这次学习的心得体会。

一、初中物理实验教学的必要性

回顾物理实验教学的发展,18世纪德国、法国建立了学校的演示实验室,从此便开始了世界上的物理实验教学,成为物理教学中重要的教学手段和有效的教学形式,是学生喜爱且积极参与的一种教学形式。而我国在初中物理教学中,物理实验在物理教学中处于次要地位,是为学生掌握物理知识而服务的。以至于学生实际操作的机会少,动手实验的能力普遍较低,严重制约了实验教学的正常开展。因此,为了培养学生的实验技能、观察能力、思维能力和科学的思维方法,提高他们发现问题、分析问题和解决问题的能力,进一步提高学生学习物理的兴趣和爱好,调动他们的学习积极性,我们应进一步改善实验条件,发挥物理实验教学直观形象的特点,为学生提供感性材料。

二、改革物理实验教学的措施

1、重视演示实验教学,加强能力培养

演示实验是教师利用课堂时间为学生演示,在操作的同时又引导学生对实验进行观察、思考和分析的一种物理实验教学方式。传统的课堂教学,演示实验通常是教师演示,学生看,但是很多实验学生根本看不清,不同程度地限制和阻碍了学生参与实验的兴趣,直接影响学生实验心理素质的提高。因此,教师在演示实验中,应积极引导学生观察、猜想、分析、归纳总结,甚至在实验操作上让学生积极参与,让学生充分了解实验的内容,多次重复,加深印象,巩固记忆。例如,在“功的原理”一节的教学中,笔者变原来的课堂演示实验为边做边讲实验,每两位学生发一套实验器材,让学生测量钩码被提起的高度、测力计移动的距离、钩码的重力、测力计的读数,引导学生计算重力做的功、拉力做的功。然后让学生讨论、研究、对比、总结,最后训练学生用科学的语言描述,从而顺理成章地得出“使用任何机械都不省功”这一原理。可见,演示实验在教师指导下让学生参与,不仅能让学生展示实验技能的机会,又能得到科学方法的训练,加深理解和掌握物理概念和规律,同时可领略物理学的思想,培养科学态度和科学方法。

2、变验证性实验为探究性实验

初中物理课堂实验可分为验证性实验和探究性实验,验证性实验占绝大部分。验证性实验是对知识的正确与否加以验证,巩固和加深对基本规律和基本原理的认识。它能让学生掌握操作仪器的科学方法和科学态度。如“用天平测物质的质量”、“电压表测电压”、“电流表测电流”等验证性实验,通过对电压表、电流表、天平、刻度尺等器材使用,掌握操作仪器的科学方法,验证性实验为学生准备了探究性实验前必要的技术支持,但不利于培养学生主动探索物理规律的能力,而探究性实验对培养学生思维能力、创造能力、自学能力、观察实验能力及解决实际问题的能力有独到的作用。因此,在教学中可把一些验证性的实验变为探究性实验。在实验教学中,要尽量让学生想想:“为什么要这样做?”以此渗透物理思想,启迪学生思维。例如在“测量小灯泡的电阻”验证性实验一节的教学中,笔者将这个验证性实验变为探究性实验。主要原因是:(1)学生已掌握了电压表和电流表、滑动变阻器的使用方法。(2)学生应用R—U/I时,常错误理解为R与U成正比,与I成反比。然后让学生设计好实验,画出实验电路图,明确要测量的物理量。按探究性实验的要求记录。最后让学生讨论:(1)小灯泡的电阻是多少?(2)电压变大时,电阻变大吗?(3)电流变大时,电阻变小吗?这一改变,学生由学知识变为主动探索自然规律,对知识学得更扎实更牢,同时使学生受到科学方法的熏陶。对学生理解R=U/I有很好的帮助。

3、重视物理小实验的教学

在初中物理课本中安排的21个小实验,是课堂教学的延伸和补充,实验教学的不可忽视的重要组成部分。有的侧重于操作,有的侧重于设计,有的侧重于对物理知识的理解和应用,各有各的特点和作用。这些小实验适应了初中学生的心理特点和知识水平。一方面,简单易做,可以由学生自己取材,自己动手实验,如“让线圈转起来”,把一段漆包线绕成3cm×2cm的矩形线圈,漆包线在线圈的两端各伸出约3cm。把线圈放在铜支架上,接上电源,置于磁场中,线圈晃了两晃便停下来,把线圈两端伸出部分的绝缘漆刮掉半圈,再把线圈放在铜支架上,置于磁场中,接上电源,线圈便转起来。这小小的实验可帮助学生理解换向器的作用。另一方面有利于进一步挖掘学生的创造潜能,培养学生分析问题和解决问题的能力,有利于培养学生的科学创新能力。

4、注重仿真实验的积极作用

在物理实验教学过程中,仿真实验发挥了一定的作用,但同时也存在有一定的弊端。对于西部部份农村学校实验器材短缺,原材料不易寻找;或者部分实验可操作不强,不易观察实验现象或正确结论;或不能直观形象体会实验原理,实验过程。在这个背景下,仿真实验应运而生。大学物理仿真实验系统就是用计算机来模拟(又称为仿真)物理现象和实验环境,主要是借助于计算机编程。仿真实验系统真切的仿真效果使学生在使用、学习过程中会产生强烈的真实感。这就为教师和学生进行传统物理实验及自由实验探索提供了平台。 (1)“仿真物理实验”在实验教学中的积极作用

仿真实验将实验目的、实验器材、实验原理以及实验内容有机地融合到一个界面上,学生可以对已做过实验进行仿真实验, 根据自己的需要有选择地点击实验原理或仪器功能调节方法的相关界面。如果学生以前没有接触过该实验的仪器,很多学生就会拿着书对照仪器的每一个部件,甚至不了解仪器的正确使用方法而进行误操作,造成实验中断、仪器的损坏。“仿真物理实验”借助于三维动画把实验仪器全方位展示给学生,还可拆卸关键部位,对仪器内部部件进行解剖调整,并能在实验过程中实时观察仪器的各种指标和内部结构动作,增强了学生对仪器的熟悉和对其功能的把握程度。仿真物理实验不光为学生提供了细致、逼真的实验画面,更提供了真实可信的实验效果,这一点毫无疑问。 (2) “仿真物理实验”在实验教学中的消极作用

在使用“仿真物理实验”软件的过程中,学生可能会由于把注意力集中于计算机操作上,因为对仪器的控制是通过点击鼠标来实现的,这样一来,就会淡化对基本技能的训练,甚至可能由于缺少实际动手机会,妨碍利用现成的简单设备进行探索和实验的欲望。同时,仿真实验室的条件相对理想,减少了学生应对突发事件、排除故障的机会,所以,从某种意义上来说,仿真实验只是仿真而已,无法达到实际实践操作的效果。 因此对仿真物理实验不能滥用

3、合理运用多媒体,优化演示实验教学

利用常用仪器、教具进行演示是一种最基本的手段,而利用多媒体教学,是教学现代化的重要标志,是教学改革的重要组成部分。因为多媒体教学是指在教学过程中运用系统科学的观察和方法,组织多媒体信息,形成合理的教学结构,以实现教学优化,使学生真正体会到物理学科的学习方法,提高学生观察及分析问题的能力。如应用多媒体展示课堂实验无法演示的宏观的、微观的、极快的、极慢的物理过程,从而突破时间以及空间的束缚,进行逼真的模拟,灵活地放大或缩小物理场景,将物理过程生动形象地展现于学生眼前,使学生认识加强,理解透彻。例如用多媒体播放“托里拆利实验”,既可解决水银可能对教室的污染,又能很好展示实验操作的情景。利用多媒体进行物理实验教学,不但为教和学增添了信息的传输和接收通道,而且为教学创设了良好的情境,师生们置身于“情”、“景”中,以“物”思“理”,又以“理”认“物”,这对物理的各种题型的实验教学有着积极的意义,对提高物理课的素质教育教学有着广泛的前景。

4、重视物理小实验的教学

在初中物理课本中安排的21个小实验,是课堂教学的延伸和补充,实验教学的不可忽视的重要组成部分。有的侧重于操作,有的侧重于设计,有的侧重于对物理知识的理解和应用,各有各的特点和作用。这些小实验适应了初中学生的心理特点和知识水平。一方面,简单易做,可以由学生自己取材,自己动手实验,如“让线圈转起来”,把一段漆包线绕成3cm×2cm的矩形线圈,漆包线在线圈的两端各伸出约3cm。把线圈放在铜支架上,接上电源,置于磁场中,线圈晃了两晃便停下来,把线圈两端伸出部分的绝缘漆刮掉半圈,再把线圈放在铜支架上,置于磁场中,接上电源,线圈便转起来。这小小的实验可帮助学生理解换向器的作用。另一方面有利于进一步挖掘学生的创造潜能,培养学生分析问题和解决问题的能力,有利于培养学生的科学创新能力。

总之,物理课堂实验要与学生的分组实验有机地结合起来,努力培养学生的基本实验要素:一是仪器使用的一般知识;二是测量误差与数据处理的知识,其中特别是图线处理数据中,区分已知规律与未知规律的不同方法;三是间接测量的基本知识,要从测量出发理解实验装置、原理、方法、条件保证、操作步骤以及数据的记录与处理;四是验证性实验的验证思想,特别是要懂得将理论结论与实验结论比较的思想。同时加强学生对基本实验方法的迁移和灵活运用能力的训练,多角度、全方面地让中学物理实验教学提高到一个新的水平。

【摘要】 在物理实验教学过程中,仿真实验发挥了一定的作用,但同时也存在有一定的弊端。通过实际教学的切身体会,分析了仿真实验在实验教学中的积极作用和消极影响,并提出了一些需要注意的问题。 【关键词】 物理实验; 仿真实验

物理实验课在培养学生科学素质、创新能力以及研究能力方面,起着非常重要的作用,在相关院校是必开课程。但是很多实验因为耗资太大,实验室不购买,结果由于仪器的不具备而直接制约了实验教学质量的提高[1~3]。在这个背景下,仿真实验应运而生。大学物理仿真实验系统就是用计算机来模拟(又称为仿真)物理现象和实验环境,主要是借助于计算机编程和3D动画来营造一种仿真的实验环境氛围,学生可以通过操作电脑进行相关实验操作。仿真实验系统真切的仿真效果使学生在使用、学习过程中会产生强烈的真实感。这就为教师和学生进行传统物理实验及自由实验探索提供了平台。我校在医学物理学实验课的教学过程中,引用了中国科技大学物理系编制的“大学物理仿真实验”[4]这一软件,通过使用,我们体会到其优劣互现。 1 “仿真物理实验”在实验教学中的积极作用

“大学物理仿真实验”分上下两个部分,一共囊括了物理学实验共计41个,提供了从力学的杨氏模量、动量守恒验证实验到电磁学的霍尔效应、测量磁滞回线;从热学的热膨胀系数和光学的干涉、衍射实验到近代物理实验如核磁共振、电子自旋共振、核衰变的统计等丰富的实验项目,可选择性强。有些实验耗资大,仪器操作要求较高,易于损耗,一般学校难以开出。而仿真实验弥补了这一缺憾,只要在计算机上安装本软件,学生就可以人手一台电脑,独立完成实验。由于是在仿真环境下进行,不用担心误操作而引起的设备损坏,对实验者的心理压力减小,因此学生们就更敢于动手。软件本身通用性强,可靠性高,便于维护和升级,其中有一些还消除了实验条件的特殊限制及环境对实验的影响(比如光学实验须在暗室中进行,有些实验需要绝对没有外界干扰等)。

仿真实验将实验目的、实验器材、实验原理以及实验内容有机地融合到一个界面上,课前,学生可以对仿真实验进行预习, 根据自己的需要有选择地点击实验原理或仪器功能调节方法的相关界面。如果学生以前没有接触过该实验的仪器,很多学生就会拿着书对照仪器的每一个部件,甚至不了解仪器的正确使用方法而进行误操作,造成实验中断、仪器的损坏。“仿真物理实验”借助于三维动画把实验仪器全方位展示给学生,还可拆卸关键部位,对仪器内部部件进行解剖调整,并能在实验过程中实时观察仪器的各种指标和内部结构动作,增强了学生对仪器的熟悉和对其功能的把握程度。比如分光计实验,一台仪器近万元,直接让学生在对仪器毫不熟悉的情况下接触实物仪器会增加仪器受损的风险。于是我们先开展分光计的仿真实验教学,通过仿真实验的学习,学生对实验原理、仪器的结构、调试技术等有了一个整体认识,通过电脑操作,已经掌握了一定的操作技巧。然后我们再让学生去做相关实物实验,比如进行利用分光计和衍射光栅测光波的波长的实物实验,这时候学生会感到胸有成竹,进行起来很轻松。这种训练方法极大地调动了学生学习的积极性,对学习有困难的学生尤为重要。课后,学生可通过计算机软件在分散的地点灵活安排时间对实验内容进行学习直至掌握,这也使得实验教学在时间和空间上得到延伸。

仿真物理实验不光为学生提供了细致、逼真的实验画面,更提供了真实可信的实验效果,这一点毫无疑问。例如在热敏电阻特性研究实验中,仿真过程不仅反映了对热敏电阻的加热过程,还考虑了热传导的滞后性。因此,在操作过程中,如果将加热器功率调节得过高,就会导致因为不能及时调节平衡电桥,而错过应记录的测量值。在分光计的调节实验中,如果不能很好的将载物台的A、B、C三个调节旋钮都调节好就进行测量,那么后续的测量都会直接受到影响,得不到正确的结果。

2 “仿真物理实验”在实验教学中的消极作用

在使用“仿真物理实验”软件的过程中,学生可能会由于把注意力集中于计算机操作上,因为对仪器的控制是通过点击鼠标来实现的,这样一来,就会淡化对基本技能的训练,甚至可能由于缺少实际动手机会,妨碍利用现成的简单设备进行探索和实验的欲望。同时,仿真实验室的条件相对理想,减少了学生应对突发事件、排除故障的机会,所以,从某种意义上来说,仿真实验只是仿真而已,无法达到实际实践操作的效果。 3 “仿真物理实验”软件存在的一些问题

经过一段时间的教学实践,我们发现我们所使用的中国科技大学开发的“大学物理仿真实验”教学软件,可能由于制作时间的限制,在实验原理、方法以及实验过程的设计和叙述中,在物理过程和现象与计算机显示之间的相互对应上,存在一些问题。比如:在凯特摆测重力加速度的实验中:多用数字测试仪无法实现通电的效果,无法打开菜单;利用单摆测重力加速度实验:千分尺的读数窗口,读数显示为0.02cm,实际上应该为0.02mm;油滴法测电子电荷实验:没有给出实验步骤;实验原理介绍中的公式a0=9ηVf2q(ρ1-ρ2)1/2 ,其中的q应改为g;在平衡法的应用中,S=0.002m,但是并没有提及这一测量距离和读数窗口中的多少格对应。对于软件中出现的类似上述的问题,只要在设计和制作过程中考虑周详、仔细调试,就可以尽量避免,发现问题后若能加以适当修改,就会更加完善、更加方便适用。 4 结束语

虽然仿真实验不可能完全取代实物实验,但它在我国的教育领域中发挥着极其重要的作用。要使"仿真物理实验"的有关软件得到有效应用,就要求教师花力气认真研究。在仿真实验的制作方面我们也在不断尝试,相信随着网络的发展,在各个学科的教学中仿真实验将具有广泛的发展前景。

第五篇:物理实验心得与体会

李立崇200910800026

物理实验心得与体会

通过这个学期的大学近代物理实验,我体会颇深.首先,我通过做实验了解了许多实验的基本原理和实验方法,复习了基本物理量的测量和不确定度的分析方法,基本实验仪器的使用等;其次,我提高了独立作实验的能力,大大提高了我的动手能力和思维能力以及基本操作与基本技能的训练,并且我也深深感受到做实验要具备科学的态度,认真态度和创造性的思维.下面就我所做的实验我作了一些总结和体会.

自从大一我第一次上物理实验课的时候我就深深地感觉到物理实验的重要性,因此我每次上课都能全身心地听课,比如说第一次的不确定度等我就比班上其他同学学的要好一点,基本上学会了不确定度的每一步计算,及有效数字的保留等,这也为我以后的实验数据处理带来了极大的方便.

我现在还记得我第一次做迈克尔逊干涉仪实验时我虽然用心听讲,但是再我做时候却极为不顺利,因为我调节仪器时怎么也调不出干涉条纹,转动微调手轮也不怎么会用,最后调出干涉条纹了却掌握不了干涉条纹"涌出"或"陷入个数,速度与调节微调手轮的关系.测量钠光双线波长差时也出现了类似的问题,实验仪器用的非常不熟悉,这一切都给我做实验带来了极大的不方便,当我回去做实验报告的时候又发现实验的误差偏大,可庆幸的是计算还顺利.总而言之,第一个实验我做的是不成功,但是我从中总结了实验的不足之处,吸取了很大的教训.因此我从做第二个实验起,就在实验前做了大量的实验准备,比如说,上网做提前预习,认真写好预习报告弄懂实验原理等.

正是由于以上的经验让我在做近代物理实验是能够得心应手。就拿夫兰克-赫磁实验来说,我能够熟练调节ZKY-FH-2智能夫兰克—赫兹实验仪达到实验的目的和测得所需的实验数据,并且在实验后顺利地处理了数据和精确地画出了实验所要求的实验曲线.在实验后也做了很好的总结和个人体会,与此同时我也熟练运用了列表法,图解法,函数表示法等实验数据处理方法,大大提高了我的实验能力和独立设计实验以及创造性地改进实验的能力等等.

下面我就谈一下我在做实验时的一些技巧与方法.首先,做实验要用科学认真的态度去对待实验,认真提前预习,做好实验预习报告;第二,上课时认真听老师做预习指导和讲解,把老师特别提醒会出错的地方写下来,做实验时切勿出错;第三,做实验时按步骤进行,切不可一步到位,太心急.并且一些小节之处要特别小心,若不会,可以跟其他同学一起探讨一下,把问题解决.第四,实验后数据处理一定要独立完成,莫抄其他同学的,否则,做实验就没有什么意义了,也就不会有什么收获.

总而言之,大学物理实验具有非常重要的意义.首先,物理概念的建立,物理规律的发现依赖于物理实验,是以实验为基础的,物理学作为一门科学的地位是由物理实验予以确立的;其次,已有的物理定律,物理假说,物理理论必须接受实验的检验,如果正确就予以确定,如果不正确就予以否定,如果不完全正确就予以修正.例如,爱因斯坦通过分析光电效应现象提出了光量子;伽利略用新发明的望远镜观察到木星有四个卫星后,否定了地心说;杨氏双缝干涉实验证实了光的波动假说的正确性.可以说,物理学的每一次进步都离不开实验.这对我们大学生来说也是非常重要的,尤其是对将来所从事的实际工作所需要具备的独立工作能力和创新能力等素质来讲,也是十分必要的,这是大学物理理论课不能做到,也不能取代的.

上一篇:井底之蛙教学反思下一篇:极端天气应急预案