污水处理厂基本设计

2022-08-29

第一篇:污水处理厂基本设计

污水处理厂化验室基本检测项目步骤

一、化学需氧量(COD)的测定

(每天都测,测空白样、进水样、出水样)

化学需氧量:指在强酸并加热条件下,用重铬酸钾作为氧化剂处理水样时所消耗氧化剂的量,单位为mg/L。本厂采用的是重铬酸钾法。

(一)、方法原理

在强酸性溶液中,用一定量的重铬酸钾氧化水样中还原性物质,过量的重铬酸钾以试亚铁灵作指示剂,用硫酸亚铁铵溶液回滴。根据硫酸亚铁铵的用量算出水样中还原性物质消耗氧的量。

(二)、测定步骤

1、将取回的进水样、出水样摇匀。

2、取3个磨口锥形瓶,编号0、

1、2;向3个锥形瓶中分别加入6粒玻璃珠。

3、向0号锥形瓶中加20mL蒸馏水(用胖度移液管);向1号锥形瓶中加5mL进水样(用5mL的移液管,要用进水润洗移液管3次),然后再加入15mL蒸馏水(用胖度移液管);向2号锥形瓶中加20mL出水样(用胖度移液管,要用进水润洗移液管3次)。

4、向3个锥形瓶中分别加入10mL重铬酸钾非标液(用10mL的重铬酸钾非标液移液管,要用重铬酸钾非标液润洗移液管3次)。

5、将锥形瓶分别放到电子万用炉上,然后打开自来水管将水充满冷凝管(自来不要开的过大,凭经验)。

6、从冷凝管上部向3个锥形瓶中分别加30mL硫酸银(用25mL的小量筒),然后分别摇匀3个锥形瓶。

7、插上电子万用炉插头,从沸腾开始计时,加热2小时。

8、加热完毕后,拔下电子万用炉插头,冷却一段时间后(多长时间凭经验)。

9、从冷凝管上部向3个锥形瓶中分别加90mL蒸馏水(加蒸馏水原因:1.从冷凝管上加水,使加热过程中冷凝管内壁的残留水样流入锥形瓶,减小误差。2.加定量的蒸馏水,使滴定过程中的显色反应更加明显)。

10、加入蒸馏水后会放热,取下锥形瓶冷却。

11、彻底冷却后,向3个锥形瓶中分别加3滴试亚铁灵指示剂,然后分别摇匀3个锥形瓶。

12、用硫酸亚铁铵滴定,溶液的颜色由黄色经蓝绿色至红褐色即为终点。(注意全自动滴定管的使用方法。滴定完一个要记得读数,并将自动滴定管液位升至最高处,进行下一个滴定)。

13、记录读数,计算结果。

二、生化需氧量(BOD)的测定

( 测,测 样)

生化需氧量:指在规定条件下,微生物分解存在水中的某些可氧化物质,特别是有机物所进行的生物化学过程中消耗溶解氧的量,单位为mg/L。(另一种定义:水中有机污染物被好氧微生物分解时所需要的氧量称为生化需氧量,单位为mg/L。)

(一)、测定步骤

三、悬浮性固体物质(SS)的测定

(每天都测,测空白样、进水样、出水样) 悬浮固体表示水中不溶解的固体物质的量。

(一)、方法原理

测定曲线内置,通过测定样品对特定波长的吸光度 转换为待测参数的浓度值,并通过液晶显示屏显示。

(二)、测定步骤

1、将取回的进水样、出水样摇匀。

2、取1支比色管加入25mL进水样,然后用蒸馏水加至刻度线(因进水SS较大,若不稀释可能会超过悬浮物测试仪的最大限度,使结果不准。当然进水取样量不固定,若进水太脏就取10mL,用蒸馏水加至刻度线)。

3、开启悬浮物测试仪,向类似于比色皿的小盒内加入蒸馏水至2/3处,擦干外壁,边摇动边按下选择键,然后快速放入悬浮物测试仪,之后按下读数键,若不为零则按清零键,将仪器清零(测一次即可)。

4、测进水SS:将比色管内的进水样倒入小盒内润洗3次,然后将进水样加至2/3处,擦干外壁,边摇动边按下选择键,然后快速放入悬浮物测试仪,之后按下读数键,测三次,求取平均值。

5、测出水SS:将出水样摇匀,润洗三次小盒…(方法同上)

6、计算结果。

进水SS的结果为:稀释倍数*测进水样读数

出水SS的结果直接为测出水样仪器读数

四、总磷(TP)的测定

(每天都测,测空白样、进水样、出水样;而目前加几个氧化沟上的几个点的样)

(一)、方法原理

在酸性条件下,正磷酸盐与钼酸铵、酒石酸锑氧钾反应,生成磷钼杂多酸,被还原剂抗坏血酸还原,则变成蓝色络合物,通常集成磷钼蓝。

(二)、测定步骤(仅以测进、出水样为例)

1、将取回的进水样、出水样摇匀(氧化沟上点的水样要摇匀放置一段时间取上清液)。

2、取3支具塞刻度管,第一支具塞刻度管加蒸馏水加至上部刻度线;第二支具塞刻度管加5mL进水样,然后用蒸馏水加至上部刻度线;第三支具塞刻度管加10mL出水样,然后用蒸馏水加至上部刻度线。(取样量不固定,根据水质情况,水质越差,取样量相对较少。另外注意区分比色管于具塞刻度管的差别,具塞刻度管有刻度,圆底,可加热;而比色管相反)

如果要消解,此步按如下方法:(1)进、出水取样量不变,3个具塞刻度管加蒸馏水25mL左右即可。(2)向3个具塞刻度管分别加4mL5%的过硫酸钾。(3)分别摇匀3个具塞刻度管,用纱布包扎。(4)将3个具塞刻度管放入到塑料烧杯内,然后放到高压锅内加热。(5)高压锅自动断开电源后,大约20分钟后打开高压锅盖,取出塑料烧杯。(6)分别拆开3个具塞刻度管的纱布,之后自然冷却。(7)冷却后,再向3个具塞刻度管分别加蒸馏水加至上部刻度线。(注意高压锅的使用:使用高压锅时一定盖紧盖子,打开排气阀,当温度升至103℃时看从排气阀排气量确定是否关闭排气阀,若此时排气量较少等较多时再关闭。另外高压锅内的水位不要太低。高压锅温度升至120℃时会自动计时,30分钟后自动关闭。)

3、分别向3个具塞刻度管分别加1mL抗坏血酸和2mL钼酸铵溶液。

4、分别摇匀3个具塞刻度管,计时15分钟后,用分光光度计测,用波长700nm,30mm的比色皿。

5、记录读数,计算结果。

所测水样TP结果=(所测水样读数-空白样读数)*31.15/所取水样体积

五、总氮(TN)的测定

(每周一测一次,测空白样、进水样、出水样)

(一)、方法原理

在60℃以上的水溶液中,过硫酸钾按如下反应式分解,生成氢离子和氧。 K2S2O8+H2O→2KHSO4+1/2O2 KHSO4→K+ + HSO4- HSO4-→H+ + SO4 2- 加入氢氧化钠用一种和氢离子,使用过硫酸钾分解完全。

在120℃--124℃的碱性介质条件下,用过硫酸钾作氧化剂,不仅可将水样中的氨氮和亚硝酸盐氮氧化为硝酸盐,同时将水样中大部分有机氮化合物氧化为硝酸盐。而后,用紫外分光光度法分别于波长275nm与220nm处测定其吸光度,从而计算总氮的含量。

(二)、测定步骤

1、将取回的进水样、出水样摇匀。

2、取3个25mL的比色管(注意不是大的比色管)。第一支比色管加蒸馏水加至下部刻度线;第二支比色管加1mL进水样,然后用蒸馏水加至下部刻度线;第三支比色管加2mL出水样,然后用蒸馏水加至下部刻度线。

3、分别向3个比色管加5mL碱式过硫酸钾

4、将3个比色管放入到塑料烧杯内,然后放到高压锅内加热。进行消解。

5、加热完毕,拆开纱布,自然冷却。

6、冷却后,再向3个比色管分别加1mL1+9的盐酸。

7、向3个比色管分别加蒸馏水至上部刻度线,摇匀。

8、使用两种波长,用分光光度计测。首先用波长275nm,10mm的石英比色皿(稍旧的),测空白、进水、出水样并记数;再用波长220nm,10mm的石英比色皿(稍旧的),测空白、进水、出水样并记数。

9、计算结果。

六、氨氮(NH3-N)的测定

(每天都测,测空白样、进水样、出水样)本厂采用的是纳氏试剂光度法

(一)、方法原理 碘化汞和碘化钾的碱性溶液与氨反应生成淡红棕色胶态化合物,此颜色在较宽的波长内具强烈吸收。

(二)、测定步骤

1、将取回的进水样、出水样摇匀。

2、将进水样、出水样分别倒入到100mL的烧杯内。

3、向两个烧杯内分别加入1mL 10%的硫酸锌和5滴氢氧化钠,用2个玻璃棒分别搅拌。

4、静置3分钟后开始过滤。

5、将静置后的水样倒入到滤斗内,过滤部分后将底下烧杯内的滤液倒掉,然后再用此烧杯接漏斗内剩余的水样,直到过滤完毕再次将底下烧杯内的滤液倒掉。(换言之用一漏斗的滤液洗两次烧杯)

6、分别过滤完烧杯内的剩余水样。

7、取3个比色管。第一支比色管加蒸馏水加至刻度线;第二支比色管加3--5mL进水样滤液,然后用蒸馏水加至刻度线;第三支比色管加2mL出水样滤液,然后用蒸馏水加至刻度线。(所取进、出水样滤液的量不固定)

8、分别向3个比色管分别加1mL酒石酸钾钠和1.5mL纳氏试剂(。

9、分别摇匀,计时10分钟。用分光光度计测,用波长420nm,20mm的比色皿。记数。

10、计算结果。

七、硝酸盐氮(NO3-N)的测定

(每周一测空白样、进水样、出水样;每台都测空白样、氧化沟3号点样、氧化沟回流点样;即周一测5个样)

(一)、方法原理

硝酸盐在无水情况下与酚二磺酸反应,生成硝基二磺酸酚,在碱性溶液中生成黄色化合物进行定量测定。

(二)、测定步骤(仅以3号点和回流点的样为例)

1、将取回的3号点和回流点的样摇匀后放置澄清一段时间。

2、取3个比色管。第一支比色管加蒸馏水加至刻度线;第二支比色管加3mL3号点样上清液,然后用蒸馏水加至刻度线;第三支比色管加5mL回流点么上清液,然后用蒸馏水加至刻度线。

3、取3个蒸发皿,降3个比色管中的液体对应倒入蒸发皿中。

4、向3个蒸发皿中分别加入0.1mol/L的氢氧化钠调节PH至8。(使用精密PH试纸,范围为5.5—9.0之间的。每个约需氢氧化钠20滴左右)

5、开启水浴锅,将蒸发皿放到水浴锅上,温度设定为90℃,直至蒸干为止。(约需2小时)

6、蒸干后,取下蒸发皿冷却。

7、冷却后分别向3个蒸发皿中加1mL酚二磺酸,用玻璃棒研磨,使试剂与蒸发皿中的残渣充分接触,静置片刻后,再研磨一次。放置10分钟后,分别加入约10mL的蒸馏水。

8、分别向蒸发皿中边搅拌边加入3--4mL氨水,然后将其移到对应的比色管中。分别加蒸馏水至刻度线。

9、分别摇匀,用分光光度计测,用波长410nm,10mm的比色皿(普通玻璃的、稍新的)。并记数。

10、计算结果。

进水样、出水样的测定步骤(需要补充)

八、溶解氧(DO)的测定

(每天都测,测氧化沟9号点样) 溶解在水中的分子态氧称为溶解氧。天然水中的溶解氧含量取决于水中与大气中氧的平衡。

本厂采用碘量法测溶解氧

(一)、方法原理

水样中加入硫酸锰和碱性碘化钾,水中溶解氧将低价锰氧化成高价锰,生成四价锰的氢氧化物棕色沉淀,加酸后,氢氧化物沉淀溶解并与碘离子反应释放出游离碘。以淀粉作指示剂,用硫代硫酸钠滴定释放出的碘,可计算溶解氧的含量。

(二)、测定步骤

1、用广口瓶取回的9号点的样,静置十几分钟。(注意用的是广口瓶,并注意取样方法)

2、用玻璃弯管插入广口瓶样内,用虹吸法向溶解氧瓶中吸入上清液,先少吸一些,润洗溶解氧瓶3次,最后再吸入上清液注满溶解氧瓶。

3、向满的溶解氧瓶中加入1mL硫酸锰和2mL碱性碘化钾。(注意加的时候的注意事项,从中部加入)

4、盖上溶解氧瓶的瓶盖,上下摇匀,隔几分钟再摇,摇匀三次。

5、再向溶解氧瓶中加入2mL浓硫酸,摇匀。放在暗处静置五分钟。

6、向碱式滴定管(带橡胶管、玻璃珠的。注意酸式、碱式滴定管的区别)倒入硫代硫酸钠至刻度线,准备滴定。

7、静置5分钟后,取出放在暗处的溶解氧瓶,将溶解氧瓶中的液体倒入到100mL的塑料量筒内,润洗3次。最后倒至量筒的100mL刻度线。

8、将量筒内的液体倒入到锥形瓶中。

9、用硫代硫酸钠向锥形瓶中滴定至无色,然后加入一滴管淀粉指示剂,再用硫代硫酸钠滴定,直至褪色,记录读数。

10、计算结果。

溶解氧(mg/L)=M*V*8*1000/100 M为硫代硫酸钠溶液浓度(mol/L)

V为滴定时消耗硫代硫酸钠溶液的体积(mL)

九、总碱度 (每周二测一次,测进水样、出水样)

(一)、测定步骤

1、将取回的进水样、出水样摇匀。

2、将进水样过滤(若进水较干净,则不需过滤),用100mL的量筒取滤液100mL到500mL的三角烧瓶中。用100mL的量筒取摇匀后的出水样100mL到另一个500mL的三角烧瓶中。

3、分别向两个三角烧瓶中加3滴甲基红-亚甲基兰指示剂,呈浅绿色。

4、向碱式滴定管(带橡胶管、玻璃珠的,50mL的。而溶解氧测定中用到的碱式滴定管是25mL的,注意区分)倒入0.01mol/L的氢离子标液至刻度线。

5、分别向两个三角烧瓶中用氢离子标液滴定呈现淡紫色,记录所用的体积读数。(切记滴定完一个之后读数,并加满滴定另一个。进水样约需四十多毫升,出水样约需一十多毫升)

6、计算结果。用氢离子标液的用量*5即为体积。

十、氯离子的测定

(每周三测一次,只测空白样、进水样)

(一)、测定步骤

1、将进水样摇匀,并过滤进水样。

2、取两个磨口碘量瓶,第一个碘量瓶中加入用50mL的量筒取的50mL蒸馏水;第二个碘量瓶中加50mL进水样滤液。

3、向两个碘量瓶中分别加入1mL铬酸钾指示剂。

4、向酸式滴定管(棕色的,带旋塞的)倒入0.0139mol/L的硝酸银溶液至刻度线。

5、分别向两个碘量瓶中用硝酸银溶液滴定,至出现砖红色沉淀,记录所用的体积读数。(切记滴定完一个之后读数,并加满滴定另一个。空白样约用0.2-0.5mL左右,进水样约用3-4mL左右)

6、计算结果。

氧化沟泥样相关测定指标

一、污泥沉降比(SV30)的测定

(每天都测,只测氧化沟9号点的样)

(一)、测定步骤

1、取一个100mL的量筒。

2、将取回的氧化沟9号点的样摇匀,倒入量筒至上部刻度线处。

3、开始计时30分钟后,读出分界面的刻度读数并记录。

二、污泥体积指数(SVI)的测定

(每周

二、周

四、周六测,只测氧化沟9号点的样)

SVI的测定是用污泥沉降比(SV30)除以污泥浓度(MLSS)即为结果。但要注意换算单位。SVI的单位为mL/g。

三、污泥浓度(MLSS)的测定

(每周

二、周

四、周六测,测氧化沟9号点的样和回流点的样)

(一)测定步骤

1、将取回的9号点的样和回流点的样摇匀。

2、将9号点的样和回流点的样各取100mL到量筒中。(9号点的样用测污泥沉降比所取得即可)

3、用旋片式真空泵分别过滤量筒内9号点的样和回流点的样。(注意滤纸的选用,所用的滤纸是提前称好的滤纸。若当天9号点的样要测MLVSS,过滤9号点样就要选用定量滤纸,反正选用定性滤纸。另外注意定量滤纸与定性滤纸的的区别)

4、取出过滤的滤纸泥样放到电热鼓风干燥箱,干燥箱温度升至105℃开始计时干燥2小时。

5、取出干燥后的滤纸泥样放到玻璃干燥器内冷却半小时。

6、冷却后用精密电子天平称量并记数。

7、计算结果。污泥浓度(mg/L)=(天平读数-滤纸重量)*10000

四、挥发性有机物质(MLVSS)的测定

(每周

二、周

四、周六测,只测氧化沟9号点的样,用定量滤纸)

(一)、测定步骤

1、将9号点的滤纸泥样用精密电子天平称量后,将滤纸泥样放入到小的瓷坩埚内。

2、开启箱式电阻炉,温度调至620℃,将小瓷坩埚放入到箱式电阻炉内约2小时。

3、两小时后,关闭箱式电阻炉,冷却3小时后将箱式电阻炉的门开一点小缝,再次冷却半小时左右,确保瓷坩埚温度不超过100℃。

4、取出瓷坩埚放到玻璃干燥器内再次冷却半小时左右,放到精密电子天平上进行称量,并记录读数。

5、计算结果。挥发性有机物质(mg/L)=(滤纸泥样重+小坩埚重-天平读数)*10000

第二篇:污水与污水处理教学设计

一、教学目标1、通过观察比较污水和自来水,知道污水和自来水的特点和区别。

2、通过讨论分析,了解污水的污染源主要来自人类活动。

3、通过设计、操作简易污水净化装置,了解污水净化的一般方法。

二、教学重、难点

通过设计、操作简易污水净化装置,了解污水净化的一般方法。

三、教学准备

多媒体课件、污水、自来水、净化材料等

四、教学过程

(一)、图片导入,揭示课题

1、出示“水污染”组图,提问:看到这组图片,你有什么感受?(学生汇报)

2、师小结:同学们都说的非常好,的确,图片中我们发现“水”资源受到了最直接而严重的污染。这些水都已经成为了——污水。今天我们就要来一起探究有关污水的问题。

3、黑板出示课题

(二)、观察比较自来水和污水

1、师:老师这里现在有两杯水样。同学们能判断出哪一杯是自来水,哪一杯是污水吗?(生轻易分辨出两杯水样)

2、师:看来污水和自来水之间的区别非常明显,下面我们就一起来仔细观察一下这两杯水样,比较分析自来水和污水的特点。

3、学生观察水样,完成活动记载卡一。

4、交流反馈观察记录。

(三)、讨论污染源,了解净化的一般方法

1、师:看来同学们准确的分析出了污水的特点。那么污水究竟是被哪些物质污染的呢?水的污染源可能来自哪里呢?大家可以讨论一下。

2、集体交流反馈,教师随机建构思维导图。

4、师:从这张网状图中,我们不难发现,实际上水的污染源绝大部分都是由人类的活动造成的。那么每天世界上正在生成那么多的污水,我们有没有被污水彻底包围呢?人类只能任由污水不断生成吗?我们有没有办法可以再次使这些污水净化,成为安全的水呢?(生:没有)

5、你知道哪些方法可以使污水得到净化?(沉淀、过滤、消毒、蒸馏……)

6、沉淀可以去除污水中的一些物质,使污水得到一定程度的净化。过滤能否使污水变得更干净一些呢?

(四)、探究活动——污水净化实验

1、师:今天我们来尝试设计制作一个简易的污水净化器来净化污水。看看污水是否变得更干净一些了,等下咱们可要来比一比,看看哪个小组设计制作的净化器效果更好。

2、组长领取活动记载卡和净化器材料。

3、了解净化器装置,选择净化材料,设计净化过滤层

4、小组合作,组装净化器,检测净化效果。

5、展示净化后的污水,比较各组的效果,请优秀的小组分享经验。

6、提问:这样的水是否达到安全的使用标准?(生:没有,只是比原先的样本清澈了一些,较大的颗粒被去除了,但还有很多看不见的微小粒子存在。)

(五)、思考延伸

在野外我们有什么方法可以便利的获得饮用安全的水?(蒸馏)

第三篇:污水处理厂毕业设计简介[精选]

毕业设计简介

本设计是根据保定市城市总体规划(2010—2015)污水处理实际部署需要设计的10m3/d污水处理厂,处理厂选址于市南部与清苑县城接壤处。

本设计主要包括污水、污泥处理工艺选择和设计,高程计算以及工程概算等。 经进出水水质分析,污水可生化性较好,总磷去除率88.9%,氨氮的去除率83.3%,对脱氮除磷有较高的要求。

A2/O工艺因其具有很好的同步脱氮除磷功能,并且水力停留时间短,不存在污泥膨胀现象,所以本设计生物池主体单元采用A2/O工艺。考虑到污水处理厂适应未来发展需要,本设计采用技术先进的旋流沉砂池和向心辐流式沉淀池。因污水经A2/O除磷后还不能完全达到设计要求,所以尾水辅以化学除磷工艺(淘汰传统的石灰法除磷,选用铝盐除磷)。

污水处理单元工艺流程:污水依次经粗格栅、污水提升泵房、细格栅、旋流沉砂池、初沉池、A2/O反应池、二沉池、化学除磷池、接触池(消毒),出水在达到《城镇污水处理厂污染物排放标准》(GB18918-2002)一级A标准后排入府河。

污泥处理单元工艺流程:从初沉池和二沉池产生的污泥经污泥提升泵房、重力浓缩、中温消化、机械压滤脱水实现减量化和无害化处理后,外运填埋处置。

高程设计单元:污水和污泥均经提升泵房提升后,实行重力流。

工程估算,本设计总投资为23680.5万元,污水处理成本为1.09元/吨。

第四篇:关于污水处理厂自控系统设计方案

【摘要】本文首先介绍了系统简述,然后分析了系统设置,最后介绍了设备选型。

【关键词】污水处理厂,自控,自控系统,设计

一、前言

随着城市建设的发展及城市容量的扩大,城市生活污水和工业废水排放量逐年增多,污水处理厂成为了重要的解决污水的地方。

二、系统简述

全厂的整个处理系统包括格栅池、提升泵池、水解酸化池、沉砂池、一体化曝气池、人工湿地配水系统和消毒池等结构。各个设备厂家仅配套各自电气控制柜进行控制,采用的是纯电气控制方式且各个工艺段是完全分裂的,工艺参数只能采用人工记录的方式,有些需要取样实验才能得到数据。操作人员的劳动强度大,也不便于对水质参数进行分析。建自动化控制系统就是集中监视整个污水厂的各个工艺环节,实现对生产过程的自动控制、报警、自动操作以及在线实时反映各工艺流程中设备运行状况与需要参数,提高企业管理水平。

三、系统设置

1、系统组成

全厂自动化控制系统遵循“分散控制、集中监控、危险分散、数据共享”,由水质在线自动化检测和控制系统,以及过程数据处理系统三大部分组成。

2、系统要求

控制系统采用全开放式,支持不同计算厂家的硬件在同一网络中运行,并支持实时多任务,多用户的操作系统;网络介质要求使用可直埋的光缆,在出现故障时,可在线增加或删除任意一个节点,都不会影响到其他设备的运行和通讯。

3、系统功能

(一)、数据采集与控制功能

(1)各种仪表的模拟量采集,各种设备开关信号采集,在线仪表数据收集。

(2)值班人员在中控室通过计算机的键盘或鼠标,根据工艺条件和控制要求,按规定时间周期设定的逻辑顺序等自动地启动或停止某些设备,或进行交替运行,或设定控制调节参数。

(二)、自动检测功能

设计时是采用PLC来实现整个系统各个工艺设施的监控。该系统可以自动、连续地检测并记录和显示出污水处理过程的水质参数(SS、DO、COD、PH等),过程参数(温度、压力、水位、流量等),电气参数等数据,以及设备的运行状况(自动、手动、运行、停止、故障、本次运行时间、累计运行时间、阀门开关及开度等)。实行每天24h不间断地循环检测采集到的数据,进行处理、归类并以原始数据文件形式存入服务器。

(三)、故障报警及处理功能

控制系统有一套完整的自诊断功能,可以在运行中自动地诊断出系统的任何一个部件是否出现故障,并且在监控软件中及时、准确地反映出故障状态、故障时间、故障地点、及相关信息。

(四)、数据输出功能

根据监控采集到的数据,生成全厂的生产工艺流程实时动态图,给操作人员提供清晰、友善的人机界面,反映生产工艺流程的实时数据,完成报警、历史数据、历史趋势曲线的显示和查询。同时可以生成各类生产运行管理报表、日报表、月报表和年报表。

4、上位机系统

在综合楼二楼中央控制室内设2台监控计算机,一台作为工程师站(做编程、操作、记录用),另外一台作为操作员站(仅作操作、记录用),两站均作数据备份。为保证监控计算机能稳定运行,并在掉电后能保存工艺参数数据,减少掉电对电脑的危害,设立一套UPS系统,容量为5KVA,掉电后能至少保持30分钟工作时间。另外设一套数据服务器及两台打印机。室内还设置大型DLP无缝拼接大屏幕显示系统(显示面积2×2×70寸),用以直观显示全厂工艺流程、设备工况及主要参数值。大屏幕显示系统通过与摄像监控管理计算机相连,实时监视全厂生产区域工况、主要生产设施的运行状态。监控计算机主要实现以下功能。

人机界面:在显示器上动态显示全厂各工艺设备的实时运行工况,过程控制的运行趋势,各处理环节的生产数据指标,使生产管理人员一目了然当前全厂生产运行情况。

故障登记表:监控管理计算机的显示器,无论显示何种画面及操作人员在执行何种操作,均在画面的下栏处显示故障登记表,并实时弹出新生故障警示框,使得操作人员随时随地都能了解污水厂的故障实况,计算机会自动把现场发生的故障登记入“故障登记表”中的记录。故障分一般故障和紧急故障,如水泵过载报警等属于一般故障,液位达到高位而未有水泵启动、进水水质参数超过进水标准等属于紧急故障。故障时,显示器上警示框红闪,并伴有5秒时长间隔报警声。要求操作人员在3分钟内作出响应,3分钟后均改为1秒时长间隔报警声,报警在操作人员响应后解除。

系统控制:系统的控制方式,一般分“自动”、“手动”,“自动”还分为“自控”和“中控”。“手动”、“自动”由操作人员在现场控制箱上选择,“手动”由操作人员在现场控制箱上启动和停止设备。“自控”由现场PLC站根据事先设定的逻辑程序依据工艺参数状况决定设备的启停。“中控”由中控室内操作人员在上位机上实现对设备的启停。在上位机单体构筑物界面图上,设置设备“启动”和“停止”按钮,并设置“自控”、“中控”选择按钮,并在设备图案旁显示设备控制方式状态。

工艺参数设定:功能参数设定有两大类,第一类是连续回路控制中的控制值设定,如进水泵池液位值、生物池溶氧值、药剂投加量等;第二类是报警极限设定,如泵池的高、低液位报警、主要设备的高电流报警等。可以利用计算机的先进功能,优化出污水处理的工艺参数,提供给厂长指挥调度生产。

生成各类报表:如设备编号登记、故障次数记录、设备运行累计时间记录、大修周期的倒计时,开启次数记录等。对污水厂进、出水流量、大功率电机的用电量、总用电量等主要参数进行累计。同时可生成班报表、日报表、月报表、年报表等,自动记录生产设备及工艺控制过程中出现的故障现象和发生的时间、排除的时间,并能自动打印报表。

生成历史曲线:历史趋势曲线包括全部模拟量曲线(工艺参数、电力参数、及大功率电机的电流等),趋势曲线不少于20条。对于液位参数显示和报警用棒图方式,以便精确查阅某个时间内的趋势。趋势曲线可单条显示,也可组合显示,并用不同颜色表示。

第五篇:某城镇污水处理厂毕业设计论文

目 录 引 言 1 1 设计任务及概况 2 1.1 设计任务及依据 2 1.1.1 设计任务 2 1.1.2 设计依据及原则 2 1.1.3设计范围 3 1.2设计水量及水质 3 1.2.1设计水量 3 1.2.2设计水质 3 1.3.3设计人口 3 2 工艺设计方案的确定 4 2.1方案确定的原则 4 2.2污水处理工艺流程的确定 4 2.2.1厂址及地形资料 4 2.2.2气象及水文资料 5 2.2.3可行性方案的确定 5 2.2.4工艺流程方案的确定 6 2.2.5污泥处理工艺流程 8 2.3主要构筑物的选择 8 2.3.1格栅 8 2.3.2泵房 9 2.3.3沉砂池 9 2.3.4初沉池、二沉池 10 2.3.5曝气池 10 2.3.6接触池 11 2.3.7计量槽 12 2.3

57

4.7压缩机房 63 5 污水处理厂总体布置 63 5.1平面布置 63 5.1.1平面布置的一般原则 63 5.1.2 平面布置 63 5.2污水处理厂高程布置 64 5.2.1高程布置原则 64 5.2.2污水污泥处理系统高程布置 65 总 结 66 参考文献 68 致 谢 69 附 录 70

1 设计任务及概况 1.1 设计任务及依据 1.1.1 设计任务

30万吨城市污水处理厂初步设计 1.1.2 设计依据及原则 1.1.2.1 设计依据

《给水排水工程快速设计手册》1-5 给排水设计规范

《污水处理厂工艺设计手册》 《三废设计手册废水卷》

1.1.2.2 设计原则

(1)执行国家关于环境保护的政策 符合国家地方的有关法规、规范和标准; (2)采用先进可靠的处理工艺

确保经过处理后的污水能达到排放标准; (3)采用成熟 、高效、优质的设备 并设计较好的自控水平 以方便运行管理;

(4)全面规划、合理布局、整体协调 使污水处理工程与周围环境协调一致;

(5)妥善处理污水净化过程中产生的污泥固体物 以免造成二次污染;

(6)综合考虑环境、经济和社会效益 在保证出水达标的前提下 尽量减少工程投资和运行费用

1.1.3设计范围

设计二级污水处理厂 进行工艺初步设计

1.2设计水量及水质 1.2.1设计水量

污水的平均处理量为=30=12500=3.47;污水的最大处理量为=15125=4.2;污水的最小处理量为

日变化系数取为1.1 时变化系数取K为1.1 总变化系数取为1.21

1.2.2设计水质

设计水质如表1.1所示

表1.1 设计水质情况

项 目

入水() 200 200 出水() ≤25 ≤30 去除率(%) 87.5 85 1.3.3设计人口

(1)按SS浓度折算:

式中:Css--废水中SS浓度为200mg/L

Q --平均日污水量为30万m3/d

ass--每人每日SS量 一般在35-55/人g.d

则:

(2)按浓度折算

式中:--废水中浓度为200mg/L Q --平均日污水量为30万m3/d --每人每日BOD量 一般在20-35/人gd 取30/人g.d

则:

2 工艺设计方案的确定 2.1方案确定的原则

(1)采用先进、稳妥的处理工艺 经济合理 安全可靠

(2)合理布局 投资低 占地少

(3)降低能耗和处理成本

(4)综合利用 无二次污染

(5)综合国情 提高自动化管理水平

2.2污水处理工艺流程的确定 2.2.1厂址及地形资料

该污水处理厂厂址位于某市西北部 厂址所在地区地势比较平坦

污水处理厂所在地区地面平均标高为40.50米 地震基本烈度为7度

2.2.2气象及水文资料

某市位于东经 北纬

属温带半湿润季风型大陆性气候 多年平均温度7.4 冬季长 气候寒冷 多偏北风

最冷月(一月)平均气温-12.7;夏季多偏南风 非采暖季节主导风向为东南风 最热月(七月)平均气温24.6 降雨集中在7-8月 约占全年降雨的50% 多年平均降雨量75毫米 地面冻结深度1.2-1.4米

2.2.3可行性方案的确定

城市污水的生物处理技术是以污水中含有的污染物作为营养源 利用微生物的代谢作用使污染物降解 它是城市污水处理的主要手段 是水资源可持续发展的重要保证

城市二级污水处理厂常用的方法有:传统活性污泥法、AB法、氧化沟法、SBR法等等 下面对传统活性污泥法和SBR法两种方案进行比较(工艺流程见图2.1 2.2)

以便确定污水的处理工艺

传统活性污泥法的方案特点: (1)工艺成熟

管理运行经验丰富; (2)曝气时间长 吸附量大

去除效率高90~95%; (3)运行可靠 出水水质稳定; (4)污泥颗粒大 易沉降; (5)不适于水质变化大的水质; (6对氮、磷的处理程度不高; (7)污泥需进行厌氧消化 可以回收部分能源; SBR法的方案特点: (1)处理流程简单 构筑物少

可不设沉淀池; (2)处理效果好 不仅能去除有机物

还能有效地进行生物脱氮; (3)占地面积小 造价低;

(4)污泥沉降效果好; (5)自动化程度高 基建投资大;

(6)适合于中小水量的污水处理工艺

从上面的对比中我们可以得到如下结论:从工艺技术角度考虑 普通曝气法和SBR法出水指标均能满足设计要求 但是

SBR法对自动化控制程度要求较高且处理规模一般小于10万立方米/天

这与实际情况不符(污水厂自动化水平不高且本设计规模属大型污水处理厂) 故普通曝气法更适合于本设计对污水进、出水水质的要求(对P、N去除要求不高 水质变化小)

故可行性研究推荐采用普通曝气法为污水处理厂的工艺方案

2.2.4工艺流程方案的确定

SBR法是间歇式活性污泥法或序批式活性污泥法的简称 相对于传统活性污泥法

SBR法工艺是一种正处于发展、完善阶段的技术

因为从SBR法的再次兴起直至应用到今天只不过十几年的历史 许多研究工作刚刚起步

缺乏科学的设计依据和方法以及成熟的运行管理经验

SBR法现阶段在基础研究方面、实践应用方面、工程设计方面仍存在问题 例如:SBR的适宜规模、合理的设计和运行参数的选择 建立完整的运行维护和管理方法 运行模式的选择于设计方法脱节等等

污水工艺流程的确定主要依据污水水量、水质及变化规律 以及对出水水质和对污泥的处理要求来确定 本着上述原则 本设计选

传统活性污泥法作为污水处理工艺

图2.1 传统活性污泥法

图2.2 SBR法

2.2.5污泥处理工艺流程

目前

污泥的最终处置有污泥填埋 污泥焚烧

污泥堆肥和污泥工业利用四种途径 该厂的污泥主要来源于城市污水 完全可以再利用

只需在厂内进行预处理将重金属去除 该厂的污泥用于农业是完全可能的 目前暂时有困难

也可将污泥用于园林绿化 使污泥中的肥分得以充分利用 污泥也可得以妥善处置

根据上述原则

决定污泥采用中温厌氧二级消化 再经机械脱水后运出厂外处置 这时的污泥已基本实现了无害化 不会对环境造成二次污染

污泥消化产生的沼气用于烧锅炉和发电 热量可满足消化池污泥加热需要 电能供本厂使用

2.3主要构筑物的选择 2.3.1格栅

格栅用以去除废水中较大的悬浮物、漂浮物、纤维物质和固体颗粒物质 以保证后续处理单元和水泵的正常运行 减轻后续处理单元的负荷 防止阻塞排泥管道

本设计中在泵前和泵后各设置一道格栅 泵前为粗格栅 泵后为弧形细格栅 由于污水量大

相应的栅渣量也较大 故采用机械格栅

栅前栅后各设闸板供格栅检修时用 每个格栅的渠道内设液位计 控制格栅的运行

格栅间配有一台螺旋输送机输送栅渣

螺旋格栅压榨输送出的栅渣经螺旋运输机送入渣斗 打包外运

粗格栅共有三座 两座使用 一台备用

栅前水深为1.4m 过栅流速0.9m/s 栅条间隙为50mm 格栅倾角为60°

细格栅有四座 三台使用 一台备用

栅前水深为1.05m 过栅流速0.9m/s 栅条间隙为20mm 格栅倾角为60°

2.3.2泵房

考虑到水力条件、工程造价和布局的合理性 采用长方形泵房 为充分利用时间

选择集水池与机械间合建的半地下式泵房 这种泵房布置紧凑 占地少 机构省 操作方便

水泵及吸水管的充水采用自灌式 其优点是启动及时可靠 不需引水的辅助设备 操作简便

泵房地下部分高6.2m 地上部分6.3m 共高12.5m

2.3.3沉砂池

沉砂池的形式有平流式、竖流式、辐流式沉砂池 其中

平流式矩形沉砂池是常用的形式 具有结构简单 处理效果好的优点

其缺点是沉砂中含有15%的有机物 使沉砂的后续处理难度加大

竖流式沉砂池是污水自下而上由中心管进入池内 无机物颗粒借重力沉于池底 处理效果一般较差

曝气沉砂池是在池体的一侧通入空气 使污水沿池旋转前进

从而产生与主流垂直的横向环流 其优点:通过调节曝气量 可以控制污水的旋流速度

使除砂效果较稳定;受流量变化的影响较小;同时还对污水起预曝气作用 而且能克服平流式沉砂池的缺点

综上所述 采用曝气沉砂池

池子共有六座;

尺寸:12m×16.8m×4.59m;

有效水深为2.5m

2.3.4初沉池、二沉池

沉淀池主要去除依附于污水中的可以沉淀的固体悬浮物 按在污水流程中的位置

可以分为初次沉淀池和二次沉淀池

初次沉淀池是对污水中的以无机物为主体的比重大的固体悬浮物进行沉淀分离

二次沉淀池是对污水中的以微生物为主体的、比重小的、因水流作用易发生上浮的固体悬浮物进行分离

沉淀池按水流方向可分为平流式的、竖流式的和辐流式的三种 竖流式沉淀池适用于处理水量不大的小型污水处理厂 而平流式沉淀池具有池子配水不易均匀 排泥操作量大的缺点

辐流式沉淀池不仅适用于大型污水处理厂 而且具有运行简便 管理简单

污泥处理技术稳定的优点

所以

本设计在初沉池和二沉池都选用了辐流式沉淀池

初沉池共有六座 直径为40m 高为6.83m 有效水深为3.6m 为了布水均匀 进水管设穿孔挡板 穿孔率为10%-20% 出水堰采用直角三角堰 池内设有环形出水槽 双堰出水

每座沉淀池上设有刮泥机 沉淀池采用中心进水 周边出水 周边传动排泥

二沉池九坐 直径为36m 高为6.79m 有效水深为3.5m 也采用中心进水 周边出水

排泥装置采用周边传动的刮吸泥机 其特点是运行效果好 设备简单

污泥回流设备采用型螺旋泵

2.3.5曝气池

本设计采用传统活性污泥法(又称普通活性污泥法) 该法对BOD的处理效果可达90%以上

传统活性污泥法按池形分为推流式曝气池和完混合曝气池

推流式曝气特点是:废水浓度自池首至池尾是逐渐下降的 由于在曝气池内存在这种浓度梯度 废水降解反应的推动力较大

效率较高;推流式曝气池可采用多种运行方式;对废水的处理方式较灵活;由于沿池长均匀供氧

会出现池首供气不足 池尾供气过量的现象 增加动力费用的现象

完全混合式曝气池的特点是:冲击负荷的能力较强;由于全池需氧要求相同 能节省动力;曝气池与沉淀池合建 不需要单独设置污泥回流系统

便于运行管理;连续进水、出水可能造成短路;易引起污泥膨胀;适于处理工业废水 特别是高浓度的有机废水

综上

根据各自特点本设计选择推流式活性污泥法 在运行方式上

以推流式活性污泥法为基础 辅以分段曝气系统运行 曝气系统采用鼓风曝气

选择其中的网状微孔空气扩散器

共有6座曝气池 池型采用折流廊道式 分五廊道 池长为66m 高为5.7m 宽6m 有效水深为5.2m 污泥回流比R=30%

2.3.6接触池

城市污水经二级处理后 水质改善

但仍有存在病原菌的可能 因此在排放前需进行消毒处理

液氯是目前国内外应用最广泛的消毒剂 它是氯气经压缩液化后 贮存在氯瓶中 氯气溶解在水中后 水解为Hcl和次氯酸

其中次氯酸起主要消毒作用 氯气投加量一般控制在1-5mg/L 接触时间为30分钟

接触池 总长为312.5m 分14个廊道 每廊道长23m 宽4m 2.3.7计量槽

为提高污水厂的工作效率和运转管理水平 并积累技术资料 以总结运转经验

为今后处理厂的设计提供可靠的依据 设计计量设备

以正确掌握污水量、污泥量、空气量以及动力消耗等 本设计选用巴式计量槽 设在污水处理系统的末端

2.3.8浓缩池

浓缩池的形式有重力浓缩池 气浮浓缩池和离心浓缩池等

重力浓缩池是污水处理工艺中常用的一种污泥浓缩方法 按运行方式分为连续式和间歇式 前者适用于大中型污水厂

后者适用于小型污水厂和工业企业的污水处理厂 浮选浓缩适用于疏水性污泥或者悬浊液很难沉降且易于混合的场合 例如

接触氧化污泥、延时曝起污泥和一些工业的废油脂等 离心浓缩主要适用于场地狭小的场合 其最大不足是能耗高 一般达到同样效果

其电耗为其它法的10倍 从适用对象和经济上考虑 故本设计采用重力浓缩池 形式采用连续式的 其特点是浓缩结构简单 操作方便 动力消耗小 运行费用低 贮存污泥能力强

采用水密性钢筋混凝土建造

设有进泥管、排泥管和排上清夜管

浓缩池二座 直径为24米 浓缩时间14h

2.3.9消化池

消化池的作用是使污泥中的有机物得到分解 防止污泥发臭变质且其产生的沼气能作为能源 可发电用

本设计采用二级中温消化 池形采用圆柱形消化池 优点是减少耗热量 减少搅拌所需能耗 熟污泥含水率低

一级消化池六座 直径为24m 消化温度为35℃ 二级消化池三座 且尺寸与一级相同

2.3.10污泥脱水

污泥机械脱水与自然干化相比较 其优点是脱水效率较高 效果好

不受气候影响 占地面积小 常用设备有真空过滤脱水机、加压过滤脱水机及带式压滤机等 本设计采用带式压滤机 其特点是:滤带可以回旋

脱水效率高;噪音小;省能源;附属设备少 操作管理维修方便

但需正确选用有机高分子混凝剂

另外

为防止突发事故 设置事故干化场 使污泥自然干化

3污水处理系统工艺设计 3.1格栅的计算 3.1.1粗格栅

选用三个规格一样的粗格栅 并列摆放 两台工作 一台备用

图3.1 格栅示意图 3.1.2格栅的计算

(1) 栅条间隙数

个;

--最大设计流量

=4.2;

--格栅倾角

取= 60;

--栅条间隙

取=0.05;

--栅前水深

取=1.4;

--过栅流速

取=0.9;

--生活污水流量总变化系数 根据设计任务书=1.21

式中:--栅条间隙数 则:

(2) 栅槽宽度

式中:--栅条宽度

取0.01

则: =0.01(31-1)+0.0531=0.3+1.55=1.85

(3) 通过格栅的水头损失

;

--计算水头损失 ;

--重力加速度

取=9.8; --系数

格栅受污物堵塞时水头损失增大倍数 一般采用=3;

--阻力系数

其值与栅条断面形状有关; --形状系数

取=2.42(由于选用断面为锐边矩形的栅条)

则: ==0.28 ==0.01

(4) 栅后槽总高度

式中:--栅前渠道超高

取=0.3

则: =1.4+0.3+0.03=1.73

(5) 栅槽总长度

式中: --进水渠道渐宽部分的长度

式中:--设计水头损失 ;

--进水渠宽

取=1.7;

--进水渠道渐宽部分的展开角度

取=20;

--栅槽与进水渠道连接处的渐窄部分长度 ;

--栅前渠道深 . 则:=

=

(6) 每日栅渣量

式中:--栅渣量

取=0.01

则: >0.2 宜采用机械清渣

(7) 校核

式中:--栅前水速

;一般取0.4m/s-0.9m/s

--最小设计流量 ;

=2.87

--进水断面面积 ;

--设计流量

取= 则:

在之间 符合设计要求

3.1.3选型

选用型链式旋转格栅除污机 其性能如表3.1所示 表3.1 粗格栅性能表 项 目 型 号

安装角 过栅水速

电机功率

性 能

型链式旋转格栅 除污机 60 0.9 1.5 3.2泵房

3.2.1泵房的选择

选择集水池与机械间合建的半地下矩形自灌式泵房 这种泵房布置紧凑 占地少 机构省 操作方便

3.2.2泵的选择及集水池的计算

(1) 平均秒流量

(2) 最大秒流量

(3) 考虑3台水泵 每台水泵的容量为

(4) 集水池容积

采用相当于一台泵6分钟的容量

集水池面积 3.2.3扬程估算

(1) 集水池最低工作水位与所需提升最高水位之间的高差

=45-(35+2.0×0.75-0.03-2)=10.53 其中:--集水池有效水深

取;

--出水管提升后的水面高程

取;

--进水管管底高程 取;

--进水管管径 由设计任务书;

--进水管充满度 由设计任务书;

--经过粗格栅的水头损失

取h=0.03

由于资料有限

出水管的水头损失只能估算 设总出水管管中心埋深0.9米 局部损失为沿线损失的30% 则泵房外管线水头损失为0.558m

泵房内的管线水头损失假设为1.5米 考虑自由水头为1米

则水头总扬程: Hz=1.5+0.558+10.53+1=13.588m

选用型污水水泵三台 每台 扬程

集水池有效水深 吸水管淹没深度 喇叭口口径

取泵房地下部分高6.2m 地上部分6 .3m 共

3.3细格栅

3.3.1细格栅的计算:

设四台机械格栅 三台运行 一台备用

3.3.2格栅的计算

(1) 栅条间隙数

式中:--栅条间隙数 个;

--最大设计流量 =4.2;

--格栅倾角

取= 60;

--栅条间隙

取=0.02; --栅前水深

取=1.05;(一般栅槽宽度B是栅前水深h的二倍)

--过栅流速

取=0.9;

--生活污水流量总变化系数 由设计任务书=1.21

则: 取70个

(2) 栅槽宽度

式中:--栅条宽度

取0.01

则:=0.01(70-1)+0.0170=2.10

(3) 通过格栅的水头损失

式中:--设计水头损失 ;

--计算水头损失 ;

--重力加速度

取=9.8; --系数

格栅受污物堵塞时水头损失增大倍数 一般采用=3;

--阻力系数

其值与栅条断面形状有关; --形状系数

取=2.42(选用迎背水面均为半圆形的矩形栅条); 则:==0.96 ==0.034

(4) 栅后槽总高度

式中:--栅前渠道超高

取=0.3

则:=1.05+0.3+0.103=1.453

(5) 栅槽总长度

;

--进水渠宽

取=1.9;

--进水渠道渐宽部分的展开角度

取=20;

--栅槽与进水渠道连接处的渐窄部分长度;

--栅前渠道深

则:=

=

(6) 每日栅渣量

式中:--栅渣量

取=0.07

则: >0.2 宜采用机 械清渣

(7) 校核

式中:--栅前水速 ;

--最小设计流量

式中: --进水渠道渐宽部分的长度 ;

A--进水断面面积 ;

--设计流量

取= 则:

在之间 符合设计要求

3.3.3选型

选用型弧形格栅除污机 其性能如表3-2所示

表3.2 细格栅性能表 项目 圆弧半径

栅条组宽

重 量

安装角

过栅水速

电机功率

性能 500 1200 600 60 0.9 0.30.7 3.4沉砂池的计算 3.4.1池体计算

(1) 池子总有效容积

式中:--最大设计流量

=4.2;

--最大设计流量时的流行时间

一般为1min~3min 此处取=2

则:

(2) 水流断面面积

式中:--最大设计流量时的水平流速

一般为0.06m/s-0.1m/s 则:

(3) 池子总宽度

式中:--设计有效水深

取=2.5 一般值为2m-3m

则:

(4) 池子单格宽度

式中:--池子分格数 个 取=6

则:

(5)校核宽深比:

b/ =2.8/2.5=1.12 在1-2范围内 符合要求

(6) 池长

则:

(7) 校核长宽比:L/B=12/2.8=4.37>4 符合要求

(8) 每小时所需空气量

式中:--每污水所需空气量

取=0.2 则:

3.4.2沉砂室尺寸计算

(1) 砂斗所需容积

式中:--城市污水沉砂量

取=30;

--两次清除沉砂相隔的时间

取=2;

--生活污水流量总变化系数 由设计任务=1.21 则:

(2) 每个砂斗所需容积

式中:--砂斗个数

设沉砂池每个格含两个沉砂斗 有6个分格

沉砂斗个数为12个 则:

(3) 砂斗实际容积

;

--砂斗下口宽

取=1;

--砂斗高度

取=0.8;

--斗壁与水平面倾角

取=55 则:

>=1.5

(4) 沉砂池总高度(采用重力排砂)

取=0.3;

--砂斗以上梯形部分高度

式中:--砂斗上口宽式中:--超高 ;

--池底坡向砂斗的坡度 取=0.1 一般值为0.1-0.5 则:

(5) 最小流速校和

式中:--设计流量

取=;

--最小设计流量 ;2.87

--最小流量时工作的沉砂池格数 个 取=2;

--最小流量时沉砂池中的水流断面面积

为7.0

则:>0.15 符合设计要求

3.4.3排砂

采用重力排砂 排砂管直径

在沉砂池旁设贮砂池 并在管道首端设贮砂阀门

(1) 贮砂池容积

则:

(2) 贮砂池平面面积

取=2.5

则:

3.4.4出水水质

查《给排水设计手册》2 经曝气沉砂池 去除率10% 则:= 3.5初沉池

3.5.1池体尺寸计算

式中:--贮砂池有效水深

(1) 沉淀部分水面面积

式中:--最大设计流量

=12500;

--池数 个 取=6;

--表面负荷

取=1.8

则:

(2) 池子直径

则: 取40

(3) 实际水面面积

则:

核算表面负荷:<1.8 符合要求.

(4) 沉淀部分有效水深

取=2.0

则:

(5)校核径深比:D/=40/3.6=11.11 在6-11内 符合要求

(6) 沉淀部分有效容积

则:

(7) 污泥部分所需的容积

式中:--每人每日污泥量

查《给排水设计手册》5取=0.6;一般范围为(0.3-0.8)--设计人口数 人

取=人;为SS的设计人口 因为此处主要去除的就是SS

--两次清除污泥相隔时间

式中:--沉淀时间 取=4 则:

(8) 污泥斗容积

式中: --污泥斗高度 ;

--污泥斗上部半径

取=2.0;

--污泥斗下部半径

取=1.0;

--斗壁与水平面倾角

取=60 则:

(9) 污泥斗以上圆锥部分污泥容积

-

;

--池子半径

i──坡度 此处取i=0.05 则:

(10) 沉淀池总高度

取=0.3;

--缓冲层高度 取=0.3 一般值为0.3-0.5

──有效水深 为3.6m

──圆锥体高度 为0.9m

──污泥斗高度 为1.73m

则:

式中:--圆锥体高度式中:--超高

(11) 沉淀池池边高

则:

(12) 污泥总容积

V=V1+V2=12.7+418.3=430.9m3>20m3

(13)校核径深比:

D/h=40/3.6=11.23在6~12之间 符合要求 3.5.2中心管计算

(1) 进水管直径:

取=900 则

在0.91.2之间 符合设(2) 中心管设计要求 图3.2中心管计算图

(3) 套管直径

取 =2.2

则:

在0.150.20之间 符合要求

(4) 设8个进水孔

则:

(5) 取

则:

(6) 取 则: 在之间 符合设计要求

3.5.3出水堰的计算

(1) 出水堰采用直角三角堰 过水堰水深取 一般

为0.021-0.2之间

(2) 堰口流量:

(3) 三角堰个数:个

(4) 出水堰的出水流速取:

计要求 则:断面面积

(5) 取槽宽为0.8 水深为0.8 出水槽距池内壁0.5 则:

(6) 出水堰总长

(7) 单个堰堰宽

(8) 堰口宽0.10 堰口边宽0.155-0.10=0.055

(9) 堰高

(10) 堰口负荷:

在1.52.9之间 符合设计要求

3.5.4集配水井计算

(1) 设计三个初沉池用一个集配水井 共两座

(2) 配水井来水管管径取=1500 其管内流速为 则:

(3) 上升竖管管径取 其管内流速为 则:

(4) 竖管喇叭口口径 其管内流速为

取 则:

(5) 喇叭口扩大部分长度 取= 则:

(6) 喇叭口上部水深 其管内流速为 则:

(7) 配水井尺寸:直径 取 则:

(8) 集水井与配水井合建 集水井宽 集水井直径 则: 3.5.5出水水质

查《给排水设计手册》2 经初沉池、去除率分别取25%、60%

=

= 3.5.6选型

选用ZG型周边传动刮泥机六台 每座初沉池一台 其性能如表3.3所示

表3.3 型周边传动刮泥机性能表 项 目 池 径

电动机功率

滚轮与轨道型式

重 量

性 能 40 2.2 钢滚轮、钢板轨道 16000 3.6曝气池 3.6.1池体计算

(1) 水中非溶解性含量

式中:--微生物自身氧化率 一般在0.050.10之间 取=0.08;

--微生物在处理水中所占的比例 取=0.4;

--水中悬浮固体浓度

取=25

则:

(2) 出水中溶解性含量

式中:--出水中的总含量

取=25 则:

(3) 的去除率

式中:--的去除效率 %;

--进水的浓度

取=150

则:>83% 符合要求

(4) --污泥负荷率

式中:--污泥负荷 ;

--系数 取=0.0185;

--系数 一般为0.70.8 取=0.75 则:

在0.20.4之间 符合设计要求

(5) 混合污泥浓度

式中:--污泥体积指数

取=120;一般为(100-120)mg/L

--污泥回流比 取=30%;

--考虑污泥在二沉池中停留时间、池深、污泥厚度等因素的有关系数 取=1.2; 则:

(6) 曝气池容积

式中:--进水设计流量

取= 则:

(7) 单个池容积

式中:--曝气池个数 共设三组曝气池 每组两座 共六座 =6 则:

(8) 单个池面积

式中:H--池深

则:

核算宽深比

取池宽 则: 在12之间 符合设计要求

(9) 池总长

则:

(10) 单廊道长

式中:--廊道条数 个 取=5

则: 取

(11) 池总高

式中:--超高

取=0.5

则:

3.6.2曝气系统设计与计算

(1) 曝气池平均需气量

式中:--氧化每公斤需氧公斤数

取 ; --污泥自身氧化需氧率

取;

--去除的浓度 ;

--混合液挥发性悬浮物浓度

则:

(2) 最大需氧量

式中:--变化系数 取=0.2 则:

(3) 每日去除的量

(4) 则去除每千克的需氧量

(5) 最大需气量与平均需氧量之比

3.6.3供气量

本设计采用网状模型微孔空气扩散器 敷设于池底 距池底0.2 淹没深度5.0 计算温度定为30 查得水中溶解氧的饱和度

(1) 空气扩散器出口处的绝对压力

式中:--空气大气压力

取;

--曝气头在水面以下造成的压力损失 ;

--曝气装置处绝对压力

则:

(2) 空气离开水面时氧的百分比

式中:--曝气池逸出气体中含氧百分数 %;

--氧利用率 % 取=12% 则:

(3) 曝气池混合液氧饱和度

式中:--标准条件下清水表面处饱和溶解氧 ;

--按曝气装置在水下深度处至池面的平均溶解氧值

则:

(4) 换算成20时

脱氧清水的充氧量为:

式中:--混合液中值与水中值之比 即

一般为0.80.85 取=0.82;

--混合液的饱和溶解氧值与清水的饱和溶解氧值之比 一般为0.90.97 取=0.95;

--混合液剩余值 一般采用2

则: = (5) 相应的最大时需氧量

则:

(6) 曝气池平均时供气量

则:

(7) 曝气池最大时供气量

则:

(8) 去除一千克的供气量

(9) 每污水的供气量

3.6.4空气管道系统计算

在曝气池的两个相邻廊道的隔墙上布设一条空气干管 共15条空气干管

在每根干管上布设6对空气竖管 全曝气池共设根空气竖管

则每根空气竖管供气量为 曝气池总平面面积

则:

每个扩散器的服务面积按计 则需空气扩散器的总数为个 按m=21600个计 则每根竖管上安装 采用布置

则:每个扩散器的配气量

空气管路及曝气头的布置如图3.3及图3.4所示 选择一条从鼓风机房开始的最远最长的管路作为计算管路 在空气流量变化处设计计算节点

统一编号后列表(表3.5)进行空气管道计算

空气管路总压力损失

网状膜空气扩散器的压力损失为5.88 则总压力损失

为安全起见 取8.600Kpa.

图3.3 空气管路布置简图

图3.4 曝气头布置图

表3.4 空气管路损失计算表 管道编号 管段长度 L/m 空 气 流 量 空气流速 v /(m/s)

管 径

D/mm

配 件 管道当量长度 L0/m 管段计算长度 L0+L/m 压力损失 h1+h2

m3/h m3/min

9.8/ (Pa/m) 9.8/Pa 17-16 0.5 3.25 0.054

32 三通1个 0.29 1.22 0.20 0.244 16-15 0.5 6.5 0.108

32 三通1个 0.29 1.78 0.41 0.7298 15-14 0.5 9.75 0.1625

32 三通1个 异径管1个 0.29 1.78 0.70 1.246 14-13 0.5 13.00 0.22

32 三通1个 异径管1个 1.01 1.78 1.12 1.9936 13-12 0.25 16.25 0.27

60 四通1个 异径管1个 2.90 1.62 1.39 2.2518 12-11 0.9 32.50 0.54 7.55 60 四通1个 异径管1个 4.17 3.89 0.62 2.4118 11-10 0.9 65.00 1.08 11.32 60 弯头3个 三通1个 闸门1个 4.68 5.53 0.44 2.4332 10-9 8.7 162.50 2.71 5.22 125 三通1个 异径管一个 10.59 19.65 0.76 14.934 9-8 6.6 325.00 5.42 2.61 250 四通1个 异径管一个 7.00 13.21 2.56 34.356 8-7 6.6 650.00 10.83 5.22 250 四通1个 异径管一个 7.19 17.86 1.40 25.004 7-6 6.6 975.00 16.25 7.83 250 四通1个 异径管一个 10.15 22.36 0.95 21.242 6-5 6.6 1300.0 21.67 10.44 250 四通1个 异径管一个 12.68 22.14 1.25 27.675 5-4 9.0 1625.0 27.08 13.04 250 四通1个 异径管1个 12.68 26.87 1.52 40.3054 4-3 12 4625.0 77.08 15.65 400 弯头2个 四通1个 异径管一个 29.57 30.24 0.58 17.542 3-2 12 17527 292.11 21.74 600 三通1个 异径管一个 28.29 40.19 0.69 27.731 2-1 30 70111.1 1168.5 19.57 900 四通1个 异径管一个 12.68 80.13 0..68 54.49

合 计

266.7

3.6.5空压机的选择

(1) 曝气沉砂池所需空气量为2916 则空压机总供气量

最大时:70111.1+2916=73027.1=1217.1 平均时:63247.2+2916=66163.2=1102.7

(2) 空气扩散器安装在距池底0.2处 因此空压机所需压

(3) 选型

根据所需压力和空气量决定采用型罗茨鼓风机六台 五台使用 一台备用

其性能如表3.5所示

表3.5 型罗茨鼓风机性能表 项 目 风 压

转 速

进口流量

轴功率

电机级数

电动机功率

性 能 58.8 710 330.7 389

8 450 3.6.6污泥回流系统

(1) 回流量

则:

(2) 回流设备选型

每组曝气池(两组)设一座泵房 共三座

选用六台型螺旋泵 其性能如表3.6所示

表3.6 型螺旋泵性能表 项 目 直 径

流 量

转 数

功 率 提升高度

安装角

性 能 1000 660 48 15 4.5 30 3.7二沉池

3.7.1池体尺寸计算

(1) 沉淀部分水面面积

式中:--设计流量

由设计任务书=12500; --池数 个 取=9;

--表面负荷

取=1.4 则:

(2) 池子直径

则: 取

(3) 实际水面面积

则:

核算表面负荷

在0.721.80 之间 符合设计要求

(4) 沉淀部分有效水深

式中:--沉淀时间

取=2.5 则:

(5) 沉淀部分有效容积

则:

(6) 污泥部分所需的容积

式中:--每人每日污泥量

查《给排水设计手册》5取=0.6; --设计人口数 人

取=人;

--两次清除污泥相隔时间

取=4 则:

(7) 污泥斗容积

式中:--污泥斗高度 ;

--污泥斗上部半径

取=2.0;

--污泥斗下部半径

取=1.0;

--斗壁与水平面倾角

取=60 则:

(8) 污泥斗以上圆锥部分污泥容积

式中:--圆锥体高度 ;

--池子半径

则:

(9) 沉淀池总高度

式中:--超高 取=0.3;

--缓冲层高度 取=0.3 则:

(10) 沉淀池池边高

则:

(11) 污泥总容积

则:

(12) 径深比

在612之间 符合设计要求

3.7.2中心管计算

(1) 进水管直径 取=800 则:

在0.91.2之间 符合设计要求

(2) 中心管设计要求

(3) 中心管直径 取=1.8 则:

在0.150.20之间 符合设计合理要求

(4) 设8个进水孔 取

则:

(5) 取 则:

(6) 取 则:

在之间 符合设计要求

3.7.3出水堰的计算

(1) 出水堰采用直角三角堰过堰水深取 (2) 堰口流量:

(3) 三角堰个数 个

(4) 出水堰的出水流速取 则:断面面积

(5) 取槽宽为0.5 水深为0.8 出水槽距池内壁0.5 则:

(6) 出水堰总长

(7) 单个堰堰宽

(8) 堰口宽0.14 堰口边宽0.21-0.14=0.07

(9) 堰高

(10) 堰口负荷

在1.52.9之间 符合设计要求

3.7.4集配水井计算

设计三个二沉池用一个集配水井 共三座

(1) 取回流量=30%

(2) 配水井来水管管径取=1100 其管内流速为 则:

(3) 上升竖管管径取 其管内流速为 则:

(4) 竖管喇叭口口径 其管内流速为

取 则:

(5) 喇叭口扩大部分长度 取= 则:

(6) 喇叭口上部水深 其管内流速为 则:

(7) 配水井尺寸:直径 取 则:

(8) 集水井与配水井合建 集水井宽 集水井直径为 则:

3.7.5出水水质

、均达到设计出水水质标准

=25

<30 3.7.6选型

选用型周边传动刮泥机九台 每座二沉池设一台 其性能如表3.7所示

表3.7 型周边传动刮泥机性能表 项 目 池 径

电 动 机 功 率

滚 轮 与 轨 道 型 式

重 量

性 能 36 2.2 钢滚轮、钢板轨道 14000 3.8接触池

3.8.1接触池尺寸计算

(1) 接触池容积

式中:--设计流量

由设计任务书取=;

--接触时间 取=30 则:

(2) 接触池平面面积

式中:--有效水深

则:

(3) 池长

式中:--接触池个数 个 取;

--单个池表面积 ;

--池宽

则:

(4) 单廊道长

式中:--廊道条数 个 取=14 则:

(5) 流速校核

3.8.2加氯间

(1) 加氯量

式中:--每日加氯量

取=8.5 则:

(2) 选择加氯机

选用四台型转子加氯机 三台工作 一台备用

其性能如表3.8所示

表3.8 型转子加氯机性能表 项 目 型 号 水 温

加 氯 量

外 形 尺 寸 宽高

水射器进水压力

性 能

型转子加氯机 40 5~45 425610 >0.3 (3) 选择钢瓶

贮存3天的氯量为 可选用容量为的液氯瓶十个 其中八个使用 两个备用

其性能如表4.9所示

表3.9 钢瓶性能表 项 目 容 量

外径瓶高

自 重

公称压力

生产厂家 性 能 1000 8002020 448 2 常洲洪庄机械厂

加氯间与氯库合建 平面尺寸为22.08.0

3.9计量槽

接触池后设巴式计量槽 共四条 喉宽0.9米

每条安装一台超声波流量计 信息输入电脑

可随时了解出水的流量变化情况

4 污泥的处理与处置 4.1 污泥浓缩池

(1) 全固体量

式中:CSS--初沉池SS浓度 为14~25g/人·d 此处取20 g/人·d

CBOD5--二沉池BOD浓度 为10~21 g/人·d 此处取15 g/人·d

NSS--按SS浓度折算的人口数 为120万人

NBOD5--按BOD5浓度折算的人口数 为200万人 则:

(2) 浓缩污泥量

式中:--污泥浓缩前含水率 % 取%;

--污泥密度

则:

(3) 浓缩池有效容积

式中:--停留时间

取 则:

(4) 浓缩池表面积

式中:--浓缩池个数 个 取;

--有效水深

则:

(5) 浓缩池直径

则: 取

(6) 浓缩后污泥量

式中:--浓缩后污泥含水率 % % 则:

(7) 分离出的污水量

则:

(8) 池边水深

式中:--超高

--缓冲层高度 m 则:

(9) 泥斗容积

式中:--泥斗以上梯形部分容积 ;

--泥斗容积 ;

--泥斗以上梯形部分高度 ;

--泥斗高度 ;

--泥斗上扣宽

取;

--泥斗下口宽

则:

(10) 池体总高

则:

(11) 浓缩机选择

选用型周边传动浓缩机 其性能如表4.1所示

表4.1 型周边传动浓缩机 项 目 周边速度

电动机功率

池 径

池边深

重 量

性 能 2.3 1.5 24 5.0 6000 4.2 污泥消化池

上一篇:五年级主题班会记录下一篇:污水处理站工作总结