水泥厂节能降耗范文

2022-06-15

第一篇:水泥厂节能降耗范文

水泥厂节能减排措施

本文出自于:水泥设备网。 辊压机液压系统的故障特征诊断

我厂于1994年初子生料车间与水泥车间安装使用了3台辊压机,通过近一年的调试,在提高粉磨效率方面起到了很大的作用。我厂的3台辊压机均采用两辊单独驱动相向旋转,一个辊固定一个辊浮动。浮动辊与液压缸串接,液压缸产生预压力迫使浮动辊压向固定辊,辊压机的整体液压系统为磨辊提供所需的挤压粉碎力,其主要作用是液压弹簧兼液压保护,它的性能直接影响到挤压粉碎的质量和设备的安全。本文介绍了我厂的3台辊压机近一年来液压系统的故障特征及液压系统的故障诊断。

一、 辊压机液压系统的故障特征 1.1 液压系统调试阶段的故障

辊压机液压系统调试阶段的故障率较高。其特征是设计、制造、安装等问题交织在一起,除机械电气问题外调试阶段常发生的故障有:

1、外泄漏严重,主要发生在接头和有关元件的端盖处。

2、液压阀的阀芯卡死或运动不灵活,导致执行元件动作失灵。

3、压力控制的阻尼小孔阻塞,造成压力不稳定。

4、阀类元件漏装弹簧、密封件,造成控制失灵。甚至出现管道接错而使系统运行错乱。

5、液压系统设计不完善,液压元件选择不当,造成系统发热,甚至执行元件不动作(我厂有两台辊压机的液压系统均重新设计与改造过)。 1.2 液压系统运行初期的故障

液压系统经过调试阶段后,便进入了正常生产运行阶段,此阶段常发生的故障有:

1、由于环境粉尘浓度较大,同事操作者对于液压油对污染的敏感性认识不足,导致液压油质过早恶化。

2、各处油管接头因振动而松脱。

3、密封件型号选择不当,质量差或由于装配不当而被损失,造成泄漏。

4、管道或液压元件油道内的毛刺、型砂、切屑以及装配时带人的纱头屑在流油的冲击下脱落沉淀,堵塞阻尼孔或滤油器,造成压力不稳定或执行元件不动作。

5、由于喂料严重不均或负荷大,外界散热条件差(尤其在夏天),使油液温度过高,引起泄漏,导致压力变化。

1.3 液压系统运行中期的故障

辊压机液压系统运行2-3个月之后,故障率明显降低,运行状态渐入佳境。 1.4 液压系统运行后期的故障

根据资料及经验,液压系统运行到后期,液压元件因工作频繁和负荷的差异,易损件先后开始正常性的超差磨损。此阶段的故障率应该较高,泄漏增加,效率降低。 1.5 液压系统的突发性故障

辊压机液压系统的突发性故障大多发生在设备运行初期。故障的特征是突发性,故障发生的区域及产生原因较为明显。如由于各部件的干涉、碰撞,元件内弹簧突然折断,管道突然破裂,有异物堵塞流道,密封件突然损坏等。突发性故障大部分是由操作错误而造成的。在我厂目前均为不按操作规程加压或加压过高而导致。防止此类故障的主要措施是加强设备管理维护,严格执行岗位责任制,以及加强人员素质的培养。

二、 辊压机液压系统故障的诊断

辊压机液压系统出现故障的原因是多方面的,常常不易立即找出故障部件和根源,因为液压系统的压力和流量不像电气系统的电压和电流那样容易检测。为了避免盲目性,工程技术人员必须根据液压系统的基本原理进行逻辑分析,逐步逼近最终找出故障发生部件,检测分析故障的主要原因。寻找主要原因的方法很多,本文仅以辊压机液压系统液压缸无动作为例来介绍在我厂诊断故障时最常用的逻辑流程图分析法。

发现液压缸无动作应首先审核液压原理图(如图1),确定每个元件的性能与作用,然后列出与液压缸误动作相关的元件清单,以压力油的走向为主线结合由易到难的程序进行检查。如果一开始就花大力气将液压缸拆下来检查,显然是不可取的,根据流程图首先将可能 1

出现的直观表面易出来的故障排除,再由泵开始检查顺着压力油的走向逐个检查与故障相关的元件(如图2),这样很快就能排除故障。

经验与资料告诉我们,液压系统的故障除了由于设计、制作、安装、调试不当外,剩下的重要原因大都由杂质侵入液压油造成的,随着辊压机设计与液压技术的进一步发展,前者造成故障发生的可能性将会越来越小,而后者则由于人们不重视、不认识及使用单位管理水平等问题而产生的故障所占比例将越来越大。

第二篇:水泥厂节能减排措施

水泥厂节能减排可以从以下几个方面做起:燃煤工业(窑炉)改造、余热余压利用、电机系统节能、能量系统优化、除尘系统改造等项。 1. 窑炉节煤

(1)使用高性能隔热材料:窑、冷却机、预热器、热风管道等设备上,在新建、检修工程中使用高性能隔热材料减少散热。(2)合理设置工艺参数:在配料、窑炉用煤量用风、预热器一级筒出口温度等各生产环节合理设置工艺参数,减少系统漏风,控制排出系统的气体、物料温度,降低总用煤量(3)严格管理:把原煤进厂至使用的全过程纳入科学管理体系中。在计量、取样、质量检验、密码抽样、保管、使用等各生产环节,制定合理制度,规范管理,责任到人。

2、余热发电

采用纯低温余热发电技术。在新建水泥熟料生产线配套设计纯低温余热发电项目,在原有水泥熟料生产线改造配置纯低温余热发电项目。2000t/d级水泥熟料生产线配置4.5 MW 发电机组,5000t/d级水泥熟料生产线配置9 MW 发电机组,实际单位发电量达到 36 kwh/t以上。

3、电机系统节能

(1)变压器节能 : 合理确定变压器容量,使其运行于最佳状态。 更换成新型节能S9型变压器,减少空载时由铁损,漏磁损耗,激磁电流产生的铁损和负载时由负载电流在变压器线圈电阻上产生的损耗(其大小与负载电流的平方成正比)它在降低空载损耗的主要方法下改进变压器的设计和制造工艺,采用质量更好的铁芯材料(低损耗硅钢片)与S7系列相比,其空载损耗比S7下降10%以上,负载损耗下降20%以上 。

(2)无功补偿节能:无功电源同有功电源一样,是保证电能质量不可缺少的部分。在电力系统中应保持无功平衡,否则将会使系统电压降低、设备损坏、功率因数下降。严重时,会引起电压崩溃,系统解裂,造成大面积停电事故。因此,解决电网的无功容量不足,增装无功补偿设备,提高网络的功率因数,对电网的降损节电,安全可靠运行有着极为重要的意义。

采取的主要解决方案: 完善的电容就地补偿主要有以下三大功能:增容15-35%;节电4-10%;保护设备,提高效率。

(3)速节能:变频调速的节电方法是改变用电频率来调节电机速度来满足负载要求从而达到节电效果。在电压电流都不改变时,节电量与用电量成正比,性能特点是:可直接使设备平滑起动。具有自动转矩补偿功能。调速范围大,调速比一般可达10:1至5:1。

4、调速平滑性好。无极调速根据电机负载情况,节电率可达20~50%。

适用设备:离心风机,需要长期关小阀门调节的风机,如磨排风机、冷却机风机等。罗茨风机,需要排放多余的风的罗茨风机。泵。皮带机,为适应带负荷启动电机选型偏大、物料层薄的皮带机等。 高压或低压离心风机,200kW以上,风门开度经常不到80%,节电率在20%~40%的,可做节电改造。罗茨风机,37kW以上,排空在15%以上,节电率在15%~40%的可做节电改造。

(4)节能器节能:根据具体设备电能利用情况及运行状态,为提高电能利用率而专门设计、制造的系列专利产品,如无功自动补偿装置、电机节能器等等。

(5)线路降损节能 :根据负载电流,选用最经济的输电线路线径。更换不安全、不经济、绝缘老化线路。(特别是铝芯,一般说来使用8年以上的铝芯线都要换掉)。清洁导线 1

接触面。更换线路中的不良控制器。

(6)进相器节能:主要用于大功率三相绕线式异步电动机,串接于电机的转子回路,用以提高而降低产品的单位能耗。其主要好处有:功率因素提高到0.95以上。进相后定子电流降低10%~20%,降低线损、铜损20~30%节约有功功率。电机温升显著降低,过载能力及效率大大提高,电机寿命延长。采用智能化技术,自动进相和退相,故障自动保护,保障长期安全运行。结构形式无触点,所以不怕灰尘,无磨损(静止式进相器)。

4、工艺及设备改进

(1)普通水泥磨改造成高细磨 :普通水泥磨生产水泥,颗粒较粗,颗粒形貌圆度较低,降低了磨机的台时产量,不利于环保。普通水泥改造成高细磨,水泥产品细度提高颗粒效果好,增产、节能效果更加显著。而且运行更加稳定、可靠,更加符合我国国情。它有几个优点: ① 当保证水泥强度不变时,可使水泥磨增产25-35%,最低增产幅度也能保证20%,节电17-25%。 ②增加水泥标号,保证水泥质量的稳定。③通过多掺混合材来提高水泥产量,从而可使水泥总产量增加5%左右,效益非常显著。

(2)提高熟料标号:有条件的地方利用超细粉磨技术,把普通磨改造成超细磨,生产超细粉,加入水泥中提高混合材掺量,或作为商品直接销售。

提高熟料标号可以加大混合材掺加量,因而降低水泥的综合煤耗。如果按32.5水泥平均掺加40%混合材,42.5水泥平均掺加20%混合材,和32.5、42.5水泥各50%计,水泥的综合煤耗可以降低30%左右,可以降低单位水泥煤耗46.5公斤/吨水泥,按100万吨熟料转换成相应的水泥计,可节约原煤4.65万吨,经济价值近3千万元。

(3)预热器综合改造技术工程 :窑密封采用简单易行的石墨块及鱼磷片型式结构,将漏风率控制在 1% 以下。改善预热器的煤燃烧状况,寻找合适的喷煤点。改善通风,防止预热器塌料与结皮堵塞。强化预热器物料的分散与热交换。使用先进的内筒结构与材料,延长使用周期。喷煤管及回转窑使用优质耐火材料。

(4)各种破碎机优化技术改造工程 :在粉磨设备无进料粒经要求的情况下,对各种卧式、立式破碎机,如立轴破、锤破、反击破等,改进转子、锤头、衬板及蓖板等结构,选用优质耐磨材料,优化性能,提高破碎机破碎能力,增加产量,实现"多破少磨"生产模式。 破碎机经改造后,排料粒度可按需求自如地加以控制,一般粒度小于 3 毫米,大部分为粉状;入磨物料粒度小,磨机能大幅度增产,增产幅度 20-30% 以上。

(5)除尘设备优化技术改造工程: 加强对除尘设备优化技术改造,有组织排放点达到国家标准。强化清洁生产意识,提高工作标准。新建项目考虑使用大布袋收尘器提高排放标准。加强管理提高维护水平,即有电收尘器应在电场、极板、振打各方面达到技术要求,袋收尘器应逐步选用新型设备,达到清洁生产要求。

(6)防止油料泄漏: 作好设备密封工作,防止油料泄漏。使用油料回收设备,减少环境污染。

(7)节约用水:加强管理及进行适当改造,杜绝设备冷却用水放长流水。 (8)减少用电设备无效运转:提高设备完好率及可靠性,开停生产线时减少设备空载运行时间。选用节电照明灯具,办公场所照明,人员离开及时关闭。

第三篇:水泥窑耐火材料优化配置对水泥窑节能降耗的作用

随着我国经济的快速增长,国家对基础建设项目的开发力度不断加大,“十五”期间,我国全社会固定资产投资保持年均20%以上的高速增长,强劲拉动了水泥的生产和消费。2005年全国水泥产量10.6亿吨,较2000年净增4.6亿多吨,5年平均年增长12%。一些大型的新型干法预分解窑相继建成投产,截止到2005年共投产622条新型干法水泥窑。伴随着水泥工业的快速发展,其能源消耗量也大幅度提高。据有关资料显示,水泥行业能源耗量占建材工业总能耗的50%左右,可见搞好水泥工业的节能是建材工业节能降耗的关键。

水泥工业到2010年的能耗目标是:新型干法水泥吨熟料热耗由130千克下降到110千克标准煤,采用余热发电生产线达40%,水泥单位产品综合能耗下降25%。另外,我们的能耗和国外先进水平相比,还存在着一定的差距。由此可见,水泥窑节能降耗存在着巨大的发展空间。

一、我国水泥工业能源消耗的现状及其与世界先进水平的比较1.1我国水泥生产工业的结构现状

目前,我国水泥生产的窑型较多(如:机立窑、湿法生产线、预分解窑等),从目前整个水泥工业的窑型组成来看,各种窑型的水泥熟料生产能力见下图

1从上图可以看出,截止到2005年底,机立窑的熟料生产能力达到了56.9%,仍然占有很大的比重,大型干法预分解水泥生产技术虽然得到了快速的发展,但其发展潜力巨大。根据《水泥工业产业发展政策》确定的目标,2010年新型干法水泥的比重要达到70%以上。实现这一目标,必须在发展新型干法水泥的同时,加大淘汰落后生产能力的力度。届时,新型干法水泥产量达到8.5亿吨左右,国内市场可以保持供需基本平衡。

1.2各种窑型的能源消耗情况

我国水泥窑的窑型较多,其能源消耗的水平差别较大,一般来说,湿法窑比预分解窑多耗能近一倍,机立窑比预分解窑多耗能近三成,而普通机立窑比预分解窑多耗能近七成。新型干法水泥窑与上世纪90年代初期国内外相近规模的生产线相比,热耗下降了5%-10%,电耗下降10%~15%,系统运转率由不到80%提高到92%;与立窑相比,综合能耗下降20%以上。通过对比可以清晰的看出,水泥生产工艺技术的不断进步,不仅大大提高了水泥生产的效率和生产能力,而且大大减低了整个水泥工业的能源消耗量。

从水泥窑用耐火材料的角度出发,水泥生产工艺技术的不断进步,生产每吨水泥消耗耐火材料从过去的1.2千克降到目前的0.58千克,一些高档的低水泥耐火浇注料取得了较好的使用效果,其应用范围也在不断的扩展。1.3新型干法能耗和国外水平比较

对于新型干法水泥生产线而言,其能源消耗量受其生产规模、设备选型、工艺状况、原料差异、管理水平等因素的影响,其能源的消耗量也有所不同;国内的一般水平和国外的先进水平差距较大,具体对比情况见下表:

二、我国水泥工业开展节能降耗的几点途径

基于我国的基本国情以及水泥工业的整体发展现状,在水泥行业开展节能降耗可以从以下几个方面入手:1. 坚持水泥工业可持续发展的“四零一负”战略目标 具体内容如下:(其中的第二和第四条与节能降耗密切相关)①水泥工业和生态环境和谐共存,水泥企业对其周围生态环境完全实现零污染;②创新水泥工艺和余热回收技术,降低单位水泥电耗,提高单位熟料余热发电量,实现水泥企业对外界电能的零消耗;③水泥企业完全实现废料、废渣、废水的零排放;④降低单位熟料热耗,开发利用各种替代燃料,实现熟料生产对天然矿物燃料(煤、油、天然气)的零消耗;⑤节约资源,扩大利废功能,销纳各种废物,减轻环境负荷,为全社会废渣、废料的负增长做出应有的贡献。

2. 加快水泥工业的结构调整,促进新型干法预分解水泥窑的发展水泥工业作为我国基础建设的几大支柱行业之一,近几十年,随着经济的快速增长新型干法生产线也得到了迅猛的发展,但目前在该行业所占比例只有32.5%,作为新型的低能耗的水泥生产工艺,其发展的潜力巨大。

3. 加大水泥窑垃圾焚烧技术的开发力度,逐步加强推广和应用随着我国城市化进程的加快,工业废弃物和城市垃圾势必大量增加,根据水泥窑运转的自身特点,利用废弃物和工业垃圾替代部分原燃料, 既处理了废物,又节约了能源,具有非常巨大的市场推广和应用价值。

4. 优化新型预分解水泥窑的耐火材料的配套,降低单位水泥熟料产量的能耗通过优化预分解水泥窑各部位的耐火材料的配套方案,提高回转窑的运转率和运转周期,降低水泥窑的维修次数,达到节能降耗的目的。

本文将着重从优化耐火材料的配套方案入手,深入剖析新型干法生产线在运转过程中暴露的一些问题,结合水泥工艺运转的特点,提供一整套完善的耐火材料的配套方案,提高运转率,最终达到节能降耗的目的。

三、国内的新型干法水泥生产线在工艺运转过程中的新特点以及耐火材料使用过程中暴露的一些问题

3.1新型预分解水泥窑工艺运转过程中的新特点

3.1.1回转窑运转窑温普遍提高

预分解水泥窑生产操作中配料率值控制较高,入窑二次风温超过1200℃,燃烧器火焰温度也超过了2000℃,熟料的煅烧温度超过1430℃,前窑口部位普遍结窑皮,工况温度较传统的水泥窑有较大幅度的提高。

3.1.2 碱、氯、硫等挥发性组分对耐火浇注料的侵蚀加剧低品位石灰石等生产原料的采用、无烟煤、劣质煤以及固体废弃物的煅烧,造成窑系统内各部位的挥发性组分碱、氯、硫等成分明显增加,它们的循环、富集对各部位的耐火浇注料的侵蚀也更突出,在一定程度上影响了浇注料的使用周期。

3.1.3窑径的加大、窑速的提高增加了周期性机械应力和热应力破坏目前,预分解窑的转速为3~4r·min-1,窑径由2000t/d的 4m,到 5000t/d的 4.8m-,再到10000t/d的6m。窑径加大、窑速提高,对耐火材料的机械应力和热应力加剧。

3.2不定型耐火材料在使用过程中暴露出的一些新问题3.2.1水泥窑的一些关键部位(如:前窑口、燃烧器)耐火材料的使用寿命短,还不能满足生产的需要

前窑口部位的耐火浇注料一般的使用周期是4~8个月,比较普遍的问题是:浇注料存在剥落、掉块、耐碱侵蚀性能差等问题;燃烧器使用周期为3~5个月,主要是燃烧器前面一米部位的浇注料易出现脱落、掉块,具体情况可见下图2。

3.2.2窑门罩顶部易出现烧穿的情况,导致水泥窑被迫停窑维修伴

随着回转窑日产量的不断加大,窑门罩的体积更加庞大;同时由于窑门罩顶部施工难度大,施工质量难于得到保障,一些5000t/d以上大型的水泥窑出现窑门罩烧穿的现象,具体情况可见下图3。

3.2.3下料斜坡、烟室部位结皮严重,加速了耐材的损坏,造成壳体变形低品位原料、无烟煤、劣质煤以及固体废弃物的煅烧,造成整个窑系统的碱、硫、氯等有害成分的含量增加,在下料斜坡、烟室部位结皮情况加重,导致频繁使用空气炮、水枪,加速了耐材的损坏,严重的致使壳体超温、变形。

3.2.4 三次风管弯头、挡风阀部位耐磨料磨损严重,使用周期短该部位的工况温度在800℃~1000℃,含粉尘的三次风速度达到20m/s以上。该部位损坏主要是弯头、挡风阀部位的耐火衬里磨损比较严重,使用周期短的只有2~3个月,长的也只有6个月左右,因此,该部位一直是制约着干法水泥窑正常生产。其损坏情况见下图4。

另外,一些水泥公司的生产线也暴露出篦冷机热段顶部、矮墙等部位的一些问题,本文在此不再一一阐述。

四、水泥窑用耐火材料优化配置方案及其带来的节能降耗的效果针对大型干法水泥窑在生产过程中出现的问题,我公司结合自身的优势和多年的专业经验,在深入剖析耐火衬里损坏机理的基础上,开发出一系列可满足不同工况的新产品,取得了不错的使用效果,在此愿和大家一起分享。

4.1大型水泥窑用耐火材料优化配套方案

4.1.1一些关键部位(前窑口、燃烧器)耐火材料的配置

结合该部位运行的工况特点,通过采用复合骨料、引入高温膨胀剂、高温抗碱剂等技术手段开发出适用于2500t/d以上水泥窑前窑口、燃烧器部位的高性能浇注料G-17K、G-17P,该产品具有优异的抗剥落性能、高温耐碱性能以及抗水泥熟料侵蚀性能等,经在国内多家大型水泥公司使用,普遍的使用周期是6~10个月。

同时,针对目前国内窑口浇注料和窑内衬砖使用周期不同步的问题,以板状刚玉和非氧化物为主材质开发出长寿命的(12月以上)新型窑口浇注料GC-18,彻底解决了传统的刚玉质浇注料抗碱侵蚀性能差、热稳定性能差的缺点,其用于5000t/d以上的水泥窑前窑口部位可以达到12个月以上,燃烧器部位达到6个月以上。该产品2004年12月在海螺集团中国水泥公司的5000t/d水泥生产线上投入使用,其使用情况见下图5。

目前,该公司窑口浇注料经过修补后仍在使用中;燃烧器部位使用该产品达到了10个月,取得了令人满意的效果,见下图6。

4.1.2三次风管弯头、挡风阀的耐火材料配置

针对该部位耐火浇注料耐磨性能差的特点,通过优化产品的基质组成、采用中温烧结剂等技术手段开发出高耐磨产品G-17M,大幅度提升了产品的在900℃左右的耐磨性能,其在该温度下的耐磨对比情况可见下图7。

4.1.3预分解系统耐火材料的轻质化 针对整个预分解系统运转工况低,设备表面积大,能耗大的现状,开发出了应用于水泥窑旋风预热器的轻质隔热保温耐碱浇注料。与传统耐碱浇注料相比,该产品具有隔热保温效果好,耐碱侵蚀性能优异的特点,可大大降低设备的外表面温度,提高水泥窑旋风预热器的热能利用率,减少热量损失,降低能耗。同时,轻质耐碱浇注料密度小,可减少浇注料用量和设备的自重,节约建设成本。具有较大的市场应用和推广价值。通过理论计算得出轻质耐碱料的保温性能。(环境温度:20℃)如表所示:

4.1.4大型水泥窑其它部位的耐火材料配置方案

改进施工方案,将原来的硅钙板、耐火浇注料双层结构改为轻质隔热和高耐磨双层喷涂料结构。采用喷涂方式施工方便快捷,彻底解决了这些部位施工困难的问题,杜绝了由于施工困难带来的浇注料脱落、掉块、烧塌等。喷涂施工是未来耐火材料发展的方向之一,且新开发的喷涂料会大大降低材料容重,从而降低设备自重,降低建设成本,促进水泥工业的节能降耗。4.1.5大型水泥窑典型耐火材料配置方案部位推荐产品牌号推荐产品名称1~3级预热器GT-13NL或轻质耐碱料高强耐碱耐火浇注料或轻质耐碱料4~5级预热器G-14N高温高强耐碱耐火浇注料分解炉下部GC-13H抗结皮、防堵塞浇注料上升烟道GC-13H抗结皮、防堵塞浇注料喂料室斜坡GC-13H抗结皮、防堵塞浇注料分解炉G-16K高强耐碱低水泥浇注料后窑口G-16K高热高铝低水泥耐火浇注料窑门罩G-16K高热高铝低水泥耐火浇注料前窑口GC-18G-17K新型板状刚玉浇注料高性能窑口专用浇注料喷煤管GC-18G-17P新型板状刚玉浇注料高性能喷煤管专用浇注料篦冷机喉部G-16K高热高铝低水泥耐火浇注料篦冷机热端G-16 K高强耐碱低水泥浇注料篦冷机裙边GF-16K高热高铝低水泥耐火浇注料篦冷机冷端G-16高强耐碱耐火浇注料三次风管入口处和拐弯处G-17M高热高铝低水泥耐火浇注料三次风管其余部位GB-16高强耐碱低水泥浇注料保温隔热层LT-10隔热浇注料

4.2耐火材料施工质量对上述配置方案使用效果的影响及解决方案对于耐火材料水泥生产企业而言,一般耐火材料由一家单位提供,施工由另一家单位来进行。目前,国内的耐火材料施工专业素质整体参次不齐;同时,由于对耐火材料专业知识了解甚少,施工质量大打折扣,在一定程度上影响了产品设计性能的发挥,造成了产品使用寿命的缩减,从而不能达到预期效果。因此,水泥窑用耐火材料以及施工的整体承包是我国水泥工业维修的整体发展趋势。只有这样才能做到资源的优化配置,使各部位耐火材料的整体使用寿命同步,达到同步使用、同步检修的目的,提高回转窑的运转率,最终达到节能降耗、提高效益的目的。我公司下属的通达工程技术有限公司具有二级炉窑工程总承包资质,保证了产品设计、开发、制造、施工、维护“服务链”的完整性,专业化的服务势必为我国各大水泥生产企业的高效、低能耗、长周期运转保驾护航。

五、节能降耗的初步效果

通过优化大型水泥窑耐火材料的整体配套方案和严格的施工,来提高耐火材料的整体使用寿命和回转窑的运转率,实现两年三修、一年一修的目的。降低了水泥窑的维修次数和维修时间,节约了频繁开、停窑带来的能源消耗;同时,通过在窑尾系统试用轻质耐火浇注料,降低金属壳体的外壁温度,减少能源的散热损失,最终达到降低生产单位水泥熟料的能源和耐火材料的消耗量,起到节能降耗的效果。

六、总结

随着我国干法水泥窑在整个水泥工业中的比例不断加大,水泥窑用耐火材料的开发、设计配置、施工、维护的一体化,必将大大提高回转窑的运转率,减少停窑检修次数,降低每生产单位水泥熟料的能耗量和耐材的消耗量,推动我国水泥工业良性、低能耗、快速发展!

本文转自建材机械设备网:http://www.it68.net/ypnew_view.asp?id=2666&Page=2

第四篇:水泥粉磨节能降耗的技术措施

摘要:粉磨电耗约占水泥生产总电耗的65%--75%,降低水泥粉磨电耗对我国节能减排有重要意义。论迷了合理选择粉磨工艺,粉磨系统的合理科学改造,应用助磨剂是实现水泥粉磨节能降耗的重要技术措施。

关键词:水泥粉磨;节能降耗;技术改造;助磨剂

Technical Measurements on Energy Conservation and Consumption

Reduction of Cement Grinding

WU Zu-del,ZHU Jiao-qun2,ZHOU Wei-binge

(I. Gezhouba Holding Company Cement Plant, Jingmen 448032,China;2. School of Materials Science and Engineering,

Wuhan University of Technology,Wuhan 430070,China)

Abstract:The proportion of power consumption of cement grinding in the total power consumption of cement production

is about 65%一75 %,so it has very important significance to reduce the power consumption of cement grinding in our coun-

try. In this paper, there are important technical measurements, such as the proper grinding technique, scientific improve-

ment of grinding system , application of grinding aid to realize the goal of energy conservation and consumption reduction.

KCy words;cement grinding;energy conservation and consumption reduction;technical improvement;grinding aid

目前,我国水泥年生产总产量已经突破16亿tfil,约占世界水泥总产量的50,水泥工业是我国工业领域中的能耗大户。在水泥生产过程中,粉磨电耗约占水泥生产总电耗的65 % -- 75 0,f},粉磨成本占生产总成本的35%左右,粉磨系统维修量占全厂设备维修量的60 0,6,因此,粉磨对水泥生产企业的效益影响极大。因此大力降低水泥粉磨过程中的过高能耗,对我国节能减排具有重要意义。该文从3个方面介绍水泥粉磨中节能降耗的重要的技术措施。 1粉磨工艺技术及选择

1.1不同粉磨技术及设备能耗比较

1)球磨机系统:影响球磨机粉磨效率的因素较多,包括研磨体级配、磨机通风、熟料温度和粉磨工艺等。应优先采用配高效选粉机的圈流球磨工艺,圈流磨利于产品细度和温度的调节和控制,粉磨效率比开流磨高10%一20 0},成品越细优势越明显[zl。

2)辊压机预粉磨系统:辊压机与球磨机组成的各种预粉磨系统(包括循环预粉磨、联合粉磨、半终粉磨等)已经成为水泥粉磨的主要方案,这是由于辊压机的粉磨效率约为球磨机的2倍左右,可以大幅度节电。辊压机系统节电水平取决于辊压机消耗功率的大小,辊压机每消耗1 kWh/t,主机电耗(辊压机球磨机)可降低0.8一1 kWh/to

1.2粉磨系统的选择

从以上粉磨系统的不同特点可以看出,各系统均有不同程度的优势和不足,企业选择粉磨系统时,特别是对现有磨机进行改造时,应根据自身的设备、原料、管理水平、资金状况等条件,按可选择方案的性价比选择适合自己企业的方案。

2水泥粉磨技术的改造措施

2.i开流磨的技术改造

2.1.1衬板

国外公司推出的衬板有逐渐统一的趋势。一仓一般采用提升衬板即所谓的阶梯衬板,二仓则采用分级衬板。但这种分级衬板不是国内常见的锥形分级衬板或平衬板加锥形分级衬板,而是2种甚至3种衬板的组合或复合体。经过优化组合或复合,一种衬板可发挥不同形式衬板的优势,从而保证了最大限度地将能量输人装球区,并尽量消除磨内死区。

2.1.2隔仓板

对于隔仓装置的改进,除了要关注于蓖板的耐磨、耐冲击及防堵等方面外,加大中心件通风面积对于加大整个隔仓装置通风面积的影响最大,也是最可行的方案。因为无论加大蓖板孔尺寸或增加开孔数量,都将对蓖板强度及其对料球的控制作用产生较大影响。此外,改造老式中心件的另一个目的在于通过它来实现对物料流速的控制,从而方便灵活地调节磨内各仓中的料球比,控制物料磨内停留时间。开流磨进行技术改造时,尾仓更换带内筛分装置的隔仓板,严格控制进人尾仓的小颗粒,使前仓的钢球和尾仓的小段各自最大限度地发挥破碎和研磨作用。

2.1.3研磨体

研磨体尺寸基于粉磨能力和喂料粒度,比较通用的是“两头小,中间大”的级配方案。在目前开流磨进行技术改造时,采用微型研磨体以强化尾仓的研磨能力。直径8一IZ mm的小段,单位质量的个数是普通钢段的20倍,总表面积是普通钢段的2.5倍。研磨效率与研磨体的表面积的0.5一0.7次方成正比。小段的应用起到了提高产量、增加产品比表面积、适当改善微粉颗粒组成的至关重要的作用。

2.1.4料段分离装置

对于微型研磨体,有必要设计一个让细粉顺利出磨,但微型研磨体不致跑出磨外的出料蓖板装置。

2.1.5合理的工艺参数设置

改造后的高细高产磨,其工艺参数应根据生产的水泥品种、熟料的易磨性、混合材的品种和掺加比例、磨机规格等来设计磨机的仓位、研磨体的级配和确定细度的控制。

2.2圈流磨的技术改造

随着磨机规格的增大和现有磨机对节能、高产、优质的迫切要求,采用圈流粉磨是水泥粉磨工艺的必然趋势[[3]0

2.2.1选粉机

圈流粉磨的必要设备是选粉机。选粉机的功能是通过将出磨料中达到一定粒径的颗粒及时选出,减少磨内过粉磨量,从而提高磨机粉磨系统效率。但选粉机本身并不产生细粉,选粉机的选用和改造应与磨机的改造结合起来进行。当然,一般说来,选粉机的效率高,系统产量也高。

选粉机的关键技术是“分散”、“分级”和“收集”。“分散”是指进人选粉机的物料要尽可能地抛撒开来,物料颗粒之间要形成一定的空间距离。因此,撒料盘的结构、转速、撒料空间大小、物料水分及物料流量都直接影响着布料的分散率;“分级”是指物料分散后,在选粉室停留的有限时间内,要充分利用气流各种形式的分选功能,把物料的粗、细颗粒尽可能地分开,并送至各自的出口。因此,气体流量、气流速度、气流方式、气固交汇点和流场分布以及选粉室数量、结构等对分级效率影响很大;“收集”是捕捉粗粉和细粉的能力,这与收集方式和收集部件的结构形式有关。

1979年日本小野田公司开发了O-Sepa选粉机,它不仅保留了旋风选粉机外循环的优点,而且采用笼型转子平面螺旋气流选粉原理,从而大幅度提高了选粉效率。以它为代表的笼式选粉机称之为高

效涡流选粉机,也被称为继离心式选粉机、旋风式选粉机之后的第三代选粉机。它的选粉效率一般在80%以上,与离心式或旋风式的选粉机相比,涡流式高效选粉机可提高磨机产量15% }-40%,节电10%--20,体积小、重量轻、布置灵活,产品可在300600澎/kg的比表面积内任意调节,系统负压操作,无粉尘污染。

由于O-Sepa选粉机不带细粉收集装置,需要配备与其处理风量相匹配的大规格的袋收尘器或电除尘器用于收集成品,这无疑较大幅度地增加了系统投资,也使工艺布置复杂,操作控制困难,在一定程度上限制了它的推广和应用。上世纪90年代南京化工学院张少明教授等研究、开发的转子式旋风选粉机,简称为转子式选粉机。将笼型转子选粉原理嫁接于旋风选粉机而形成的一种实用于立窑水泥厂的中、小型高效选粉机。针对“分散”、“分级”和“收集”3个关键技术,它在结构上比旋风式选粉机有了突破性的改进。在相同产量的情况下,与高效涡流选粉机相比效率相当,但可降低系统投资20%一30 %;与旋风式及高效离心式选粉机相比,不但可减少设备规格,而且可提高效率20%一40 % o

2.2.2开流改圈流粉磨后的工艺调整

开流改为圈流粉磨后应作必要的工艺调整,主

要有:

1)钢球级配。一仓钢球平均球径要适当增大。

2)隔仓板的蓖孔孔隙尺寸应适当地放大,以增加物料在磨内的流动速度。

3)加大磨头中空轴的喂料绞刀,以增加喂料量。

4)细度控制,生料磨可适当放宽,80 um孔筛余可控制在10%以下。水泥磨细度要提高,比原开流粉磨时要细296--3%左右,以确保水泥的强度。

3科学应用水泥助磨剂

水泥助磨剂是一种添加剂,适量地加人到被粉磨的物料中,能通过它对颗粒表面的物理化学作用,发挥力学效能,得以提高物料的易碎性和分散性,从而提高粉磨细度和降低粉磨电耗[[4J0

3.1作用机理

助磨剂主要是降低粉磨阻力和阻止微粒聚集。助磨剂通过物理化学吸附于物料表面,颗粒间的摩擦力和粘附力减少,颗粒表面的电负荷得到中和,使其在磨内的流动性趋好,从而改善磨内工作环境,这就是通常所说的“粉体流变”。粉磨过程是机械应力间断地作用于物料的过程,作用期间,被磨物料原有的裂缝被扩展和延伸,并生成新的裂缝;间断期间,不饱合键的吸引力则使裂缝重新愈合,当2种作用力趋于平衡,粉磨细度的增进速率变小甚至下降。按照这种“吸附降低硬度”理论,助磨剂又具有阻止聚合的分散解聚作用。

3.2使用效果

合理科学地使用水泥助磨剂提高台时产量10%}-20%;普通水泥加助磨剂,提高台时产量 15%左右;矿渣水泥加助磨剂,提高台时产量10 0}以上。同时助磨剂能提高水泥3d和28 d抗压强度3一5 MPa,可多掺混合材6%一10%}S}o

水泥助磨剂的节能作用很容易理解。一方面,水泥助磨剂的使用能提高水泥磨的台时产量,从而直接降低了粉磨电耗;另一方面,因水泥助磨剂的增强作用,导致吨水泥熟料的使用量减少,从而减少了因生产熟料而造成的煤电消耗。两者相加,即是使用助磨剂对水泥工业节能减排的贡献。大家知道,助磨剂对节能和减排的功效是相辅相成的,在实现上述节能功效的同时也实现了、减排的目的。

4结语

水泥粉磨电耗占水泥生产过程总电耗相当大的比重,是水泥生产节能减排中的一个重要环节。要求企业和科研人员重点研究开发和推广新的粉磨系统及技术,通过提高粉磨效率和

合理使用助磨剂是水泥粉磨过程实现能耗降低的有效途径。

参考文献

马秋忠.2009年重点联系水泥企业生产运行回顾〔JJ.中国建材,2010,(2):82-83.

刘文增.采用分别粉磨工艺生产水泥的实践fJJ.水泥工程,2008(2):36-37.

梁尚杰.采用粉磨工艺降低矿渣水泥的生产成本〔J7.水泥工程,2006(6):35-37.

陈峭卉,杨军,陈应钦.新型水泥助磨剂的作用及机理研究〔J7.新型建筑材料,2006(6):47-49. 江朝华,蔡安兰,严生.高性能水泥助磨剂的研究fJJ.硅酸盐学报,2001(6):507-511.︸IJ,..J F.J吸1勺‘3r.L,tL r.L︸lesJ IIJ41勺r.L r.L

第五篇:水泥行业节能减排

水泥行业节能减排、清洁生产的现状及展望

1. 我国水泥行业的现状

我国是水泥生产和消费大国,水泥的产量近年来一直稳居世界的第一位。作为经济建设的最基本的原材料,目前国内外尚无一种材料可以替代其地位。水泥工业也已经成为了衡量国家国民经济社会发展水平和综合实力的重要标准。自改革开放以来,我国国内的经济建设规模不断地扩大,并随着城镇化进程的加快,水泥工业得到了快速的发展。

尽管我国水泥工业的发展比较迅速,但是在快速发展的过程中也出现了许多的问题,主要表现为我国水泥行业集中度低,很多生产企业的规模较小、产品的档次比较低且有很多水泥达不到国家标准;有一些企业生产能力落后科技含量低,这些企业占据了相当一部分比重;水泥产业的布局不合理,产能分配不均匀;水泥生产企业的能耗比较大、资源的浪费现象严重还严重的污染环境等。水泥生产资源浪费严重,环境污染大 虽然我国在积极发展新型干法水泥,但水泥行业很多小水泥生产厂家仍采用小立窑和湿法窑等落后的工艺。这些落后的工艺能耗比较高,且热量不能得到很好地利用,造成我国水泥工业整体能耗比较高。水泥工业对环境的影响主要是粉尘和废气的污染。水泥行业粉尘的排放量在我国工业行业粉尘排放量中占据了很大的比重。目前我国雾霾天气逐渐增多,国家对环保问题也更加的重视,在国家的严格控制下,虽然水泥生产中的粉尘排放量逐渐降低,但是污染问题仍然很严重。由此得出,水泥工业开展清洁生产审核迫在眉睫。

2. 水泥行业清洁生产

水泥工业的清洁生产是指在水泥生产过程中,通过采用先进的工艺技术与装备、加强质量管理,合理使用原料和燃料、在符合相关标准的条件下充分利用一切可利用的废弃物,提高资源和能源的利用效率,减少或者避免污染物产生,降低温室气体的排放量,产品性能与质量符合国家标准的要求,并在使用时对人类和环境无毒无害。水泥工业为“两高一资”行业,其对环境的影响主要是水泥、熟料生产造成的环境污染及矿山开采造成的生态破坏。由此,可知水泥工业实施清洁生产不仅可以降低能耗、物耗,减少污染物的排放,而且有助于减缓矿山生态的破坏,提高资源综合利用率,提高企业生产效率,降低生产成本,增强市场竞争力,可产生明显的环境、经济和社会效益。

清洁生产在水泥行业中的作用:

(1)实施清洁生产可以使水泥工业的环保起到事半功倍的效果,有效减轻水泥工业的环境负荷。

(2)实施清洁生产可以在源头预防,避繁就简、去难就易,是水泥工业的环保工作技术难度减小。

(3)用清洁生产的方法预防污染比仅用末端处理的方法治理污染可大量节省资金。

(4)用清洁生产的方法预防污染可以节约资源、能源,降低产品成本,提高经济效益,从而提高了企业治理污染的积极性和主动性。

(5)清洁生产是循环经济的基础。

清洁生产彻底改变了过去那种被动的、滞后的污染控制手段,清洁生产全方位、全过程地将产品的生产、使用和环境减负、环境污染融为一体,以降低在整个生命周期内对环境的负荷和对环境的不良影响。它强调在污染生产前进行综合预防,有效地防治或减少污染的生产和对环境的影响。这一主动行动经国内外许多实践证明能节约资源、能源,产生经济效益。因而实行清洁生产是从根本上控制污染、降低整个工业活动对人类和环境风险、促进工业生产和环境协调发展最有效的手段。

3. 目前水泥清洁生产技术

目前在水泥工业运用比较常见的清洁生产技术有:

(1)大力发展大型新型干法水泥生产工艺。新建、扩建、改建窑外分解窑, 增加新型干法生产水泥的比重是提高水泥生产技术水平,降低能耗的主要途径。

(2)纯低温余热发电技术的运用,充分利用窑炉预热器和篦冷机的排风余热。该项技术使能源回收水平可达35~40kW·h/t 熟料。

(3)采用低阻高效的多级预热器系统和控流式新型篦冷机以及多通道喷煤管的应用,都能有效地降低水泥熟料的生产热耗。

(4)用高效粉磨机取代低效的球磨机,降低粉磨电耗。粉磨是水泥生产中主要的耗电工序,约占综合耗电量70%。我国水泥企业原来大多是采用低效的球磨机, 效率只有3%~5%,现在普遍采用立式磨、辊压磨、挤压磨、高细磨等代替原有的球磨机;以大磨机取代小磨机,淘汰直径小于1.83 m 的小型球磨机; 改进粉磨工艺流程,增添预破碎机、选粉机;采用耐磨钢球、耐磨衬板及节能型衬板等。 (5)同时,在水泥工业积极推动企业规模化,生产设备趋向大型化、生产过程向自动化和智能化发展。通过这些有效的手段,得到明显的规模节能降耗效益。在水泥流通领域,要发展散装水泥等高效率低损耗的物流体系,建立好废旧建材的回收利用体系。以上新技术的成功运用,在很大程度上推动了社会的技术进步。能使水泥按建筑设计要求正常水化、硬化,水泥石的结构致密度达到工程质量的要求。

4.生产工艺的优化

技术创新,积极发展节能减排技术,为实现水泥产品和水泥行业的“再利用”提供技术保障。

(1)改造粉磨工艺,发展粉磨技术减少电耗。在水泥生产中,每生产1吨水泥大约需要粉碎各种物料3~4吨,粉碎工艺过程的电耗占生产总电耗的60%~70%。选择先进的粉碎工艺,简化粉碎流程,改善传统粉碎作业方式,提高粉磨效率、降低粉磨电耗,已成为实现水泥生产节能降耗的关键。因此,水泥企业可以从改造磨前预粉碎工艺、球磨机内部改造和选粉机改造等三个方面来着手,进行粉磨工艺的生态改造,实现节能降耗。

(2)发展新型干法水泥技术,保障水泥产品质量,实现水泥行业节能减排。新型干法水泥是指采用窑外分解的新工艺生产水泥,其生产以悬浮预热器和窑外分解技术为核心,采用新型原料、燃料均化和节能粉磨技术及装备,全线采用计算机集散控制,实现水泥生产过程自动化并高效、优质、低耗、环保。该技术优点为迅速,热效率高,单位容积较湿法水泥产量大,热耗低。发展新型干法水泥生产技术,一方面能消耗工业废渣和一定量的城市生活垃圾,另一方面与立窑相比,劳动生产率高5-6倍,能耗低,粉尘排放仅为立窑的1/5~1/10,产品质量稳定,强度标号高。

(3)建立生态产业链,实现水泥工业企业的“资源化”。仿照自然生态系统食物链和食物网,使一家企业的废物(输出),变成另一家企业的原材料(输入),形成“共生工业链”,实现系统物质流和能量流综合协同的封闭循环,即企业之间的共生原则。这就是“生态产业链”。它既是一条能量转换链,也是一条物质传递链。物质流和能源流沿着“生态产业链”逐级层次流动,原料、能源、废物和各种环境要素之间形成立体环流结构,能源、资源在其中反复循环获得最大限度的利用,使废弃物资源化实现再生增值。

5. 水泥行业发展趋势

5.1水泥行业产业结构调整

我国提倡可持续发展,水泥行业已经发展到了全行业产能过剩的阶段,需要进行大规模结构调整与产业升级。未来水泥行业的发展应该执行“控制总量,调整结构”的政策。即在总量上应满足社会的需求,同时改进水泥行业的产业结构,取缔小的水泥生产企业,支持大企业的发展壮大提高他们的竞争力。未来产品质量不稳定和环保不达标的落后的生产线将会被淘汰,新工艺会被广泛运用。水泥企业也会从数量型向质量型转变,由粗放型向集约型转变。最终形成以大集团为主导的区域性市场格局,使产业由追求量的增加转变为追求价值的增长。

5.2加大水泥行业技术创新

企业的科技创新能力,对实现产业升级和培育新的经济增长点至关重要。我国水泥行业要把技术创新放在重要位置,水泥生产企业一方面要建立和完善整体的自主创新体系,建立创新平台,加大自主创新投入,另一方面积极引进先进的人才与技术,加大集成创新力度。用先进的技术、新的工艺和新设备改造传统的产业。要密切的关注世界科技发展的动向和市场的需求,在节约能源和资源、减少环境污染等方面来提高产品的质量。

5.3注重优质水泥的生产

虽然我国水泥行业整体产能过剩,但是大部分都是普通水泥,优质水泥很少,导致优质水泥的缺口很大。而且混凝土的强度等级和水泥的质量也有很大关系,混凝土强度每提高一个等级,水泥和钢筋的用量就会减少百分之十到百分之十五。采用优质的水泥减少了资源的使用量,符合我国节能减排的政策和可持续发展的标准。

5.4发展绿色水泥工业

水泥行业的绿色工业是指水泥企业不对人类社会和环境带来负面的影响同行是又做出贡献。未来我国的水泥工业一定会向绿色工业发展。首先要最大限度的提高资源的利用率,从现在的水泥生产技术要求来看,并不需要非常优质的原料,可以采用较低品质的原材料来代替粘土和石灰石的配料,以起到节约资源的作用。其次是采用绿色能源和可燃废弃物燃料,充分的利用再生资源,并加强余热的利用,利用余热发电,最终达到可持续发展的要求。最后要加强对污染物的处理。各个水泥生产企业都要强制性的安装运行可靠、收尘效率高的电收尘器,减少粉尘的排放。减少对大气的污染。最终实现水泥产业的绿色工业,这样水泥企业才能存活得更长久。

6. 结语

水泥工业的清洁生产机会和潜力很大,从原料加工到成品出厂,从领导干部到岗位操作工,需要每个人在各自岗位上积极的投入与参与,使企业生产的每一道工序和每一个环节都处在最佳状态,只有这样,清洁生产的实施才能真正收到实效,才能使企业具有较强的市场竞争力。加快推进水泥工业企业的节能减排刻不容缓。运用循环经济理论,以“3R原则”为指导,通过清洁生产,实现水泥工业的“减量化”;技术创新,促进水泥工业的“再利用”;建立生态产业链,实现水泥的“再循环”以及政府政策的引导等途径,探究一条能推进贵州省水泥工业企业节能减排的有效途径。再循环原则,属于输出端方法。通过把废物再次变成资源,以减少最终处理量,最大限度地利用资源,把已完成使用价值的物质返回到工厂,经处理后再融入新的产品之中。也就是我们通常所说的废品的回收利用和废物的综合利用。“3R原则”的生产模式,从设计、原料、工艺、技术进步和生产管理等各个环节入手,把污染尽可能控制在生产过程中,使生产过程中排放的污染物最少化,对环境和人类的危害最小;同时提高资源的综合利用率,降低企业生产成本,提高经济效益,并保护生态环境。

上一篇:施工工期协议书范文下一篇:诗歌鉴赏象征范文