大一高等数学总结

2022-06-27

叹岁月流逝太快,转眼间便到了年底,一年的辛苦工作中,我们留下了太多的难忘时刻,也在不断的工作积累中,成长为更好的自己。为了记录这一年的工作成长,我们需要写一份总结,以下是小编收集整理的《大一高等数学总结》,供大家阅读,更多内容可以运用本站顶部的搜索功能。

第一篇:大一高等数学总结

大一高等数学学习心得

转眼之间大一已经过去了一半,高数的学习也有了一学期,仔细一想,高数也不是传说中的那么可怕,当然也没有那么容易,前提是的自己真的用心了。

记得刚开学的时候,我对高数还是很害怕的,我虽然上课认真听讲,但我还是不大明白,当然那是由于刚开始的课程确实是很抽象的,很难以高中时的解题思维理解,但后来学的就不是那么的吃力了,再加上我的勤奋看书。

对于高数的学习大多数人都认为应该课前预习、上课认真听讲、课后复习。但那只能是理想的状态下,事实是不允许我们那样做的。由于我的数学还算有点功底,一直以来,我只做到了其中的一点半,而且成绩还算过得去,因此,我认为对于高数的学习,我们应该上课认真听讲,时课后复习。我们主要应该在课堂上认真听讲,理解解题方法,我们现在所需要的是方法,是思维,而不仅仅是例题本身的答案,我们学习高数不是为了将来能计算算术,而是为了获得一种思想,为了提高我们的思维能力,为了能够用于解决现实问题。

在课后复习时,再根据例题好好体会解体的方法,一定要琢磨透。至于您的方法我觉得还不错,容易的快速过,困难的花点时间耐心讲解。只是我们每学期都要放弃后边的一部分内容,是否可以考虑相对放弃一些前面简单的,而加快进度讲完后面的一些内容。

第二篇:考研.数学 高等数学总结1

中值定理及应用

一、基本概念定理

1、极值点与极值—设连续yf(x)(xD),其中x0D。若存在0,当0|xx0|时,有f(x)f(x0),称xx0为f(x)的极大点;若存在0,当0|xx0|时,有f(x)f(x0),称xx0为f(x)的极小点,极大点和极小点称为极值点。

2、极限的保号性定理

定理 设limf(x)A0(0),则存在0,当0|xx0|时,xx0

f(x)0(0),即函数极限大于零则邻域大于零;极限小于零则邻域小于零。

A0,因为limf(x)A,由极限的定义,xx0xx02

AA0。 存在0,当0|xx0|时,|f(x)A|,于是f(x)22【证明】设limf(x)A0,取0

3、极限保号性的应用

【例题1】设f(1)0,limf(x)2,讨论x1是否是极值点。 x1|x1|

【例题2】(1)设f(a)0,讨论xa是否是f(x)的极值点;

(2)设f(a)0,讨论xa是否是f(x)的极值点。

f(x)f(a)0,由极限的保号性,存在0,xaxa

f(x)f(a)0。 当0|xa|时,有xa【解答】(1)设f(a)0,即lim

当x(a,a)时,f(x)f(a);当x(a,a)时,f(x)f(a)。 显然xa不是f(x)的极值点。

(2)设f(a)0,即limf(x)f(a)0,由极限的保号性,存在0,当xaxa

f(x)f(a)0。 0|xa|时,有xa

当x(a,a)时,f(x)f(a);当x(a,a)时,f(x)f(a)。 显然xa不是f(x)的极值点。

【结论1】设连续函数f(x)在xa处取极值,则f(a)0或f(a)不存在。

【结论2】设可导函数f(x)在xa处取极值,则f(a)0。

二、一阶中值定理

定理1(罗尔中值定理)设函数f(x)满足:(1)f(x)C[a,b];(2)f(x)在(a,b)内可导;(3)f(a)f(b),则存在(a,b),使得f()0。

定理2(Lagrange中值定理)设f(x)满足:(1)f(x)C[a,b];(2)f(x)在(a,b)内可导,则存在(a,b),使得f()

【注解】

(1)中值定理的等价形式为: f(b)f(a)。 ba

f(b)f(a)f()(ba),其中(a,b);

f(b)f(a)f[a(ba)](ba),其中01。

(2)对端点a,b有依赖性。

(3)端点a,b可以是变量,如f(x)f(a)f()(xa),其中是介于a与x之间的x的函数。

定理3(Cauchy中值定理)设f(x),g(x)满足:(1)f(x),g(x)C[a,b];(2)f(x),g(x)在(a,b)内可导;(3)g(x)0,x(a,b),则存在(a,b),使得f(b)f(a)f()。 g(b)g(a)g()

题型一:证明f(n)()0

【例题1】设f(x)C[0,3],f(0)f(1)f(2)3,f(3)1,证明:存在(0,3)使得f()0。

【例题2】设曲线L:yf(x)(x[a,b]),f(x)C[a,b],在(a,b)内二阶可导,连接端点A(a,f(a))与B(b,f(b))的直线与曲线L交于内部一点C(c,f(c))(acb),证明:存在(a,b),使得f()0。

(a)f(b)0,证明:存在【例题3】设f(x)C[a,b],在(a,b)内可导,且f

(a,b),使得f()0。

题型二:结论中含一个中值,不含a,b,且导出之间差距为一阶

【例题1】设f(x)C[a,b],在(a,b)内可导,f(a)f(b)0,证明:存在(a,b),使得f()f()0。

【例题2】设f(x),g(x)C[a,b],在(a,b)内可导,f(a)f(b)0,证明:存在(a,b),使得f()f()g()0。

【例题3】设f(x)C[0,1],在(0,1)内二阶可导,且f(0)f(1),证明:存在(0,1),使得f()2f()。 1

题型三:含中值,

情形一:含中值,的项复杂度不同

【例题1】设f(x)C[a,b],在(a,b)内可导,且f(a)f(b)1,证明:存在,(a,b),使得e[f()f()]1。

【例题2】设f(x)C[a,b],在(a,b)内可导(a0),证明:存在,(a,b),使得

f()(ab)f()。 2

情形二:含中值,的项复杂度相同

【例题1】设f(x)C[0,1],在(0,1)内可导,且f(0)0,f(1)1。

(1)证明:存在c(0,1),使得f(c)1c。

(2)证明:存在,(0,1),使得f()f()1。

【例题2】设f(x)C[0,1],在(0,1)内可导,且f(0)0,f(1)1,证明:存在,(0,1),使得213。 f()f()

三、高阶中值定理—泰勒中值定理

背景:求极限limx0xsinx。 x3

定理4(泰勒中值定理)设函数f(x)在xx0的邻域内有直到n1阶导数,则有

f(x0)f(n)(x0)2f(x)f(x0)f(x0)(xx0)(xx0)nRn(x), 2!n!

f(n1)()且Rn(x)(xx0)n,其中介于x0与x之间,称此种形式的余项为拉格(n1)!

郎日型余项,若Rn(x)o[(xx0)n],称此种形式的余项为皮亚诺型余项。 特别地,若x00,则称

f(0)f(n)(0)n2f(x)f(0)f(0)(xx0)xRn(x), 2!n!

f(n1)(x)n1为马克劳林公式,其中Rn(x)x(01)。 (n1)!

【注解】常见函数的马克劳林公式

xn

o(xn)。

1、e1xn!x

x3(1)n

2n

12、sinxxxo(x2n1)。 3!(2n1)!

x2(1)n

2n

3、cosx1xo(x2n)。 2!(2n)!

11xxno(xn)。 1x

11x(1)nxno(xn)。

5、1x

4、

x2(1)n1

nxo(xn)。

6、ln(1x)x2n

专题一:泰勒公式在极限中的应用 【例题】求极限limx0xsinx。 x3

专题二:二阶保号性问题

设函数f(x)的二阶导数f(x)0(0),这类问题主要有两个思路:

思路一:设f(x)0,则f(x)单调增加

【例题1】设f(x)在[0,)上满足f(x)0且f(0)0,证明:对任意的a0,b0有f(a)f(b)f(ab)。

【例题2】设f(x)在[a,)上满足f(x)0且f(a)2,f(a)1,证明:f(x)在(a,)内有且仅有一个零点。

思路二:重要不等式

设f(x)0,因为f(x)f(x0)f(x0)(xx0)

所以有

f(x)f(x0)f(x0)(xx0),

其中等号成立当且仅当xx0。

【例题1】设f(x)C(,),f(x)0,且limx0f()(xx0)2, 2!f(x)1,证明:f(x)x。 x

【例题2】设f(x)0(axb),证明:对任意的xi[a,b](i1,2,,n)及ki0(i1,2,,n)且k1k2kn1,证明:

f(k1x1k2x2knxn)k1f(x1)k2f(x2)knf(xn)。

【例题3】设f(x)C[0,1]且f(x)0,证明:

101f(x2)dxf()。 3

第三篇:高等数学上册总结

《工程应用数学A》课程总结

无论我们做什么事都要不断地思考,不断地总结,学习也是这样,所以这次就借此机会对于这一学期所学内容进行一次总结,也算是对自我的一次思考。

一、课程主要知识

本课程主要以函数为起始,然后引出极限的定义以及极限的应用。然后以极限为基础介绍导数,微分。在微分中主要讲了一些求微分的定理,例如拉格朗日中值定理,柯西中值定理等等。其次讲了函数微积分,重点讲了一些求积分的方法,例如换元积分法,分部积分法。最后学习微分方程,这一块可以说是比较难的一章,什么一阶微分方程,二阶微分方程,二阶常系数齐次线性微分方程等等,计算量也比较大。所以总的来说全书的知识点都是相连起来的。后面知识总是以前面所学知识为基础,一层一层展开的。

二、个人学习心得体会

其实不瞒老师,我高中的时候数学不是太好,平时考试数学有就有点拖后腿,而且我高考数学只考了70多分。有一天老师说,高考没及格的同学数学一定要好好学,否则极有可能挂科。当时,我还不相信,至少认为这种事不会发生在我身上。自己平时在数学上多少也花了点功夫。可以说做的准备工作比高中还多。基本上在每次上课前

都能预习,课上也认真听,而且课也差不多都能听懂,作业也都是自己独立完成的。我想及格应该不是问题,但后来的第一次过程考核,我才发现差距在哪,题目基本上不怎么会写,而且后来成绩出来,刚好考了60分。当时心就碎了。感觉落差好大。于是感叹“高树”太高了!我想是不是我题目做少了,难道说大学学数学也要用题海战术吗?可是我看班里有些同学平时上课也不听,作业基本靠抄,有事没事就拿着手机看电子书,但是考试却比我高,我就很郁闷,难道是他们比我聪明还是他们另有技巧?

经过一段时间的学习之后,我发现课前预习很重要。课前预习能够让你上课更有效率,也不会那么累。老师上课在黑板上的板书很多都是书上的。如果你课前预习了,就会知道老师说的在哪,书上有没有,记笔记的时候就可以抓住重点。不用完整地抄下来。但是你不预习的话,因为不知道书上有没有或是哪里是重点就得全部抄下来,很浪费时间,这样一来一节课就全部用在记笔记上了,根本没什么时间去听课,上课也就不会有效率。所以课前预习很重要。其次必要的练习也不可缺少。比如说上课老师说的定理不太懂,这时候就需要用练习来加强对知识的理解。

三、本课程对个人的影响

高等数学在整个大学的学习过程中占有一定的重要地位,它不仅对以后将会学到的线性代数和概率统计有影响,而且还是考研必考的科目。对于我们网络工程专业准备考研的同学来说,这绝对是一个重

头戏。对于不准备考研的同学来说,也有一定的影响,它可以培养我们的逻辑思维能力、计算能力,使我们的思维更缜密。数学是科学之母,任何学科的发展都离不开它。所以高数一定要学好。

四、总结

学习如逆水行舟不进则退,对于高数这门课程尤其是这样。因为只要你一节课没跟上就会步步跟不上,所以高数的学习不能放松,必须抓紧。相信我能学好!一定可以的!

第四篇:高等数学极限总结

【摘 要】《高等数学》教学中对于极限部分的要求很高,这主要是因为其特殊的地位决定的。然而极限部分绝大部分的运算令很多从中学进入高校的学生感到困窘。本文立足教材的基本概念阐述,着重介绍极限运算过程中极具技巧的解决思路。希望以此文能对学习者有所帮助。

【关键词】高等数学 极限 技巧

《高等数学》极限运算技巧

《高等数学》的极限与连续是前几章的内容,对于刚入高校的学生而言是入门部分的重要环节。是“初等数学”向“高等数学”的起步阶段。

一,极限的概念

从概念上来讲的话,我们首先要掌握逼近的思想,所谓极限就是当函数的变量具有某种变化趋势(这种变化趋势是具有唯一性),那么函数的应变量同时具有一种趋势,而且这种趋势是与自变量的变化具有对应性。通俗的来讲,函数值因为函数变量的变化而无限逼近某一定值,我们就将这一定值称为该函数在变量产生这种变化时的极限!

从数学式子上来讲,逼近是指函数的变化,表示为。这个问题不再赘述,大家可以参考教科书上的介绍。

二,极限的运算技巧

我在上课时,为了让学生好好参照我的结论,我夸过这样一个海口,我说,只要你认真的记住这些内容,高数部分所要求的极限内容基本可以全部解决。现在想来这不是什么海口,数学再难也是基本的内容,基本的方法,关键是技巧性。我记得blog中我做过一道极限题,当时有网友惊呼说太讨巧了!其实不是讨巧,是有规律可循的!今天我写的内容希望可以对大家的学习有帮助!

我们看到一道数学题的时候,首先是审题,做极限题,首先是看它的基本形式,是属于什么形式采用什么方法。这基本上时可以直接套用的。

1,连续函数的极限

这个我不细说,两句话,首先看是不是连续函数,是连续函数的直接带入自变量。

2,不定型

我相信所有学习者都很清楚不定型的重要性,确实。那么下面详细说明一些注意点以及技巧。

第一,所有的含有无穷小的,首先要想到等价无穷小代换,因为这是最能简化运算的。等价代换的公式主要有六个:

需要注意的是等价物穷小代换是有适用条件的,即:在含有加减运算的式子中不能直接代换,在部分式子的乘除因子也不能直接代换,那么如果一般方法解决不了问题的话,必须要等价代换的时候,必须拆项运算,不过,需要说明,拆项的时候要小心,必须要保证拆开的每一项极限都存在。

此外等价无穷小代换的使用,可以变通一些其他形式,比如:

等等。特别强调在运算的之前,检验形式,是无穷小的形式才能等价代换。

当然在一些无穷大的式子中也可以去转化代换,即无穷大的倒数是无穷小。这需要变通的看问题。

在无穷小的运算中,洛必答法则也是一种很重要的方法,但是洛必答法则适用条件比较单一,就是无穷小比无穷小。比较常见的采用洛必答法则的是无穷小乘无穷大的情况。(特

别说明无穷小乘无穷大可以改写为无穷小比无穷小或者无穷大比无穷大的形式,这根据做题的需要来进行)。

第二,在含有∞的极限式中,一般可分为下面几种情况:

(1),“∞/∞ ”形式

如果是幂函数形式的(包含幂函数四则运算形式),可以找高次项,提出高次项,这样其他一切项就都是无穷小了,只有高次项是常数。比如:

,这道题中,可以看到提出最高次x(注意不是)其他项都是“0”,原来的x都是常数1了。当然如果分式形式中,只有分子中含有高次项,那么该极限式极限不存在(是无穷大),如果只有分母中含有高次项,那么该极限式极限为0,如果分子分母都含有高次项,我们可以直接去看高次项的系数,基本原理其实就是上面所说的提高次项。比如上面的例子,可以直接写1/2。

如果不是纯幂函数形式,无法用提高次项的方法(提高次项是优先使用的方法),使用洛必达也是一种很好的方法。需要强调的是洛必达是一种解决“∞/∞ ”或“0/0 ”的基本方法,它的严格限制形式只有这两种,所以比较好观察。但是多数时候我们优先采用其他的方法来解决,这主要是考虑运算量的问题。

(2),“∞-∞ ”形式

“ ∞-∞”形式不能直接运算,需要转换形式,即转换成“∞/∞ ”或“0/0 ”的形式,基本解法同上。比如:

这道题是转换形式之后是“∞/∞ ”的形式,提高次项解。

(3)“ ”形式

这也是需要转换的一种基本形式。因为无穷大与无穷小之间的倒数关系,所以这种转换时比较简单也是比较容易解决的。转换之后的形式也是“∞/∞ ”或“0/0 ”的形式。

第三,“ ”

这种形式的解决思路主要有两种。

第一种是极限公式,这种形式也是比较直观的。比如:

这道题的基本接替思路是,检验形式是“式。

”,然后选用公式,再凑出公式的形式,最后直接套用公第二种是取对数消指数。简单来说,“ ”形式指数的存在是我们解题的主要困难。那么我们直接消掉指数就可以采用其他方法来解决了。比如上面那道题用取对数消指数的方法来解,是这样的:

可以看出尽管思路切入点不一样,但是这两种方法有异曲同工之妙。

三,极限运算思维的培养

极限运算考察的是一种基本能力,所以在做题或者看书的时候依赖的是基本概念和基本方法。掌握一定的技巧可以使学习事半功倍。而极限思维的培养则是对做题起到指导性的意义。如何培养,一方面要立足概念,另一方面则需要在具体的运算中体会,多做题多总结。

第五篇:高等数学难点总结

高等数学难点总结 上册:

函数(高等数学的主要研究对象)

极限:数列的极限(特殊)——函数的极限(一般) 极限的本质是通过已知某一个量(自变量)的变化趋势,去研究和探索另外一个量(因变量)的变化趋势

由极限可以推得的一些性质:局部有界性、局部保号性……应当注意到,由极限所得到的性质通常都是只在局部范围内成立

在提出极限概念的时候并未涉及到函数在该点的具体情况,所以函数在某点的极限与函数在该点的取值并无必然联系

连续:函数在某点的极限 等于 函数在该点的取值 连续的本质:自变量无限接近,因变量无限接近

导数的概念

本质是函数增量与自变量增量的比值在自变量增量趋近于零时的极限,更简单的说法是变化率

微分的概念:函数增量的线性主要部分,这个说法有两层意思,

一、微分是一个线性近似,

二、这个线性近似带来的误差是足够小的,实际上任何函数的增量我们都可以线性关系去近似它,但是当误差不够小时,近似的程度就不够好,这时就不能说该函数可微分了

不定积分:导数的逆运算 什么样的函数有不定积分

定积分:由具体例子引出,本质是先分割、再综合,其中分割的作用是把不规则的整体划作规则的许多个小的部分,然后再综合,最后求极限,当极限存在时,近似成为精确 什么样的函数有定积分

求不定积分(定积分)的若干典型方法:换元、分部,分部积分中考虑放到积分号后面的部分,不同类型的函数有不同的优先级别,按反对幂三指的顺序来记忆

定积分的几何应用和物理应用

高等数学里最重要的数学思想方法:微元法

微分和导数的应用:判断函数的单调性和凹凸性

微分中值定理,可从几何意义去加深理解

泰勒定理:本质是用多项式来逼近连续函数。要学好这部分内容,需要考虑两个问题:

一、这些多项式的系数如何求?

二、即使求出了这些多项式的系数,如何去评估这个多项式逼近连续函数的精确程度,即还需要求出误差(余项),当余项随着项数的增多趋向于零时,这种近似的精确度就是足够好的。 下册

(一):

多元函数的微积分:将上册的一元函数微积分的概念拓展到多元函数

最典型的是二元函数

极限:二元函数与一元函数要注意的区别,二元函数中两点无限接近的方式有无限多种(一元函数只能沿直线接近),所以二元函数存在的要求更高,即自变量无论以任何方式接近于一定点,函数值都要有确定的变化趋势

连续:二元函数和一元函数一样,同样是考虑在某点的极限和在某点的函数值是否相等

导数:上册中已经说过,导数反映的是函数在某点处的变化率(变化情况),在二元函数中,一点处函数的变化情况与从该点出发所选择的方向有关,有可能沿不同方向会有不同的变化率,这样引出方向导数的概念

沿坐标轴方向的导数若存在,称之为偏导数

通过研究发现,方向导数与偏导数存在一定关系,可用偏导数和所选定的方向来表示,即二元函数的两个偏导数已经足够表示清楚该函数在一点沿任意方向的变化情况

高阶偏导数若连续,则求导次序可交换

微分:微分是函数增量的线性主要部分,这一本质对一元函数或多元函数来说都一样。只不过若是二元函数,所选取的线性近似部分应该是两个方向自变量增量的线性组合,然后再考虑误差是否是自变量增量的高阶无穷小,若是,则微分存在

仅仅有偏导数存在,不能推出用线性关系近似表示函数增量后带来的误差足够小,即偏导数存在不一定有微分存在

若偏导数存在,且连续,则微分一定存在

极限、连续、偏导数和可微的关系在多元函数情形里比一元函数更为复杂

极值:若函数在一点取极值,且在该点导数(偏导数)存在,则此导数(偏导数)必为零

所以,函数在某点的极值情况,即函数在该点附近的函数增量的符号,由二阶微分的符号判断。对一元函数来说,二阶微分的符号就是二阶导数的符号,对二元函数来说,二阶微分的符号可由相应的二次型的正定或负定性判断。

级数敛散性的判别思路:首先看通项是否趋于零,若不趋于零则发散。若通项趋于零,看是否正项级数。若是正项级数,首先看能否利用比较判别法,注意等比级数和调和级数是常用来作比较的级数,若通项是连乘形式,考虑用比值判别法,若通项是乘方形式,考虑用根值判别法。若不是正项级数,取绝对值,考虑其是否绝对收敛,绝对收敛则必收敛。若绝对值不收敛,考察一般项,看是否交错级数,用莱布尼兹准则判断。若不是交错级数,只能通过最根本的方法判断,即看其前n项和是否有极限,具体问题具体分析。

比较判别法是充分必要条件,比值和根值法只是充分条件,不是必要条件。

函数项级数情况复杂,一般只研究幂级数。阿贝尔定理揭示了幂级数的重要性质:收敛区域存在一个收敛半径。所以对幂级数,关键在于求出收敛半径,而这可利用根值判别法解决。

逐项求导和逐项积分不改变幂级数除端点外的区域的敛散性,端点情况复杂,需具体分析。

一个函数能展开成幂级数的条件是:存在任意阶导数。展开后的幂级数能收敛于原来函数的条件是:余项(误差)要随着项数的增加趋于零。这与泰勒展开中的结论一致。

微分方程:不同种类的方程有不同的常见解法,但理解上并无难处。

上一篇:第一季度工作总结下一篇:导游词全中英对照

本站热搜