高等数学培训总结

2022-06-30

时间过得很快,四季轮回的过程中,一年忙碌的工作时间结束。在这一年的工作中,大家通过工作,可学到更多方面的工作知识,也留下了众多的学习回忆。为记录这一年的成长,可编写一份年终总结。以下是小编精心整理的《高等数学培训总结》,欢迎大家借鉴与参考,希望对大家有所帮助!

第一篇:高等数学培训总结

高等数学总结

FROM BODY TO SOUL

高等数学

第一讲 函数、极限和连续

一、 函数 1. 函数的概念

几种常见函数 绝对值函数: 符号函数: 取整函数: 分段函数:

最大值最小值函数:

2. 函数的特性

有界性: 单调性: 奇偶性: 周期性:

3. 反函数与复合函数

反函数:

复合函数:

第二篇:高等数学极限总结

我的高等数学 学我所学,想我所想

【摘

要】《高等数学》教学中对于极限部分的要求很高,这主要是因为其特殊的地位决定的。然而极限部分绝大部分的运算令很多从中学进入高校的学生感到困窘。本文立足教材的基本概念阐述,着重介绍极限运算过程中极具技巧的解决思路。希望以此文能对学习者有所帮助。 【关键词】高等数学 极限 技巧

《高等数学》极限运算技巧

《高等数学》的极限与连续是前几章的内容,对于刚入高校的学生而言是入门部分的重要环节。是“初等数学”向“高等数学”的起步阶段。

一,极限的概念

从概念上来讲的话,我们首先要掌握逼近的思想,所谓极限就是当函数的变量具有某种变化趋势(这种变化趋势是具有唯一性),那么函数的应变量同时具有一种趋势,而且这种趋势是与自变量的变化具有对应性。通俗的来讲,函数值因为函数变量的变化而无限逼近某一定值,我们就将这一定值称为该函数在变量产生这种变化时的极限!

从数学式子上来讲,逼近是指函数的变化,表示为。这个问题不再赘述,大家可以参考教科书上的介绍。

二,极限的运算技巧

我在上课时,为了让学生好好参照我的结论,我夸过这样一个海口,我说,只要你认真的记住这些内容,高数部分所要求的极限内容基本可以全部解决。现在想来这不是什么海口,数学再难也是基本的内容,基本的方法,关键是技巧性。我记得blog中我做过一道极限题,当时有网友惊呼说太讨巧了!其实不是讨巧,是有规律可循的!今天我写的内容希望可以对大家的学习有帮助!

我们看到一道数学题的时候,首先是审题,做极限题,首先是看它的基本形式,是属于什么形式采用什么方法。这基本上时可以直接套用的。

我的高等数学 学我所学,想我所想

1,连续函数的极限

这个我不细说,两句话,首先看是不是连续函数,是连续函数的直接带入自变量。

2,不定型

我相信所有学习者都很清楚不定型的重要性,确实。那么下面详细说明一些注意点以及技巧。

第一,所有的含有无穷小的,首先要想到等价无穷小代换,因为这是最能简化运算的。等价代换的公式主要有六个:

需要注意的是等价物穷小代换是有适用条件的,即:在含有加减运算的式子中不能直接代换,在部分式子的乘除因子也不能直接代换,那么如果一般方法解决不了问题的话,必须要等价代换的时候,必须拆项运算,不过,需要说明,拆项的时候要小心,必须要保证拆开的每一项极限都存在。 此外等价无穷小代换的使用,可以变通一些其他形式,比如:

等等。特别强调在运算的之前,检验形式,是无穷小的形式才能等价代换。

当然在一些无穷大的式子中也可以去转化代换,即无穷大的倒数是无穷小。这需要变通的看问题。

在无穷小的运算中,洛必答法则也是一种很重要的方法,但是洛必答法则适用条件比较单一,就是无穷小比无穷小。比较常见的采用洛必答法则的是无穷小乘无穷大的情况。(特别说明无穷小乘无穷大可以改写为无穷小比无穷小或者无穷大比无穷大的形式,这根据做题的需要来进行)。

我的高等数学 学我所学,想我所想

第二,在含有∞的极限式中,一般可分为下面几种情况: (1),“∞/∞ ”形式

如果是幂函数形式的(包含幂函数四则运算形式),可以找高次项,提出高次项,这样其他一切项就都是无穷小了,只有高次项是常数。比如:

,这道题中,可以看到提出最高次x(注意不是)其他项都是“0”,原来的x都是常数1了。当然如果分式形式中,只有分子中含有高次项,那么该极限式极限不存在(是无穷大),如果只有分母中含有高次项,那么该极限式极限为0,如果分子分母都含有高次项,我们可以直接去看高次项的系数,基本原理其实就是上面所说的提高次项。比如上面的例子,可以直接写1/2。

如果不是纯幂函数形式,无法用提高次项的方法(提高次项是优先使用的方法),使用洛必达也是一种很好的方法。需要强调的是洛必达是一种解决“∞/∞ ”或“0/0 ”的基本方法,它的严格限制形式只有这两种,所以比较好观察。但是多数时候我们优先采用其他的方法来解决,这主要是考虑运算量的问题。 (2),“∞-∞ ”形式

“ ∞-∞”形式不能直接运算,需要转换形式,即转换成“∞/∞ ”或“0/0 ”的形式,基本解法同上。比如:

这道题是转换形式之后是“∞/∞ ”的形式,提高次项解。 (3)“ ”形式

我的高等数学 学我所学,想我所想

这也是需要转换的一种基本形式。因为无穷大与无穷小之间的倒数关系,所以这种转换时比较简单也是比较容易解决的。转换之后的形式也是“∞/∞ ”或“0/0 ”的形式。

第三,“ ”

这种形式的解决思路主要有两种。

第一种是极限公式,这种形式也是比较直观的。比如:道题的基本接替思路是,检验形式是“式,最后直接套用公式。

”,然后选用公式,再凑出公式的形第二种是取对数消指数。简单来说,“ ”形式指数的存在是我们解题的主要困难。那么我们直接消掉指数就可以采用其他方法来解决了。比如上面那道题用取对数消指数的方法来解,是这样的:

可以看出尽管思路切入点不一样,但是这两种方法有异曲同工之妙。 三,极限运算思维的培养

极限运算考察的是一种基本能力,所以在做题或者看书的时候依赖的是基本概念和基本方法。掌握一定的技巧可以使学习事半功倍。而极限思维的培养则是对做题起到指导性的意义。如何培养,一方面要立足概念,另一方面则需要在具体的运算中体会,多做题多总结。

第三篇:高等数学难点总结

函数(高等数学的主要研究对象)

极限:数列的极限(特殊)——函数的极限(一般)

极限的本质是通过已知某一个量(自变量)的变化趋势,去研究和探索另外一个量(因变量)的变化趋势

由极限可以推得的一些性质:局部有界性、局部保号性……应当注意到,由极限所得到的性质通常都是只在局部范围内成立

在提出极限概念的时候并未涉及到函数在该点的具体情况,所以函数在某点的极限与函数在该点的取值并无必然联系

连续:函数在某点的极限 等于 函数在该点的取值 连续的本质:自变量无限接近,因变量无限接近

导数的概念

本质是函数增量与自变量增量的比值在自变量增量趋近于零时的极限,更简单的说法是变化率

微分的概念:函数增量的线性主要部分,这个说法有两层意思,

一、微分是一个线性近似,

二、这个线性近似带来的误差是足够小的,实际上任何函数的增量我们都可以线性关系去近似它,但是当误差不够小时,近似的程度就不够好,这时就不能说该函数可微分了

不定积分:导数的逆运算 什么样的函数有不定积分

定积分:由具体例子引出,本质是先分割、再综合,其中分割的作用是把不规则的整体划作规则的许多个小的部分,然后再综合,最后求极限,当极限存在时,近似成为精确 什么样的函数有定积分

求不定积分(定积分)的若干典型方法:换元、分部,分部积分中考虑放到积分号后面的部分,不同类型的函数有不同的优先级别,按反对幂三指的顺序来记忆

定积分的几何应用和物理应用

高等数学里最重要的数学思想方法:微元法

微分和导数的应用:判断函数的单调性和凹凸性

微分中值定理,可从几何意义去加深理解

泰勒定理:本质是用多项式来逼近连续函数。要学好这部分内容,需要考虑两个问题:

一、这些多项式的系数如何求?

二、即使求出了这些多项式的系数,如何去评估这个多项式逼近连续函数的精确程度,即还需要求出误差(余项),当余项随着项数的增多趋向于零时,这种近似的精确度就是足够好的 下册

(一):

多元函数的微积分:将上册的一元函数微积分的概念拓展到多元函数

最典型的是二元函数

极限:二元函数与一元函数要注意的区别,二元函数中两点无限接近的方式有无限多种(一元函数只能沿直线接近),所以二元函数存在的要求更高,即自变量无论以任何方式接近于一定点,函数值都要有确定的变化趋势

连续:二元函数和一元函数一样,同样是考虑在某点的极限和在某点的函数值是否相等

导数:上册中已经说过,导数反映的是函数在某点处的变化率(变化情况),在二元函数中,一点处函数的变化情况与从该点出发所选择的方向有关,有可能沿不同方向会有不同的变化率,这样引出方向导数的概念

沿坐标轴方向的导数若存在,称之为偏导数

通过研究发现,方向导数与偏导数存在一定关系,可用偏导数和所选定的方向来表示,即二元函数的两个偏导数已经足够表示清楚该函数在一点沿任意方向的变化情况

高阶偏导数若连续,则求导次序可交换

微分:微分是函数增量的线性主要部分,这一本质对一元函数或多元函数来说都一样。只不过若是二元函数,所选取的线性近似部分应该是两个方向自变量增量的线性组合,然后再考虑误差是否是自变量增量的高阶无穷小,若是,则微分存在

仅仅有偏导数存在,不能推出用线性关系近似表示函数增量后带来的误差足够小,即偏导数存在不一定有微分存在

若偏导数存在,且连续,则微分一定存在

极限、连续、偏导数和可微的关系在多元函数情形里比一元函数更为复杂

极值:若函数在一点取极值,且在该点导数(偏导数)存在,则此导数(偏导数)必为零

所以,函数在某点的极值情况,即函数在该点附近的函数增量的符号,由二阶微分的符号判断。对一元函数来说,二阶微分的符号就是二阶导数的符号,对二元函数来说,二阶微分的符号可由相应的二次型的正定或负定性判断。

级数敛散性的判别思路:首先看通项是否趋于零,若不趋于零则发散。若通项趋于零,看是否正项级数。若是正项级数,首先看能否利用比较判别法,注意等比级数和调和级数是常用来作比较的级数,若通项是连乘形式,考虑用比值判别法,若通项是乘方形式,考虑用根值判别法。若不是正项级数,取绝对值,考虑其是否绝对收敛,绝对收敛则必收敛。若绝对值不收敛,考察一般项,看是否交错级数,用莱布尼兹准则判断。若不是交错级数,只能通过最根本的方法判断,即看其前n项和是否有极限,具体问题具体分析。

比较判别法是充分必要条件,比值和根值法只是充分条件,不是必要条件。

函数项级数情况复杂,一般只研究幂级数。阿贝尔定理揭示了幂级数的重要性质:收敛区域存在一个收敛半径。所以对幂级数,关键在于求出收敛半径,而这可利用根值判别法解决。

逐项求导和逐项积分不改变幂级数除端点外的区域的敛散性,端点情况复杂,需具体分析。

一个函数能展开成幂级数的条件是:存在任意阶导数。展开后的幂级数能收敛于原来函数的条件是:余项(误差)要随着项数的增加趋于零。这与泰勒展开中的结论一致。

微分方程:不同种类的方程有不同的常见解法,但理解上并无难处。 下册

(二)

定积分、二重积分、三重积分、第一类曲线积分、第一类曲面积分都可以概率为一种类型的积分,从物理意义上来理解是某个空间区域(直线段、平面区域、立体区域、曲线段、曲面区域)的质量,其中被积元可看作区域的微小单元,被积函数则是该微小单元的密度

这些积分最终都是转化成定积分来计算

第二类曲线积分的物理意义是变力做功(或速度环量),第二类曲面积分的物理意义是流量

在研究上述七类积分的过程中,发现其实被积函数都是空间位置点的函数,于是把这种以空间位置作为自变量的函数称为场函数

场函数有标量场和向量场,一个向量场相当于三个标量场

场函数在一点的变化情况由方向导数给出,而方向导数最大的方向,称为梯度方向。梯度是一个向量,任何方向的方向导数,都是梯度在这个方向上的投影,所以梯度的模是方向导数的最大值

梯度方向是函数变化最快的方向,等位面方向是函数无变化的方向,这两者垂直

梯度实际上一个场函数不均匀性的量度

梯度运算把一个标量场变成向量场

一条空间曲线在某点的切向量,便是该点处的曲线微元向量,有三个分量,它建立了第一类曲线积分与第二类曲线积分的联系

一张空间曲面在某点的法向量,便是该点处的曲面微元向量,有三个分量,它建立了第一类曲面积分和第二类曲面积分的联系

物体在一点处的相对体积变化率由该点处的速度场决定,其值为速度场的散度 散度运算把向量场变成标量场

散度为零的场称为无源场

高斯定理的物理意义:对散度在空间区域进行体积分,结果应该是这个空间区域的体积变化率,同时这种体积变化也可看成是在边界上的流量造成的,故两者应该相等。即高斯定理把一个速度场在边界上的积分与速度场的散度在该边界所围的闭区域上的体积分联系起来

无源场的体积变化为零,这是容易理解的,相当于既无损失又无补充

物体在一点处的旋转情况由该点处的速度场决定,其值为速度场的旋度

旋度运算把向量场变成向量场

旋度为零的场称为无旋场

斯托克斯定理的物理意义:对旋度在空间曲面进行第二类曲面积分,结果应该表示的是这个曲面的旋转快慢程度,同时这种旋转也可看成是边界上的速度环量造成的,故两者应该相等。即斯托克斯定理把一个速度场在边界上形成的环量与该边界所围的曲面的第二类曲面积分联系起来。该解释是从速度环量的角度出发得到的,比高斯定理要难,不强求掌握。

无旋场的速度环量为零,这相当于一个区域没有旋转效应,这是容易理解的

格林定理是斯托克斯定理的平面情形

进一步考察无旋场的性质

旋度为零,相当于对旋度作的第二类曲面积分为零——即等号后边的第二类曲线积分为零,相当于该力场围绕一闭合空间曲线作做的功为零——即从该闭合曲线上任选一点出发,积分与路径无关——相当于所得到的曲线积分结果只于终点的选择有关,与路径无关,可看成终点的函数,这是一个场函数(空间位置的函数),称为势函数——所得的势函数的梯度正好就是原来的力场——因为力场函数是连续的,所以势函数有全微分

简单的概括起来就是:无旋场——积分与路径无关——梯度场——有势场——全微分

要注意以上这些说法之间的等价性

三定理(Gauss Stokes Green)的向量形式和分量形式都要熟悉

第四篇:高等数学课程总结

姓名:学号:

高 等 数 学

课 程 总 结

班级:机械设计制造及其自动化 指导老师: 2015年9月我步入合肥学院,并在这里开始了我新的学习生涯。在这里一切都和高中有所不同,一切都变得陌生,新奇而又迷茫。10月份我第一次接触高数,并在之后几月的学习中对高数有了一定的了解。

对于许多文科学生来说,数学也许是一个令人有些畏惧的名词,有些同学也许就是因为数学学不好或者不太喜欢数学,而选择了学文科的,但是,对于任何一个文科生来说,数学都是非常重要的,有人把数学比做是文科生的生命线,有人说数学和英语在很大程度上决定了一名文科生的层次,这都是有一定道理的。因此,一定要尽自己最大的努力来学好数学.

在我看来,数学其实是一门非常奇妙而有趣的学问。只要你有一双善于发现、敢于发现的眼睛,你就能够找到数学的魅力所在,就会对它产生兴趣。而兴趣是最好的老师,如果你既对数学感兴趣,又下定决心努力学好数学,那又怎么会学不好呢?

课本对于数学来说,是很重要的。我们做的试题,有很多都是课本例题或其“变种”只要花上一点点时间把课本好好看看,要拿下这些题便易如反掌;反之,要是对一些基本的概念、定理都含混不清,不但基础题会失分,难题更不可能做得好。数学的逻辑性、分析性极强,可以说是一种纯理性的科学,要求思维清晰明了,因而基础知识十分重要,尤其是对于数学不是特别好的同学来说。 合院版《高等数学上册》共分四个大章节,分别为第一章 函数与极限;第二章 一元函数微分学; 第三章 一元函数积分学; 第四章 常微分方程。

第一章函数与极限:

函数与极限为基础学习模块是之后微积分学习的工具,主要要求掌握函数的定义域和两个重要的函数。

第二章 一元函数微分学:

该章节为本书重点章节,要求掌握导数的意义,隐函数的导数,导数的定义,洛必达法则,曲线的切线方程,单调性凹凸性,微分近似计算,中值定理,麦克劳林公式等。

第三章 一元函数积分学

该章节重点要求掌握定积分的计算,不定积分的第

一、第二换元法,定积分的定义,反常积分的计算,变上限积分的计算,曲线弧长面积,旋转体体积的解法等

第四章 常微分方程

要求掌握可分离变量的微分方程的解法,和一阶线性微分方程的解法。

以下是我个人觉得在数学学习过程中非常必要的几点:

1、按部就班。数学是环环相扣的一门学科,哪一个环节脱节都会影响整个学习的进程。所以,平时学习不应贪快,要一章一章过关,不要轻易留下自己不明白或者理解不深刻的问题。

2、强调理解。概念、定理、公式要在理解的基础上记忆。我的经验是,每新学一个定理,便尝试先不看答案,做一次例题,看是否能正确运用新定理;若不行,则对照答案,加深对定理的理解。

3、基本训练。学习数学是不能缺少训练的,平时多做一些难度适中的练习,当然莫要陷入死钻难题的误区,要熟悉常考的题型,训练要做到有的放矢。

4、标出重点。平常看题看课本的时候,碰到有好的解题方法或重点内容,可以用鲜艳的彩笔划出来,以便以后复习时能一目了然.

第五篇:高等数学复习要点总结

★高等数学复习要点总结 希望有参考作用★ 张宇

下面是我给一个朋友写的,大概是今年4月份写的,发给同学们做个参考:

我把高数的东西整理了一下,按照这个复习,保证可以串起来,同时别忘了把基本功打好!! 高等数学

1)洛必达法则求极限,最常用,要熟练;

2)无穷小代换求极限,在解题中非常有用,几个等价公式要倒背如流;

3)求含参数的极限,关键是把握常量变量的关系,求解过程体现你极限计算的基本功; 4)1的∞次方的极限是重点,多练几个题;

5)函数连续计算中要会对点进行修改定义、补充定义,看看书上怎么写的,给你说句话你体会一下,“连续的概念是逐点概念”,所以问题就是围绕特殊点展开的,这是数学思想了;

6)闭区间连续函数性质四定理非常重要,把它们背下来,然后结合例题搞定;

7)记住趋向不同,结果就大不一样的极限;

8)两个重要极限、两个基本极限把它们的推倒过程多写写,记住;关键还是刚才的要点,一个是用e的抬头法,一个是注意“趋向不同,结果就大不一样的极限”,还有注意lnx的定义域>0;

9)要注意存在与任意的关系,存在就是说只要有一个符合就成立,任意是说只要有一个不符合就不成立,你体会体会。例题:无穷大无穷小有界变量无界变量;

10)注意夹逼定理的条件很强,不要漏掉要点;

11)“见根号差,用有理化”!!! 这是思维定势,很管用;

第二章

1)导数的概念非常重要!!!一定会在解答题(主观题)中让你展现出你对它的理解是透彻的,所以这里不要用什么特殊化思想,就是严格按照定义来演算推理;

2) 导数公式倒背如流的要求不算过分吧 呵呵;

3)连续可导的要求一个弱一个强,只要改变条件的强弱就会有截然不同的做法,你做题的时候一定要总结一下,回顾一下,看看条件的强弱问题,然后在每个题上标记出来,便于以后再复习;

4)由于有些函数求导会出现x在分母上出现,所以要知道:即使不是分段函数,有时也要用定义去求导,而且乘积中某个因子在某点不可导,但乘积在该点也可能可导;

5)中值定理的难点在于构造辅助函数,构造函数是根据题目的要求来的,除了陈文灯等人写的方法外,关键是多看例题,熟练了,自然就会了(我上次给同学们说的是“微分方程法”和“凑”法,这两个掌握了就足够了);

6)函数性态部分是基本功,一定要耐心的按照函数作图的几大步骤认真做几个题,这样就可以把函数的各种性态串起来了,方法:抄例题,然后背下来,自己默一遍;

7) 三个式子的不等事,即A 8)能用微分中值定理的,一般用积分中值定理也可以搞定,你也试试吧,体会一下数学思想和定理的联系,是有好处的;

9)这部分的经济应用题不难,关键是仔细一些,对弹性等概念理解好,你经济学的好的多了,我就不说了:);

第三章

1)一元函数积分是高等数学中最重要的部分之一,一元函数的积分不学扎实,后面的多元函数的积分就是空中楼阁,要熟练掌握各种积分方法和几种常见的积分类型,如有理函数,三角函数的有理式和简单无理函数的积分;

2) 给你说几个准公式: ; ;,作题时相当有用的哦,关键是反过来用你要有意识;

3)这里特别提醒注意积分限函数,一句话:“积分限x在积分过程中是常量,在积分完毕后是变量”,这是核心的东西,抓住它就不会迷失方向;

4)旋转体的体积看来是一定要考了,当然是重点,关键:一个是公式记清,应该是绕x轴还是y轴都要搞的清清楚楚,另一个就是体会移图和移轴的不同,这里要用到积分的计算,是体现基本功的地方;

5)积分在经济中的应用也是重重之重,记清概念,把握公式,清醒审题,仔细答题,搞定;

6) 广义积分关键是计算,不是证明!!!记住重点;

7)广义积分中积分函数是加减函数时不能将加减函数拆开分别积分,应将加减函数整体积分。积分上下限代入积分函数若无意义,则理解为取极限,你做做这个题就明白了:I= .

作者: ypcworld2005-10-12 12:47回复此发言

------------------

2 高等数学复习要点总结

8)其实广义积分和定积分的概念很容易搞清,一句话:定积分存在有两个必要条件,即积分区间有限,被积函数有界。破坏了积分区间有限,引出无穷区间上的广义积分,破坏了被积函数有界,引出无界函数的广义积分。

9)把握住上面的这句话,就可以不晕了,看出来了吧,基本概念非常清楚的人才能学好;

10)定积分是一个数!!!这是一个经常命题的地方,好记吗?那就记住吧;

11)不定积分去根号时不用考虑绝对值,而定积分去根号时则要考虑绝对值!!!这个好错,一定要记住,会的可不要错哦,不然就惨喽;

12) 经验一个:三角有理函数式的积分,若有理函数式分母为,则可以通过分子分母同时乘上一个式子,使分母变为积的形式,另外,

还可以直接变形为积的形式来求解

13)被积函数只要是可以看成两个不同类函数的积,就要优先考虑分步积分法,经验哦:);

14)这里提一下,对于选择题中的抽象函数问题,我个人的认识是:将复杂的形式化成简单的形式,比如对抽象复合函数做变量替换,与其说是一种技巧方法,不如说是一条普遍的规律,任何事物都有由繁到简的趋势,这是可以上升到哲学层面的认识问题,(哈哈,这是英语学多了,not so much„as„用了一下);

15)一个经验:如果在一个函数或者积分等中的函数,当它是同一个x的函数时,比如f(x)g(x)的形式,可以对其中的任何一个进行放大缩小或者变形,而另一个可以不动,这样的处理往往是需要的,很有用,当你作不下去时,想想我说的这个

你自己做题和总结时,也应该有意识的做这样一些归纳。自己的东西才最管用的。

三角函数公式大全

发表日期:2007-1-28 13:15:39 文章分类:技术八卦来源:转载自从数学论坛上找到了这个列表,非常的全面,但是网页排版稍微有点不方便,故转载于此:

诱导公式

sin(-a)=-sin(a)

cos(-a)=cos(a)

sin(pi/2-a)=cos(a)

cos(pi/2-a)=sin(a)

sin(pi/2+a)=cos(a)

cos(pi/2+a)=-sin(a)

sin(pi-a)=sin(a)

cos(pi-a)=-cos(a)

sin(pi+a)=-sin(a)

cos(pi+a)=-cos(a)

tgA=tanA=sinA/cosA

两角和与差的三角函数

sin(a+b)=sin(a)cos(b)+cos(α)sin(b)

cos(a+b)=cos(a)cos(b)-sin(a)sin(b)

sin(a-b)=sin(a)cos(b)-cos(a)sin(b)

cos(a-b)=cos(a)cos(b)+sin(a)sin(b)

tan(a+b)=(tan(a)+tan(b))/(1-tan(a)tan(b))

tan(a-b)=(tan(a)-tan(b))/(1+tan(a)tan(b))

三角函数和差化积公式

sin(a)+sin(b)=2sin((a+b)/2)cos((a-b)/2)

sin(a)-sin(b)=2cos((a+b)/2)sin((a-b)/2)

cos(a)+cos(b)=2cos((a+b)/2)cos((a-b)/2)

cos(a)-cos(b)=-2sin((a+b)/2)sin((a-b)/2)

积化和差公式

sin(a)sin(b)=-1/2*[cos(a+b)-cos(a-b)]

cos(a)cos(b)=1/2*[cos(a+b)+cos(a-b)]

sin(a)cos(b)=1/2*[sin(a+b)+sin(a-b)]

二倍角公式

sin(2a)=2sin(a)cos(a)

cos(2a)=cos^2(a)-sin^2(a)=2cos^2(a)-1=1-2sin^2(a)

半角公式

sin^2(a/2)=(1-cos(a))/2

cos^2(a/2)=(1+cos(a))/2

tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))

万能公式

sin(a)= (2tan(a/2))/(1+tan^2(a/2))

cos(a)= (1-tan^2(a/2))/(1+tan^2(a/2))

tan(a)= (2tan(a/2))/(1-tan^2(a/2))

其它公式

a*sin(a)+b*cos(a)=sqrt(a^2+b^2)sin(a+c) [其中,tan(c)=b/a] a*sin(a)-b*cos(a)=sqrt(a^2+b^2)cos(a-c) [其中,tan(c)=a/b] 1+sin(a)=(sin(a/2)+cos(a/2))^2

1-sin(a)=(sin(a/2)-cos(a/2))^2

其他非重点三角函数

csc(a)=1/sin(a)

sec(a)=1/cos(a)

双曲函数

sinh(a)=(e^a-e^(-a))/2

cosh(a)=(e^a+e^(-a))/2

tgh(a)=sinh(a)/cosh(a)

上一篇:广东英语中考宝典下一篇:供电所综合班班长

本站热搜