混凝土搅拌车管理制度

2022-12-14

在日常生活和工作中,制度的使用越来越多。制度一经制定颁布,就对某一岗位或从事某一工作的人员起到约束作用,这是他们行动的标准和依据。那么你真的知道如何制定制度吗?以下是小编收藏的《混凝土搅拌车管理制度》相关资料,欢迎阅读!

第一篇:混凝土搅拌车管理制度

混凝土搅拌车司机相关管理制度

混凝土搅拌车司机管理试行方案

为加强驾驶员管理、规范驾驶员行为,保证搅拌车安全有效运行,达成本18万立的目标,特制定本制度。本制度适用于公司内搅拌车驾驶员。

一、 管理制度

1、驾驶员服从队长领导,并听从内外场调度指挥,对自己所驾驶车辆负责。

2、严格遵守公司的各项规章制度,爱护公司财物,维护公司利益,保证优质服务。

3、遵守站内、工地秩序及道路交通规则,并积极参加本公司组织的安全教育及业务培训。

4、接车、行车、停车做到“三检、四查”。定期检查机油、液压油、后桥油、水箱、电瓶液、防冻液等是否符合标准,做到定期更换;车辆出现故障要及时保修,确保车辆正常使用。

5、实行轮班制度,由调度根据生产任务派班,驾驶员不得私自调班,如遇特殊情况须调班,需经车队长同意。

6、交接班要守时,当班、休班司机电话须保持畅通,且交接班的双方驾驶员要当面检查车辆及车辆的相关证件,做到车辆完好、证件齐全。出现问题,自行责任。

7、收车后,必须对搅拌运输车及时进行清洗,保持车辆内外整洁,场内道路上禁止倒放废水和敲打混凝土。

8、驾驶员上班时间严禁喝酒、赌博,打架斗殴。严禁将搅拌车私自开出公司或借给非本公司驾驶员驾驶。

9、收车后车辆排放整齐,保持安全距离。做好每天的用油记录、出车记录,及时上交生产调度予以成本考核。车辆所有证件驾驶员妥善保管,如有遗失,自行负责。

10、驾驶员要注意仪表,着装整洁,严禁穿拖鞋驾驶车辆,严禁带无关人员跟车或上工地。

二、薪资制度

薪资结构构成:

1、基本工资+绩效奖=3000元保底 ;

2、全勤奖100元 /月;

3、 卫生奖100元/月;

4、安全奖200元/月;

5、季度奖600元,年终奖(分三等1000元、800元、600元);

6、节油奖500元

1、基本工资:1500元(底薪)+绩效60趟=3000保底(60-120趟:出车费30元/趟;超出120趟:出车费40元/趟);

2、全勤奖 :当月无调休者,全勤奖100元/月;

3、卫生奖:驾驶员保持车内、外卫生,保证车辆的正常行驶和公司形象卫生奖100元/月;

4、安全奖:,当月无事故和交通违章者,安全奖200元/月;如当月有交通违章扣分和罚款,由驾驶员自行承担;

5、年终奖:按照公司规定综合评比,分三个等级:1000元、800元、600元;

6节油奖励:节油奖励500元,根据当月实际平均油耗而定 。

三、处罚制度

1、驾驶员原因造成重大事故且公司损失严重情况下,由其自行承担2%

2、卫生罚款(30元—100元,依公司具体情况而定)

3、驾驶员造成粘罐自行负责

4、不听从领导分配造成严重后果由司机负责

第二篇:混凝土搅拌车搅拌实验系统仿真设计

混凝土搅拌车搅拌实验系统仿真设计 学生姓名:付昊旻 班级:078105207 指导老师:邢普 摘要:混凝土搅拌运输车是用于解决商品混凝土运输的运输工具。它兼有载运和搅拌混凝土的双重功能,可在运送混凝土的同时对其进行搅拌或搅动,因此能在保证输送的混凝土质量的同时适当延长运距(或运送时间)。所以大力发展商品混凝土和搅拌运输车有明显的社会效益和适用价值。而我国混凝土运输车起步较晚,到70年代才开始试生产。目前,搅拌运输车的理论研究及生产在我省及整个西北地区均处于空白。因此搅拌运输车的理论研究及开发势在必行。搅拌运输车的搅拌筒之所以具有搅拌和卸料的功能,主要是因为拌筒内部特有的两条连续螺旋叶片在工作时形成螺旋运动,从而推动混凝土

对拌筒进行几何设计。搅拌筒既是搅拌运输车运输混凝土的装载容器,又是搅拌混凝土的工作装置。几何设计是搅拌筒结构设计的基础,它包括几何容积计算、外形尺寸的确定、搅拌筒有效容积及满载时重心位置计算。为使混凝土搅拌运输车的搅拌装置系列化,以满足用户要求,借用计算机程序语言对其进行设计。基于功率键合图的建模方法,利用大型软件Matlab的仿真工具箱Simulink,对混凝土搅拌运输车液压系统进行设计分析,同时建立系统动态仿真模型,用此来模拟液压系统工作过程,更好地反映系统中各输出变量随输入变量的变化关系。尤其是对辅助泵调节斜盘角度系统、变量主泵控制系统及恒速控制系统进行详细的分析,为液压系统的进一步优化设计提供有益的借鉴。

关键词:混凝土搅拌运输车 拌筒 液压系统 功率键合图 几何设计 数学模型 螺旋叶片 动态特性 展开 仿真 指导老师签名:

Design of the Structure of the Truck Mixer and Digital Simulation of its Hydraulic System Student name:Fu Hao Min Class:078105207 Supervisor:Xing Pu Abstract:The truck mixer is a vehicle for transportation concrete.It is fulfilled two actions,conveying concrete and mixing concrete.These actions not only ensure the quality of the concrete, but also make the conveying distance longer.But in the northwest area of our country, research on the field of the truck mixer is little.So the truck mixer must be developed strongly in order to meet the need of the rising concrete market.Three important parts are studied in this thesis.Firstly, the helix-vanes of the truck mixer are designed following the principles of the flowing state of the concrete on the helix-vane.Secondly, the drum of the truck mixer is designed base on its working characteristic.Thirdly, with the widely used soft ware package SIMULINK the mathematic models of the hydraulic system driving the truck mixer are established on the found of the theory and method of power bond graph.The dynamic characteristics of the hydraulic system are simulated numerically, and some significant results are presented. Key words:Truck Mixer Drum Spread Hydraulic System Mathematic Models Structure Design Helix-vanes Power Bond Graph Dynamic Characteristics Simulation Signature of Supervisor: 目 录 1.绪论 1.1混凝土搅拌车的介绍 ------------------------------------------ 4 1.2课题研究背景 ------------------------------------------------ 6 1.3混凝土搅拌车搅拌系统国内外研究现状 -------------------------- 7 1.4本文研究内容及方法 ------------------------------------------ 8 2.搅拌筒的结构设计 2.1搅拌筒的工作原理 ------------------------------------------- 10 2.2搅拌筒的整体构成 ------------------------------------------- 10 2.3拌筒主要结构尺寸参数的确定 --------------------------------- 11 2.4切割法求装载容积 ------------------------------------------- 13 2.5积分法求装载容积 ------------------------------------------- 14 2.6搅拌筒几何容积计算 ----------------------------------------- 18 2.7满载时拌筒的重心位置 --------------------------------------- 18 3.驱动功率的计算 3.1搅拌力矩曲线 ----------------------------------------------- 19 3.2驱动阻力矩计算 --------------------------------------------- 19 3.3搅拌筒驱动功率的计算 --------------------------------------- 23 4.螺旋叶片的设计及仿真 4.1螺旋叶片上螺旋角的确定 ------------------------------------- 24 4.2搅拌叶片的母线方程 ----------------------------------------- 27 4.3搅拌叶片设计 ----------------------------------------------- 29 4.4搅拌叶片的仿真设计和模态分析 ------------------------------- 33 4.5搅拌叶片结构应力分析 --------------------------------------- 37 参考文献 ------------------------------------------------------ 43 致谢 ----------------------------------------------------------- 44 附录 ----------------------------------------------------------- 44 1.绪论 1.1 混凝土搅拌车的介绍 商品混凝土的发展从根本上改变了传统上工地自制混凝土,用翻斗车或自卸卡车进行输送,就近使用的落后生产方式,建立起一种新的生产方式,即许多施工工地所需要的混凝土,都由专业化的混凝土工厂或大型混凝土搅拌站集中生产供应,形成以混凝土制备地点为中心的供应网。由于混凝十工厂便于应用现代电子技术,使用计算机控制生产,可以得到精确配比和均质拌合的混凝土,使混凝土质量大大提高,所以对于整个施丁工程起到良好的促进作用。但是混凝土的商品化生产,势必把混凝土从厂站输送到各个需求工地之间的距离相应加长,有些供应点甚至很远。当混凝土的输舒巨离(或输送时间)超过某一限度时,叮燃使用一般的运输机械进行输送,混凝土就可能在运输途中发生分层离析,甚至初撇见象,严重影响混凝土质量,这是施工所不允许的。因此为了适应商品混凝土的输送,发展了一种运送混凝土的专用机械—混凝土搅拌运输车(以下简称搅拌运输车)。图1.1所示就是这种搅拌运输车的外形和基本结构。搅拌运输车多作为混凝十工厂或搅拌站的配套运输机械,通过搅拌运输车将混凝土工厂、搅拌站与许多施工工地联系起来,如与混凝土输送泵配合使用,在施工现场进行“接力”输送,则可以完全不再需要人力的中间周转而将混凝土连续不断的送到施工浇注点,实现混凝土输送的高效能和全部机械化。这样不但大大的提高了劳动生产率和施工质量,而且有利于现场的文明施工,这对于城市建设、尤其是现场狭窄的施工工地更加显示出它的优越性。随着国民经济的发展,一些大型建筑工程对现浇混凝土的大量需求,大力发展商品混凝土和搅拌运输车有明显的社会效益和适用价值。

搅拌运输车实际上就是在载重汽车或专用运载底盘上安装一种独特的混凝土搅拌装置的组合机械,它兼有载运和搅拌混凝土的双重功能,可以在运送混凝土的同时对其进行搅动或搅拌。因此能保证输送混凝土的质量,允许适当延长运距(或运送时间)。基于搅拌运输车的上述工作特点,通常可以根据对混凝土运距长短、现场施工条件以及对混凝土的配比和质量的要求等不同情况,采取下列不同的工作方式: (1)预拌混凝土的搅动运输 这种运输方式是搅拌运输车从混凝土工厂装进已经搅拌好的混凝土,在运往工地的路途中,使搅拌筒作大约1-3r/min的f氏速转动,对运输运的混凝土不停地进行搅动,以防止出现离析等现象,从而使运到工地的混凝土质量得到控制,并相应增长运距。但这种运输方式其运距(或运送时间)不宜过长,应控制在预拌混凝土开始初凝以前,具体的运距或时间视混凝土配比和道路、气候等条件而定。

(2) 混凝土拌合料的搅拌运输 这种运输方式又有湿料和干料搅拌运输两种情况。湿料搅拌运输是指搅拌运输车在配料站按混凝土配比同时装入水泥,砂石骨料和水等拌合料,然后在运送途中使搅拌筒以8-12r / min的“搅拌速度”转动,对混凝土拌合料完成搅拌作业。干料注水搅拌运输是指在配料站按混凝土配比分别向搅拌筒内加入水泥、砂石等干料,再向车内水箱加入搅拌用水。在搅拌运输车驶向工地途中的适当时候向搅拌筒内喷水进行搅拌。也可根据工地的浇灌要求运干料到现场后再注水搅拌。

混凝土拌合料的搅拌运输,比预拌混凝土的搅动运输能进一步延长对混凝土的输送距离(或时间),尤其是混凝土干料的注水搅拌运输可以将混凝土送到很远的地方。另外,这种运输方式又用搅拌运输车代替了混凝土工厂的搅拌工作,因而可以节约设备投资,相对提高生产率。但是,搅拌运输车的搅拌却难以获得象混凝土工厂生产的那样和易性好均匀一致的混凝土,所以,在对混凝土的质量要求愈来愈严格的现代建筑施工中,对预拌混凝土的搅动运输是搅拌运输车的主要工作方式。

从上述几种工作方式看出,搅拌运输车能根据工作条件的需要灵活应用,可以充分发挥其特点。它不但配合商品混凝土的生产,而且反过来发展了商品混凝上的生产工艺,把混凝土从工厂的“集中搅拌”又延伸到许多搅拌运输车的所谓“分散搅拌”,因而扩大了混凝土工厂的服务范围,与一般的运输机械相比,它有较大的灵活性、适应性,并有较高的生产率,成为现代混凝土施工中的有效运输工具。

1.2 课题研究背景 随着我国国民经济的迅速发展,高速公路建设、城市基础建设、房地产开发也急剧发展。在以国家“十一五”规划、中西部大开发战略的大背景下,以及北京申办2008年29届夏季奥运会成功的带动下,加大城市建设成为不变的潮流。

建设容量的加大,就意味着混凝土的消费量加大。混凝土已经成为现代社会文明的基石,越来越发挥着不可替代的作用。伴随着我国政府颁布的终结现场搅拌混凝土条文的实施, 从2006年起,我国240多个城市要全面使用商品混凝土,作为城市中唯一合理的运输预拌混凝土工具,混凝土搅拌运输车的作用就显得尤为重要。

虽然混凝土搅拌车的市场前景异常乐观,但是我国混凝土搅拌车生产的一些薄弱环节尤其是基础理论方面研究的薄弱却不容忽视。本课题针对中国重汽集团专用汽车公司生产的混凝土搅拌车(如图1.2)目前还存在着搅拌叶片使用寿命短、搅拌振动噪声大、搅拌效果和出料速度不理想、出料残余率高等问题和隐患而立题并开展研究的。并得到国家自然科学基金-基于流变学的混凝土搅拌叶片理论研究、山东省自然科学基金-基于流变学的混凝土搅拌车搅拌系统设计理论研究的资助。

图1.2 8.5LP混凝土搅拌运输车 1.3 混凝土搅拌车搅拌系统国内外研究现状 1、国内方面:

1965年上海华东建筑机械厂引进了我国第一台混凝土搅拌车。我国混凝土搅拌车的开发生产始于二十世纪八十年代初期,开始基本上是引进散件组装,或者通过技贸方式引进技术生产与部分零部件引进相结合的生产制造模式。从1982年开始,一些企业相继引进国外的先进生产技术,经过20年的发展,产品国产化率不断提高,产量也有了很大的提高。在产品系列上,形成了3 m3、4 m3、5 m3、6 m3、8 m3、10 m3、12 m3等品种,8 m3以下正在逐渐淘汰,向着10 m3、12 m3甚至更大容积发展,但整机性能与国外相比还有一定差距。如今,国内生产企业对混凝土搅拌车的搅拌系统研究主要是引进消化国外的技术或者仿制国外产品为主,自主开发很少,在理论方面的研究比较匮乏,国内企业的生产多靠测绘和技术引进,甚至在搅拌叶片的生产安装过程中,局部敲打、硬性整合现象屡见不鲜。虽然国内一些高校也在这一领域进行研究,如武汉理工大学、西安建筑科技大学等。但他们主要是对搅拌筒进行设计绘制,对于搅拌叶片设计,数值模拟研究很少。

2、国外方面:

19世纪40年代出现以蒸汽为动力源的木制多面体拌筒的自落式搅拌机,19世纪80年代用钢铁件代替木板。20世纪初开始改良为圆柱形搅拌筒。1926年美国生产出搅拌容积为3m3的第一台混凝土搅拌车。早期的搅拌叶片一般都是采用阿基米德螺旋线,1965年以后日本开始采用对数螺旋线设计制造搅拌叶片,后来又在此基础上对局部叶片的螺旋角进行了修正,逐渐形成了现在这种梨形拌筒(前后部分为圆锥形,中间部分为圆柱形)-混合螺旋线搅拌叶片的混凝土搅拌车。2000年,美国的CHRISTENSON RONALD E在原来搅拌筒的基础上,在底锥添加辅助搅拌叶片改进了传统的搅拌叶片;

2005年澳大利亚的KHOURI ANTHONY JAMES采用两条螺旋钢板焊接作为内筒壁,合成树脂作为外筒壁,改进了传统的三段式搅拌筒,不过这种搅拌筒制造起来比较困难。近年来,澳大利亚VULCAN、美国的马克西姆等公司推出了超长搅拌筒的前卸式搅拌车,拌筒前锥加长,架在驾驶室上方,于驾驶室前方出料。成为搅拌车市场快速增长的产品,但搅拌叶片设计仍然沿承了对数螺旋线叶片设计方法。

目前,国外的搅拌设备研究逐渐向着多功能、自动监控、多样化、成套化发展,如单、双卧轴式搅拌机、振动式搅拌机、强制式搅拌机,多种混凝土搅拌楼等。搅拌车研究更倾向于上装技术、耐磨材料的研究。针对国内外现状,本文改变传统的搅拌叶片母线所采用的螺旋线方程,使搅拌叶片和搅拌筒之间的连接方式和安装参数得到了改善,提出了用有限元软件对搅拌叶片进行数值模拟和参数优化。试验验证了理论方法的可行性。

1.4本文研究内容及方法 1、研究目的 通过对搅拌叶片的设计分析,找出搅拌叶片的薄弱环节,对搅拌叶片进行改进,延长搅拌叶片的使用寿命、提高出料速度、降低出料残余率、降低生产成本,达到更好的搅拌出料效果。

2、研究意义 一辆混凝土搅拌车的售价在40~80万之间,其中一个混凝土搅拌系统造价大约10万元。平均使用3年左右即告报废。而混凝土搅拌输送车的搅拌和卸料作用是由搅拌装置—搅拌筒完成的,搅拌叶片更是关键中的关键,搅拌叶片的性能好坏直接决定搅拌运输车的性能,进而影响着基础建设的质量。因此研究搅拌出料过程叶片的磨损、提高搅拌叶片使用寿命、提高叶片的搅拌质量具有重要的的经济效益和社会效益。

充分的文件检索和实际调研表明,了解螺旋叶片出料机理分析是设计搅拌装置的基础。也是生产具有更好搅拌性能但又不降低混凝土质量的基础。冲击小、响应决而且效率高的液压系统是搅拌运输车传动系统设计的关键。

搅拌运输车的搅拌筒之所以具有搅拌和卸料的功能,主要是因为拌筒内部特有的两条连续螺旋叶片在工作时形成螺旋运动,从而推动混凝土沿搅拌筒轴向和切向产生复合运动的结果。因此两条叶片的螺旋曲线的形式及结构直接影响搅拌筒的工作性能。本论文应用静力学、运动学的原理阐述螺旋叶片的工作原理并对主要技术参数进行理论分析。为螺旋叶片的结构设计提供理论依据。

搅拌筒既是搅拌运输车运输混凝上的装载容器,又是搅拌混凝土的工作装置。几何设计是搅拌筒结构设计的基础,它包括几何容积计算、外形尺寸的确定、搅拌筒有效容积及满载时重心位置计算。本论文对搅拌筒进行几何设计。

螺旋叶片的几何参数直接影响搅拌筒的搅拌和卸料性能。目前,应用于搅拌运输车的拌筒叶片螺旋面的形式有:正螺旋面、圆锥对数螺旋面两种。本论文对搅拌筒内螺旋叶片曲线参数的选择及展开进行计算,并加以搅拌系统的仿真设计与运动模拟。

2.搅拌筒的结构设计 搅拌运输车搅拌筒绝大部分都采用梨型结构,通过支承装置斜卧在机架上,可以绕其轴线转动,搅拌筒的后上方只有一个筒口分别通过进出料装置进行装料或卸料。图2.1为其外部结构图。整个搅拌筒的壳体是一个变截面而不对称的双锥体,外形似梨型,底段锥体较短,端面封闭并焊接着法兰,通过连接法兰用螺栓与减速器联结。上段锥体的过渡部分有一条环行滚道,它焊接在垂直于搅拌筒轴线的平面圆周上,整个搅拌筒通过连接法兰和环形滚道顷斜卧置在固定与机架上的减速器壳体和一对支承滚轮所组成的三点支承结构上,由减速器带动平稳的绕其轴线转动。在搅拌筒滚道圆周上部,通常设有钢带护绕,以限制搅拌筒在汽车颠簸行驶时向上跳动。机架由水平框架、前台、后台和门形支架组成,搅拌装置的各部分都组装在它上面,形成一个整体。最后通过水平框架与载运底盘大梁用螺栓连接在一起。

2.1搅拌筒的工作原理 搅拌筒的工作原理用图2.1.1 来说明。图为通过搅拌筒轴线的垂直剖面示意图。其中(a),(b)为剖开搅拌筒的两部分,斜线代表螺旋叶片, 为其螺旋升角,为搅拌筒轴线与底盘平面的夹角。我们设定图a所示方向为“正向”,图b所示方向为“反向”。工作时,搅拌筒绕其自身轴线转动,混凝土因与筒壁和叶片的摩擦力和内在的粘着力而被转动的筒壁沿圆周带起来,但在达到一定高度后,必在其自重G作用下,克服上述摩擦力和内聚力而向下翻跌和滑移。由于搅拌筒在连续的转动,所以混凝土即在不断的被提升而又向下滑跌的运动中,同时受筒壁和叶片所确定的螺旋形轨道的引导,产生沿搅拌筒切向和轴向的复合运动,使混凝土一直被推移到螺旋叶片的终端。

当搅拌筒做图a所示方向的“正向”转动时,混凝土将被叶片连续不断的推送到搅拌筒的底部,同时到达筒底的混凝土势必又被搅拌筒的端壁顶推翻转回来,这样在上述运动的基础上又增加了混凝土上下层的轴向翻转运动,达到了搅拌筒对混凝土进行充分搅拌的目的。

当搅拌筒做图b所示方向的 “反向”转动时,叶片的螺旋运动方向也相反,这时混凝土被叶片引导向搅拌筒口方向移动直至筒口卸出,从而达到卸料目的。

图2.1.1搅拌工作原理 2.2搅拌筒的整体构成 混凝土搅拌车由汽车底盘和混凝土搅拌运输专用装置组成。我国生产的混凝土搅拌运输车的底盘多采用整车生产厂家提供的二类通用底盘。其专用机构主要包括取力器、搅拌筒前后支架、减速机、液压系统、搅拌筒、操纵机构、清洗系统等。

工作原理是,通过取力装置将汽车底盘的动力取出,并驱动液压系统的变量泵,把机械能转化为液压能传给定量马达,马达再驱动减速机,由减速机驱动搅拌装置,对混凝土进行搅拌。

取力装置 国产混凝土搅拌运输车采用主车发动机取力方式。取力装置的作用是通过操纵取力开关将发动机动力取出,经液压系统驱动搅拌筒,搅拌筒在进料和运输过程中正向旋转,以利于进料和对混凝土进行搅拌,在出料时反向旋转,在工作终结后切断与发动机的动力联接。

液压系统 将经取力器取出的发动机动力,转化为液压能(排量和压力),再经马达输出为机械能(转速和扭矩),为搅拌筒转动提供动力。

减速机 将液压系统中马达输出的转速减速后,传给搅拌筒。

操纵机构 (1)控制搅拌筒旋转方向,使之在进料和运输过程中正向旋转,出料时反向旋转。

(2)控制搅拌筒的转速。

搅拌装置 搅拌装置主要由搅拌筒及其辅助支撑部件组成。搅拌筒是混凝土的装载容器,转动时混凝土沿叶片的螺旋方向运动,在不断的提升和翻动过程中受到混合和搅拌。在进料及运输过程中,搅拌筒正转,混凝土沿叶片向里运动,出料时,搅拌筒反转,混凝土沿着叶片向外卸出。叶片是搅拌装置中的主要部件,损坏或严重磨损会导致混凝土搅拌不均匀。另外,叶片的角度如果设计不合理,还会使混凝土出现离析。

清洗系统 清洗系统的主要作用是清洗搅拌筒,有时也用于运输途中进行干料拌筒。清洗系统还对液压系统起冷却作用。

2.3拌筒主要结构尺寸参数的确定 搅拌筒既是搅拌运输车的运输混凝土的装载容器,又是搅拌混凝土的工作装置。所以对它的设计有以下基本要求:有足够的有效的装载容量:满足规定的搅拌和装卸料性能;

在结构上适应运载底盘和运输中搅拌工作特点;

具有适当的使用寿命(耐磨性能)。搅拌筒设计分几何设计和金属结构设计两部分,几何设计是金属结构设计的基础,本节主要介绍拌筒的几何设计。

图2.3搅拌筒截面图 由于搅拌筒是斜置安装在运载底盘上,因此其结构尺寸受到运载混凝土的容积、所选底盘结构尺寸及保证运送混凝土的质量等因素的的影响,如搅拌筒的斜置角α,混凝土表面与搅拌筒轴线的夹角α0,前后锥的锥角α1、α2。同时运输车必须保证在坡度为14%的路面上行驶且出料口面对下坡方向时不产生外溢,取 根据中华人民共和国建筑工业行业标准,搅拌筒的斜置角α的取值可参照下表2.3 表2.3 根据文献,将各形状参数化为主参数r(搅拌筒最大半径,根据交通法规的要求Y2小于等于1.25m)可得: 为进料口半径,取值范围250-310mm 中圆的长度要结合搅拌筒的额定容积确定。

前半锥角 后半锥角 2.4切割法求装载容积 图2.4是混凝土搅拌输送车搅拌筒的侧面图,它是由圆柱、圆台和球缺结合成的筒体。在搅动过程中,进料口和出料口之间由于高度为A一B的叶片将混凝土拌合料挡住,不会从A一B处流出。若混凝土拌合料是理想的流体,它应从B点形成一水平面。因搅拌筒中心线与水平面之间成一倾角a,这样,混凝土拌合料在搅拌筒内构成一种特殊形状的体积。

图2.4 目前,据有关资料介绍,该容积计算均采用切割法。切割法就是根据图纸给定的尺寸按比例作图,在垂直搅拌筒轴线,将混凝土拌合料实体切成若干厚度为B的薄片,其断面积Ai成弓形(如图2.4.1),把所有的簿片体积BAi、加起来,即为它的容积。切片越多、容积计算越精确,然而切得再多也仅是近似值。

图2.4.1 根据图2.3写出计算方程 搅拌筒内混凝土任一弓形截面F(x)的方程: 式中 所以,搅拌筒中混凝土的有效容积为:

2.5积分法求装载容积 要求出图2.4五个部分的混凝土拌合料在搅拌筒内占有的体积,只要推导出图2.5(粗实线包围的部份)三种形状的体积计算公式,那么搅拌筒的每段混凝土拌合料体积就可计算。

A B C 图2.5 用Va、Vb、Vc表示三段的体积,图2.5 A为圆柱截段(D代表直径),图2.5 B为圆锥截段(D代表锥体的底直径),图2.5 C为球缺截段(R1代表球半径)。

下面分别三种体积的计算公式。

(1)Va的计算公式 若 为已知,可用代替 (2)Vb的计算公式 根据图2.5.1推出其中:

(h为圆锥体顶点P到MN的距离) (S1为圆锥截段弓形底面积) (S2为MN截面积) 的计算分三种情况 a.当,,为正值 式中, b. c. 图2.5.1 (3) Vc的计算公式 根据右图2.5.2要求Vc还需知道R、H、a、β的值。根据公式,有:

有了以上数据便可求出S1、S2,而:

图2.5.2 (4) 根据图2.5.3计算V1 图2.5.3 (5) 根据图2.5.4计算V2 图2.5.4 (6)根据图2.5.5计算V3 图2.5.5 2.6搅拌筒几何容积计算 搅拌运输车的梨形搅拌筒几何容积Vj与其设计的最大装载容积V存在如下关系: V一公称搅动容量,即运输车能运输的预拌混凝土经捣实后的最大体积。

对混凝土拌合料搅拌运输,此值为运输车置于水平位置,搅拌筒能容纳全部未经搅拌的配料(包括水)要在充分搅拌时不产生外溢,并能生产匀质混凝土经捣实后的最大体积。

Vj一搅拌筒的几何容积。

2.7满载时拌筒的重心位置 图2.7 如图2.7所示,混凝土任一截面I一I处为一弓形,设微分段重心G的位置为: 每段锥体重心:

总重心为:

3.驱动功率的计算 3.1搅拌力矩曲线 混凝土搅拌的过程力矩曲线变化规律如图3.1所示:

图3.1搅拌力矩曲线 0~1:加工工序,搅拌筒以14-18rmp正转,在大约10min的加料的时间里,搅拌筒的驱动力矩随着混凝土不断被加入而逐渐增大,在即将加满时,力矩反而略有下降;

1~2:运料工序,在卸料地点,搅拌输送车停驶,搅拌筒从运拌状态制动,转入14-18rPm的反转卸料工况,搅拌筒的驱动力矩在反转开始的极短时间内陡然上升,然后迅速跌落下来;

4~5:卸料工序,搅拌筒继续以14-18rPm的速度反转,驱动力矩随混凝土的卸出而逐渐下降;

5~6:空筒返回,搅拌筒内加入适量清水,返程行驶中搅拌筒作3rPm的返向转动,对其进行清洗,到达混凝土工厂,排出污水,准备下一个循环。

3.2驱动阻力矩计算 搅拌筒驱动阻力矩由拌筒与支承系统的摩擦阻力矩与拌筒搅拌阻力矩共同组成,其以拌筒搅拌阻力矩最难计算。

1) 积分公式计算方法 a.拌合料与筒壁间的摩擦力矩,拌合料与筒壁或与搅拌叶片间的单位摩擦力f 式中,k1——粘着系数,kN/m2;

k2——速度系数,kN/m2;

V——拌合料速度;

s——混合料的坍落度。

式中:

b..拌合料与搅拌叶片间的摩擦阻力矩 图3.2螺旋叶片断面投影 图3.2为拌筒内螺旋叶片的端面投影。任取一半径r,该半径对应的叶片螺旋开角k(近似认为对应于各r处的螺旋开角,均等于中径上的螺旋开角)。

V2——拌合料与搅拌螺旋叶片间的相对滑移速度 式中:R1——搅拌螺旋叶片断面投影最小半径 R2——搅拌螺旋叶片断面投影最大半径 c.流动阻力矩 微元面积 设混凝土的单位平均流动阻力系数为p,则取微元面积上的法向阻力 周向阻力对搅拌筒轴线的阻力矩 d.由筒体的转动引起的偏载,对搅拌筒的阻力矩 见图3.2.1拌合料在随拌筒搅拌的同时,由于拌合料受到与筒壁和搅拌叶片间的摩擦阻力矩的作用,使拌合料向转动方向提升,其重心偏向转动一侧。出现偏心距e,对拌筒运动产生阻力矩。e值的精确确定目前还有困难,除与拌筒结构有关外,还与拌合料的性质有关。只能采取先近似计算,再用实验验证的方法确定。对拌合料来说,共受到三个力矩的作用:即偏心力矩、与简体的摩擦力矩、与叶片的摩擦力矩。由力矩平衡条件得:

图3.2.1搅拌筒偏载示意图 对简体来说,又受到由于拌合料的偏心距,产生的阻力矩作用,在数值上等于。

2)Lieberherr的经验公式 实验测得:

式中:r——偏心距,一般取0.1m;

F——混凝土重量 3.3搅拌筒驱动功率的计算 按求得的拌筒搅拌阻力矩,再根据传动系统的总效率,拌筒与支撑系统的摩擦阻力矩及拌筒转速n,即可求出搅拌筒的驱动功率N(kw) 式中:——搅拌筒支撑机构所克服的摩擦阻力矩;

一般取为4000-5000Nm ——搅拌筒搅拌阻力矩;

——机械效率,一般0.8-0.9 C——考虑峰值的影响系数,1.2-1.4;

n——转速,rpm 设:当搅拌筒转速为12 rpm时,设混凝土重量2400,搅拌筒实际容积按5计算,则计算出搅拌筒的驱动功率为:

因为搅拌筒的驱动功率一般是从搅拌车发动机中直接取力,在计算搅拌车发动机功率时,要在搅拌筒驱动功率的基础上,再加上汽车驱动功率、爬坡功率等。

4.螺旋叶片的设计及仿真 搅拌运输车的搅拌筒所以有搅拌和卸料等工作性能,主要是因其内部特有的两条螺旋叶片推动混凝土沿搅拌筒轴向和切向产生复合运动的结果。因此搅拌叶片的螺旋曲线直接影响搅拌与运输混凝土的性能。在其几何设计中,鉴于我国车辆在道路右侧行驶的规定,搅拌运输车搅拌筒旋转方向为,面向车尾看,顺时针旋转时为进料、搅拌或搅动,逆时针旋转时为出料,所以搅拌筒的两条螺旋叶片应为互错180度的左旋螺旋叶片。如图4.1。

母线(直线或曲线)在绕轴线作匀速圆周运动的同时,沿轴线方向作匀速或变速直线运动,该母线的运动轨迹形成等螺距或变螺距螺旋面。母线为直线形成直纹螺旋面;母线为曲线形成非直纹螺旋面。搅拌运输车中常用的螺旋面是直纹正螺旋面(母线和轴线正交)和直纹斜螺旋面(母线和轴线斜交)两种螺旋面。圆柱面或圆锥面同该螺旋面的交线分别称为圆柱螺旋线或圆锥螺旋线。螺旋线的切线和圆柱面或圆锥面的母线之间的夹角称为螺旋角,用β表示。

图4.1螺旋叶片内部结构 4.1螺旋叶片上螺旋角的确定 由于不同的圆锥面(或圆柱面)与同一螺旋面相交的螺旋线是不同的,因此螺旋角也不同。在设计拌筒螺旋叶片结构之前,螺旋叶片上螺旋角的确定就显得格外重要。

a.螺旋角的表示 图4.1.1给出了锥、柱螺线的视图和内壁展开图。螺线上任意一点M的对 应的投影和展开位置用m、和M表示。中为M点平面投影m的位置角。圆锥段的圆锥面展开面为一扇形面,为扇形角,ε为M点在展开面上的位置角,所以=OM。

图4.1.1螺旋线及展开图 由上述几何关系可知:。

设螺线上另一点N,其相应的位置参量为。当N和点M无限接近的时候,直线MN就是M点切线τ,而且 其螺旋角满足:

b.内外圆锥(或圆柱)上螺旋角的关系 斜螺旋面的任意一条母线n分别与内锥、外锥相交于点1和2,内、外锥的半锥角分别为θ1、θ2,以为原点建立坐标系,n线与x轴的夹角为µ。见图4.1.2 图4.1.2螺旋线转面投影图 设母线n绕Z轴旋转无限小角到达母线的位置,线与内外锥分别相交于点1’和2’,Z轴分别和n、组成两个纵截面,并转面重叠投影。由图4.1.2可知:

设P1和P2分别为点1和点2的螺旋角,由此可得出: 内锥;

外锥:

这就是同一螺旋面在不同圆锥面(圆柱面)上产生的螺旋线的螺旋角之间的关系式。

在进行分析时,经常会用到下列几种情况:

4.2搅拌叶片的母线方程 搅拌叶片在前锥和后锥部分采用的是对数螺旋线,其母线的方程为:

其中为螺旋角,为初始极径;

为半锥角;

为螺旋转角。

当是一定值时,螺旋线为等角对数(圆锥)螺旋线;

当是一个变量时,该螺旋线即为非等角对数螺旋线。

中圆搅拌叶片采用圆柱螺旋线,其母线方程为:

其中为圆柱底半径,为螺旋转角,为螺旋角。

基于PRO/E的水泥搅拌筒叶片螺旋曲线的设计。筒体前锥和后锥采用具有等升角的对数螺旋叶片,圆柱段采用不等升角的阿基米德螺旋叶片。为了同时保证搅拌均匀和出料干净,将前锥螺旋角设计为60°后锥螺旋角设计为≥75° 图4.2所示的螺旋线方程为:

式中 ——螺旋线起点的极径;

——极径;

θ——半锥角;

Ψ——极径在坐标系xoy的投影与y轴的夹角,即圆锥对数螺旋线的螺旋转角;

β——圆锥对数螺旋线的切线与圆锥母线的夹角,即圆锥对数螺旋线的螺旋角。

图4.2.1所示的圆柱阿基米德螺旋线的方程 式中 R——圆柱半径;

Ψ——螺旋转角;

β——螺旋角。

图4.2 图4.2.1 4.3搅拌叶片设计 搅拌运输车搅拌筒内的两条螺旋叶片,是搅拌运输车设计的重要部件。它的结构形状对搅拌运输车进、出料性能及混凝土的搅拌质量有一定影响。目前,设计的搅拌运输车螺旋叶片,多采用斜圆锥对数螺旋面。设计中,将空间螺旋面叶片分段展开成平面图形。制造中根据设计的平面图形下料经锻压成型后,焊接在搅拌筒内壁上。所以,叶片展开成平面图形的准确程度,是使搅拌运输车性能达到要求的重要因素之一。而空间螺旋面理论上是不可展开曲面由于制造工艺的需要我们常常采用近似展开法加以处理。在设计时,采用制图中的“三角形”法的原理并借用计算机对空间斜圆锥对数螺旋面叶片进行展开计算。

螺旋面理论上是不可展开曲面,由于制造工艺的要求,常采用近似展开法进行处理,以满足制造要求。我们在设计中,利用将空间叶片第i点至第i十1两等分点之间的一小段叶片,近似地看作一梯形,如图4.3所示。只要算出第i点至第i+1两等分点之间叶片根部及顶部斜圆锥对数螺旋线上点C、B、D、A的坐标值,就可根据空间任意两点间距离公式得出图中任意两点间的距离,即AB、BC、CD、DA、DB。

还可把第i点至第i+1两等分点之间这一小段叶片展开,通过计算机进行循环计算,然后利用“三角形”法,将整个螺旋叶片展开。只要在螺旋叶片设计中,两等分点之间的间隔控制在一定范围内,展开的螺旋叶片平面图,就可达到一定的精度要求。

图4.3叶片顶部 叶片根面 本设计是在三段式梨形搅拌筒外形尺寸不变的前提下进行的。搅拌筒的外形优化暂不考虑。根据搅拌叶片有三段拟合而成的特点,我们分别对前锥、中圆和后锥的叶片采取不同的型线规律。

图4.3.1非等变角对数螺旋线正视图和右视图 图中标记A、B处是各段叶片的拟合接合点 B(mm) 前锥 380 中圆 380 后锥 表4.3搅拌叶片基本设计参数 知道了内外螺旋线的方程,我们就可以在软件中绘制出内外螺旋线的图形,然后利用扫略功能,做出搅拌叶片的实体模型,如图4.3.2所示。

图4.3.2叶片实体模型 后锥 中圆 前锥 螺旋线规律 螺旋角表达式 螺旋线规律 螺旋角表达式 螺旋线规律 螺旋角表达式 非等变角对数螺旋线 等变角递增圆柱螺旋线 非等变角对数螺旋线 等变角递减 对数螺旋线 等角圆柱螺旋线 等变角递减对数螺旋线 底部和与中圆接口处为离散点,中间为等角对数螺旋线。

等角圆柱 螺旋线 顶部和与中圆接口处为离散点,中间为等角对数螺旋线。

表4.3.1 搅拌叶片设计规律与参数 4.4搅拌叶片的仿真设计和模态分析 计算机仿真也是对一个数学模型进行的试验研究,计算机仿真具有周期短,投入少,避免了实际试验所承担的成本浪费、试验风险和危险。特别是用于大数据的计算更显出其优越性。

计算机仿真作为新的实验研究的方式,可以为实际的试验研究提供参考和思路。实验研究和计算机仿真研究相结合,相辅相成,取长补短,对于课题的研究非常有利。

我们在理论研究的基础上,初步对设计的搅拌系统进行了数值模拟和仿真,下面是一些截图基于在UG下建立的,如下图所示的叶片与罐总成装配模型,通过UG的仿真功能,实现了叶片与罐的运动仿真。

本文采用8.5LP混凝土搅拌车为模型进行研究如下图所示。

其中,图4.4.1-4.4.3为搅拌筒各段图,图4.4.4为搅拌叶片造型图;

图4.4.5-4.4.7为实体建模图;

图4.4.8为运动仿真图。

图 4.4搅拌系统尺寸图 建模过程如下:

图4.4.1前锥 图4.4.2中柱图 图4.4.3后锥 图4.4.4 搅拌叶片 图4.4.5 前支撑 图4.4.6 连接法兰 图4.4.7搅拌罐三维实体装配模型 图4.4.8 运动模拟 模态分析是机械和结构动力学中一种极为重要的分析方法, 是将线性定常系统振动微分方程组中的物理坐标变换为模态坐标,采用有限元法形成系统的离散数学模型- 质量矩阵和刚度矩阵,使方程组解耦,成为一组以模态坐标和模态参数描述的独立方程,以便求出系统的模态参数的方法。经过模态分析, 搅拌叶片的前六阶振型如下图所示。

第1阶模态是一阶横向弯曲振动,搅拌叶片右侧振幅较大,左端变形较小;

第2阶模态是一阶纵向振动,叶片左端振幅很大,叶片中部产生很大的弯曲应力;

第3阶模态是叶片结构的二阶横向弯曲即出现了扭转和弯曲的复合变形, 叶片中部的振幅较大;

第4阶模态是叶片结构的二阶纵向弯曲即出现了叶片在水平面内的左右扭转,叶片中部的变形量较大;

第 5 阶和第 6 阶模态叶片结构在各个方向均出现了大范围的弯曲和扭转,叶片中部变形量较大。这些局部振型表明叶片各部位刚度存在不均匀的现象。混凝土搅拌车在搅拌的过程中受到新拌混凝土在各个方向上的冲击作用, 这类载荷最易激发叶片结构的弯曲模态;

当在路上行驶时, 由于路面的凹凸不平,叶片承受更多的非对称载荷, 此时最易激发叶片结构的扭转模态。因此, 搅拌叶片的弯曲及扭转振动是其结构动态特性的主要表现形式。

4.5搅拌叶片结构应力分析 ANSYS有限元的计算,就是将形状复杂以及受力情况复杂的零件化分为有限数目的单元,再分别计算这些单元的受力和变形情况,然后将这些单元整合起来,就形成了整个零件的受力变形图。

螺旋叶片在各搅拌工况下进行应力和变形分析;

受力和变形如下列图所示:

图4.5 等角搅拌叶片应力图 图4.5.1 等变角搅拌应力图 图4.5.2 非等变角a搅拌应力图 图4.5.3非等变角b搅拌叶片应力图 图4.5.4 非等变角c搅拌叶片应力图 图4.5.5 等角出料叶片应力图 图4.5.6 变等角出料叶片应力图 图4.5.7 非等角a出料叶片应力图 图4.5.8 非等角b出料叶片应力图 图4.5.9 非等角c出料叶片应力图 综合上述分析得到:等角、等变角和非等角螺旋叶片的应力与应变情况如下表4.5所示:

表4.5等角、等变角和非等变角螺旋叶片的应力与应变 由上表可知作用在非等角对数螺旋叶片上的压力和变形明显小于其它几种对数螺旋叶片的压力和变形值正转搅拌和反转卸料时搅拌叶片的应力值远远低于材料的屈服应力361MPa。叶片应力越大摩擦力也就越大磨损也就越严重,变形越大振动更为严重同时变形使搅拌叶片的形状改变达不到预期的搅拌和出料效果,由此可见非等变角对数螺旋叶片明显优于其它几种对数螺旋叶片。

参考文献 [1]冯忠绪.混凝土搅拌理论与设备,北京人民交通出版 2001.8 [2]邢普,仪垂杰,郭健翔.非等角对数螺旋线搅拌叶片的设计研究.工程机械 2006.4 [3]邢普,仪垂杰,郭健翔.混凝土搅拌车搅拌叶片仿真设计及模态分析.机械设 计与制造2007.8 [4]邢普 郭健翔等 非等角对数螺旋线搅拌叶片的实验研究 工程设计学报 2008.1 [5]邢普 仪垂杰等 混凝土搅拌车搅拌叶片新型母线及应用研究 建筑机械 2007.2 [6]江继辉.混凝十搅拌输送车搅拌筒搅拌过程的运动分析 工程机械 1991(2) [7]程书良.混凝土搅拌车搅拌叶片的设计.建筑机械化 2002年第2期 [8]田利芳.混凝土搅拌运输车结构设计及液压系统动态仿真.西安建筑科技大 学学位论文 2004.03.10.[9]王明庆.前端卸料搅拌输送车的应用与推广 建筑机械 1988(12) [10]R.V.Romen Studies on transfer process in mixing vessels: effects of gas on solid-liquid hydrodynamics using modified Rushton turbine agitators[J].Bioprocess Engineering 17,1997.[11]Chiara F.Ferraris Concrete Mixing Methods and Concrete Mixers: State of the Art Journal of Research of the National Institute of Standards and Technology J.Res.Natl.Inst.Stand.Technol.Volume 106, Number 2, March–April 2001 ( 391–399) [12] M.DI PRISCO, L.FERRARA, F.MEFTAH, Mixed mode fracture in plain and reinforced concrete: someresults on benchmark tests. International Journal of Fracture 103: 127–148, 2000. 致谢 本文是在导师邢普博士精心的指导下完成的,作者的每一点进步无不倾注了邢老师的一番心血与教诲,在此,谨致以我衷心的感谢。

付昊旻 2011年5月 附录A 部分程序源代码 NUMBER/r(5),h(4),bt(3),bt1(3),btn(3),i,j,st,stm(3),k(3),a1,a3,p,p1,p3,stn1 $$1一定义变量 ENTITY/ax,ps1(1021),ps2(1021),m(4),g(4),sl(6),pt(5),pt0(2),b(9),SPLN(2),$ ln(10),EN(K),CSYS1,CSYS2,CSYS3 pds1: $$2一生成输入参数的对话框 '前锥小端半径:',r(1),$ '前锥高度:',h(1),$ '前锥最大螺旋角:',bt(1),$ '前锥最小螺旋角:',bt1(1),$ '前锥螺旋转角:',k(1),$ '中圆半径:',r(2),$ '中圆高度:',h(2),$ '中圆最大螺旋角:',bt(2),$ '中圆最小螺旋角:',bt1(2),$ '中圆螺旋转角:',k(2),$ '后锥小端半径:',r(3),$ '后锥锥面段数:',j,$ '后锥高度:',h(3),$ '后锥前锥面高度:',h(4),$ '后锥前锥面小端半径:',r(4),$ '后锥后锥面小端半径:',r(5),$ '后锥最大螺旋角:',bt(3),$ '后锥最小螺旋角:',bt1(3),$ '后锥螺旋转角:',k(3),rsp JUMP/pds1:,stop1:,,rsp ax=LINE/(pt0(1)=POINT/O,0,0),(pt0(2)=POINT/0,0,600)$$3一生成罐体 g(1)=LINE/(pt(1)=POINT/r(1),0,0),(pt(2)=POINT/r(2),0,h(1)) g(2)=LINE/pt(2),(pt(3)=POINT/r(2),0,(h(1)+h(2))) IFTHEN/j=2 g(3)=LINE/pt(3),(pt(4)=POINT/r(4),0,(h(1)+h(2)+h(4))) g(4)= LINE/pt(4),(pt(5)=POINT/r(5),0,(h(1)+h(2)+h(3))) m(4)=REVSRF/g(4),AXIS,ax,0,360 ELSEIF/j=1 g(3)=LINE/pt(3),(pt(4)=POINT/r(3),0,(h(1)+h(2)+h(3))) ENDIF m(1)=REVSRF/g(1),AXIS,ax,0,360 m(2)=REVSRF/g(2),AXIS,ax,0,360 m(3)=REVSRF/g(3),AXIS,ax,0,360 a1=ATANF((r(2)-r(1))/h(1))$$前锥半锥角 $$4一计算基本参数 a3=ATANF((r(3)-r(2))/h(3))$$后锥半锥角 DO/LOOP1:i,1,200 p=SINF(i*180/2040)+i/2040 btn(1)=bt(1)-(bt(1)-bt1(1))*p p1=(r(2)-r(1))/h(1)*COSF(a1)*COSF(btn(1))/SINF(btn(1)) stm(1)=i*k(1)/200 LOOP1: DO/LOOP2:i,200,390 stm(2)=k(1)+(i-200)*k(2)/190 LOOP2: DO/LOOP3:i,390,1020 p=SINF(i*180/2040)+i/2040 btn(3)=bt(3)-(bt(3)-bt1(3))*p p3=(r(3)-r(2))/h(3)*COSF(a3)*COSF(bt(3))/SINF(btn(3)) stm(3)=k(1)+k(2)+(i-390)*k(3)/630 LOOP3: i=1 STR1:$$5一计算曲线上点的坐标 st=(i-1)*stm(3)/1020 IFTHEN/st<=stm(1) xc=r(1)*EXPF(p1*st)*COSF(st*180/3.14159) yc=r(1)*EXPF(p1*st)*SINF(st*180/3.14159) zc=r(1)*h(1)/(r(2)-r(1))*(EXPF(p1*st)-1) ELSEIF/stm(1)

t=0 n=10/9*t*pi() r0=3291.13 l=15.89 m=81.36 r=r0*exp(sin(l)/tan(m)*n) xt=-r*sin(l)*cos(n*360/(2*pi()) yt=-r*sin(l)*sin(n*360/(2*pi())) zt=r*cos(l) xt1=r*sin(l)*cos(n*360/(2*pi())) yt1=r*sin(l)*sin(n*360/(2*pi())) zt1=r*cos(l)

第三篇:混凝土搅拌车司机岗位责任制

1. 混凝土搅拌车司机必须持有交通部门颁发的驾驶执照,才能驾驶车辆,严禁无证开车。

2. 认真执行岗位责任制,认真学习交通法规,严格执行道路交通管理规则和安全技术操作规程,公司管理的各项规章制度,做到安全运输。

3. 要做到“三懂四会”(懂构造、懂原理、懂性能;会使用、会保养、会检查、会排除故障),要正确地使用机械,按规定进行保养,提高机械完好率。

4. 必须坚守工作岗位,严格遵守劳动纪律,做好本职工作,确保机械正常运行。

5. 对保管的设备,坚持做好“例保”工作,经常保持设备完好状态,按走行公里间隔规定,更换各种滤芯和润滑油(脂)。

6. 当混凝土工作结束后,必须坚持清洗工作。

7. 随机工具和附件,认真保管使用,防止丢失。

8. 认真填写机械运转记录报表或交接班记录,任务量签认单做到准确、齐全、整洁及时上报。

9. 有权拒绝有碍机械安全运转的施工安排,有权采取紧急措施,确保机械设备安全生产。

10. 参与本机保养及项修后的技术鉴定与验收工作。

第四篇:2021年混凝土搅拌车租赁合同

混凝土搅拌车的结构主要有汽车底盘、搅拌装置两部分。对于混凝土搅拌车租赁合同你又了解多少呢?以下是小编为大家整理的混凝土搅拌车租赁合同范文,欢迎参考阅读。

混凝土搅拌车租赁合同范文1

甲方(承租方):

乙方(出租方):

乙方根据甲方工作需要,依 据《中华人民共和国合同法》及相关法律规定,本着平等互利、求实守信的原则,同意将( )台混凝土搅拌车()租给甲方使用。经甲、乙双方协商一致,达成合同,双方必须遵守执行。

一、甲方租用乙方(

)台砼搅拌车,负责甲方生产商品砼的销售转运工作。

二、合同期间甲方销售的商品砼其运输价格按以下标准结算:

(1) 公里内 元/ M

(2) 公里至 公里 元/ M

(3) 公里至 公里 元/ M

注:凡超出 公里以外或由于油价继续上涨等原因造成的运距运输单价增加,按双方协商定价为准。

三、公司确保按每车每月的结算总方量的75%---80%结算运费,剩余部分三个月结清一次,以此类推(每月

日结算一次,次月日前付款)另:租赁费用尽量以现金支付。

四、乙方自行负责车辆的各种规费和驾驶员的工资、福利待遇,配备足够的驾驶员保证甲方每天24小时不间断生产,服从甲方调度人员的工作安排,积极配合甲方做好销售混凝土的转运工作。

乙方必须随喊随到,因乙方原因(如驾驶员不听从安排,车辆不准时到达,工地最后一车收尾料不跑等)导致砼不能及时开盘供应,甲方则有权按当月每方砼5元从乙333方运费中扣除。

五、甲方应该给予乙方车辆合理和必要的维修和保养时间,乙方车辆单月出勤不得少于27天。

六、乙方车辆在服务期间,甲方应为乙方搅拌车提供固定安全的停车场地,并协调当地政府各主管部门的关系,便于顺利工作。

如运输过程中,交警对驾驶员或者车辆处罚,甲方有权协调(驾驶员操作不当产生的交通违章及事故除外)。

七、甲方对乙方的驾驶员有生产调配和监察权,对不胜任驾驶员,甲方有权要求更换人员或做相应处罚。

八、乙方车辆在完成商品砼运输过程中必须保质保量的完成任务,如因乙方人为原因造成砼的量损,乙方必须赔偿甲方的损失并追究责任。

九、违约责任:甲方不按合同约定时间支付租赁费用,乙方有权停运并追收所欠款项,此期间所有一切损失全部由甲方自行承担。

十、本合同未明事宜双方协商解决,并达成补充协议。

若协议不成,通过法律诉讼裁决。

十一:本合同一式两份,双方责任人签字(盖章)生效,甲乙双方各执一份,两份具有同等法律效力。

甲方(公章):_________        乙方(公章):_________

法定代表人(签字):_________     法定代表人(签字):_________

_________年____月____日       _________年____月____日

混凝土搅拌车租赁合同范文2

出租方(甲方):

承租方(乙方):

根据《中华人民共和国合同法》及有关法律法规的规定,为明确甲、乙双方的权利与义务关系,双方在自愿的基础上,经协商一致,达成本租赁合同。

一、租赁物的名称、数量及用途

1.甲方将以下租赁物出租给乙方使用,设备情况如下:

2.租赁物的用途为:混凝土搅拌作业,租赁物的使用地点为: 地区(含郊区、县、市)。

3.租赁期限为 个月,自20_年 月 日至20_年 月 日。(春节期间放假15天停租停滞不计租金)。

二、租赁方式

1.租金单价:混凝土搅拌车租金为人民币 元 /月·台,含税金,本合同总租赁费金额为人民币 元整。(¥ 元)

2. 乙方只负责柴油供应。其它机械所需的润滑油和黄油以及所有保养、维修费用、保险费用等均由甲方承担。

3. 甲方同意,本合同履行期间,乙方有权对外转租车辆。转租期间,扣除应付甲方本合同约定租金后剩余的部分收益全部归乙方所有。

三、租金的支付方式

租金按月结算,甲方每月凭有效合法发票到乙方机械设备部办理租赁费结算手续。结算完成后,乙方在20个工作日内将租金转帐支付到甲方指定帐户。

四、所有权

乙方所租机械所有权属于甲方。甲方对所租机械的产权纠纷承担一切责任。乙方对所租机械只享有使用权和转租权,不能以任何形式对车辆进行抵押或转让。

五、甲方的义务和权利

1.甲方负责配备租赁车辆相关手续(如行车证、车辆保险、车辆年审、验证及购置证明等)及持证操作人员(每台一人);如甲方操作人员因故不能正常上岗时,或者同意乙方操作人员代替操作(相应地向乙方操作人员支付工资)。甲方人员必须遵守乙方驻地的管理制度,违反制度的,乙方有权进行处罚直至强令退场。

2.甲方人员必须遵守车辆租赁方驻地的管理制度,违反制度的,由甲方承担相应责任。甲方操作人员必须服从车辆租赁方施工管理人员的调度与指挥,遵守安全操作规程。

3.甲方操作人员应每日填写运行记录表,将此表交车辆租赁方施工管理人员签字确认,每天上午将前一天的车辆运行台时数报车辆租赁方机械管理部,作为计算车辆租赁费的原始依据。

六、乙方的义务和权利

1.乙方为甲方派驻的操作人员免费提供食宿(不含床上用品)。

2.租赁期间乙方有权对所租机械的性能和工况进行监督检查,如甲方操作人员不服从乙方施工安排,或甲方操作人员故意窝工、减少设备出勤的,乙方在结算付清甲方已作业的租赁金后有权终止本合同,并不承担任何责任。

七、其他约定

1.乙方有权根据工作安排,随时改变车辆的使用地点,甲方必须无条件同意、服从乙方的施工安排和调度指令。

2.甲方及其操作人员在运输途中出现交通事故或其它事件,由甲方自行承担责任;若因甲方操作失误造成施工现场出现事故(如:地下通讯、电力、煤气、水里等设施损坏;施工现场、光缆、电力、建筑等设施和甲方机械人员伤亡等),造成的间接损失和直接损失,均由甲方全部负责。如果乙方因此遭受连带赔偿责任的,乙方有权向甲方追偿。

3.从20_年11月27日起开始计算租赁费用。按批进场的机械,以每台机械实际进场时所记录时间为准。

4.本合同期满或中途解除本协议的,甲方接到乙方书面通知后应及时验收车辆,办理相应的结算手续,甲方收回车辆的时间(甲方超出乙方通知时间三日以上的,以乙方通知时间为交验时间)为租赁的实际结束时间,不足整月的按实际使用

八、违约责任

1.在租赁期间,机械出现故障需修理的,由甲方负责维修,所有的维修费用由甲方负责,因维修原因,每月维修时间超过72小时的,甲方机械必须补工或按比例扣减租金。

2. 乙方不得将车辆进行转让、变卖或抵押,否则甲方可随时解除本合同并收回设备,并要求乙方承担全部经济损失。

3. 未经乙方书面同意,甲方不得将车辆调离施工现场,致使车辆租赁方无法正常生产的,甲方按月租金数额的三倍赔偿车辆租赁方因此遭受的损失。

4.甲方应保证车辆相关手续齐全,如因甲方办理手续不全导致使用车辆过程中被有关部门查处,相关责任由甲方承担。如因此耽误车辆租赁方使用车辆,应根据实际误工时间承担赔偿责任。

5. 乙方因工程进度变化需要提前终止本合同的,乙方应提前十日告知甲方。否则应赔偿甲方的相应的经济损失。

九、本合同自双方签字盖章之日起生效。

一式两份,各方执壹份。

十、合同履行地为乙方住所地。

如因履行本合同发生争议,首先由双方协商或通过调解解决,协商或调解不成的,则提交乙方住所地法院诉讼解决。

甲方(公章):_________        乙方(公章):_________

法定代表人(签字):_________     法定代表人(签字):_________

_________年____月____日       _________年____月____日

混凝土搅拌车租赁合同范文3

承租方: (以下简称甲方)

出租方: (以下简称乙方)

根据《中华人民共和国合同法》的规定,就混凝土搅拌车运输事宜,经双方友好协商达成如下协议:

一、车辆使用地点及时间:_有限公司,搅拌车租赁合同期限为

年 月 日起—— 年 月 日止。

二、车辆设备情况:甲方租赁乙方搅拌车运输,乙方车辆需具备合法有效证件(如牌证、保险等手续齐全)。

三、承租内容:甲方租赁乙方搅拌车作为搅拌站运输混凝土之用。

四、承租距离:江苏裕华商品混凝土有限公司至其周边工地。

五、运输费用价格:搅拌车运输价格每方量计算,搅拌站至工地泵点运费0—15公里,22元/M3,15公里以外23元/

M3.油价按市场价执行。

六、搅拌车所有权属于乙方,甲方在合同期间享有租赁使用权,没有对车辆的转租权,更不准对车辆进行抵押,否则造成损失及后果由甲方承担。

甲方必须保证油品的质量和数量。

七、结算方式:运输费用每月结算一次,并在次月10日以前付清全部运输费用(不开启发票,乙方将费用收据,工资报表为结算收款依据,不足部分由乙方开具发票,费用由甲方出)。

八、甲方职责:

1、甲方为乙方司机提供免费食宿及搅拌车停放和加油,

2、乙方司机的上岗资格证由甲方统一办理,其费用由乙方负责。合同期满结算时返还乙方。

3、甲方协助乙方在站内停放车辆时间内安保看护。

4、甲方不得强迫乙方司机违章作业。

5、甲方对乙方搅拌车司机进行安全指导。

九、乙方职责:

1、乙方提供车辆须性能良好、维修、保养、确保搅拌车良好状态,负责交通运输安全责任及经济责任。

2、乙方必须保证工地车辆充足不影响生产,乙方每车配备司机人数>1.5人。

3、服从甲方管理人员调度及指挥,遵守搅拌站规章制度,协调施工单位施工。否则,甲方有权要求乙方调换司机和进行处罚。

4、乙方应为乙方驾驶人员购买意外保险。

十、合同期间责任及违约:

1、合同期内甲方按时付款给乙方,否则乙方有权停止运砼。

2、合同期限内,如乙方提出搅拌车离场终止合同,甲方有权不支付一个月运费,若因甲方单方面原因提出终止合同,甲方须按合同约定一台车补1500方运费补给乙方。

3、合同期满后,甲方结清乙方运费搅拌车离场。若甲乙双方搅拌站发展须求继续合作,可协商补签合同。

十一、合同未尽事宜协商解决,本合同一式两份,甲乙双方各执一份,同具法律效应,双方签字后生效。

甲方(公章):_________        乙方(公章):_________

法定代表人(签字):_________     法定代表人(签字):_________

_________年____月____日       _________年____月____日

2021年混凝土搅拌车租赁合同范文

第五篇:混凝土搅拌站铲车、微机、搅拌车操作员岗位职责

郑州新水工机械有限公司

混凝土搅拌站铲车、微机、搅拌车操作员岗位职责

今日,为大家介绍混凝土搅拌站中铲车司机、微机操作、生产值班员以及搅拌车司机岗位职责。希望能对各位搅拌站站长管理有所帮助!

⑴铲车上料司机岗位职责

负责按搅拌站、试验室指定料堆及时、准确、对仓号上料。随时关注砂、石含水率和砂中含石量变化情况,及时与生产值班员和搅拌站、试验员沟通,以便搅拌站试验员据息检测和及时调整施工配合比。

⑵微机操作员岗位职责

负责按《混凝土施工配合比通知单》及时准确将各项材料数据输入,并接受试验员旁站核对。负责按搅拌程序准确操作,随时观察、关注监视器实况和计量系统计量准确度,发现问题及时与生产值班员和搅拌站试验员沟通,以便及时采取纠正措施。

⑶生产值班员岗位职责

负责对混凝土搅拌站现场的各岗位生产人员、装运机械进行合理调配。负责收集各岗位及浇筑现场的反馈意见,及时与搅拌站试验员协调,共同分析混凝土拌和物出现异常的原因和采取有针对性的措施予以解决。

⑷搅拌车司机岗位职责

负责安全、迅捷、准确地将混凝土运送到浇筑地点。在混凝土搅拌运输车装运混凝土前,负责对搅拌运输车进行认真检查,料车内壁必须清理干净,其内不得存有积水。每天装运混凝土工作结束后或卸料时间超过30min时必须清洗车斗。混凝土运送到浇筑地点后,负责关注、收集混凝土拌和物入模坍落度和和易性情况,并及时向生产值班员和试验员反馈。

郑州国家大学科技园东区3#楼

上一篇:湖南省永州市中考查分下一篇:淮南矿业集团专版合同