万有引力定律应用教案

2023-03-19

教案的书写过程是对教学设计和教学理念的整理过程,包括教学课时、教学时间、教学重难点、教学准备,教学实施过程,导入、讲授、讨论、作业、板书,还有教学后的反思和小结,有助于教学的顺利进行和总结提高。以下是小编精心整理的《万有引力定律应用教案》,供大家参考,更多范文可通过本站顶部搜索您需要的内容。

第一篇:万有引力定律应用教案

高中物理 《万有引力定律的应用》教案(1)

万有引力定律的应用

【教育目标】

一、知识目标

1.了解万有引力定律的重要应用。

2.会用万有引力定律计算天体的质量。

3.掌握综合运用万有引力定律和圆周运动等知识分析具体问题的基本方法。

二、能力目标

通过求解太阳、地球的质量,培养学生理论联系实际的能力。

三、德育目标

利用万有引力定律可以发现未知天体,让学生懂得理论来源于实践,反过来又可以指导实践的辩证唯物主义观点。 【重点、难点】

一、教学重点

对天体运动的向心力是由万有引力提供的理解

二、教学难点

如何根据已有条件求中心天体的质量 【教具准备】

太阳系行星运动的挂图和FLASH动画、PPT课件等。 【教材分析】

这节课通过对一些天体运动的实例分析,使学生了解:通常物体之间的万有引力很小,常常觉察不出来,但在天体运动中,由于天体的质量很大,万有引力将起决定性作用,对天文学的发展起了很大的推动作用,其中一个重要的应用就是计算天体的质量。

在讲课时,应用万有引力定律有两条思路要交待清楚.

1.把天体(或卫星)的运动看成是匀速圆周运动,即F引=F向,用于计算天体(中心体)的质量,讨论卫星的速度、角速度、周期及半径等问题.

2.在地面附近把万有引力看成物体的重力,即F引=mg.主要用于计算涉及重力加速度的问题。 这节内容是这一章的重点,这是万有引力定律在实际中的具体应用.主要知识点就是如何求中心体质量及其他应用,还是可发现未知天体的方法。 【教学思路设计】

本节教学是本章的重点教学章节,用万有引力定律计算中心天体的质量,发现未知天体显示了该定律在天文研究上的重大意义。

本节内容有两大疑点:为什么行星运动的向心力等于恒星对它的万有引力?卫星绕行星运动的向心力等于行星对它的万有引力?我的设计思想是,先由运动和力的关系理论推理出行星(卫

1 星)做圆周运动的向心力来源于恒星(行星)对它的万有引力,然后通过理论推导,让学生自行应用万有引力提供向心力这个特点来得到求中心天体的质量和密度的方法,并知道在具体问题中主要考虑哪些物体间的万有引力;最后引导阅读相关材料了解万有引力定律在天文学上的实际用途。

本节课我采用了“置疑-启发—自主”式教学法。教学中运用设问、提问、多媒体教学等综合手段,体现教师在教学中的主导地位。同时根据本节教材的特点,采用学生课前预习、查阅资料、课堂提问;师生共同讨论总结、数理推导、归纳概括等学习方法,为学生提供大量参与教学活动的机会,积极思维,充分体现教学活动中学生的主体地位。 【教学过程设计】

一、温故知新,引入新课

教师:

1、物体做圆周运动的向心力公式是什么?

2、万有引力定律的内容是什么,如何用公式表示?

3、万有引力和重力的关系是什么?重力加速度的决定式是什么? 【引导学生观看太阳系行星运动挂图和FLASH动画】 教师:根据前面我们所学习的知识,我们知道了所有物体之间都存在着相互作用的万有引力,而且这种万有引力在天体这类质量很大的物体之间是非常巨大的。那么为什么这样巨大的引力没有把天体拉到一起呢?

【设疑过渡】

教师:由运动和力的关系来解释:因为天体都是运动的,比如恒星附近有一颗行星,它具有一定的速度,根据牛顿第一定律,如果不受外力,它将做匀速直线运动。现在它受到恒星对它的万有引力,将偏离原来的运动方向。这样,它既不能摆脱恒星的控制远离恒星,也不会被恒星吸引到一起,将围绕恒星做圆周运动。此时,行星做圆周运动的向心力由恒星对它的万有引力提供。

本节课我们就来学习万有引力在天文学上的应用。

二、明确本节目标

1.了解万有引力定律在天文学上的重要应用。

2.会用万有引力定律计算天体的质量。

3.掌握综合运用万有引力定律和圆周运动等知识分析具体问题的基本方法。

三、重点、难点的学习与目标完成过程

1.理论思想的建立

教师:通过前面学过的知识和刚才的理论推测,我们研究天体运动的基本方法是什么? 学生:(思考后回答)应该抓住恒星对行星的万有引力做行星圆周运动的向心力这一根本点去进行处理。

教师:(大屏幕投影动画,加深学生感性认识和理解能力)

教师:能否用我们学过的圆周运动知识求出天体的质量和密度呢? 【自然过渡,进入定量运算过程】 2.天体质量的计算

教师:如果我们知道了一个卫星绕行星运动的周期,知道了卫星运动的轨道半径,能否求出行星的质量呢?

学生:由物体做圆周运动的动力学条件,列式可求。

教师:此时知道行星的圆周运动周期,其向心力公式用哪个好呢?

2 【引导学生自行推导,然后在大屏幕上演示推导过程】

设行星的质量为m.根据万有引力提供行星绕太阳运动的向心力,有:

MmF向=F万有引力=G2m2r

rMm2即G2m()2r

Tr42r3M

GT2教师:这个质量表示的是做圆周运动的行星的质量吗? 学生:是中心天体的质量。

【讨论】

1、要计算太阳的质量,你需要哪些数据?

2、要计算地球的质量,你需要哪些数据? 3.天体密度的计算

教师:能否用推导出中心天体的密度呢? 【提示】想一想,天体的体积容易求解出来吗? 【教师在学生思考后利用大屏幕演示推导方法】

m42r3/GT23r3 2343VGTRR3教师:从实际情况来考虑,有什么更好的方法来进行测量吗?

学生:公式里的r和R如果能约掉,即让卫星绕行星贴着表面运动即可。

m42r3/GT23r33 23243VGTRGTR3总结:方法是发射卫星到该天体表面做近地运转,测出绕行周期

3.实例应用:海王星、冥王星的发现

让学生阅读教材内容,认识万有引力定律在天文学上的实际应用。

四、课堂练习

1、本节第二节介绍牛顿如何在开普勒第三定律的基础上推导出万有引力的思路。通过本节的学习,请证明,所有行星绕太阳运转其轨道半径的立方和运转周期的平方的比值即r3/T2是一个常量。

2、密封舱在离月球表面112km的空中沿圆形轨道运行,周期是120.5min,月球的半径是1740km,根据这些数据计算月球的质量和平均密度。

3、已知火星的半径是地球的半径的一半,火星的质量是地球的质量的1/10.如果在地球上质量为60kg的人到火星上去,问: ⑴在火星表面上人的质量多大?重量多少? ⑵火星表面的重力加速度多大?

3 ⑶设此人在地面上能跳起的高度为1.6m,则他在火星上能跳多高?⑷这个人在地面上能举起质量为60kg的物体, 他在火星上可举起质量多大的物体? 答案:

1、略

2、M=7.19×1022kg,ρ=3.26×103kg/m3

3、(1)质量60kg, 重量240N;(2)4N/s; (3)4m ; (4)150kg

五、小结 本节课我们学习了万有引力定律在天文学上的应用,计算天体的质量和密度的方法是F引 =

2m42r3/GT23r3342r3F向求得的结果M, 23243VGTRGTGT2R3另外,根据天体质量的计算结果讨论

r

31、 从理论上验证了开普勒经验公式:2k的正确性。

T

2、 如果知道中心天体的质量M,也可以预测绕其运动的行星或卫星的运动情况。(3)星球表面加速度的计算对象:星球表面物体GMmmg =r2得:g =GMr2 【板书设计】 【素质能力训练】

1、 两颗靠得很近的行星,必须各以一定的速度绕它们连线上某一点转动,才不至于由于万有引力的作用而将它们吸引到一起。以知这两颗行星的质量分别为m

1、m2,相距为L,讨论这两颗行星运动的周期、运动半径有什么关系?求出它们的转动周期。

2.已知下面的数据,可以求出地球质量M的是(引力常数G是已知的) A.月球绕地球运行的周期T1及月球到地球中心的距离R1 B.地球“同步卫星”离地面的高度

C.地球绕太阳运行的周期T2及地球到太阳中心的距离R2 D.人造地球卫星在地面附近的运行速度v和运行周期T3

3、地球和月球的质量之比为81∶1,半径之比为4∶1,求: (1)地球和月球表面的重力加速度之比

(2)在地球上和月球上发射卫星所需最小速度之比.

4、用火箭把宇航员送到月球上,如果已知月球半径,他用一个弹簧秤和一已知质量的砝码,能否测出月球的质量?如何测定?

答案:1:两颗行星靠得很近,它们绕连线上的某点作圆周运动,万有引力等于它们的向心力,它们的运动周期相等,则它们的质量和半径的乘积相同,即 m1r1 = m2r2 且 r1 + r2 = L T2L3所以G(m+m 12)

2、AD

3、(1)81∶16 2)9∶2 4 、能,略

(

第二篇:高一物理高一全部教案(共52个)06.4.万有引力定律在天文学上的应用

万有引力定律在天文学上的应用人造卫星

一、教学目标

1.通过对行星绕恒星的运动及卫星绕行星的运动的研究,使学生初步掌握研究此类问题的基本方法:万有引力作为物体做圆周运动的向心力。 2.使学生对人造地球卫星的发射、运行等状况有初步了解,使多数学生在头脑中建立起较正确的图景。

二、重点、难点分析

1.天体运动的向心力是由万有引力提供的,这一思路是本节课的重点。 2.第一宇宙速度是卫星发射的最小速度,是卫星运行的最大速度,它们的统一是本节课的难点。

三、教具

自制同步卫星模型。

四、教学过程 (一)引入新课 1.复习提问:

(1)物体做圆周运动的向心力公式是什么?分别写出向心力与线速

(2)万有引力定律的内容是什么?如何用公式表示?(对学生的回答予以纠正或肯定。)

(3)万有引力和重力的关系是什么?重力加速度的决定式是什么?(学生回答:地球表面物体受到的重力是物体受到地球万有引力的一个分力,但这个分力的大小基本等于物体受到地球的万有引力。如不全面,教师予以补充。)

2.引课提问:根据前面我们所学习的知识,我们知道了所有物体之间都存在着相互作用的万有引力,而且这种万有引力在天体这类质量很大的物体之间是非常巨大的。那么为什么这样巨大的引力没有把天体拉到一起呢?(可由学生讨论,教师归纳总结。)

因为天体都是运动的,比如恒星附近有一颗行星,它具有一定的速度,根据牛顿第一定律,如果不受外力,它将做匀速直线运动。现在它受到恒星对它的万有引力,将偏离原来的运动方向。这样,它既不能摆脱恒星的控制远离恒星,也不会被恒星吸引到一起,将围绕恒星做圆周运动。此时,行星做圆周运动的向心力由恒星对它的万有引力提供。(教师边讲解,边画板图。) 可见万有引力与天体的运动密切联系,我们这节课就要研究万有引力定律在天文学上的应用。

板书:万有引力定律在天文学上的应用人造卫星 (二)教学过程

1.研究天体运动的基本方法

刚才我们分析了行星的运动,发现行星绕恒星做圆周运动,此时,恒星对行星的万有引力是行星做圆周运动的向心力。其实,所有行星绕恒星或卫星绕行星的运动都可以基本上看成是匀速圆周运动。这时运动的行星或卫星的受力情况也非常简单:它不可能受到弹力或摩擦力,所受到的力只有一种——万有引力。万有引力作为其做圆周运动的向心力。

板书:F万=F向

下面我们根据这一基本方法,研究几个天文学的问题。 (1)天体质量的计算

如果我们知道了一个卫星绕行星运动的周期,知道了卫星运动的轨道半径,能否求出行星的质量呢?根据研究天体运动的基本方法:万有引力做向心力,F万=F向

(指副板书)此时知道卫星的圆周运动周期,其向心力公式用哪个好呢?

等式两边都有m,可以约去,说明与卫星质量无关。我们就可以得

(2)卫星运行速度的比较

下面我们再来看一个问题:某行星有两颗卫星,这两颗卫星的质量和轨道半径都不相同,哪颗卫星运动的速度快呢?我们仍然利用研究天体运动的基本方法:以万有引力做向心力

F万=F向

设行星质量为M,某颗卫星运动的轨道半径为r,此卫星质量为m,它受到行星对它的万有引力为

(指副板书)于是我们得到

等式两边都有m,可以约去,说明与卫星质量无关。于是我们得到

从公式可以看出,卫星的运行速度与其本身质量无关,与其轨道半径的平方根成反比。轨道半径越大,运行速度越小;轨道半径越小,运行速度越大。换句话说,离行星越近的卫星运动速度越大。这是一个非常有用的结论,希望同学能够给予重视。

(3)海王星、冥王星的发现

刚才我们研究的问题只是实际问题的一种近似,实际问题要复杂一些。比如,行星绕太阳的运动轨道并不是正圆,而是椭圆;每颗行星受到的引力也不仅由太阳提供,除太阳的引力最大外,还要受到其他行星的引力。这就需要更复杂一些的运算,而这种运算,导致了海王星、冥王星的发现。

200年前,人们认识的太阳系有7大行星:水星、金星、地球、火星、土星、木星和天王星,后来,人们发现最外面的行星——天王星的运行轨道与用万有引

力定律计算出的有较大的偏差。于是,有人推测,在天王星的轨道外侧可能还有一颗行星,它对天王星的引力使天王星的轨道发生偏离。而且人们计算出这颗行星的可能轨道,并且在计算出的位置终于观测到了这颗新的行星,将它命名为海王星。再后,又发现海王星的轨道也与计算值有偏差,人们进一步推测,海王星轨道外侧还有一颗行星,于是用同样的方法发现了冥王星。可见万有引力定律在天文学中的应用价值。

2.人造地球卫星

下面我们再来研究一下人造地球卫星的发射及运行情况。 (1)卫星的发射与运行

最早研究人造卫星问题的是牛顿,他设想了这样一个问题:在地面某一高处平抛一个物体,物体将走一条抛物线落回地面。物体初速度越大,飞行距离越远。考虑到地球是圆形的,应该是这样的图景:(板图) 当抛出物体沿曲线轨道下落时,地面也沿球面向下弯曲,物体所受重力的方向也改变了。当物体初速度足够大时,物体总要落向地面,总也落不到地面,就成为地球的卫星了。

从刚才的分析我们知道,要想使物体成为地球的卫星,物体需要一个最小的发射速度,物体以这个速度发射时,能够刚好贴着地面绕地球飞行,此时其重力提供了向心力。

其中,g为地球表面的重力加速度,约9.8m/s2。R为地球的半径,约为6.4×106m。代入数据我们可以算出速度为7.9×103m/s,也就是7.9km/s。这个速度称为第一宇宙速度。

板书:第一宇宙速度v=7.9km/s 第一宇宙速度是发射一个物体,使其成为地球卫星的最小速度。若以第一宇宙速度发射一个物体,物体将在贴着地球表面的轨道上做匀速圆周运动。若发射速度大于第一宇宙速度,物体将在离地面远些的轨道上做圆周运动。

现在同学思考一个问题:刚才我们分析卫星绕行星运行时得到一个结论:卫星轨道离行星越远,其运动速度越小。现在我们又得到一个结论:卫星的发射速度越大,其运行轨道离地面越远。这两者是否矛盾呢?

其实,它们并不矛盾,关键是我们要分清发射速度和运行速度是两个不同的速度:比如我们以10km/s的速度发射一颗卫星,由于发射速度大于7.9km/s,卫星不可能在地球表面飞行,将会远离地球表面。而卫星远离地球表面的过程中,其在垂直地面方向的运动,相当于竖直上抛运动,卫星速度将变小。当卫星速度减小到7.9km/s时,由于此时卫星离地球的距离比刚才大,根据万有引力定律,此时受到的引力比刚才小,仍不能使卫星在此高度绕地球运动,卫星还会继续远离地球。卫星离地面更远了,速度也进一步减小,当速度减小到某一数值时,比如说5km/s时,卫星在这个位置受到的地球引力刚好满足卫星在这个轨道以这个速度运动所需向心力,卫星将在这个轨道上运动。而此时的运行速度小于第一宇宙速度。所以,第一宇宙速度是发射地球卫星的最小速度,是卫星地球运行的最大速度。

板书:第一宇宙速度是发射地球卫星的最小速度,是卫星绕地球运行的最大速度。

如果物体发射的速度更大,达到或超过11.2km/s时,物体将能够摆脱地球引力的束缚,成为绕太阳运动的行星或飞到其他行星上去。11.2km/s这个速度称为第二宇宙速度。

板书:第二宇宙速度v=11.2km/s 如果物体的发射速度再大,达到或超过16.7km/s时,物体将能够摆脱太阳引力的束缚,飞到太阳系外。16.7km/s这个速度称为第三宇宙速度。

板书:第三宇宙速度v=16.7km/s (2)同步通讯卫星

下面我们再来研究一种卫星——同步通信卫星。这种卫星绕地球运动的角速度与地球自转的速度相同,所以从地面上看,它总在某地的正上方,因此叫同步卫星。这种卫星一般用于通讯,又叫同步通讯卫星。我们平时看电视实况转播时总听到解说员讲:正在通过太平洋上空或印度洋上空的通讯卫星转播电视实况,为什么北京上空没有同步卫星呢?大家来看一下模型(出示模型):

若在北纬或南纬某地上空真有一颗同步卫星,那么这颗卫星轨道平面的中心应是地轴上的某点,而不是地心,其需要的向心力也指向这一点。而地球所能够提供的引力只能指向地心,所以北纬或南纬某地上空是不可能有同步卫星的。另外由于同步卫星的周期与地球自转周期相同,所以此卫星离地球的距离只能是一个定值。换句话说,所有地球的同步卫星只能分布在赤道正上方的一条圆弧上,而为了卫星之间不相互干扰,大约3度角左右才能放置一颗卫星,地球的同步通讯卫星只能有120颗。可见,空间位置也是一种资源。(可视时间让学生推导同步卫星的高度)

五、课堂小结

本节课我们学习了如何用万有引力定律来研究天体运动的问题;掌握了万有引力是向心力这一研究天体运动的基本方法;了解了卫星的发射与运行的一些情况;知道了第一宇宙速度是卫星发射的最小速度,是卫星绕地球运行的最大速度。最后我们还了解了通讯卫星的有关情况,本节课我们学习的内容较多,希望及时复习。

六、说明

1.设计思路:本节课是一节知识应用与扩展的课程,所以设计时注意加大知识含量,引起学生兴趣。同时注意方法的培养,让学生养成用万有引力是天体运动的向心力这一基本方法研究问题的习惯,避免套公式的不良习惯。围绕第一宇宙速度的讨论,让学生形成较正确的卫星运动图景。

2.同步卫星模型是用一地球仪改制而成,用一个小球当卫星,小球与地球仪用细线相连,细线的一端可在地球仪的不同纬度处固定。

第三篇:6.4第四节 万有引力定律在天文学上的应用

新沂市瓦窑中学

何小孔

编号:

第四节

万有引力定律在天文学上的应用

教学目的:

1、进一步掌握万有引力定律的内容

2、能应用这个定律进行计算一些比较简单的天体问题 教学重点:

巩固万有引力定律的内容

教学难点:

应用万有引力定律解决实际问题

教学方法:

启发、讲练

教学过程:

一、复习提问:

1、什么叫万有引力?

2、万有引力定律的内容如何?公式如何表示?

二、引入新课:

万有引力定律揭示了天体运动的规律, 是研究天体运动的重要理论基础.万有引力定律的发现对天文学的发展起了很大的推动作用,取得了重大的成就. 下面我们举例来说明万有引力定律在天文学上的应用.

三、讲授新课:

1、太阳和行星的质量:

应用万有引力定律,可以计算太阳和行星的质量,行星围绕太阳的运动,可以近似地看作匀速圆周运动,具体如下:

设M为太阳(或某一天体)的质量,m是行星(或某一卫星)的质量, r是行星(或卫星)的轨道半径,T是行星(或卫星)绕太阳(或天体)公转的周期.那么太阳(或这个天体)对行星(或卫星)的引力就是行星(或卫星)绕太阳(或天体)运动的向心力:

GmM/r2=ma=4π2mr/T2

由上式可得太阳(或天体)的质量为:

M=4π2r3/GT2

测出r和T,就可以算出太阳(或天体)质量M的大小.例如:

地球绕太阳公转时r=1.49×1011m,T=3.16×107s, 所以太阳的质量为:

M=1.96×1030kg.

同理根据月球绕地球运动的r和T,可以计算地球的质量:

M=5.98×1024kg

2、海王星、冥王星的发现: 共2页

第1页

新沂市瓦窑中学

何小孔

编号:

海王星、冥王星的发现,进一步地证明了万有引力定律的正确性,显示了它对研究天体运动的重要意义.

四、小结、巩固练习:

例一.当通讯卫星以3.1km/s的速率在离地面3.6×104km的高空轨道上作匀速圆周运动时,可与地球自转同步.试求地球的质量. 地球的半径取6.4×103km.

例二.两颗靠得很近的恒星称为双星,这两颗星必须各以一定速率绕某一中心转动,才不致于由于万有引力的作用而吸引在一起.已知两恒星质量分别为m1和m2,两星相距为L. 求这两星转动的中心位置和这两星的转动周期.

例三.已知火星的半径是地球的半径的一半,火星的质量是地球的质量的1/10.如果在地球上质量为60kg的人到火星上去,问:

⑴在火星表面上人的质量多大?重量多少?

⑵火星表面的重力加速度多大?

⑶设此人在地面上能跳起的高度为1.6m,则他在火星上能跳多高?

⑷这个人在地面上能举起质量为60kg的物体, 他在火星上可举多重的物体?

六.布置作业:

1.书面作业:

2.家庭作业:

板书设计:

教学效果分析:

共2页

第2页

第四篇:高一物理万有引力定律在天文学上的应用 练习与解析2大全

亿库教育网

http:// 万有引力定律在天文学上的应用 练习与解析2 1.关于万有引力定律应用于天文学研究的历史事实,下列说法正确的是 A.天王星、海王星和冥王星,都是运用万有引力定律,经过大量计算后发现的

B.18世纪时人们发现太阳的第七颗行星的运动轨道总是同根据万有引力定律计算出来的结果有比较大的偏差,于是人们推测出在这颗行星的轨道外还有一颗行星

C.太阳的第八颗行星是牛顿运用自己发现的万有引力定律,经过大量计算而发现的

D.太阳的第九颗行星是英国剑桥大学的学生亚当斯和勒维列合作研究,利用万有引力定律共同发现的 解析:天王星是在1781年发现的,而卡文迪许测出万有引力常量是在1789年,在此之前人们还不能用万有引力定律作具有实际意义的计算,选项A不正确,选项B正确. 太阳的第八颗行星是在1846年发现的,而牛顿发现万有引力定律是在1687年,显然选项C的说法是不正确的. 太阳的第九颗行星是英国剑桥大学的亚当斯和法国的天文爱好者勒维列利用万有引力定律计算出轨道位置,由德国的加勒首先发现的,选项D错误. 答案:B 2.若已知行星绕太阳公转的半径为r,公转的周期为T,万有引力常量为G,则可求出 A.某行星的质量 B.太阳的质量 C.某行星的密度 D.太阳的密度

23Mm2π24πrm()r22T解析:由Gr可得中心天体太阳的质量:M=GT. 答案:B 3.设想人类开发月球,不断把月球上的矿藏搬运到地球上,假定经过长时间开采后,月球仍可看作是均匀的球体,月球仍沿开采前的圆周轨道运动,则与开采前相比 A.地球与月球间的万有引力将变大 B.地球与月球间的万有引力将变小 C.月球绕地球运动的周期将变长 D.月球绕地球运动的周期将变短

解析:由万有引力定律F=GMm/r2可知,M与m之和不变时,当M=m时力F最大,当m减小、M增大时,力F减小,选项B正确. 由万有引力定律提供向心力GMm/r2=m4π2r/T2可得T2=4π2r3/GM,当地球质量增加时,月球绕地球运动的周期将变短,选项D正确. 答案:BD 4.一太空探测器进入了一个圆形轨道绕太阳运转,已知其轨道半径为地球绕太阳运转轨道半径的9倍,则太空探测器绕太阳运转的周期是

A.3年 B.9年 C.27年 D.81年

解析;设绕太阳做匀速圆周运动的物体(行星或太空探测器等)质量为m,轨道半径为r,运转周期为T,

Mm2π2m()r2T若太阳质量为M,则物体绕太阳运转的运动方程为Gr,

亿库教育网

http://

亿库教育网

http:// r3GM224π由此式可得T=常量. GM24π不难看出常量与绕太阳运转的行星、太空探测器……的质量无关,这实际上是开普勒第三定律(太

r32空探测器相当于一颗小行星),我们运用地球和探测器绕太阳运转时T相等,即可求解. 设地球绕太阳运转的轨道半径为r0,运转周期为T0=1年,已知太空探测器绕太阳运转的轨道半径r≈9r0,

(9r0)2设它绕太阳的运转周期为T,则有: T=39T=T0=27T0=27年.

3r02T03,

答案:C 5.已知地球半径为6.4×106 m,又知月球绕地球的运动可近似看作匀速圆周运动,则可估算出月球到地心的距离为_______m.(结果只保留一位有效数字)

2Mm4πm2r2T解析:月球绕地球做圆周运动的向心力由万有引力提供,GR,

Mm2R在地球表面处,物体的重力约等于万有引力:G=mg,

22gRT324π由以上两式联立解出r=. 由于本题是估算题,结果只要求一位有效数字,则可取g=10 m/s2,3.142≈10,T=30天=30×24×3600 s=2.5×106 s,由题知R=6.4×106 m代入得r=4×108 m. 答案:4×108 6.两行星A和B是两均匀球体,行星A的卫星a沿圆轨道运行的周期为Ta,行星B的卫星b沿圆轨道运行的周期为Tb.设两卫星均为各自中心星体的近地卫星.而且Ta∶Tb=1∶4,行星A和行星B的半径之比RA∶RB=1∶2,则行星A和行星B的密度之比A:B=_______,行星表面的重力加速度之比gA∶gB=_______. 解析:卫星绕行星运动,由牛顿第二定律有

2Mm4πm2R2RTG ①

M44R3行星的密度:=3 ②

3π2由①②两式得=GT ③

亿库教育网

http://

亿库教育网

http:// AT16(B)2TA1. 由③式得B如果忽略行星的自转影响,则可以认为行星表面物体的重力等于物体所受到的万有引力,故

mM2mg0=GR,GM=R2g0 ④

gAARATR8(B)2AgBRBTARB1. 由②③④式得:B答案:16∶1 8∶1 7.行星的平均密度是,靠近行星表面运行的卫星运转周期是T,试证明T2是一个常量. 223Mm4π4πRmR,M,222TGT证明:GR

M4πR333π3π2,TGT2G,故

T2是常量. 8.如果把地球绕太阳公转看作是匀速圆周运动,轨道平均半径约为1.5×108 km,已知万有引力常量G=6.67×10-11 N·m2/kg2,则可估算出太阳的质量大约是多少?(结果取一位有效数字) 解析:题干给出地球轨道半径:r=1.5×1011 m,虽没有直接给出地球运转周期数值,但日常知识告诉我们:地球绕太阳公转一周为365天. 故T=365×24×3600 s=3.15×107 s, Mm2π2mr()2T, 万有引力提供向心力Gr故太阳质量:

42r343.12(1.51011)321172GT6.710(3.210) kg=2×1030 kg. M=答案:2×1030 kg 9.已知引力常量为G,某星球半径为R,该星球表面的重力加速度为g,求该星球的平均密度是多大?

4解析:把该星球看作均匀球体,则星球体积为V=3πR3. M设星球质量为M,则其密度为=V,

Mm2R星球表面某质点(0质量为m)所受重力近似等于星球的万有引力G=mg, 以上三式联立即得密度

亿库教育网

http://

亿库教育网

http:// 3gGR. p=4π3gGR 答案:4π亿库教育网

http://

第五篇:2012高考物理知识要点总结教案:万有引力定律

高考资源网(ks5u.com)

您身边的高考专家

万有引力定律

万有引力定律是牛顿在前人大量观测和研究的基础上总结概括出来的最伟大的定律之一。万有引力定律被发现的意义在于把地面上所了解的现象与宇宙中天体变化的规律统一了起来,直接向有神论进行了冲击;另一方面万有引力定律的发现摧毁了人类过去对宇宙的错误认识,为人类确立全新的宇宙观打下了基础。这就是说万有引力定律的发现不仅具有学术上的意义,对人类物质观、宇宙观的发展和进步都起到了极其重要的作用。

一、历史的回顾: 古代从农牧业生产和航海的实际需要出发,很早就开始了对天体运动的研究。“天文学”可称作是发展最早的自然科学之一。在几千年的发展过程中“地心说”和“日心说”进行了长期的斗争。

1、公元二世纪以希腊天文学家托勒玫为代表的地心说认为:地球是宇宙的中心,宇宙万物都是上帝创造。宇宙中的一切天体都围着地球旋转。这个学说在教会支持下,延续一千余年。现在看来这个学说是错误的,但地心说的出现仍旧促使了世界航海事业的发展,对提高发展生产力起到了积极作用。

2、十六世纪波兰天文学家哥白尼,经过四十年的观测和研究,在古代日心说的启发下重新提出了新的日心说:太阳是宇宙的中心,地球和其它行星一样都绕太阳旋转。这个学说很容易解释许多天文现象。这种学说虽然受到教会的反对和迫害,但在伽利略、布鲁诺为代表的一些人支持下仍被人们逐渐接受。

3、丹麦天文学家第谷经过二十余年长期对行星的观测和精确测量,又经他的助手开普勒用二十年时间的统计分析概括进一步完善了“日心说”。开普勒于十七世纪发表著名的开普勒三定律。 开普勒第一定律:所有的行星分别在大小不同的椭圆轨道上围绕太阳运动,太阳是在这些椭圆的一个焦点上。 开普勒第二定律:对每个行星来说,太阳和行星的连线在相等的时间内扫过相等的面积。 开普勒第三定律:所有行星的椭圆轨道的长半轴的三次方跟公转周期的平方的比值都相等。

二、 牛顿对行星运动的解释:

版权所有@高考资源网

- 1高考资源网(ks5u.com)

您身边的高考专家

应注意:

(1)公式中G称作万有引力恒量,经测定G6.671011N·m2/Kg2。

(2)公式中的R为质点间的距离。对于质量分布均匀的球体,可把它看做是质量集中在球心的一个点上。 (3)从G6.671011N·m2/Kg2可以看出,万有引力是非常小的,平时很难觉察,所以它的发现经历了对天体(质量特别大)运动的研究过程。

四、万有引力恒量的测定: 自牛顿发表万有引力定律以来,人们试图在实验中测出引力的大小,其目的在于给“万有引力定律”进行鉴别和检验。因为没有被实验验证的理论总是空洞的理论,更无实际意义。 英国物理学家卡文迪许承担了这样一项科学难题,他发挥了精湛的实验才能,取得了极其精确的结果。 实验装置是用的扭秤(如右图所示),秤杆长2.4m,两端各置一个铅质球,再用另外两个球靠近,研究它们的引力规律。

实验原理是用力矩平衡的道理。

实验结果:首先验证了万有引力的正确性。另外测定了万有引力恒量为:

G6.751011

N·m/Kg

22 目前万有引力恒量的公认值为:

G6.67201011N·m/Kg

22 小结:

1、万有引力定律的发现,绝不是牛顿一人的成果。它是人类长期研究奋斗的结果,甚至有人献出了宝贵的生命。

2、万有引力定律的确立,并不是在1687年牛顿发表之时,而应是1798年卡文迪许完成实验之时。

3、万有引力定律的公式:FGm1m2r2 只适用于质点间的相互作用。这里的“质点”要求是质量分布均匀的球体,或是物体间的距离r远远大于物体的大小d(rd),这两种情况。

版权所有@高考资源网

- 3

上一篇:物业项目员工奖惩制度下一篇:文言文两则两小儿辩日