现代通信技术论文

2022-05-11

下面小编整理了一些《现代通信技术论文(精选3篇)》,欢迎大家借鉴与参考,希望对大家有所帮助!【摘要】纵观全球迅猛发展的高科技,电信业必将成为21世纪世界经济的火车头,通信技术正发生着百年未遇的巨大变化。本文介绍了移动通信技术的发展历程,第三代移动通信技术的发展现状,最后展望了未来移动通信技术发展的趋势。

第一篇:现代通信技术论文

浅谈现代短波通信技术

摘 要:本文介绍了无线电短波通信的基本特点,研究了无线电短波通信的发展现状,探讨了无线电短波通信的发展方向。

关键词:短波通信 短波技术

短波是指波长在100m~10m,频率为3MHz~30MIIz的电磁波,利用短波进行的无线电通信称为短波通信,又称为高频通信。短波通信是世界各国中、远程通信的主要手段,被广泛应用于军事、外交、气象、商业等部门,用以传送电报、电话、图像、语音广播等信息。尽管卫星通信出现以后某些短波通信业务被其取代,但是由于无线短波通信设备的抗毁性,无线短波通信在战争期间特别是在中远程军事通信中,仍占有极其重要的地位,所以无线短波通信将与卫星通信长期并存发展。

一、短波通信的特点

短波通信可以利用地波传播,但主要是利用天波传播。天波是靠电离层的反射来传播的,由此决定了短波通信存在以下特点:

(1)不需要建立中继站即可实现远距离通信。电离层对短波吸收少,靠天波传播可以达到很远距离,即使是中小功率的电台,电波也能靠天波传播到很远的地方。

(2)短波通信设备简单、易隐蔽、建设和维护费用低,破坏后容易恢复。

(3)可使用的频段窄,通信容量小。按照国际规定,每个短波电台占用3.7MHz的频率宽度,而整个短波频段可利用的频率范围只有28.5MHz。

(4)短波的天波信道是变参信道,信号传输稳定性差,衰落现象比较严重。衰落现象是由于利用天波传播时,接收点收到了由两个或两个以上的途径传来的电波,而反射这些电波的电离层又在不断变化造成的。尤其是在黄昏和拂晓,电离层正处在急剧变动过程中,衰落现象更为严重。

二、短波通信的现状

(一)现代短波信道技术

现代短波信道技术主要分为两大类:

一类是针对短波变参信道的特点,为了克服短波空间信道的不稳定性对通信质量的影响,提高短波通信,特别是短波数据通信的可靠性和有效性而发展起来的,称之为信道自适应技术。这一类技术以短波实时选频与频率自适应技术为主体,使短波通信系统能实时地或近实时地选用最佳工作频率,以适应电离层的种种变化同时起克服多径衰落影响和回避邻近电台干扰及其他干扰的作用。这方面技术对于提高短波通信的可靠性与有效性具有关键意义。

另一类是针对短波通信存在的保密性不强、抗干扰能力差的弱点,以及电磁斗争的特点和规律,为了提高短波通信在电子战环境中的生存能力,以及抗测向、抗侦察、抗截获、抗干扰等防御能力而发展起来的,称之为短波通信电子防御技术。这一类技术以短波扩频通信技术为主体,包括短波跳频和自适应跳频技术,以及短波直接序列扩频技术等。

短波跳频通信是在收发双方约定的情况下,不断地改变工作频率而进行的通信。由于工作频率受伪随机码的控制,因此跳频通信具有很强的抗截获、抗窃听及抗干扰能力。短波自适应跳频通信是在短波跳频通信基础上发展起来的。由于构建两地间的短波通信,受电离层信道和电磁干扰的影响,并不是任意一组频率都能够建立起通信链路实现通信的。短波自适应跳频通信把频率自适应技术与跳频技术结合起来,通过频率自适应功能选出可通的“好频率”作为跳频频率表,从而避免了盲目性,提高了可通率。与常规跳频通信体制相比,自适应跳频体制的抗干扰性能大大增强。

(二)现代短波通信终端技术

在通信系统中,狭义地讲,通信终端是指信息发送和接收的硬件设备,包括电传机、电键、电子键、送受话器等。广义地讲,通信终端作为人们享用通信业务的直接工具,承担着为用户提供良好的界面,完成所需业务功能和接入通信网等多方面任务。调制解调器是数据通信业务中最为常用的终端设备之一。

现代短波通信终端技术,主要是针对短波通信存在着严重的电磁干扰的特点,为了满足人们对数据业务,特别是高速数据业务的需求,围绕着提高数据传输的可靠性和数据传输速率而发展起来的。调制解调器是实现短波数据通信的关键部件,按调制方式分为多音并行和单音串行两种体制。

多音并行体制,是在话音通带内,把高速串行信道分裂成多个低速并行信道,以若干个副载波在基带有效带宽内并行传输信息,接收机输出的多路数据信息,分路后分别进行数据解调,得到多路低速数据,经过重新组合恢复成高速数据流。

单音串行体制,是在一个话路带宽内,串行发送高速数据信号,发送端采用SPSK调制,接收端采用高效自适应均衡,序列检测和信道估值综合技术,消除了多径传播和信道畸变引起的码间串扰。

三、短波通信技术的发展趋势

随着人类社会向信息化的不断演进,短波通信技术近年来取得一系列的突破与进展,其发展趋势主要体现在以下几个方面:

(一)短波自适应数字通信技术

短波信道由于受到自然环境、时间等外界因素影响较大,因此要保障通信的正常进行,就必须根据情况及时调整系统结构和参数。未来的短波自适应技术除了包含现阶段的频率自适应技术外,应该是全方位发展的,包括以下几个方面:

1、自适应选频和信道技术

现阶段的通信领域中,自适应选频和信道技术紧密相连,这样会形成选频质量低的情况。今后应将专用选频系统应用到通信系统中,逐步提高通信质量。

2、传输速率自适应技术

这一技术可在固有工作频率下得到最大数据吞吐量,系统调制方法和信道条件紧密结合,达到高效率传输。

3、自适应信道均衡技术

这一技术可以有效排除信道传输中出现的多普勒频移、多径效应等情况,避免码间干扰。

(二)高速调制解调技术

现阶段窄带短波电台的调制解调器包括串行和并行两种。串行体制对均衡要求很高,其信息主要通过单载波调制发送;这种情况下出现了一种新型的调制方法,即正交频分复用调制法,也叫OFDM,其主要有以下优势。

1、抗频率选择性衰落

OFDM系统可以通过缩小ISI来减少接收机内均衡的复杂性,这主要得益于通过串并转换高速流数据带来的子载波上数据符号持续长度的增加。此外,如果没有均衡器,OFDM系统也可以插入前缀来降低甚至消除ISI的影响。

2、频谱利用率高

OFDM系统可以实现频谱资源利用的最大化。这主要是因为与频分复用系统相比,OFDM 系统内各子载波之间信道频谱可以实现重叠,存在正交性。

3、实现简单

OFDM 系统主要是通过IDFT/DFT来实现的,即使该系统内子载波数量很多,也能比较轻松地实现。

(三)抗干扰技术

近年来,随着干扰手段的发展,抗干扰技术也应向综合智能方向发展,主要发展方向有以下几种:

1、信号处理

就自适应调频而言,其在常规基础上加了链路质量分析,这样就可以确定被干扰的频点,对其筛选后选择无干扰的频点进行通信。

2、空间处理

就自适应天线凋零技术而言,在接收端受到干扰时会自动调节天线方向图零点,这样就会大大提高信干比。

3、时间处理

如猝发传输技术,在完成信息收集后,在一瞬间将这些信息以高于正常情况1 00倍的速率进行传输。

4、組网技术

通信数字化、通信系统网络化、通信业务综合化是短波通信发展的必然趋势,系统兼容、网络互通,以及高可靠性、有效性、强抗毁性,成了通信系统建设的基本要求。因此短波通信必然会被应用到更广泛的领域中去,甚至要求其成为英特网的一部分,但是由于传统的短波通信特点的局限,短波通信已无法适应数字化时代的需求。在这一大环境下,第三代短波通信网络在美国军用标准的基础上开始发展起来,但是全网内各短波通信电台之间依然存在选频及频率利用等问题。

四、结束语

由于短波通信在军事通信领域得天独厚的优势,即便是移动通信和互联网如此发达的今天,世界各国仍没有停止对短波新技术的研究。随着研究的不断深入,越来越多的高科技手段被应用到信息领域,短波通信必将以崭新的面貌在通信领域发挥越来越重要的作用。

作者:柳颖

第二篇:现代移动通信技术

【摘 要】纵观全球迅猛发展的高科技,电信业必将成为21世纪世界经济的火车头,通信技术正发生着百年未遇的巨大变化。本文介绍了移动通信技术的发展历程,第三代移动通信技术的发展现状,最后展望了未来移动通信技术发展的趋势。

【关键词】移动通信 3G 发展 展望

伴随着移动通信市场的快速发展,用户对更高性能的移动通信系统提出了更高要求,希望享受更为丰富和高速的通信业务。第二代移动通信运营商发展速度趋于缓和而竞争愈加激烈,为寻找新的增长点,通过发展数据业务来提高自身的服务质量和业务类型,需要3G的支持。同时由于第二代移动通信无线频率资源日趋紧张,已不能满足长期的通信需求发展需要。

一 移动通信的发展历程

第一代移动通信系统是模拟制式的蜂窝移动通信系统,时间是20世纪70年代中期至80年代中期。它的主要特点是采用频分复用FDMA模拟制式话音,信号为模拟调制,每隔25KHz至30KHz一个模拟用户信道。从80年代中期开始,以GSM和IS-95为代表的第二代移动通信系统产生。GSM全球移动通信系统发源于欧洲,使用全球数字蜂窝通信TDMA标准,支持64Kbit/s的数据速率,可与ISDN互连。IS-95是北美的另一种数字蜂窝标准,频带为800MHz或1900MHz,使用CDMA多址方式,它早已成为美国PCS个人通信系统网的首选技术。目前,移动通信提供的主要服务仍然是话音服务以及低速率数据服务。但由于网络和用户的发展,数据和多媒体通信需求有了迅猛的增长,同时,各国的第二代数字移动通信标准不统一,无法进行全球漫游,因此发展3G势在必行。与前两代移动通信系统相比,第三代系统的主要特征是能提供多种类型、高质量的移动多媒体业务,其中高速移动环境支持144Kb/s、步行慢速移动环境支持384Kb/s、室内环境支持2Mb/s的数据传输,设计目标是为了提供比第二代系统更大的容量、更好的通信质量,而且要能在全球范围内更好地实现无缝漫游及为用户提供包括话音、数据及多媒体等在内的多种业务,同时也要考虑与已有第二代系统的良好兼容性。

二 我国移动通信发展现状

近几年来,我国的GSM、CDMA移动通信发展迅猛,根据2002年10月信息产业部对外公布的通信行业主要指标完成情况,2002年1至9月,移动电话用户新增4516.9万户,用户总数达到19039.1万户,且以每月500万用户(每天17万)的速度快速增长。由于第二代数字移动通信系统带宽有限,移动数据业务的应用受到固有的技术限制,人们需求的移动多媒体业务的开展也面临困境。为了解决中速数据传输问题,我国2.5代移动通信系统的商用应时而出:2002年5月17日世界电信日那天,中国移动正式推出了商用GPRS(无线分组业务)。GPRS技术将信包交换模式引入到GSM网络中,从而提高了资源利用率。GPRS可以使多个用户共享某些固定的信道资源,并将每个时隙的传输速率从9.6Kb/s(GSM的数据传输速率为9.6Kb/s)提高到14.4Kb/s,使用8个时隙传送数据,在全速移动和大范围覆盖时的数据率可以达到115.2Kb/s,并支持Internet IP协议及X.25协议。现在,中国联通的CDMA网络也进入了正式商用阶段。

三 第三代移动通信系统概述

第三代移动通信技术,简称3G,全称为3rd Generation,中文含义就是指第三代数字通信。1995年问世的第一代模拟制式手机(1G)只能进行语音通话;1996~1997年出现的第二代GSM、TDMA等数字制式手机(2G)便增加了接收数据的功能,如接受电子邮件或网页;第三代与前两代的主要区别是在传输声音和数据的速度上的提升,它能够在全球范围内更好地实现无缝漫游,并处理图像、音乐、视频流等多种媒体形式,提供包括网页浏览、电话会议、电子商务等多种信息服务,同时也要考虑与已有第二代系统的良好兼容性。

1.第三代移动通信系统的特征

根据IMT-2000系统的基本标准,第三代移动通信系统主要由4个功能子系统构成,它们是核心网(CN)、无线接入网(RAN)、移动台(MT)和用户识别模块(UIM),且基本对应于GSM系统的交换子系统(SSS)、基站子系统(BBS)、移动台(MS)和SIM卡四部分。其中核心网和无线接入网是第三代移动通信系统的重要内容,也是第三代移动通信标准制订中最难办的技术内容。第三代移动通信技术引领未来第三代移动通信系统,可以使全球范围内的任何用户所使用的小型廉价移动台,实现从陆地到海洋到卫星的全球立体通信联网,保证全球漫游用户在任何地方、任何时间与任何人进行通信,并能提供具有有线电话的语音质量,提供智能网业务,多媒体、分组无线电、娱乐及众多的宽带非话业务。第三代移动通信系统的特点是:综合了蜂窝、无绳、寻呼、集群、无线扩频、无线接入、移动数据、移动卫星、个人通信等各类移动通信功能,提供了与固定电信网络兼容的高质量业务,支持低速率话音和数据业务以及不对称数据传输。第三代移动通信系统可以实现移动性、交互性和分布式三大业务,是一个通过微微小区,到微小区,到宏小区,直到“随时随地”连接的全球性卫星网络。

2.第三代移动通信增加的新业务

(1)高速电路交换数据(HSCSD)业务是GSM向第三代移动通信兼容的一种软件解决方案,它把单个业务信道的数据速率从9.6kb/s提高到14.4kb/s,并把四条信道复用在一个时隙中,从而使数据经营者能够提供高达57.6kb/s的传输速率,是目前数据传输速率的6倍。

(2)通用分组无线业务(GPRS)是由诺基亚开发的、基于IP解决方案的、可使GSM运营者迈向多媒体无线业务以其兼容第三代移动通信系统的另一项新技术,可提供高达115kb/s的数据传输速率。

(3)增强型数据速率(EDGE)业务是由GSM和TDMA厂商正在合作开发的基于未来移动通信系统的应用平台,它将能为未来移动通信系统IMT-2000提供高达384kb/s的移动速率业务。

3.第三代移动通信标准中的主要技术

给第三代移动通信系统带来天翻地覆变化的当然是第三代移动通信中所采用的多种高新技术,这些高新技术是第三代移动通信系统中的精髓,也是制订第三代移动通信系统标准的基础,了解这些技术就了解了第三代移动通信系统。下面我们就专门介绍几项有可能应用于第三代移动通信系统中的技术。

(1)TD-SCDMA技术。TD-SCDMA是中国唯一提交的关于第三代移动通信的标准技术,它使用了第二代和第三代移动通信中的所有接入技术,包括TDMA、CDMA和SDMA,其中最关键的创新部分是SDMA。SDMA可以在时域/频域之外用来增加容量和改善性能,SDMA的关键技术就是利用多天线对空间参数进行估计,对下行链路的信号进行空间合成。

(2)智能天线技术。智能天线技术是中国标准TD-SDMA中的重要技术之一,是基于自适应天线原理的一种适合于第三代移动通信系统的新技术。它结合了自适应天线技术的优点,利用天线阵列的波束汇成和指向,产生多个独立的波束,可以自适应地调整其方向图以跟踪信号的变化,同时可对干扰方向调零以减少甚至抵消干扰信号,增加系统的容量和频谱效率。智能天线的特点是能够以较低的代价换得天线覆盖范围、系统容量、业务质量、抗阻塞和抗掉话等性能的提高。智能天线在干扰和噪声环境下,通过其自身的反馈控制系统改变辐射单元的辐射方向图、频率响应及其他参数,使接收机输出端有最大的信噪比。

(3)WAP技术。WAP(Wireless Application Protocol,无线应用协议)已经成为数字移动电话和其他无线终端上无线信息和电话服务的实际世界标准。WAP可提供相关的服务和信息,提供其他用户进行连接时的安全、迅速、灵敏和在线的交互方式。WAP驻留在因特网上的TCP/IP环境和蜂窝传输环境之间,但是独立于所使用的传输机制,可用于通过移动电话或其他无线终端来访问和显示多种形式的无线信息。WAP规范既利用了现有技术标准中适应于无线通信环境的部分,又在此基础上进行了新的扩展。由于WAP技术位于GSM网络和因特网之间,一端连接现有的GSM网络,一端连接因特网。因此,只要用户具有支持WAP协议的媒体电话,就可以进入互联网,实现一体化的信息传送。而厂商使用该协议,则可以开发出无线接口独立、设备独立和完全可以交互操作的手持设备Internet接入方案,从而使得厂商的WAP方案能最大限度地利用用户对Web服务器、Web开发工具、Web编程和Web应用的既有投资,保护用户现有利益,同时也解决了无线环境所带来的有关新问题。

(4)快速无线IP技术。快速无线IP(Wireless IP,无线互联网)技术将是未来移动通信发展的重点,宽频带多媒体业务是最终用户的基本要求。根据ITM-2000的基本要求,第三代移动通信系统可以提供较高的传输速度(本地区2Mb/s,移动144Kb/s)。现代的移动设备越来越多了(手机、笔记本电脑、PDA等),剩下的就是网络是否可以移动,无线IP技术与第三代移动通信技术结合将会实现这个愿望。由于无线IP主机在通信期间需要在网络上移动,其IP地址就有可能经常变化,传统的有线IP技术将导致通信中断,但第三代移动通信技术因为利用了蜂窝移动电话呼叫原理,完全可以使移动节点采用并保持固定不变的IP地址,一次登录即可实现在任意位置上或在移动中保持与IP主机的单一链路层连接,完成移动中的数据通信。

(5)软件无线电技术。在不同工作频率、不同调制方式、不同多址方式等多种标准共存的第三代移动通信系统中,软件无线电技术是一种最有希望解决这些问题的技术之一。软件无线电技术可将模拟信号的数字化过程尽可能地接近天线,即将AD转换器尽量靠近RF射频前端,利用DSP的强大处理能力和软件的灵活性实现信道分离、调制解调、信道编码译码等工作,从而可为第二代移动通信系统向第三代移动通信系统的平滑过渡提供一个良好的无缝解决方案。第三代移动通信系统需要很多关键性技术,软件无线电技术基于同一硬件平台,通过加载不同的软件,就可以获得不同的业务特性,这对于系统升级、网络平滑过渡、多频多模的运行情况来讲,相对简单容易、成本低廉,因此对于第三代移动通信系统的多模式、多频段、多速率、多业务、多环境的特殊要求特别重要。

(6)多载波技术。多载波MC-CDMA是第三代移动通信系统中使用的一种新技术。多载波CDMA技术早在1993年的PIMRC会议上就被提出来了。目前,多载波CDMA作为一种有着良好应用前景的技术,已吸引了许多公司对此进行深入研究。多载波CDMA技术的研究内容大致有两类:一是用给定扩频码来扩展原始数据,再用每个码片来调制不同的载波;另一种是用扩频码来扩展已经进行了串并变换后的数据流,再用每个数据流来调制不同的载波。

四 第四代移动通信系统

4G系统中有两个基本目标:一是实现无线通信全球覆盖;二是提供无缝的高质量无线业务。目前正在构思中的4G通信具有以下特征:

1.网络频谱更宽

要想使4G通信达到100Mbps的传输速率,通信运营商必须在3G网络的基础上进行大幅度的改造,以使4G网络在通信带宽上比3G网络的带宽高出许多。据研究,每个4G信道将占有100MHz的频谱,相当于W-CDMA 3G网络的20倍。

2.通信速度更快

人们研究4G通信的最初目的是为了提高蜂窝电话和其他移动终端访问Internet的速率,因此,4G通信最显著的特征就是它有更快的无线传输速率。据专家估计,第四代移动通信系统的传输速率可以达到10~20Mbps,最高可以达到100Mbps。

3.通信更加灵活

从严格意义上说,4G手机的功能已不能简单划归到“电话机”的范畴,因为语音数据的传输只是4G移动电话的功能之一而已。而且4G手机从外观和式样上看将有更惊人的突破,可以想象的是,眼镜、手表、化妆盒、旅游鞋都有可能成为4G终端。

4.智能性更高

第四代移动通信的智能性更高,不仅表现在4G通信的终端设备的设计和操作具有智能化,更重要的是4G手机可以实现许多目前还难以想象的功能。

5.兼容性更平滑

要使4G通信尽快地被人们接收,还应该考虑到让更多的用户在投资最少的情况下较为容易地过渡到4G通信。因此,从这个角度来看,4G通信系统应当具备全球漫游、接口开放、能与多种网络互联、终端多样化以及能从3G平稳过渡等特点。

总之,随着新问题、新要求的不断出现,第四代移动通信技术将会相应地调整、完善和进一步发展。纵观移动通信技术的发展规律和第四代通信技术的优点,我们相信,不远的将来,人们将不受时间、地点限制,可以自由自在地利用移动网络获取和传递信息,从而人们的学习、工作、生活将会发生更深刻的变化。

参考文献

[1]胡可刚、王树勋、刘立宏.移动通信中的无线定位技术[J].吉林大学学报,2005(4)

[2]谢显中.基于TDD的第四代移动通信技术[M].北京:电子工业出版社,2005

[3]曹达仲.移动通信原理、系统及技术[M].北京:清华大学出版社,2004

[4]宋燕辉.第三代移动通信技术.北京:人民邮电出版社,2009

〔责任编辑:王以富〕

作者:李远香 任 红

第三篇:现代光纤通信技术现状分析

【摘 要】光纤通信是一种信息传递的方式,可以作为宽带综合业务数字网的传输基础,很多国家投入大量的技术和资金进行光纤通信的研究。本文介绍了光纤通信技术的发展历史,对光纤通信技术的现状进行了研究,阐述了光纤通信技术的分类。

【关键词】光纤通信;现状;技术优势;分析

随着人们对信息的需求,Internet迅速发展,信息进行生产、传输和交换,信息高速公路建设已成为世界性热潮。其中传输宽带综合业务数字网(B-ISDN)最适合用光纤传输,其具有速度快、容量大、误差小的特点,光纤通信也将成为未来通信发展的主流。光纤通信是用光导纤维传输信号,其中光纤是由包层和内芯组成,外面的包层保护内芯,内芯比较细,甚至比一根头发丝还细,其数量级一般为几十微米或几微米。聚集在一起的光纤形成光缆,作为信息技术的重要支柱和核心,光纤通信是一个庞大的系统工程,需要各个组成部分相互推動和发展。

一、光纤通信技术的发展历史总结

上世纪六十年代开始的光纤通信技术最开始起源于国外,当时研制的光纤损耗高达400分贝/千米,后来,英国标准电信研究所提出,在理论上光纤损耗能够降低到20分贝/千米,然后,日本紧接着研制出通信光纤的损耗是100分贝/千米,康宁公司基于粉末法研制出了损耗在20分贝/千米以下的石英光纤,到最近的掺锗石英光纤的损耗降低至0.2分贝/千米,已经接近了石英光纤理论上提出的损耗极限。

近十几年来,光纤通信技术有了长足的进展,其中的新技术也不断被发掘,大大提高了传统意义上的通信能力,这使得光纤通信技术在更大的范围内得到了应用。

光纤通信技术是指把光波作为信息传输的载波,以光纤作为信息传输的媒介,将信息进行点对点发送的现代通信方式。光纤通信技术的诞生及深入发展是信息通信史上一次重要的改革。光纤通信技术从理论提出到工程领域的技术实现,再到今天高速光纤通信的实现,前后经历了几十年的时间。

由以上光纤通信技术的发展历程,可以把光纤通信技术分为大致五个阶段,即850纳米波段的多模光波,到1310纳米多模光纤,到1310纳米单模光纤,再到1550纳米单模光纤,最后是长距离进行传输的光纤通信技术。

二、光纤通信技术的现状研究

(1)光纤通信技术中的光纤接入技术。光纤接入网技术是信息传输技术的一个崭新的尝试,它实现了普遍意义上的高速化信息传输,满足了广大民众对信息传输速度的要求,主要由宽带的主干传输网络和用户接入两部分组成。其中后者起着更为关键的作用,即FTTH(意思是光纤到户),作为光纤宽带接入的最后环节,负责完成全光接入的重要任务,基于光纤宽带的相关特性,为通信接收端的用户提供了所需的不受限制的带宽资源。

(2)光纤通信技术中的波分复用技术。即WDM,充分利用了单模光纤低损耗区的优势,获得了大的带宽资源。波分复用技术基于每一信道光波的频率和波长不同等情况出发,把光纤的低损耗窗口规划为许多个单独的通信管道,并在发送端设置了波分复用器,将波长不同的信号集合到一起送入单根光纤中,再进行信息的传输,而接收端的波分复用器把这些承载着多种不同信号的、波长不同的光载波再进行分离。

三、光纤通信技术的分类

1、光纤光缆技术

光纤技术的进步可以从两个方面来说明: 一是通信系统所用的光纤; 二是特种光纤。早期光纤的传输窗口只有3个,即850nm(第一窗口)、1310nm(第二窗口)以及1550nm(第三窗口)。近几年相继开发出第四窗口(L波段)、第五窗口(全波光纤)以及S波段窗口。其中特别重要的是无水峰的全波窗口。这些窗口开发成功的巨大意义就在于从1280nm到1625nm的广阔的光频范围内,都能实现低损耗、低色散传输,使传输容量几百倍、几千倍甚至上万倍的增长。这一技术成果将带来巨大的经济效益。另一方面是特种光纤的开发及其产业化,这是一个相当活跃的领域。

2、光有源器件

光有源器件的研究与开发本来是一个最为活跃的领域,但由于前几年已取得辉煌的成果,所以当今的活动空间已大大缩小。超晶格结构材料与量子阱器件,目前已完全成熟,而且可以大批量生产,已完全商品化,如多量子阱激光器(MQW-LD,MQW-DFBLD)。

3、光无源器件

光无源器件与光有源器件同样是不可缺少的。由于光纤接入网及全光网络的发展,导致光无源器件的发展空前地热门。常规的常用器件已达到一定的产业规模,品种和性能也得到了极大的扩展和改善。所谓光无源器件就是指光能量消耗型器件、其种类繁多、功能各异,在光通信系统及光网络中主要的作用是: 连接光波导或光路; 控制光的传播方向;控制光功率的分配;控制光波导之间、器件之间和光波导与器件之间的光耦合;合波与分波;光信道的上下与交叉连接等。早期的几种光无源器件已商品化。其中光纤活动连接器无论在品种和产量方面都已有相当大的规模,不仅满足国内需要,而且有少量出口。光分路器(功分器)、光衰减器和光隔离器已有小批量生产。随着光纤通信技术的发展,相继又出现了许多光无源器件,如环行器、色散补偿器、增益平衡器、光的上下复用器、光交叉连接器、阵列波导光栅CAWG等等。这些都还处于研发阶段或试生产阶段,有的也能提供少量商品。按光纤通信技术发展的一般规律来看,当光纤接入网大规模兴建时,光无源器件的需求量远远大于对光有源器件的需求。这主要是由于接入网的特点所决定的。接入网的市场约为整个通信市场的三分之一。因而,接入网产品有巨大的市场及潜在的市场。

4、光复用技术

光复用技术种类很多,其中最为重要的是波分复用(WDM)技术和光时分复用(OTDM)技术。光复用技术是当今光纤通信技术中最为活跃的一个领域,它的技术进步极大地推动光纤通信事业的发展,给传输技术带来了革命性的变革。波分复用当前的商业水平是273个或更多的波长,研究水平是1022个波长(能传输368亿路电话),近期的潜在水平为几千个波长,理论极限约为15000个波长(包括光的偏振模色散复用,OPDM)。据1999年5月多伦多的Light Management Group Inc ofToronto演示报导,在一根光纤中传送了65536个光波,把PC数字信号传送到200m的广告板上,并采用声光控制技术,这说明了密集波分复用技术的潜在能力是巨大的。OTDM是指在一个光频率上,在不同的时刻传送不同的信道信息。这种复用的传输速度已达到320Gb/s的水平。若将DWDM与OTDM相结合,则会使复用的容量增加得更大,如虎添翼。

5、光放大技术

光放大器的开发成功及其产业化是光纤通信技术中的一个非常重要的成果,它大大地促进了光复用技术、光孤子通信以及全光网络的发展。顾名思义,光放大器就是放大光信号。在此之前,传送信号的放大都是要实现光电变换及电光变换,即O/E/O变换。有了光放大器后就可直接实现光信号放大。

从现代通信的发展趋势来看,光纤通信也将成为未来通信发展的主流,与其他行业相比,光纤通信更具有特殊意义,在未来信息社会中将起到重要作用。光纤通信技术的发展目标是超大容量、超长距离的传输与交换技术和全光网络技术。

作者:王宝

上一篇:园林绿化论文范文下一篇:水利法规论文范文