活塞连杆机构习题库

2022-08-14

第一篇:活塞连杆机构习题库

对活塞连杆机构运动分析毕业设计

本人自己设计的Pro/e论文,导师评价优秀,另有开题报告、任务书、pro/e图文档,答辩准备和答辩PPT。有需要Pro/e方面的要求和问题也可以联系我。本人QQ:447519384

20 级毕业设计

论文题目:运用Pro/E对活塞连杆机构进行

运动学分析姓 名:** 学 号:********* 院 系:机电工程学院 专 业:机械制造及自动化

班 级:机自一班 指导老师:***

完成时间:2012年*月*日

目录

内容摘要„„„„„„„„„„„„„„„„„„„„„„„„„„„„1 关键字„„„„„„„„„„„„„„„„„„„„„„„„„„„„„1 Abstract„„„„„„„„„„„„„„„„„„„„„„„„„„„„1 Key words „„„„„„„„„„„„„„„„„„„„„„„„„„1 1. 绪论 „„„„„„„„„„„„„„„„„„„„„„„„„„„„2 1.1选题的依据及其意义

„„„„„„„„„„„„„„„„„„„2 1.2国内外研究现状及发展趋势 „„„„„„„„„„„„„„„„3 1.3课题内容

„„„„„„„„„„„„„„„„„„„„„„„„3 2. 机构简介„„„„„„„„„„„„„„„„„„„„„„„„„„„4 2.1活塞连杆机构的基本构造

„„„„„„„„„„„„„„„„„4 2.2工作原理 „„„„„„„„„„„„„„„„„„„„„„„„4 3. pro/e装配与运动仿真„„„„„„„„„„„„„„„„„„„„„4 3.1 Pro/E简介 „„„„„„„„„„„„„„„„„„„„„„„4 3.2装配 „„„„„„„„„„„„„„„„„„„„„„„„„„5 3.3运动仿真及分析 „„„„„„„„„„„„„„„„„„„„„9 参考文献„„„„„„„„„„„„„„„„„„„„„„„„„„„„15 致谢„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„16

机电工程学院

内容摘要:活塞连杆是机械行业中常见的曲柄滑块机构,应用该机构最典型的实例就是发动机气缸,它可以将燃气能源转换为机械动能,它的作用是承受气体压力,并将此力通过活塞销传给连杆以推动曲轴旋转。广泛应用到动力机械的动力源,如汽车、轮船、飞机等。本次设计是通过这些特点对活塞连杆进行Pro/E三维建模,并对模型进行整体装配,并完成传动部分的运动仿真,并对其进行运动分析。

关键词:活塞连杆机构、三维建模、装配、运动学分析

Abstract:The piston rod is in the machinery industry common crank slider mechanism. the device Application of the most typical examples is engine cylinder. It can be a gas energy is converted to mechanical energy. It is the role to bear gas pressure. and the force transmitted to the connecting rod by the piston pin to drive the rotation of the crankshaft. Widely applied to mechanical power source, such as automobiles, ships, aircraft and other. This design is through these features of piston rod for Pro/E three-dimensional modeling. the whole assembly model. then the completion of the transmission part of the motion simulation. and its motion analysis. Key words : Piston connecting rod mechanism 、Three dimensional modeling、 Assembly、 Kinematic analysis、

机电工程学院

1.绪论

1.1选题的依据及其意义

在产品的开发过程中,有关产品的结构、功能、操作性能、生产工艺、装配性能,甚至维护性能等等许多问题都需要在开发过程的前期解决。一般,人们借助理论分析、CAD和各种比例的实物模型,或参考前期产品的开发经验来解决有关新产品开发的各种问题。由于有关装配、操作和维修的问题往往只会在产品的后期或在最终产品试车过程中、甚至在投入使用一段时间后才能暴露出来,尤其是有关维修的问题往往是在产品已经售出很长时间以后才被发现。为了解决这些问题,有事产品就不得不返回设计构造阶段以便进行必要的设计变更。这样的产品开发程序不但效率低、耗时,费用也高。

为了解决这些问题,虚拟仿真技术应运而生。仿真技术是利用计算机技术对所要进行的生产和制造活动进行全面的建模和仿真,包括产品的设计、加工、装配、各参数的设计改进等等。在产品的设计阶段就实时地模拟出产品的形状和工作状况、制造过程、检查产品的可制造性和设计合理性,以便及时修改设计,更有效地灵活组织生产,缩短产品研制周期,获得最好的产品质量和效益。

在Pro/E环境下,对活塞连杆机构建立了精确的参数化模型。通过定义各种约束,在装配模块中确定了原动件与从动件的关系。并使用机构运动分析模块,通过定义机构的连接与伺服电机,实现了活塞的运动过程仿真。参数化设计的本质是在可变参数的作用下,系统能够自动维护所有的不变参数,参数化设计可以大大提高模型的生成和修改的速度,在产品的系列设计、相似设计及专用CAD系统开发方面都具有较大的应用价值。虚拟装配是在虚拟环境中,利用虚拟现实技术将设计的产品三维模型进行预装配虚拟装配可帮助产品摆脱对于试制物理样机并装配物理样机的依赖,可以有效地提高产品装配建模的质量与速度。通过在计算机软件平台下对整套装置的设计仿真分析,能够及时地发现设计中的缺陷,并根据分析结果进行实时改进。参数化建模、虚拟装配、运动仿真贯穿于整个计算机辅助设计全过程,可显著地缩短研发周期,降低设计成本,提高工作效率。本次建模与运动仿真分析实现了活塞摇杆的电子样机设计,对现实发动机制造过程有一定的指导意义。

机电工程学院

1.2国内外研究现状及发展趋势

当今任何一个国家,若其要在综合国力上取得优势地位,就必须在科学技术上取得优势。九十年代以来,随着以计算机技术为主的信息技术的发展,世界经济格局发生了巨大的变化,逐步形成了一个统一的一体化市场,经济循环加大,加快市场竞争日趋激烈,从而也迫切要求对产品设计的研究能有进一步的突破,为了缩短产品的设计周期、提高生产的质量、降低生产成本,就需要在产品的设计阶段进行预测。计算机辅助设计,将难以用语言表达的复杂的机械结构,应用多媒体技术以多样化的方式表现的屏幕上,达到了以直观和形象的形式学习机械设计知识的目的。九十年代后随着CAD技术的发展,其系统性能提高,价格降低,pro/e开始在设计领域全面普及,成为必不可少设计工具,pro/e之所以在短短的时间内发展如此迅速,是因为它是人类在二十世纪取得的重大科技成就之一,它几乎推动了一切领域的设计革命,彻底改变了传统的手工设计绘图方式,极大的提高了产品开发的速度和精度。应用pro/e技术业进行产品设计,能使设计、生产维修工作快速成而高效地进行,所带来的经济效益是十分明显的。Pro/e技术的发展与应用水平已成为和衡量一个国家的科学技术现代化和工业现代化的重要标志。近几年来,随着计算机技术的飞速发展,pro/e技术已经由发达国家向发展中国家扩展,而且发展的势头非常迅猛。因为当今世界工业产品的市场竞争,归根结底是设计手段和设计水平的竞争,发展中国家的工业产品要在世界市场占有一席之地,就必须采用pro/e技术的研究和开发工作起步相当较晚,自八十年代开始,CAD技术应用工作才逐步得到了开展,随后pro/e也有了应用,国家逐步认识到开展pro/e应用工程的必要性和可靠性,并在全国各个行业大力推广pro/e技术,同时展开pro/e技术的不断研究,开发与广泛应用,对pro/e技术提出越来越高的要求,因此pro/e从本身技术的发展来看,其发展趋势是集成化、智能化和标准化,也只有不断完善,创新才能在日益激烈的竞争中立于不败之地。

1.3课题内容

本课题是利用Pro/E软件的仿真功能对活塞的运动过程进行动画模拟,并对活塞、连杆等进行一些简单的数据分析及计算,以确定设计的合理性,可行性,最终完成设计。

机电工程学院

该设计具体研究方法及主要内容是使用Pro/E软件仿照发动机气缸活塞连杆机构,绘制出活塞、摇杆、及其他零部件实体图。绘制好活塞连杆机构后,然后对设计进行仿真,包括运动干涉检测、活塞运动轨迹、速度及加速度的检测。

2. 机构简介

2.1活塞连杆机构的基本构造

活塞连杆组是发动机的传动件,它把燃烧气体的压力传给曲轴,使曲轴旋转并输出动力。活塞连杆组主要由活塞、活塞环、活塞销及连杆等组成活塞连杆组把燃烧气体的压力传给曲轴,使曲轴旋转并输出动力;活塞的顶部还与汽缸盖、汽缸比共同组成燃烧室。

2.2工作原理

活塞的顶部直接与高温燃气接触,活塞的温度也很高,高温使活塞的机械性能下降,热膨胀量增加;活塞在作功行程中,承受燃气的高压冲击(3~5mP),活塞在汽缸中高速运动,平均速度达到8~12m/s,要求活塞质量小,热膨胀系数小,导热性好和耐磨。一般采用铝合金,个别柴油机也采用高级铸铁或耐热钢。

3. Pro/E的装配与运动仿真

3.1Pro/E简介

Pro-E是Pro/Engineer的简称,更常用的简称是ProE或Pro/E,Pro/E是美国参数技术公司 (Parametric Technology Corporation,简称PTC)的重要产品,在目前的三维造型软件领域中占有着重要地位。pro-e作为当今世界机械CAD/CAE/CAM领域的新标准而得到业界的认可和推广,是现今主流的模具和产品设计三维CAD/CAM软件之一。

Pro/E第一个提出了参数化设计的概念,并且采用了单一数据库来解决特征的相关性问题。另外,它采用模块化方式,用户可以根据自身的需要进行选择,而不必安装所有模块。Pro/E的基于特征方式,能够将设计至生产全过程集成到一起,实现并行工程设计。它不但可以应用于工作站,而且也可以应用到单机上。

Pro/E采用了模块方式,可以分别进行草图绘制、零件制作、装配设计、钣金设计、加工处理等,保证用户可以按照自己的需要进行选择使用。

(1).参数化设计

机电工程学院

相对于产品而言,可以把它看成几何模型,而无论多么复杂的几何模型,都可以分解成有限数量的构成特征,而每一种构成特征,都可以用有限的参数完全约束,这就是参数化的基本概念。

(2).基于特征建模

Pro/E是基于特征的实体模型化系统,工程设计人员采用具有智能特性的基于特征的功能去生成模型,如 系列化快餐托盘设计[1]腔、壳、倒角及圆角,您可以随意勾画草图,轻易改变模型。这一功能特性给工程设计者提供了在设计上从未有过的简易和灵活,特别是在设计系列化产品上更是有得天独到的优势。

(3).单一数据库

Pro/Engineer是建立在统一基层上的数据库上,不象一些传统的CAD/CAM系统建立在多个数据库上。所谓单一数据库,就是工程中的资料全部来自一个库,使得每一个独立用户在为一件产品造型而工作,不管他是哪一个部门的。换言之,在整个设计过程的任何一处发生改动,亦可以前后反应在整个设计过程的相关环节上。例如,一旦工程详图有改变,NC(数控)工具路径也会自动更新;组装工程图如有任何变动,也完全同样反应在整个三维模型上。这种独特的数据结构与工程设计的完整的结合,使得一件产品的设计结合起来。这一优点,使得设计更优化,成品质量更高,产品能更好地推向市场,价格也更便宜。

(4).直观装配管理

Pro/ENGINEER的基本结构能够使您利用一些直观的命令,例如“贴合”、“插入”、“对齐”等很容易的把零件装配起来,同时保持设计意图。高级的功能支持大型复杂装配体的构造和管理,这些装配体中零件的数量不受限制。

(5).易于使用

菜单以直观的方式联级出现,提供了逻辑选项和预先选取的最普通选项,同时还提供了简短的菜单描述和完整的在线帮助,这种形式使得容易学习和使用。

3.2装配

(1)组装活塞

选择菜单栏的【文件】→【设置工作目录】,系统弹出“选取工作目录”对话框,选择活塞零件图所在文件夹,单击【确定】按钮,完成工作目录的设置。

机电工程学院

选择菜单栏的【文件】→【新建命令】,系统弹出【新建】对话框,点选【组件】,取消【使用缺省模版】的选择,单击【确定】按钮,系统弹出新文件选项对话框,如图

单击【确定】按钮,选择mmns-asm-design,单击【确定】,进入装配设计模块。

(2).创建骨架模块

单击【创建按钮】,系统弹出元件创建对话框,如图1.2

在“元件创建”对话框中,单选【骨架模型】,单击【确定】,系统弹出“创建”选项,单击【空】,单击【确定】,进入元件创建。

单击工具栏【轴】按钮,系统弹出“基准轴”对话框,如图1.3。双选FRONT.RIGHT两个基准面作为参照面,所创建的基准轴穿过两个参照面,单击【确定】,创建基准轴完成。

(3).装配活塞

选择菜单栏的【窗口】→【激活】,激活现在装配模块。

机电工程学院

单击工具栏【装配】,系统弹出“打开”对话框,选择元件prt001,单击【打开】,就将活塞添加到当前模块了. 在【将约束转化为机构连接】框中选择“滑动杆”,单击【放置】,单击【轴对齐】,在3D模型中选择上面创建的基准轴和活塞垂直轴线,单击【旋转】,选取活塞的DTM1基准面和组件的RIGHT基准面。

在【放置】的【状态】的“完成连接定义”,单击【完成】。如图1.6

(4).装配底座

单击【装配】,系统弹出“打开”对话框,选择元件prt006,单击【打开】,底座就添加在组件模块中了。

选择【将约束转化为机构连接】中的“用户定义”,单击【放置】,在3D模型中选择底座的基准面和组件的基准面,然后在将其他两个基准面进行约束。

在【状态】框中显示“完成连接定义”,单击【完成】。如图1.7

机电工程学院

(5).装配输出轴

单击【装配】,系统弹出“打开”对话框,选择元件prt0005,单击【打开】,轴就添加在组件模块中了。

选择【将约束转化为机构连接】中的“销钉”,单击【放置】,单击【轴对齐】,在3D模型中选择底座轴线和输出轴的轴线,单击【平移】,在3D模型中选择曲柄的侧面和底座的内侧面。。

在【状态】框中显示“完成连接定义”,单击【完成】。如图1

(6).装配连杆

单击【装配】,系统弹出“打开”,选择元件prt0004.单击【打开】,连杆就添加在组件模块中了。

选中【将约束转化为机构连接】中的“销钉”,单击【放置】,单击【轴对齐】,在3D模型中选择输出轴的轴线和连杆空轴线,单击【平移】,在3D模型中选择输出轴曲柄侧面和连杆外侧面。

机电工程学院

单击【放置】→【新建集】,即创建了一个新的连接。

选择【将约束转化为机构连接】中的销钉,单击【放置】,单击【轴对齐】,在3D模型中选择活塞孔的轴线和连杆孔的轴线,单击【平移】,在3D模型中选择活塞内侧面和连杆外侧面。

在【状态】中显示“完成连接定义”,单击【完成】。如图1.10

装配完成。

3.3 运动仿真及分析

运动分析对活塞连杆机构进行运动仿真,可以进一步分析其运动是否合理,结构是否发生运动干涉等信息. (1).添加伺服电机

选择菜单栏的【应用程序】→【机构】,系统进入机构平台。 单击【伺服电动机】,系统弹出“伺服电动机”对话框,如图2.1.

点选【从动图元】的【运动轴】,单击【选取】,选取旋转轴。如图2.2

机电工程学院

在伺服电动机定义中,单击【轮廓】,选择【规范】中的“速度”,选择【模】中的“常数”,在【A】框中输入50,单击【确定】。完成伺服电动机的创建。

注:速度为50mm/s。 (2).自由度分析

单击【机构分析】,系统弹出“分析定义”对话框,如图2.3.

选择【类型】中的“力平衡”,单击自由度中的【DOF】右边的按钮,在文本框中显示的数即为自由度。如果没有伺服电动机,自由度则为1. 注:一个自由度的机构,只需要一个伺服电动机就能驱动它。

(3).动画

单击【机构分析】,系统弹出“分析定义”对话框,选择【类型】中的“运动学”,在【终止时间】框中输入50. 注:给定时间为50秒。

机电工程学院

单击【运行】,模型就开始运动。如下图:

注:生成的视频文件截图

(4).运动包络

单击【回放】,系统弹出“回放”对话框。单击【创建运动包络】,系统弹出“创建运动包络”对话框,单击【读取元件】中的【选取】,在3D模型中选择连杆,单击【预览】。如图2.4

注:连杆的运动轨迹

(5).分析测量结果

单击【测量】,系统弹出“测量结果”对话框,单击【创建新测量】,系统 11

机电工程学院

弹出“测量定义”对话框。

在“测量定义”对话框中,选择【类型】中的“位置”,单击【点或运动轴】中的【选取】,在3d模型中选择活塞的孔轴线,如图2.6

在“测量定义”对话中【测量】中的“measure1”,选中【结果集】中“analysisdefinition3”选项,单击【检测选定结果集所选测量的图形】,系统弹出图形工具对话框。如图框中,单击【确定】,返回“测量结果”对话框

点“测量” 即生成位移曲线。同时可生成速度和加速度曲线。如图

1、

2、3 12

机电工程学院

图1 注:横轴代表时间,竖轴代表活塞位移

分析: 该图为活塞位移曲线图。活塞顶端为零点,以-90处为中心点,活塞从初始值为-86.9928处开始运动做往复运动,经过50秒在-93.0072处结束运动。可以看出,活塞的总位移成余弦规律,位移图比较平稳。

图2 注:横轴代表时间,竖轴代表活塞速度

分析: 该图为活塞速度曲线图。活塞由最下端以速度为13.0607mm/s开始向上做减速运动,后由0开始做加速运动,由此反复运动,50秒后到最下端结束运动。可以看出,活塞的速度曲线成余弦规律,具有周期性变化规律。

机电工程学院

图3 注:横轴代表时间,竖轴代表活塞加速度

分析: 该图为活塞加速度曲线图。加速度代表活塞的速度快慢的变化.它是速度的导数,因此权限与速度曲线的变化规律基本一致,可以看出,活塞的加速度曲线成正弦规律.仍然具有周期性变化规律。

.

注:位移、速度、加速度合图。

分析:由活塞位移、速度和加速度对应曲线可以得出结论:位移达到峰值的时候,加速度也达到了反向的峰值,这时候速度刚好为零。

机电工程学院

参考文献:

【1】 乔建军,proe 5.0动力学与有限元分析从入门到精通,机械工业出版社,2010,340~357.

【2】肖继德、陈宁宁,机床夹具,机械工业出版社,2011,5~13 【3】刘建华、杜鑫,机械设计基础,北京交通大学出版社,2010,14~38. 【4】魏增菊、李莉,机械制图,科学出版社,2007 【5】林清安,proe机构设计,2004 【6】孙印杰,proe基础与实例教程,北京电子工业出版社,2008 【7】孙恒,机械原理,高等教育出版社,2003 【8】施平,机械工程专业英语,哈尔滨工业大学出版社,2011 【9】孙印杰等,野火中文版Pro/ENGINEER Widfire基础与实例教程【M】,北京,电子工业出版社,2004.

机电工程学院

致谢:

经过两个多月的时间,终于完成了这次论文的设计.尽管在论文的设计过程中,遇到了许多困难和不解,但都在老师和同学的帮助下度过了.在这里,尤其要感谢我的指导老师-徐秀芬老师,本课题在选题及研究过程中都得到了徐秀芬老师的悉心指导。徐老师多次询问研究进程,并为我指点迷津,帮助我开拓研究思路,精心点拨、热忱鼓励。徐老师一丝不苟的作风,严谨求实的态度,踏踏实实的精神使我获益良多。对徐老师的感激之情是无法用言语表达的。

第二篇:CATIA活塞连杆设计实例教程

第三章 零件设计------活塞、连杆、汽缸组件

本章是设计活塞、连杆与汽缸的三维模型。进一步熟悉绘制草图、拉伸成形、旋转成形、拉伸切除、旋转切除、钻孔、倒(圆)角等命令,同时增添混成、特征的阵列等命令。读者在使用过程中注意将各种命令穿插应用。领会各个命令的用法。

3.1

Loft(混成)特征

混成实体特征不仅应用非常广泛,而且其生成方法也非常丰富、灵活多变。Loft(混成)特征分为两种:Loft(混成实体)和Removed Loft (混成切除)。它们形成的方式是一样的。主要区别在于:Loft(混成实体)是增料特征,Removed Loft (混成切除)是减料特征。

3.1.1. Loft(混成实体) 混成实体指的是利用两个或两个以上的截面(或者说是轮廓),以逐渐变形的方式生成实体。也可以加入曲线或折线作为导引线,使用导引线可以更好的控制外形轮廓之间的过渡。

操作过程举例如下:

1.在窗口中建立三个平行平面,绘制三个截面

左键单击左边模型树中的xy plane平面,单击工具栏中的Plane (平面)图标 ,弹出对话框,提供创建平面的参数的设定。在Plane type 一栏中选择 Offset from plane (偏移平面);在Offset 一栏中输入20 mm ;预览生成的平面,如图3.1所示。

图3.1 同样再以刚才生成的平面作为参考面,再生成一个偏移10 mm的新平面,预览生成的平面,如图3.2所示。

图3.2 左键单击左边模型树中的xy plane 参考平面,再单击一下右边工具栏中的sketch(草图设计)图标

,进入草图绘制模式。

图标,绘制一个椭圆,圆心在原点。左

,标注椭圆的尺寸, ,进入零件实体设单击工具栏中的Ellipse(椭圆)键单击工具栏中Auto Constraint (自动标注尺寸)图标 如图3.3所示。

绘制完草图之后,单击工具栏中的退出工作台图标 计模式。

图3.3 同样,利用草图中的圆功能在新建的平面1和平面2上分别绘制直径为6和直径为15的圆,如图3.4所示,如图3.5所示。

图3.4 图3.5 2.以渐进曲线混成实体 左键单击Loft(混成实体)图标

,弹出对话框,提供混成参数的设定。在第一栏中分别选择上述绘制的三个草图,作为混成的截面,混成的图形预览如图3.6所示。

图3.6 点击确定。混成的模型如图3.7所示。保存为part3-1 。

图3.7

3.以样条曲线混成实体

上述模型省略了导引线,实际上它的导引线是渐进的曲线,我们也可以给它们建立导引线。

删去模型树中的混成特征

,左键单击左边模型树中的yz plane

,进入草参考平面,再单击一下右边工具栏中的sketch(草图设计)图标 图绘制模式。

按住Ctrl键,分别选择三个截面,点击工具栏中的Project 3D Elements (3D实体转换)图标 ,使之成三条直线,再单击Spline(样条曲线)

图标,鼠标左键分别选择三条直线的三个端点,绘制一条曲线。双击鼠标左键结束样条曲线,如图3.8所示。

图3.8

绘制完草图之后,单击工具栏中的退出工作台图标 计模式。

左键单击Loft(混成实体)图标

,进入零件实体设

,弹出对话框,提供混成参数的设定。在第一栏中分别选择前面绘制的三个草图,作为混成的截面;在第二栏中选择刚才绘制的样条曲线作为导引线;混成的图形预览如图3.9所示。

图3.9

点击确定。混成的模型如图3.10所示。保存为part3-2 。

图3.10

4.以连续折线混成实体

我们再将导引线变成折线来比较混成的实体不同,鼠标左键双击模型树中的样条曲线草图,进入草图绘制模式,编辑草图。

单击Profile(连续折线)

图标,鼠标左键分别选择样条曲线中的三个控制点,绘制一条折线。双击鼠标左键结束连续折线,再利用剪切功能将样条曲线删去,如图3.11所示。

图3.11

绘制完草图之后,单击工具栏中的退出工作台图标 计模式。

左键单击Loft(混成实体)图标

,进入零件实体设

,弹出对话框,提供混成参数的设定。在第一栏中分别选择前面绘制的三个草图,作为混成的截面;在第二栏中选择刚才绘制的连续折线作为导引线;混成的图形预览如图3.12所示。

图3.12

点击确定。混成的模型如图3.13所示,保存为part3-3 。与前两个相比较,就会发现模型随着导引线的不同而变化着。

图3.13

3.1.2. Removed Loft (混成切除) 混成切除指的是在实体上利用两个或两个以上的截面(或者说是轮廓),以逐渐变形的方式切除实体。也可以加入曲线或折线作为导引线,使用导引线可以更好的控制外形轮廓之间的过渡。

操作过程举例如下: 1.拉伸实体,建立基准面

左键单击左边模型树中的xy plane 参考平面,再单击一下右边工具栏中的sketch(草图设计)图标

,进入草图绘制模式。

,绘制一个圆,圆心在原点。鼠标左键单击工具栏中的Circle (圆)图标 单击 constraint(尺寸限制) 图标 图3.14所示。

,标注出圆的直径为30,修改尺寸后如

图3.14 绘制完草图之后,单击工具栏中的退出工作台图标 计模式。

在工具栏中单击pad(拉伸成形)图标

,进入零件实体设

,弹出对话框,提供拉伸成形参数的设定。在Type 一栏中选择Dimension,指定尺寸为50 mm ;在Selection一栏中选择刚才绘制的草图;如图3.15所示。

图3.15 左键单击左边模型树中的xy plane平面,单击工具栏中的Plane (平面)图标 ,弹出对话框,提供创建平面的参数的设定。在Plane type 一栏中选

择 Offset from plane (偏移平面);在Offset 一栏中输入25 mm ;预览生成的平面,如图3.16所示。

图3.16

同样再以刚才生成的平面作为参考面,再生成一个偏移40 mm的新平面,预览生成的平面,如图3.17所示。

图3.17

左键单击左边模型树中的xy plane 参考平面,再单击一下右边工具栏中的sketch(草图设计)图标

,进入草图绘制模式。 单击工具栏中的Hexagon(正六边形)尺寸后如图3.18所示。

图标,绘制一个正六边形,标注

图3.18 同样,利用草图中的正六边形功能在新建的平面1和平面2上分别绘制两个正六边形,单击 constraint(尺寸限制) 图标 的参数。如图3.19所示,如图3.20所示。

,分别标注出两个正六边形

图3.19

图3.20 2.混成切除实体

左键单击 Removed Loft(混成切除)图标

,弹出对话框,提供混成切除参数的设定。在第一栏中分别选择前面绘制的三个正六边形草图,作为混成切除的截面;混成切除的图形预览如图3.21所示。

图3.21

点击确定。混成切除的模型如图3.22所示,保存为part3-4 。

3.22 3.2

特征的阵列

特征的阵列就是将一定数量的几何元素或实体按照一定的方式进行规则有序的排列。将特征进行有规律排列的过程就是特征的阵列。

特征的阵列非常适合于有规律地重复创建数量众多的特征。它分为圆形阵列和矩形阵列。

3.2.1 圆形阵列

圆形阵列就是选择一个特征作为基本特征,以圆形数组方式重复应用这个基本特征。

操作过程举例如下: 1.拉伸实体和切除孔

左键单击左边模型树中的xy plane 参考平面,再单击一下右边工具栏中的sketch(草图设计)图标

,进入草图绘制模式。

,绘制一个圆,圆心在原点。单击 单击工具栏中的Circle (圆)图标 constraint(尺寸限制) 图标

,标注出圆的直径为100。如图3.23所示。

图3.23

绘制完草图之后,鼠标左键单击工具栏中的退出工作台图标 件实体设计模式。

在工具栏中单击pad(拉伸成形)图标

,进入零

,弹出对话框,提供拉伸成形参数的设定。在Type 一栏中选择Dimension,指定尺寸为20 mm ;在Selection一栏中选择刚才绘制的草图;模型预览如图3.24所示。

图3.24 点击OK,生成的模型如图3.25所示。

图3.25 选择实体上表面作为草图参考平面,单击一下右边工具栏中的sketch(草图设计)图标 ,进入草图绘制模式。

,绘制一个圆,圆心在原点。单击 单击工具栏中的Circle (圆)图标 constraint(尺寸限制) 图标

,标注出圆的直径为100。如图3.26所示。

图3.26 绘制完草图之后,鼠标左键单击工具栏中的退出工作台图标

,进入零件实体设计模式。

2.阵列孔特征

鼠标左键选择窗口模型树中的上一步骤中的孔特征,在工具栏中单击Circular Pattern (圆形阵列)图标 定。如图3.27所示。

,弹出对话框,提供圆形阵列参数的设

图3.27

在Parameters 一栏中选择Instance(s) or total angle (数量与总角度),在Instance(s) 一栏中输入7;在Total angle一栏中输入360度;在Reference element (参考元素)一栏中选择实体的上表面,在Object一栏中选择孔特征,单击OK,生成的孔阵列如图3.28所示。

图3.28

在上述对话框中还有一个菜单,这个菜单是Crown Definition (环绕定义),它可以定义圆形阵列的圈数,双击模型树中的圆形阵列的特征,重新编辑圆形阵列的参数。如图3.29所示。

图3.29 在Axial Reference 菜单中,所有参数不变;左键单击Crown Definition菜单,在Parameters 一栏中选择Circle(s) or Circle spacing (圆的数量和圆的间距),在Circle(s) 一栏中输入2;在Circle spacing一栏中输入-20 mm ;方向朝外为正,反之为负,这里选择负方向才有解。在Object一栏中选择孔特征,单击OK,生成的孔阵列如图3.30所示。

图3.30

3.2.2矩形阵列

矩形阵列就是选择一个特征作为基本特征,以矩形数组方式重复应用这个基本特征。

操作过程举例如下: 1.拉伸实体和切除槽

左键单击左边模型树中的xy plane 参考平面,再单击一下右边工具栏中的sketch(草图设计)图标

,进入草图绘制模式。

,在草图模式中绘制出一个矩单击工具栏中retangent (矩形)图标 形,标注尺寸后如图3.31所示。

图3.31

绘制完草图之后,鼠标左键单击工具栏中的退出工作台图标 件实体设计模式。

在工具栏中单击pad(拉伸成形)图标 的设定。如图3.32所示。

,进入零

,弹出对话框,提供拉伸成形参数

图3.32 在Type 一栏中选择Dimension,指定尺寸为10 mm ;在Selection一栏中选择刚才绘制的草图;点击OK。生成的模型如图3.33所示。

图3.33

选择实体上表面作为草图参考平面,单击一下右边工具栏中的sketch(草图设计)图标 ,进入草图绘制模式。

,绘制两个圆,双击Bi-Tangent 双击工具栏中的Circle (圆)图标 Line (切线)图标

,分别点击两圆的左右两个侧面,生成左右两条平行的切线。再利用剪切功能将多余的线段剪切掉,标注和修改尺寸后的草图如图2.34所示。

图2.34

绘制完草图之后,鼠标左键单击工具栏中的退出工作台图标

,进入零件实体设计模式。

2.阵列槽特征

鼠标左键选择窗口模型树中的上一步骤中的槽特征,在工具栏中单击Rectangular Pattern (矩形阵列)图标 的设定。如图3.35所示。

,弹出对话框,提供矩形阵列参数

图3.35

在Parameters 一栏中选择Instance(s) or Spacing (数量与间距),在Instance(s) 一栏中输入8;在Spacing一栏中输入20 mm;在Reference element (参考元素)一栏中选择实体的上表面,预览图形中的阵列特征,如果阵列的特征不在实体上,则选择Reverse (反向)选项,在Object一栏中选择槽特征。点击OK。生成的模型如图3.36所示。

图3.36

在上述对话框中还有一个菜单,这个菜单是Second Direction(第二方向)菜单),它可以定义矩形阵列的另一个方向,双击模型树中的矩形阵列的特征,重新编辑矩形阵列的参数。如图3.37所示。

图3.37 在First Direction(第一方向)菜单中,所有参数不变;鼠标左键单击Second Direction(第二方向)菜单, 在Parameters 一栏中选择Instance(s) or Spacing (数量与间距),在Instance(s) 一栏中输入2;在Spacing一栏中输入45 mm;在Reference element (参考元素)一栏中选择实体的上表面,如果有必要,选择Reverse (反向)选项,在Object一栏中选择孔特征。单击OK,生成的孔阵列如图3.38所示。

图3.38 3.3

活塞的创建

1. 进入软件,拉伸活塞本体 在桌面双击 图标(CATIA),或者从[开始] →[程序]中点击CATIA软件,进入 CATIA软件。选择[开始] →[机械设计] →[part design] 命令,进入零件模块设计。

左键单击左边模型树中的xy plane 参考平面,或在窗口中央选择三平面中的xy平面。再单击一下右边工具栏中的sketch(草图设计)图标 草图绘制模式。

单击工具栏中的Circle (圆)图标 constraint(尺寸限制) 图标 所示。

,绘制一个圆,圆心在原点。单击

,即进入

,标注出圆的直径为50,修改尺寸后如图3.

1图3.1 绘制完草图之后,单击工具栏中的退出工作台图标 计模式。

在工具栏中单击pad(拉伸成形)图标 的设定。如图3.2所示。

,进入零件实体设

,弹出对话框,提供拉伸成形参数

图3.2 在Type 一栏中选择Dimension,指定尺寸为44 mm ;在Selection一栏中选择刚才绘制的草图;点击确定。生成的模型如图3.3所示。

图3.3

2.旋转切除活塞内部

左键单击左边模型树中的yz plane 参考平面,或在窗口中央选择三平面中的yz平面。再单击一下右边工具栏中的sketch(草图设计)图标 图绘制模式。

单击工具栏中Axis (轴)图标

,先绘制一轴线,为下一步的旋转切除

,绘制草图,双击草图

,进入草作准备,再单击工具栏中 Profile (自由折线)图标 的终点即结束自由折线。绘制的草图如图3.4所示。

图3.4

鼠标左键单击工具栏中Corner(倒圆角)图标 圆角尺寸的数值,修改圆角值为R5。

双击 constraint(尺寸限制) 图标 栏中单击

,标注草图上所需尺寸。之后在工具

,在草图上倒圆角,双击 (选择)图标,进行尺寸编辑。最后完成草图的绘制和修改。修改尺寸后的草图如图3.5所示。

图3.5 鼠标左键单击工具栏中的退出工作台图标 实体设计模式。

在工具栏中单击Groove (旋转切除)图标 参数的设定。如图3.6所示。

,弹出对话框,提供旋转切除 ,退出草图模式,进入零件

图3.6 在对话框中First angle 一栏中输入360度,在Second angle 一栏中输入0度(通常默认状态也是这样),在Selection一栏中选择刚才绘制的草图;则下面的轴线选择一栏中会自动选择草图中的轴线,点击OK。生成的模型如图3.7所示。

图3.7 3.拉伸凸台

我们先从活塞内部创建一个平面。单击工具栏中的Plane (平面)图标

,弹出对话框,提供创建平面的参数的设定。在Plane type 一栏中选择 Offset from plane (偏移平面);在Reference一栏中选择 yz plane (从窗口的目录树上或工作台中选择,也可以在点击创建平面图标之前先选择该平面);在Offset 一栏中输入10 mm ;如果有必要,可以选择Reverse Direction(反向);预览生成的平面,如图3.8所示。

图3.8 点击确定,创建的平面如图3.9所示。

图3.9 鼠标左键单击创建的新平面,再单击一下右边工具栏中的sketch(草图设计)图标 ,进入草图绘制模式。

,绘制一个圆,单击 constraint(尺单击工具栏中的Circle (圆)图标 寸限制) 图标

,标注出圆的直径为16,修改尺寸后如图3.10所示。

图3.10 鼠标左键单击工具栏中的退出工作台图标 实体设计模式。

在工具栏中单击pad(拉伸成形)图标 的设定。如图3.11所示。

,弹出对话框,提供拉伸成形参数

,退出草图模式,进入零件

图3.11 在Type 一栏中选择Up to next; 在Offset(偏移)一栏中输入0 mm (通常默认状态都是0);在Selection一栏中选择刚才绘制的草图;点击OK。生成的模型如图3.12所示。

图3.12 左键点击一下左边模型树中上述刚完成的拉伸成形凸台的特征,再单击工具栏中的Mirror(镜像)图标

,弹出对话框,提供镜像参数的设置。如图3.13所示。

图3.13 在Mirroring element(镜像元素)一栏中选择yz平面,点击OK。镜像的特征如图3.14所示。

图3.14 选择其中一个凸台的上表面作为草图参考平面,单击一下右边工具栏中的sketch(草图设计)图标

,进入草图绘制模式。

,绘制一个圆,单击 constraint(尺单击工具栏中的Circle (圆)图标 寸限制) 图标 ,标注出圆的直径为10,修改尺寸后如图3.15所示。

图3.15 在工具栏中单击Pocket (拉伸切除)图标 参数的设定。如图3.16所示。

,弹出对话框,提供拉伸切除

图3.16 在Type 一栏中选择Dimension,指定尺寸为40 mm ,在Selection一栏中选择刚才绘制的草图;再选择Mirrored extent(镜像) 选项;点击OK。生成的模型如图3.17所示。

图3.17 4.旋转切除槽

左键单击左边模型树中的yz plane 参考平面,或在窗口中央选择三平面中的yz平面。再单击一下右边工具栏中的sketch(草图设计)图标 图绘制模式。

单击工具栏中 Profile (自由折线)图标

,在活塞的右上侧绘制草图,

,进入草双击草图的终点即结束自由折线。绘制的草图如图3.18所示。

图3.18 双击 constraint(尺寸限制) 图标 栏中单击

,标注草图上所需尺寸。之后在工具 (选择)图标,进行尺寸编辑。最后完成草图的绘制和修改。修改尺寸后的草图如图3.19所示。

图3.19

鼠标左键单击工具栏中的退出工作台图标 实体设计模式。

在工具栏中单击Groove (旋转切除)图标 参数的设定。如图3.20所示。

,弹出对话框,提供旋转切除 ,退出草图模式,进入零件

图3.20 在对话框中First angle 一栏中输入360度,在Second angle 一栏中输入0度(通常默认状态也是这样),在Selection一栏中选择刚才绘制的草图;在Axis Selection 一栏中选择窗口中的V轴,也可以选择活塞本体上的圆柱,系统自动出现圆柱的轴线,此轴线跟V轴平行。作用是一样的。点击OK。生成的模型如图3.21所示。

图3.21 5.钻孔

单击活塞上部的小平面作为钻孔表面,如图3.22所示。

图3.22 单击工具栏中的Hole (钻孔)图标

,弹出对话框,提供钻孔参数的设定。在对话框中先打开Extension 菜单,在第一栏中选择Up To Next(成型到下一面)类型;在Diameter(直径)一栏中输入2 mm ;在Offset(偏移)一栏中输入0 mm (通常默认状态都是0);单击右边的Positionning Sketch (草图位置)图标

,进入孔的草图模式状态,约束草图位置。

,标注孔的中心到H轴的距离为3.5;双击 constraint(尺寸限制) 图标

标注孔的中心与V轴在同一直线上,注意鼠标一定要点击上孔的中心,否则标注的尺寸不会正确。如图3.23所示。

图3.23 鼠标左键单击工具栏中的退出工作台图标 定义对话框。如图3.24所示。

,退出草图模式,返回孔的

图3.24 再打开Type菜单,在第一栏中选择Simple选项;再打开一下Thread Definition 菜单,察看一下是否取消了Threaded 选项,如果未取消则取消这个选项,通常默认状态是未选择的。至此,孔的定义已经完成。点击OK,生成的孔如图3.25所示。

图3.25 鼠标左键选择窗口模型树中的上一步骤中的孔特征,在工具栏中单击Circular Pattern (圆形阵列)图标 定。如图3.26所示。

,弹出对话框,提供圆形阵列参数的设

图3.26 在Parameters 一栏中选择Instance(s) or total angle (数量与总角度),在Instance(s) 一栏中输入5;在Total angle一栏中输入360度;在Reference element (参考元素)一栏中选择活塞的上表面,在Object一栏中选择孔特征,单击OK,生成的孔阵列如图3.27所示。

图3.27 6. 倒(圆)角

在工具栏中单击 Chamfer (倒角)图标

,弹出对话框,提供倒角参数的设定。

在Mode 一栏中选择Length1/Angle ;在Length1一栏中输入1.5 mm ;在Angle一栏中输入60度;在Object(s) to Chamfer 一栏中选择活塞的上表面的外边线;在Propagation一栏中选择Tangency选项。图形预览如图3.28所示。

图3.28 在工具栏中单击 Chamfer (倒角)图标

,弹出对话框,提供倒角参数的设定。

在Mode 一栏中选择Length1/Angle ;在Length1一栏中输入2 mm ;在Angle一栏中输入45度;在Object(s) to Chamfer 一栏中选择活塞的上表面的内边线;在Propagation一栏中选择Tangency选项。图形预览如图3.29所示。

图3.29 在工具栏中单击 Edge Fillet (倒圆角)图标

,弹出对话框,提供倒圆角参数的设定。

在Radius一栏中输入2 mm ,在Object(s) to fillets一栏中分别选择两个凸台底部的边线,在Propagation一栏中选择Tangency选项,图形预览如图3.30所示。

图3.30 在工具栏中单击 Edge Fillet (倒圆角)图标

,弹出对话框,提供倒圆角参数的设定。

在Radius一栏中输入0.5 mm ,在Object(s) to fillets一栏中分别选择活塞槽的上下面的边线、活塞底面、活塞内边线,在Propagation一栏中选择Tangency选项,图形预览如图3.31所示。

图3.31 至此,活塞模型已全部完成。隐藏所有参考面后的模型如图3.80所示。保存为huo sai 。

图3.32 3.4

连杆的创建

1. 进入软件,绘制连杆的一端草图 在桌面双击 图标(CATIA),或者从[开始] →[程序]中点击CATIA软件,进入 CATIA软件。选择[开始] →[机械设计] →[part design] 命令,进入零件模块设计。

左键单击左边模型树中的xy plane 参考平面,或在窗口中央选择三平面中的xy平面。再单击一下右边工具栏中的sketch(草图设计)图标 草图绘制模式。

双击工具栏中的Circle (圆)图标 constraint(尺寸限制) 图标 如图3.1所示。

,绘制两个圆,圆心都在原点。双击

,即进入

,标注出两个圆的直径20和27,修改尺寸后

图3.1

绘制完草图之后,单击工具栏中的退出工作台图标 计模式。

2.拉伸成形本体

,进入零件实体设进入零件实体设计模式之后,在工具栏中单击pad(拉伸成形)图标 出对话框,提供拉伸成形参数的设定。如图3.2所示。

,弹

图3.2

在Type 一栏中选择Dimension,指定尺寸为12mm;在Selection一栏中选择刚才绘制的草图;再选择Mirrored extent(镜像) 选项;点击确定。生成的模型如图3.3所示。

图3.3 2. 绘制连杆的另一端

左键单击左边模型树中的xy plane 参考平面,或在窗口中央选择三平面中的xy平面。再单击一下右边工具栏中的sketch(草图设计)图标 草图绘制模式。

双击工具栏中的Circle (圆)图标 constraint(尺寸限制) 图标

,绘制两个同心圆。双击

,即进入

,标注出两个圆的直径10和15,圆心到原点的距离是86。修改尺寸后如图3.4所示。

单击工具栏中的退出工作台图标 中单击pad(拉伸成形)图标 3.5所示。

图3.4

,进入零件实体设计模式。在工具栏

,弹出对话框,提供拉伸成形参数的设定。如图

图3.5 在Type 一栏中选择Dimension,指定尺寸为9mm;在Selection一栏中选择刚才绘制的草图;再选择Mirrored extent(镜像) 选项;点击确定。生成的模型着色如图3.6所示。

图3.6 4.建立基准面

左键单击左边模型树中的xy plane 参考平面,或在窗口中央选择三平面中的xy平面。再单击一下右边工具栏中的sketch(草图设计)图标

,进入草图绘制模式。

左键选取大圆柱的外圆边线,单击工具栏中的Project 3D Elements (3D实体转换)图标 ,则在xy平面产生与圆柱外圆一样大小的圆。如图3.7所示。

图3.7 点击工具栏中Line (直线)图标

,在圆的中间绘制一条与V轴平行的直线;单击Intersection Point(交点)图标 两个交点。如图3.8所示。

,分别点击圆和直线产生

图3.8 单击 constraint(尺寸限制) 图标 图3.9所示。

,标注圆上两交点的距离为25mm,如

图3.9 双击工具栏中的 Quick Trim (快速剪切)图标

,鼠标左键点击要剪除的线段,将草图剪切成如图3.10所示的草图。这个草图将为下一步建立平面作基础。

图3.10 单击工具栏中的退出工作台图标

,退出草图模式。同理,再在xy平面用上述同样的方法在小圆柱上绘制如图3.11所示的草图。

图3.11 单击工具栏中的Plane (平面)图标

,弹出对话框,提供创建平面的参数的设定。在Plane type 一栏中选择 Angle/Normal to plane ;在Rotation axis 一栏中选择上一步在大圆柱上绘制的直线草图; 在Reference一栏中选择 yz plane (从窗口的目录树上或工作台中选择,也可以在点击创建平面图标之前 先选择该平面)。如图3.12所示。

图3.12 点击确定,创建的平面plane.1如图3.13所示。

图3.13 同理,利用在小圆上绘制的直线和yz平面建立同样类型的平面plane.2,如图3.14所示。

图3.14 5.混成连杆中段

先绘制两个草图作为混成的截面。左键单击左边模型树中的plane.1 参考平面,或在窗口中央选择三平面中的plane.1平面。再单击一下右边工具栏中的sketch(草图设计)图标

,即进入草图绘制模式。

,在草图模式中画出一个矩形,

,标注矩形的尺寸,如图3.15单击工具栏中Rectangle (矩形)图标

在工具栏中双击 constraint(尺寸限制) 图标 所示。

图3.15 单击工具栏中的退出工作台图标

,退出草图模式。左键单击左边模型树中的plane.2参考平面,或在窗口中央选择三平面中的plane.2平面。再单击一下右边工具栏中的sketch(草图设计)图标 图3.16所示的草图。

,进入草图绘制模式,绘制出如

图3.16 单击工具栏中的退出工作台图标 Loft(混成)图标

,进入零件实体设计模式。左键单击 ,弹出对话框,提供混成参数的设定。在第一栏中分别选择上述绘制的两个矩形草图,作为混成的截面,混成的图形预览如图3.17所示。

图3.17 点击确定。混成的模型如图3.18所示。

图3.18 仔细查看混成的图形,发现混成的图形超出了大孔的范围。因此,要再重新切除多余的部分。单击大圆的上表面作为草图基准面,再单击一下右边工具栏中的sketch(草图设计)图标

,进入草图绘制模式。左键选取大圆柱的内

,则在圆边线,单击工具栏中的Project 3D Elements (3D实体转换)图标 此平面产生与圆柱内圆一样大小的圆。如图3.19所示。

图3.19 单击工具栏中的退出工作台图标 栏中的Pocket (拉伸切除)图标

,退出草图模式。左键单击右边工具

,弹出对话框,提供拉伸切除参数的设定。在Type 一栏中选择up to next ,在Selection一栏中选择刚才绘制的草图;图形预览如图3.20所示。

图3.20 点击OK。生成的模型如图3.21所示。

图3.21 6.拉伸切除连杆中段

单击大圆的上端面作为草图基准面,再单击一下右边工具栏中的sketch(草图设计)图标

,进入草图绘制模式。按住Ctrl键分别选取连杆的边线和两圆柱的外圆边线,单击工具栏中的Project 3D Elements (3D实体转换)图标

,则在此平面产生与原边线相重合的边线。如图3.22所示。

图3.22 双击工具栏中Line (直线)图标

,分别在连杆的中段绘制两条直线(尽量与连杆的边线平行)。按住Ctrl键选取其中一条直线和这一侧的边线。单击工具栏中Constraints Defined in Dialog Box (约束定义)图标

,弹出约束定义的参数对话框。选择Parallelism(平行)选项。如图3.23所示。

图3.23 同样,约束定义另一侧的两条直线平行。在工具栏中双击 constraint(尺寸限制) 图标 ,分别标注两平行直线之间的距离为2.5,如图3.24所示。

图3.24 双击工具栏中的 Quick Trim (快速剪切)图标 的线段,将草图剪切成如图3.25所示的草图。

,鼠标左键点击要剪除

图3.25 单击工具栏中的退出工作台图标 栏中的Pocket (拉伸切除)图标

,退出草图模式。左键单击右边工具

,弹出对话框,提供拉伸切除参数的设定。在Type 一栏中选择Dimension,指定尺寸为9mm ,在Selection一栏中选择刚才绘制的草图;如果方向显示反了,可以选择Reverse Direction(反向);图形预览如图3.26所示。点击OK。生成的模型如图3.27所示。

图3.26

图3.27 左键点击一下左边模型树中上述刚完成的拉伸切除特征,再单击工具栏中的Mirror(镜像)图标

,弹出对话框,提供镜像参数的设置。如图3.28所示。

图3.28 在Mirroring element(镜像元素)一栏中选择xy平面,点击OK。镜像的特征如图3.29所示。

图3.29 7.倒圆角

在工具栏中单击 Edge Fillet (倒圆角)图标

,弹出对话框,提供倒圆角参数的设定。在Radius 一栏中输入3mm ,在Object(s) to fillet 一栏中分别选择连杆中段的的四个角,如图3.30所示的四条边。

图3.30 在Propagation一栏中选择Tangency一项,点击OK。生成的模型如图3.31所示。

图3.31 同样,将连杆中段的另一端及中间的平面分别倒圆角1.5mm,至此,连杆模型已经完成,隐藏各个参考面及草图,完成的模型如图3.32所示。保存为lian gan 。

图3.32

3.5

汽缸的创建 1. 进入软件,绘制汽缸的底板 在桌面双击 图标(CATIA),或者从[开始] →[程序]中点击CATIA软件,进入 CATIA软件。选择[开始] →[机械设计] →[part design] 命令,进入零件模块设计。

左键单击左边模型树中的xy plane 参考平面,或在窗口中央选择三平面中的xy平面。再单击一下右边工具栏中的sketch(草图设计)图标 入草图绘制模式。

单击工具栏中retangent (矩形)图标 形,如图3.33所示。

,在草图模式中绘制出一个矩

,即进

图3.33

下一步准备标注尺寸,由于前面采用的是基本标注尺寸的方法,在这里我再采用另一种标注尺寸的方法。让系统自动标注尺寸和使用方程相互约束尺寸。

左键单击工具栏中Auto Constraint (自动标注尺寸)图标 框。提供自动标注尺寸参数的设置。如图3.34所示。

,弹出对话

图3.34

在第一栏中标注的尺寸元素中分别选择窗口中矩形的长和宽;在第二栏中的参考元素中选择窗口中的V轴,即垂直轴;在第三栏中的对称线中选择H轴,即水平轴;在第四栏中的标注方式中选择Chained (链式)选项;单击确定,标注的尺寸如图3.35所示。

图3.35 鼠标左键单击矩形的一边到V轴距离的那个尺寸(39.815),再单击工具栏中的公式图标 ,弹出对话框,提供方程参数的设置,如图3.36所示。

图3.36 仔细查看要编辑的参数是否是刚才选中的尺寸,如果不是的话,就在参数框中再选择一次,单击框中的添加公式选项,弹出对话框,提供公式编辑框。在公式编辑框中的第一栏中,系统自动出现上面所选的尺寸;在第二栏中输入方程,鼠标左键在窗口中单击矩形上对应刚才所选尺寸的那条边,方程中即出现这个尺寸的代表式,再输入除号,再输入数字2,这个方程就定义了刚才的尺寸是矩形中这个对应单边尺寸的一半,以后只要改变矩形的这个边长,对应方程的尺寸就会自动定义为矩形这个边长尺寸的一半。同理,如果输入的方程式改变了,则对应的尺寸就会依照方程的定义而改变。如图3.37所示。

图3.37 点击确定,方程定义已经完成。同理,再编辑矩形的另一条边到H轴的距离是矩形对应边的1/2。完成方程的矩形如图3.38所示。读者注意图中尺寸上出现的(f(x)),代表这个尺寸是用方程定义约束的。

图3.38 鼠标左键分别双击矩形的两条边,在弹出的对话框中输入数值74,定义矩形的两个边长均为74mm ,如图3.39所示。

图3.39 鼠标左键单击工具栏中Corner(倒圆角)图标

,分别给矩形的四个直角倒成圆角,双击圆角尺寸的数值,修改圆角值为R8,如图3.40所示。

图3.40 鼠标左键单击工具栏中Profile (自由折线)图标

,在矩形的右边绘制草图,再利用剪切功能修剪草图,标注尺寸,如图3.41所示。

图3.41 鼠标左键单击工具栏中的退出工作台图标 实体设计模式。

在工具栏中单击pad(拉伸成形)图标 的设定。如图3.42所示。

,弹出对话框,提供拉伸成形参数

,退出草图模式,进入零件

图3.42 在对话框中的Type 一栏中选择Dimension,在Length一栏中输入尺寸为12 mm;在Selection一栏中选择刚才绘制的草图;点击确定。生成的模型如图3.43所示。

图3.43

2.拉伸汽缸本体

单击上述模型的上表面作为草图的工作平面,再单击一下右边工具栏中的sketch(草图设计)图标

,进入草图绘制模式。

,绘制一个直径为74的圆,圆心在单击工具栏中的Circle (圆)图标 原点,如图3.44所示。

图3.44

鼠标左键单击工具栏中的退出工作台图标 实体设计模式。

在工具栏中单击pad(拉伸成形)图标

,弹出对话框,提供拉伸成形参数

,退出草图模式,进入零件的设定。如图3.45所示。

图3.45 在对话框中的Type 一栏中选择Dimension,在Length一栏中输入尺寸为108 mm;在Selection一栏中选择刚才绘制的草图;点击确定。生成的模型如图3.46所示。

图3.46

3. 旋转切除汽缸本体

左键单击左边模型树中的yz plane 参考平面,或在窗口中央选择三平面中的yz平面。再单击一下右边工具栏中的sketch(草图设计)图标 图绘制模式。

单击工具栏中retangent (矩形)图标 标注尺寸后如图3.47所示。

,在草图模式中绘制出一个矩形,

,进入草

图3.47 鼠标左键单击工具栏中的退出工作台图标 实体设计模式。

在工具栏中单击Groove (旋转切除)图标 参数的设定。如图3.48所示。

,退出草图模式,进入零件

,弹出对话框,提供旋转切除

图3.48 在对话框中First angle 一栏中输入360度,在Second angle 一栏中输入0度(通常默认状态也是这样),在Selection一栏中选择刚才绘制的草图;在Axis Selection 一栏中选择窗口中的V轴。点击确定。生成的模型如图3.49所示。

图3.49 左键单击左边模型树中的yz plane 参考平面,或在窗口中央选择三平面中的yz平面。再单击一下右边工具栏中的sketch(草图设计)图标 图绘制模式。

单击工具栏中 Profile (自由折线)图标 图。双击 constraint(尺寸限制) 图标 如图3.50所示。

,在汽缸本体上部绘制草

,进入草

,标注草图尺寸。修改尺寸后的草图

图3.50 鼠标左键单击工具栏中的退出工作台图标 实体设计模式。

在工具栏中单击Groove (旋转切除)图标 参数的设定。如图3.51所示。

,弹出对话框,提供旋转切除 ,退出草图模式,进入零件

图3.51 在对话框中First angle 一栏中输入360度,在Second angle 一栏中输入0度(通常默认状态也是这样),在Selection一栏中选择刚才绘制的草图;在Axis Selection 一栏中选择窗口中的V轴。点击OK。生成的模型如图3.52所示。

图3.52 4. 钻气缸气孔

鼠标左键选择气缸上表面作为钻孔表面,如图3.53所示。

图3.53

单击工具栏中的Hole (钻孔)图标

,弹出对话框,提供钻孔参数的设定。在对话框中先打开Extension 菜单,在第一栏中选择Blind (盲孔)类型;在Depth (深度)一栏中输入18 mm;在右边关于孔的底部形状参数中选择Flat(平底)。如图3.54所示。

图3.54 再打开Type菜单,在第一栏中选择Simple选项;再打开一下Thread Definition 菜单,选择Threaded (螺纹)选项,在Type(类型)一栏中选择Metric Thin Pitch(公制细螺纹)选项;在Thread Description(螺纹直径) 一栏中选择M12选项 ;在Thread Depth (螺纹深度)一栏中输入14 mm;在 Hole Depth(孔深)一栏中输入18 mm。再选择 Right-Threaded(右旋螺纹)选项,图形预览如图3.55所示。

图3.55 至此螺纹定义完成,点击OK,生成的孔如图3.56所示。

图3.56

鼠标左键选择上述绘制的螺纹孔底面(平底)作为下一个钻孔的表面,如图3.57所示。

图3.57

单击工具栏中的Hole (钻孔)图标

,弹出对话框,提供钻孔参数的设定。在对话框中先打开Extension 菜单,在第一栏中选择Up To Next(成型到下一面)类型;在Diameter(直径)一栏中输入5 mm ;在Offset(偏移)一栏中输入0 mm (通常默认状态都是0);如图3.58所示。

第三篇:普桑发动机活塞连杆组拆装作业标准及相关数据

1、活塞直径﹕标准值80.98㎜,最大偏差0.04㎜于活塞下缘离裙部底边约15㎜处测量。测量前需校准千分尺并计算误差。超过误差应更换合适的活塞。

2、气缸内径﹕标准值81.01㎜,最大偏差0.08㎜,。横向是指曲轴方向。圆度、圆柱度

误差不大于0.005㎜,否则应对气缸进行镗削加工。

3、油膜间隙﹕标准值0.035 ~0.045㎜。将活塞倒装入气缸,用塞尺测量间隙。

4、第一道活塞环∶侧隙0.03 ~0.06㎜,端隙0.30 ~0.45㎜。活塞环位于气缸平面下约15

㎜处测量。若不符合规定应重新选配活塞环。

5、活塞连杆组拆装注意事项∶

①对活塞做标记,打上气缸号及指示发动机前端的箭头。 ②拆卸连杆及连杆轴承盖时应打上气缸号,安装时连杆浇铸标记应朝向发动

机前端。

③安装时连杆螺栓、螺母的螺纹,螺母与轴承盖的接触面,轴承盖与连杆接

触面都需要涂抹机油。螺母的拧紧力矩为30n.m,再转180度。连杆螺

栓必须更换。

④活塞环开口互错120°,有标记面朝上。镀铬的为第一道环。安装顺序为

油环的下刮片→油环的衬簧→油环的上刮片→第二道环→第一道环。

⑤拆装时要对零部件认真细致地进行清洗,正确使用工量具,特别是千分尺

和百分表的调教,不能有丝毫偏差,否则会直接影响测量数据的准确性。⑥熟练翻阅维修手册,合理分配时间,清洁整理工具,文明安全规范作业,

冷静处理突发情况。

第四篇: 曲柄连杆机构

一、填空题

1.活塞连杆组由(活塞)、(活塞环)、(活塞销)、(连杆)等组成。 2.活塞环包括(气环)、(油环)两种。

3.在安装气环时,各个气环的切口应该(错开)。

4.油环分为(普通油环)和组合油环两种,组合油环一般由(刮油片)和(胀簧)组成。 5.在安装扭曲环时,应将其内圈切槽向(上),外圈切槽向(下),不能装反。 6.活塞销与活塞销座孔及连杆小头衬套孔的配合,一般都采用(全浮式)配合。 7.连杆由(大头)、(杆身)和(小头)三部分组成。 8.曲轴的曲拐数取决于发动机的(气缸数)和(支承方式)。

9.曲轴按支承型式的不同分为(全支承)和(非全支承);加工方法的不同分为(整体式)和(组合式)。

10.曲轴前端装有驱动配气凸轮轴的(正时齿轮),驱动风扇和水泵的(皮带轮),止推片等,有些中小型发动机的曲轴前端还装有(起动爪),以便必要时用人力转动曲轴。 11.飞轮边缘一侧有指示气缸活塞位于上止点的标志,用以作为调整和检查(配气)正时和(点火)正时的依据。

二、选择题 1.将气缸盖用螺栓固定在气缸体上,拧紧螺栓时,应采取下列方法( A )。 A.由中央对称地向四周分几次拧紧; B.由中央对称地向四周分一次拧紧; C.由四周向中央分几次拧紧; D.由四周向中央分一次拧紧。

2.对于铝合金气缸盖,为了保证它的密封性能,在装配时,必须在( B )状态下拧紧。

A.热状态 B.冷状态 C.A、B均可 D.A、B均不可 3.一般柴油机活塞顶部多采用( B )。

A.平顶 B.凹顶 C.凸顶 D.A、B、C均可

4.为了保证活塞能正常工作,冷态下常将其沿径向做成( B )的椭圆形。

A.长轴在活塞销方向; B.长轴垂直于活塞销方向; C.A、B均可; D.A、B均不可。 5.在负荷较高的柴油机上,第一环常采用( D )。

A.矩形环 B.扭曲环 C.锥面环 D.梯形环 6.直列式发动机的全支承曲轴的主轴径数等于( C )。

A.气缸数 B.气缸数的一半 C.气缸数的一半加l D.气缸数加1 7.按1-2-4-3顺序工作的发动机,当一缸压缩到上止点时,二缸活塞处于( A )行程下止点位置。

A.进气 B.压缩 C.作功 D.排气 8.四行程六缸发动机曲轴各曲拐之间的夹角是( A )。 A.60° B.90° C.120° D.180°

9. 学生A说,由于离心力的作用,加剧了发动机的振动。学生B说由于离心力的作用,使连杆和曲轴等零部件产生变形和磨损。他们说法应该是( C )。

A、只有学生A正确 B、只有学生B正确 C、学生A和B都正确 D、学生A和B都不正确 10. 学生A说活塞顶部形状是平顶。学生B说活塞顶部形状是凹顶。他们说法正确的是( C )。 A、只有学生A正确 B、只有学生B正确 C、学生A和B都正确 D、学生A和B都不正确 11. 下列说法正确的是( C )

A、活塞顶的记号用来表示发动机功率 B、活塞顶的记号用来表示发动机转速 C、活塞顶的记号可以用来表示活塞及活塞销的安装和选配要求

D、活塞顶的记号用来表示连杆螺钉拧紧力矩 12. 下列说法正确的是(AC )

A.活塞裙部对活塞在气缸内的往复运动可以起导向作用 B.活塞裙部在做功时起密封作用 C.活塞裙部在做功时起承受气体侧压力作用 D.活塞裙部安装有2~3道活塞环 13.下列说法正确的是( BC )

A、干式气缸套外壁直接比冷却水接触 B、干式气缸套壁厚比湿式气缸套薄 C、干式气缸套安装后比湿式气缸套强度和刚度好 D、干式气缸套比湿式气缸套散热好 14. 活塞气环主要作用是( AC );油环主要作用是( BD )。

A、密封 B、布油 C、导热 D、刮油

15. 活塞气环开有切口,具有弹性,在自由状态下其外径与气缸直径( C )。

A、相等 B、小于气缸直径 C、大于气缸直径 D、不能确定 16. 六缸四冲程直列发动机的点火间隔角是( D ) 。

A、180° B、360° C、90° D、120°

17. 下列说法正确的是( D )。

A、一根曲轴的曲柄数目等于气缸数 B、一根曲轴的连杆轴颈数目等于气缸数 C、一根曲轴的主轴颈数目等于拟制数 D、曲轴的内部开有机油道 18. 下列说法正确的是( B )。

A、飞轮的主要功用是用来贮存做功行程的能量,增加发动机功率

B、飞轮的主要功用是用来贮存做功行程的能量,用于克服进气、压缩和排气行程的阻力和其他阻力,使曲轴均匀地旋转 C、飞轮轮缘上的记号是使供发动机安装和维修用

D、飞轮紧固螺钉承受作用力大,应以最大力矩拧紧。

三、判断改错题

1.缸套装入气缸体时,一般缸套顶面应与气缸体上面平齐(×)干式缸套齐平,湿式缸套高于气缸体

2.有正反面的气缸垫在安装时应把光滑的一面朝向气缸盖。(×)应把光滑的一面朝向气缸体

3.为了使铝合金活塞在工作状态下接近一个圆柱形,冷态下必须把它做成上大下小的锥体。(×)

上小下大锥体

4.活塞环在自然状态下是一个封闭的圆环形。(×)活塞环在自然状态下是一个开口的椭圆形

5.连接螺栓必须按规定力矩一次拧紧,并用防松胶或其他锁紧装置紧固(×)按规定力矩分几次拧紧

6.曲轴后端回油螺纹的旋向应为左旋。(×)曲轴后端回油螺纹的旋向应为右旋 7.按1-5-3-6-2一4顺序工作的发动机,当一缸压缩到上止点时,五缸处于进气行程。(√)

四、名词解释题

1.全浮式活塞销:活塞销既可以在销座内摆动,又可以在连杆小头内摆动

2.曲拐:对于全支承曲轴来说,两个主轴颈、两个曲柄臂和一个曲柄销构成一个曲拐 3.全支承式曲轴:在相邻的两个曲拐间都有主轴颈支承的曲轴 4.扭曲环:气环在安装后由于弹性内力使断面发生扭转 5.活塞头部: 6.活塞裙部:

五、问答题

1.气缸体有哪几种结构形式?各有何优缺点?分别应用于哪类发动机?

平分式:刚度差、工艺性好,适合车用;龙门式:刚度、工艺性居中,适合车用;隧道式:刚度好,配合组合式曲轴,气缸体轴向长度短,高度质量大,工艺性差 2.发动机的气缸有哪几种排列方式?各适用于什么情况? 直列、V型、对置、X型、H型、W型

3.发动机机体镶入气缸套的目的是?气缸套有哪几种形式?柴油机采用哪种形式的气缸套?为什么? 目的:保证耐磨性,维修方便;类型:干式、湿式;柴油机:多采用湿式

4.采用湿湿式气缸套上端高出气缸体,在气缸盖、气缸垫固定到气缸体上时,可是气缸套轴向定位面紧压在气缸体的环形支撑面上,防止冷却液渗出,保证可靠密封缸套时,如何防止漏水?

5.发动机的气缸盖有哪几种类型?它们的优缺点是什么?各用于哪一类的发动机? 整体式:适用于缸数少,缸径小的内燃机上,铸造困难,工艺性差,但质量轻,拆装方便;单体式:铸造方便,有利于系列化,通用化,结合面加工不平度易保证 6.汽油机的燃烧室常用的有哪几种形式?各自的特点是什么? 楔形、盆形、半球形

7.对活塞的要求是什么?它一般是由什么材料制成的?

有足够刚度和强度,合理的形状和壁厚,受热面积小,散热性能好,膨胀系数小,导热性能好。一般用铝合金制造,也有采用耐热钢和铸铁的

8.活塞是由哪几部分组成的?各个部分的作用是什么?

顶部:组成燃烧室,承受气体压力;头部:安装活塞环,承受高温;裙部:导向作用 9.活塞在工作中易产生哪些变形?为什么?怎样防止这些变形?

销轴方向热膨胀;气体力和侧向力产生机械变形。冷态下加工成长轴垂直于销轴的椭圆形,纵向为上小下大的锥形。

10.为什么有些发动机活塞的裙部采用拖板式结构?

将不承受力的一方去掉一部分,可以减轻活塞质量,适应高速发动机减小惯性力的要求,裙部弹性好,可以减小活塞与气缸的配合间隙,能避免与曲轴平衡重发生运动干涉 11.活塞环包括哪两种?它们的作用是什么?

油环:刮油作用,辅助密封;气环:密封燃烧室

12.试分析矩形环的泵油作用,它会带来什么危害?怎样防止泵油?

气环随活塞运动的过程中,将气缸壁上的润滑油送回气缸中的现象。危害:燃烧室积碳,油耗上升。防止:采用扭曲环等。

13.扭曲环装入气缸中为什么会产生扭曲的效果?它有何优点?装配时应注意什么?

扭曲环内圈上边缘切槽向上或外圈下边缘切槽向下,不能装反。由于扭曲环重心偏移而产生扭曲效果,能防止泵油

14.全浮式活塞销有什么优点?为什么要轴向定位?

优点:磨损均匀;为防止活塞销沿轴向窜动,损坏气缸壁,因此要轴向定位。

15.连杆大头的剖分面的方向有平切口和斜切口两种?

连杆大头的尺寸根发动机的受力有关,汽油机连杆大头尺寸小,刚度好,拆卸时可从气缸上部直接取出,做成平切口,柴油机大头为保证好的刚度,尺寸大,若做成平切口,拆卸时不能从气缸上部取出,因此做成斜切口。所以连杆大头的剖分形式有两种 16.曲轴有哪几种支撑形式?它们的优缺点是什么? 全支承:抗弯曲能力强,可减轻曲轴主轴承的载荷。但加工面多,曲轴和机体长度大。非全支承:与全支承相反。

17.曲轴上的平衡重有什么作用?为什么有的曲轴上没有平衡重? 作用:平衡曲轴在旋转过程中受到的惯性力及其力矩 18.曲轴的两端是如何实现封油的?

前端:利用甩油盘和橡胶油封;后端:自紧式橡胶油封。

19.曲轴为什么要轴向定位?怎样定位?为什么曲轴只能有一次定位?

汽车行驶时由于踩踏离合器而对曲轴施加轴向推力,使曲轴轴向发生窜动,因此要轴向定位。 方法:利用止推轴承。只能一次定位是为了保证受热膨胀时能自由伸长 20.在安排多缸发动机发火次序时,应遵循什么原则?为什么?

原则:应使连续做功的两个气缸尽可能远,以减轻主轴承载荷和避免在进气行程中发生进气干涉;各缸发火的间隔时间应该相同;V型发动机左右两列气缸应交替发火 21.四冲程六缸机的发火间隔角是多少?试画出以1-4-2-6-3-5次序 720°/6=120°

22.曲轴上为什么要安装扭转减振器?其工作原理是什么?有哪些种类?

原因:曲轴在周期性变化的转矩作用下,各曲拐之间会发生周期性的相对扭转现象,当发动机转矩的变化频率与曲轴曲轴扭转频率相同或成倍数关系时,发生共振。因此要安装扭转减震器。原理:利用耗能元件消耗曲轴扭转振动产生的能量。 类型:橡胶扭转减震器、硅油扭转减震器、硅油-橡胶扭转减震器 23.飞轮有哪些作用?

作用:在做功行程吸收能量,在其余三个行程释放能量,从而使曲轴运转平稳。

第五篇:连杆机构习题

机 械 原 理 习 题 活 页

大连理工大学机械原理教研室编

连杆机构及其设计

专业——— 班级 ——— 学号 ——— 姓名 ——— 1. 如图所示,设已知四杆机构各构件的长度为a = 240 mm,b = 600 mm,c = 400 mm,d = 500 mm,试问:

1) 当取杆4为机架时,是否有曲柄存在?

2) 能否以选用不同杆为机架的方法获得双曲柄和双摇杆机构?如何获得?

2. 如图所示为一偏置曲柄滑块机构。试问:

1) 杆AB为曲柄的条件是什么?

2) 该机构是否具有急回运动特性,为什么?

3) 以曲柄为主动件时,其传动角在何处最大,何处最小? 4) 机构在什么条件下存在死点?

机 械 原 理 习 题 活 页

大连理工大学机械原理教研室编

连杆机构及其设计

专业——— 班级 ——— 学号 ——— 姓名 ——— 3. 在图示的铰链四杆机构中,试求:

1) 当取杆4为机架时,标出该机构急位夹角θ、杆3的最大摆角φ和最小传动角γmin;

2) 当取杆1为机架时,机构将演化成何种类型的机构?并说明这时C、D两个转动副是周转副还是摆转副。

机 械 原 理 习 题 活 页

大连理工大学机械原理教研室编

连杆机构及其设计

专业——— 班级 ——— 学号 ——— 姓名 ——— 4. 如图所示,现欲设计一铰链四杆机构,已知其CD的长lCD = 75mm,行程速比系数K = 1.5,机架AD的长度为lAD = 100 mm,又知摇杆的一个极限位置与机架间的夹角φ = 45˚,试用图解法求其曲柄的长度lAB和连杆的长度lBC。

机 械 原 理 习 题 活 页

大连理工大学机械原理教研室编

连杆机构及其设计

专业——— 班级 ——— 学号 ——— 姓名 ——— 5. 设计一个机构,用于将一辆自行车放到一位学生的床的上方。存放架的两个位置如图所示。

机 械 原 理 习 题 活 页

大连理工大学机械原理教研室编

连杆机构及其设计

专业——— 班级 ——— 学号 ——— 姓名 ——— 6. 试用反转法设计一铰链四杆机构ABCD,要求满足AB

1、AB2与E1D、E2D两组对应位置如图所示。。已知lAB和lAD,试求:

1)将△B1ED1视为刚体绕D点反转至DE1与DE2重合,试确定B1的转位点B11 位置。

2)确定满足要求的铰链点C的位置范围。

3)若要求摇杆CD在第2位置为极限位置,试确定铰链点C的位置。

上一篇:护士实习生岗前培训下一篇:湖南新农村合作医疗

本站热搜