基本测量实验误差分析

2022-12-17

第一篇:基本测量实验误差分析

测量密度实验中的误差分析

在初中物理学习中,“密度”这一知识点既是重点也是难点,在社会生活及现代科学技术中密度知识的应用也十分普遍,对未知物质密度的测定具有十分重要的现实意义,特别是为物理的探究式教学,自主参与式学习提供了很好的素材,值得我们认真地探索和挖掘。

在“测量物质密度”的实验教学过程中初中物理只要求学生掌握测量固体和液体密度的方法,下面就从误差的分类和来源两各方面来分析常见的几种实验方法中的误差产生原因和减小误差的方法。

一、误差及其种类和产生原因:

每一个物理量都是客观存在,在一定的条件下具有不依人的意志为转移的客观大小,人们将它称为该物理量的真值。进行测量是想要获得待测量的真值。然而测量要依据一定的理论或方法,使用一定的仪器,在一定的环境中,由具体的人进行。由于实验理论上存在着近似性,方法上难以很完善,实验仪器灵敏度和分辨能力有局限性,周围环境不稳定等因素的影响,待测量的真值 是不可能准确测得的,测量结果和被测量真值之间总会存在或多或少的偏差,这种偏差就叫做测量值的误差。

测量误差主要分为两大类:系统误差、随机误差。

(一)系统误差产生的原因:

1、测量仪器灵敏度和分辨能力较低;

2、实验原理和方法不完善等。

(二)随机误差产生的原因:

1、环境因素的影响;

2、实验者自身条件等。

二、减小误差的方法

1、选用精密的测量仪器;

2、完善实验原理和方法;

3、多次测量取平均值。

三、测量固体密度

(一)测量规则固体的密度: 原理:ρ=m/V

实验器材:天平(带砝码)、刻度尺、圆柱体铝块。 实验步骤:

1、用天平测出圆柱体铝块的质量m;

2、根据固体的形状测出相关长度(横截面圆的直径:D、高:h),

2 由相应公式(V=Sh=πDh/4)计算出体积V。

3、根据公式ρ=m/V计算出铝块密度。 误差分析:

1、产生原因:(1)测量仪器天平和刻度尺的选取不够精确;

(2)实验方法不完善;

(3)环境温度和湿度因素的影响;

(4)测量长度时估读和测量方法环节;

(5)计算时常数“π”的取值等。

2、减小误差的方法:(1)选用分度值较小的天平和刻度尺进行测量;

(2)如果可以选择其他测量工具,则在测量体积时可以选 择量筒来测量体积。

(3)测量体积时应当考虑环境温度和湿度等因素,如“热

胀冷缩”对不同材料的体积影响。

(4)对于同一长度的测量,要选择正确的测量方法,读数

时要估读到分度值的下一位,且要多测量几次求平均 值。

(5)常数“π”的取值要尽量准确等。

(二)测量不规则固体的密度: 原理:ρ=m/V

实验器材:天平(带砝码)、量筒、小石块、水、细线。 实验步骤:

1、用天平测出小石块的质量m;

2、在量筒中倒入适量的水,测出水的体积内V1;

3、用细线系住小石块,使小石块全部浸入水中,测出总体积V2;

4、根据公式计算出固体密度。ρ=m/V=m/(V2-V1) 误差分析:

1、产生原因:(1)测量仪器天平和量筒的选取不够精确;

(2)实验方法、步骤不完善;

(3)环境温度和湿度等因素的影响;

2、减小误差的方法:(1)选用分度值较小的天平和刻度尺进行测量;

(2)测量小石块的质量和体积的顺序不能颠倒;

(3)选择较细的细线;

(4)测量体积时应当考虑环境温度和湿度等因素,如“水

的蒸发”等因素对的体积影响。

(5)测量质量和体积时,要多测量几次求平均值。 误差分析:

1、产生原因:(1)测量仪器天平的选取不够精确;

(2)实验方法、步骤不完善;

(3)环境温度和湿度等因素的影响。

2、减小误差的方法:(1)选用分度值较小的天平进行测量;

(2)测量小石块的质量和体积的顺序不颠倒;

(3)选择较细的细线;

(4)测量体积时应当考虑环境温度和湿度等因素,如“水

的蒸发”等因素对的体积影响、“水质(选用纯净水)” 因素对水的密度的影响等。

(5)测量质量时,要多测量几次求平均值。

四、测量液体密度

原理:ρ=m/V 方法一:

实验器材:天平、量筒、烧杯、水、盐。 实验步骤:

1、用天平测出空烧杯的质量m1;

2、在烧杯中倒入适量的水,调制出待测量的盐水,用用天平测出烧 杯和盐水的总质量m2;

3、将烧杯中的盐水全部导入量筒中测出盐水的体积V;

4、根据公式ρ=m/V=(m2-m1)/V计算出固体密度。 误差分析:

1、产生原因:(1)测量仪器天平和量筒的选取不够精确;

(2)实验方法、步骤不完善;

(3)环境温度和湿度因素的影响;

2、减小误差的方法:(1)选用分度值较小的天平和量筒进行测量; (2)尽量将烧杯中的水倒入量筒中;

(3)测量体积时应当考虑环境温度和湿度等因素,如“水

的蒸发”等因素对的体积影响。

(4)测量质量和体积时,要多测量几次求平均值。

说明:该试验方法中因为无法将烧杯中的水全部倒入量筒中,在烧杯内壁上或多或少会残留一些水,还有不好控制水的多少,所以实验误差较大,建议一般不选择此方法测量液体密度。

方法二:

实验器材:天平、量筒、烧杯、水、盐。

实验步骤:

1、在烧杯中倒入适量的水,调制出待测量的盐水,用天平测出烧杯

和盐水的总质量

;

;

2、将适量的盐水倒入量筒中,测出量筒中的盐水的体积

3、用天平测出剩余的盐水和烧杯的总质量

;

4、根据公式ρ=m/V=(m2-m1)/V计算出盐水的密度。 误差分析:

1、产生原因:(1)测量仪器天平和量筒的选取不够精确; (2)环境温度和湿度因素的影响;

2、减小误差的方法:(1)选用分度值较小的天平和量筒进行测量;

(2)测量体积时应当考虑环境温度和湿度等因素,如“水

的蒸发”等因素对的体积影响;

(3)测量质量和体积时,要多测量几次求平均值。

以上就是初中阶段测量固体和液体密度的一些常用方法,以及这些实验中产生误差的原因和如何减小误差的方法提出一些自己的意见。当然,初中阶段不要求学生对误差进行深入的分析和处理,但也要求学生能找出简单的误差原因,在教学过程教师应该对每个实验中对产生误差的原因进行分析,根据其原因提出如何来减小这些误差的方法,从而培养学生的实验设计、实验操作、实验数据和结果的处理和分析能力,提高学生自身的综合素质。

第二篇:测量学测量误差的基本知识读书笔记

环境保护与安全工程学院 安全工程112班 20114670229 石荣科

一.测量误差的定义

测量误差也称观测误差是指观测值与真实值之间的差异。在测量学中,测量误差并不是“错误”,是事物固有的不确定性因素在量测时的体现。

书上139页 二.测量误差的来源

1、仪器误差:任何仪器都有一定的精度,但会有一些剩余误差。

2、人为误差:由于人的感官的鉴别能力的局限性,在瞄准读数方面都会产生误差。

3、外界条件影响:如温度、湿度、风力、日照、气压、大气折光等因素,必然会造成误差。

三.测量误差的分类

测量误差按其产生的原因和对观测结果影响性质的不同,可以分为粗差、系统误差和偶然误差三类。

1.粗差

由于观测者的粗心或各种干扰造成的特别大的误差称为粗差。如瞄错目标、读错大数等,粗差有时也称错误。

2.系统误差

在相同的观测条件下,对某一量进行一系列的观测,如果出现的误差在符号和数值上都相同,或按一定的规律变化,这种误差称为“系统误差”,系统误差具有积累性。系统误差对观测值的影响具有一定的数学规律性。如果这种规律性能够被找到,则系统误差对观测的影响可加以改正,或者用一定的测量方法加以抵消或削弱。

3.偶然误差

在相同的观测条件下,对某一量进行一系列的观测,如果误差出现的符号和数值大小都不相同,从表面上看没有任何规律性,这种误差称为“偶然误差”。偶然误差是由人力所不能控制的因素或无法估计的因素共同引起的测量误差,其数值的正负、大小纯属偶然。 真误差见书139页 偶然误差的特性

第三篇:测量学教案第五章 测量误差的基本知识

第五章 测量误差的基本知识

在测量工作中,观测者无论使用多么精良的仪器,操作如何认真,最后仍得不到绝对正确的测量成果,这说明在各观测值之间或在观测值与理论值之间不可避免地存在着差异,我们称这些差异为观测值的测量误差。

X表示。若以li(i=1,2,„,n)表示对某量的n次观测值,并以△表示真误差,则真误差可定义为观测值与真值之差,即

若用xi 表示X的估值, vi表示改正数,则 设某观测量的真值为xi =li+ vi vi = xi -li 观测误差来源:来源于以下三个方面:

观测者的视觉器官的鉴别能力和技术水平;仪器、 工具的精密程度;观测时外界条件的好坏。

l 观测条件

观测条件:观测者的技术水平、仪器的精度和外界条件的变化这三个方面综合起来称为~ 。

 观测条件与观测成果精度的关系:

若观测条件好,则测量误差小,测量的精度就高;

若观测条件不好,则测量误差大,精度就低;

若观测条件相同,则可认为观测精度相同。

 等精度观测:在相同观测条件下进行的一系列观测  不等精度观测:在不同观测条件下进行的一系列观测

研究误差理论的目的

由于在测量的结果中有误差是不可避免的,研究误差理论 不是为了去消灭误差,而是要对误差的来源、性质及其产生 和传播的规律进行研究,以便解决测量工作中遇到的一些实 际问题。 l 研究误差理论所解决的问题:

(1)在一系列的观测值中,确定观测量的最可靠值;

(2)如何来评定测量成果的精度,以及如何确定误差的限度等;

(3)根据精度要求,确定测量方案(选用测量仪器和确定测量方法)。

测量误差产生的原因:

1、仪器的原因 ;

2、观测者的原因 ;

3、外界环境的原因。

测量误差的分类: 测量误差按其对测量结果影响的性质,可分为:系统误差和偶然误差。 5.1 系统误差 5.1.1 定义

在相同观测条件下,对某量进行一系列观测,如误差出现符号和大小均相同或按一定的规律变化,这种误差称为系统误差。 5.1.2 特点

具有积累性,对测量结果的影响大,但可通过一般的改正或用一定的观测方法加以消除。 例如:钢尺尺长误差、 钢尺温度误差、水准仪视准轴误差、 经纬仪视准轴误差。

系统误差对观测值的准确度(偏离真值的程度)影响很大,必须消除

系统误差消减方法

1、在观测方法和观测程序上采取一定的措施;

例:前后视距相等——水准测量中i角误差对h的影响、

球气差对h的影响及调焦所产生的影响。

盘左盘右取均值——经纬仪的CC不垂直于HH;HH不垂 直于VV;度盘偏心差、竖盘指标差对测角的影响。

水准测量往返观测取均值——仪器和尺垫下沉对h的影响。 

2、找出产生的原因和规律,对测量结果加改正数。

例:光电测距中的气象、加常数、乘常数与倾斜改正数等。 

3、仔细检校仪器。

例:经纬仪的LL不垂直于VV对测角的影响 5.2 偶然误差 5.2.1 定义

在相同观测条件下,对某量进行一系列观测,如误差出现符号和大小均不一定,这种误差称为偶然误差。但具有一定的统计规律。

产生偶然误差的原因: 主要是由于仪器或人的感觉器官能力的限制,如观测者的估读误差、照准误差等,以及环境中不能控制的因素(如不断变化着的温度、风力等外界环境)所造成。

l 偶然误差的规律:偶然误差在测量过程中是不可避免的,从单个误差来看,其大小和符号没有一定的规律性,但对大量的偶然误差进行统计分析,就能发现在观测值内部却隐藏着统计规律。

偶然误差就单个而言具有随机性,但在总体上具有一定的统计规律,是服从于正态分布的随机变量。

3) 偶然误差的四个特性

 特性一 有限性:在一定的观测条件下,偶然误差的绝对值不会超过一定的限值;

 特性二 集中性:即绝对值较小的误差比绝对值较大的误差出现的概率大;

 特性三 对称性:绝对值相等的正误差和负误差出现的概率相同;  特性四 抵偿性:当观测次数无限增多时,偶然误差的算术平均值趋近于零。即:在数理统计中,(5-5)式也称偶然误差的数学期望为零,用公式表示: E(△)=0.

0lim

nn(55)(12ni)in错误

 测量成果中除了系统误差和偶然误差以外,还可能出现错误(有时也称之为粗差)。

 错误产生的原因:较多

 可能由作业人员疏忽大意、失职而引起,如大数读错、读数被记录员记错、照错了目标等;

也可能是仪器自身或受外界干扰发生故障引起;  还有可能是容许误差取值过小造成的。

 错误对观测成果的影响极大,所以在测量成果中绝对不允许有错误存在。  发现错误的方法:进行必要的重复观测,通过多余观测条件,进行检核验算;严格按照国家有关部门制定的各种测量规范进行作业等。  误差理论研究的主要对象

在测量的成果中:错误可以发现并剔除,系统误差能够加以改正, 而偶然误差是不可避免的,它在测量成果中占主导地位,所以测量误差理论主要是处理偶然误差的影响。 偶然误差的削弱的方法

1)应设法提高单次观测的精度, 如: 使用精度较高的仪器、

提高观测技能

在较好的外界条件下进行观测。 2)进行多余观测

观测值个数大于未知量的个数 ,

分配闭合差(超限重测);

求观测值的最可靠值 (算术平均值或改正后平差值)

5.3 衡量精度的指标 5.3.1 中误差m 高斯分布密度函数中的参数σ ,在几何上是曲线拐点的横坐标 ,概率论中称为随机变量的标准差(方差的平方根)。当观测条件一定时,误差分布状态唯一被确定,误差分布曲线的两个拐点也唯一被确定。用σ作为精度指标,可以定量地衡量观测质量。所以在衡量观测精度时,就不必再作误差分布表,也不必绘制直方图,只要设法计算出该组误差所对应的标准差σ值即可。σ的平方称为方差σ2 ,在概率论中有严格的定义:方差σ2是随机变量x与其数学期望E(x)之差的平方的数学期望,用数学公式表达就是

用测量专业的术语来叙述标准差σ:在一定观测条件下,当观测次数n无限增加时,观测量的真误差△的平方和的平均数的平方根的极限,由下式表示:

式中

为真误差

的平方和,等价

, 。

通常,观测次数n总是有限的,只能求得标准差的“估值”,记作m,称为“中误差”。其值可用下式计算:

由中误差的定义可知,中误差m不等于每个测量值的真误差,它只是反映这组真误差群体分布的离散程度大小的数字指标。 5.3.2 平均误差θ

定义:在一定观测条件下,当观测次数n无限增加时,真误差绝对值的理论平均值的极限称为平均误差,记作

因观测次数n总是有限的,故其估值表示:

式中 为真误差绝对值之和。 5.3.3 或然误差ρ

在一定观测条件下,当观测次数n无限增加时,在真误差列中,若比某真误差绝对值大的误差与比它小的误差出现的概率相等,则称该真误差为或然误差,记作ρ。

因观测次数n有限,常将ρ的估值记作ω。或然误差ω可理解为:将真误差列按绝对值从大到小排序,当为奇数时,居中的真误差就是ω;当为偶数时,居中的两个真误差的平均值作为ω。

平均误差、或然误差与中误差有如下关系:

θ≈ 0.7979m

ω≈ 0.6745m

作为精度指标,中误差最为常用,因为中误差更能反映误差分布的离散程度。 5.3.4 相对误差

在进行精度评定时,有时仅利用绝对误差还不能反映测量的精度。因为有些量,如长度,用绝对误差不能全面反映观测精度。定义:绝对误差与测量值之比,记作K。习惯上相对误差用分子为1的分数表达,分母越大,相对误差越小,测量的精度就越高。 5.4 误差传播定律

测量工作中,许多量不是直接观测值,而是观测值的函数。阐述观测值中误差与其函数中误差之间数学关系的定律称为中误差传播定律。利用中误差传播定律即可求得观测值函数的中误差。

观测量与观测量之间的函数关系多种多样,但归纳起来可分为线性关系和非线性关系。

第四篇:误差分析及实验心得

误差分析

1 系统误差:使用台秤、量筒、量取药品时产生误差;

2 随机误差:反应未进行完全,有副反应发生;结晶、纯化及过滤时,有部分产品损失。

1、实验感想:

在实验的准备阶段,我就和搭档通过校园图书馆和电子阅览室查阅到了很多的有关本实验的资料,了解了很多关于阿司匹林的知识,无论是其发展历史、药理、分子结构还是物理化学性质。而从此实验,我们学习并掌握了实验室制备阿司匹林的各个过程细节,但毕竟是我们第一次独立的做实验,导致实验产率较低,误差较大。

在几个实验方案中,我们选取了一个较简单,容易操作的进行实验。我与同学共做了3次实验,第一次由于加错药品而导致实验失败,第二次实验由于抽滤的时候加入酒精的量过多,导致实验产率过低。因此,我们进行了第三次实验,在抽滤时对酒精的用量减少,虽然结果依然不理想,但是我们仍有许多的收获:

(1)、培养了严谨求实的精神和顽强的毅力。通过此次的开放性实验,使我们了解到“理论结合实践”的重要性,使我们的动手能力和思考能力得到了锻炼和提高,明白了在实践中我们仍需要克服很多的困难。 (2)、增进同学之间的友谊,增强了团队合作精神。这次的开放性实验要求两个或者两个以上的同学一起完成,而且不像以前实验时有已知的实验步骤,这就要求我们自己通力合作,独立思考,查阅资料了解实验并制定方案,再进行实验得到要求中的产物。我们彼此查找资料,积极的发表个人意见,增强了团队之间的协作精神,培养了独立思考问题的能力,同时培养了我们科学严谨的求知精神,敢于追求真理,不怕失败的顽强毅力。当然我们也在实验中得到了很大的乐趣。

九、实验讨论及心得体会

本次实验练习了乙酰水杨酸的制备操作,我制得的乙酰水杨酸的产量为 理论上应该是约1.5g。所得产量与理论值存在一定偏差通过分析得到以下可能原因: a、 减压过滤操作中有产物损失。 b、将产物转移至表面皿上时有产物残留。 c、 结晶时没有结晶完全。

通过以上分析我觉得有些操作导致的损失可以避免所以我在以后的实验中保持严谨的态度。 我通过本次实验我学到了乙酸酐和水杨酸在酸催化下制备乙酰水杨酸的操作方法初步了解有机合成中乙酰化反应原理巩固和进一步熟悉了减压过滤、重结晶基本操作的原理和方法了解到乙酰水杨酸中杂质的来源及其鉴别方法通过误差分析可能原因进一步更深理解实验的原理和操作养成严谨的态度。

第五篇:野外地质测量中手持GPS定位的误差分析(精)

四川测绘第29卷第1期2006年3月11 野外地质测量中手持GPS定位的误差分析

刘少杰 宋在超 刘刚(中国地质大学,湖北武汉,430074) [摘 要]GPS在工程测量、导航定位等应用中所具有的优越性和方便性使其应用越来越广泛。在野外地质测量中小巧方便的手持GPS机能够起到辅助定点和导航的重要作用,是新时期实现现代化数字地质调查的基础设备之一。但由于野外地形、树木等多路径环境因素的影响,其测量精度和应用受到限制。针对手持机的特点,通过实际测点分类统计分析各方面因素对误差产生的影响程度,进而得出修正方案,提高测量精度和实用性。

[关键词]地质测量;GPS定位;误差分析;地形因素;数字地质调查;GeoSurvey系统[中图分类号]P22814 [文献标识码]B [文章编号]1001-8379(2006)01-0011-04 ErrorAnalysisofHandheldGPSPositioninginFieldGeologicalSurvey LIUShao-jie SONGZai-chao LIUGang (ChinaUniversityofGeosciences,Wuhan430074,China) Abstract:GPSiswidelyusedmoreandmoreinprojectmeasure,navigationorientation,andsoon.Italsoplayanimportantroleinfieldworkofgeologicalmeasure.TherearekindsoferrorslimitingtheprecisionofhandheldGPSinfield.Basedonstatisticsmethod,wecananalyzetheinfluenceofdifferentaspectssuchasterrain,vegetationandtime,ofpointmeasureinfieldpractice.Andthen,wetrytofindamodifiedschemetoimprovetheprecisionofGPS. Keywords:geologicalsurvey;GPSpositioning;erroranalysis;terrainfactor;digitalgeologicalsurvey;GeoSurvey 1 引言

GPS的英文全称是NavigationSatelliteTimingandRanging/GlobalPositioningSystem。含义就是利用导航卫星进行测时和测距,在海、陆、空进行全方位实 时三维导航与定位,构成全球定位系统[1]。

各种类型的GPS接收机体积越来越小,重量越来越轻,也出现了基于蓝牙无线传输的便携式GPS,便于野外携带和观测[2]。在利用GPS进行定位时,会受到各种各样因素的影响。影响GPS定位精度的因素可分为以下几大类:GPS卫星有关的因素(卫星星历误差、卫星钟差等);与传播途径有关的因素(电离层延迟、对流层延迟、多路径效应等);与接收机有关的因素(接收机天线相位中心偏差、接收机精度等);数据分析的软硬件误差等。本文探讨和分析在野外地质调查工作中GPS手持机误差产生的主要来源和具体类型,提出提高其定位精度的方法。 [4][5][6][9]

若干个样点的坐标,并利用微地形法则将其实际位置标注在地形图手图上,回到室内进行计算和统计分析。实测数据记录项目包括每个点的GPS坐标、地形、高程以及定点时的天气和时间。同时记录该点较其他点的特殊因素(比如某一点的植被较好)。实际操作时,利用中国地质大学资源学院开发的计算机辅助地质调查系统GeoSurvey(图1),对比计算实际点与GPS所定的点的距离误差以及方位角误差,然后分别得出各种地形、高程、天气等因素对GPS定位误差影响。以下是本次试验流程:数据获取y数据转录y统计比较y分析原因y提出校正模型。 2 试验方案设计

本次试验所用的手持GPS是美国麦哲伦公司(Magellan)于1999年推出的GPS315手持式仪器。其大小如同手机,重量约200克,定点经纬度显示精确到秒级。为了分析不同因素对GPS误差产生的

,,图1 GeoSurvey系统的操作界面

12四川测绘第29卷第1期2006年3月

3 数据分析

按照上述方案,笔者在典型的北京周口店地区对多个样点进行对比研究,从实际出发,针对手持 点号

NO11NO12NO13NO14NO15NO16 坐标

39b41c30dN,115b56c35dE39b41c35dN,39b41c41dE39b41c26dN,115b56c19dE39b41c32dN,115b56c13dE39b41c34dN,115b56c15dE39b41c35dN,115b56c21dE 高程(m)15117884116112148 型GPS的定位误差进行分析。实际取得100余个点位的数据,具体如表1所示。 通过对试验区样本与手图实际值的对比计算, 地形沟谷山腰,平地陡崖下山腰高地山脊 时间16:4017:0015:3815:189:1810:02 天气阴阴阴阴晴晴 植被较好备注

表1 野外原始数据点的记录示例

路径效应。由于接收机周围环境的影响,使得接收机所接收到的卫星信号中还包含有各种反射和折射信号的影响,甚至接受机无法捕获卫星或接收不到卫星的信号,使定位精度大大降低。在城市或在野外使用GPS时,接收机有时仅仅能接收到2-4颗卫星信号(6-8颗卫星时才能做到精确定位),而且时间短促,加之手持型接收机的

定位精度一般也就在20-30m左右(排除以上因素),这样误差达到50米甚至近百米也就不足为奇。在地形因素中,还有一个非常重要的问题)))水。水面对电磁波有 图2 极坐标系内GPS定点相对 于实际点的漂移投影散点图

很强的反射能力,因此在湖面湖边等处,GPS定位的精度也大打折扣。对于多路径效应,目前在手持机方面还没有很成熟的方法加以克服。

可以使用数据的离散程度来衡量在该种地形地貌下误差的大小,使用统计学中的AVEDEV函数来计算某地形下数据绝对偏差的平均值。

AVEDEV:result= 在极坐标系(以距离误差为极半径,以方位误差为极角)内绘出GPS定点相对于实际点的飘移投影散点图(图2)。可以看出GPS点相对于实际点的漂移并非杂乱无章。统计结果显示7212%的漂移的距离误差集中在0)80米范围内,7210%的方位误差集中在0)90b范围内。误差的这种分布规律可以认为是在影响GPS定位精度的众多因素中有一个指导性因素的指示。 地形的影响主要是引起信号传播过程中产生多

E x-x/n x:数据平均值,n:样本数。

表2即反映了各地形因素下的偏差平均值。换句话说,在地形因素影响下,偏差平均值越大,数据越混乱,在这种地形下的GPS误差也就越大。 表2 地形因素下的偏差平均值

四川测绘第29卷第1期2006年3月

(续表2) 误差影响 地形类型

距离误差影响的范围(m)均值(m)距离误差影响的平均偏差 山脊山脚山坡山腰

2512)67174513)1461330)75122313-10410 36160881045915739164

121

44351831817114196 13 方位误差影响的平均偏差 261

4828116451111361775 图3和图4分别是不同地形因素下距离误差和方位误差的分布。从上面图表可以非常直观地看出在各个不同地形下误差的大小(注意:对于方位误差,笔者在进行统计时所用的是360b角形式,这不是一种有效的分析地形因素下角度误差的方位表示值,所以超过180b的角进行图4的统计时使用的是其与180b的差值。所以不能单从角度的大小来衡量方位误差的大小)。

度、纬度、高度;若只能收到3颗卫星的信号,它

只能计算出2维坐标:经度和纬度,而且这时经度、纬度也不是一个很准确的值。这时它可能还会显示高度数据,但这数据是无效的。在野外定点时,不推荐使用手持GPS进行高程测量。

从理论上讲时间对GPS野外测量误差没有影响,实践中GPS定位的距离误差不受使用时间影响,而方位误差则在时间因素上成不规律的波动。 4 小结

手持型GPS从野外应用来看,具有方便携带、定位速度快等优点,但是精度不高,且误差易受外界条件干扰。从上面对各因素对距离误差和方位角误差的影响分析可以看出,外界因素中对GPS测量

图3 不同地形因素下距离误差平均值

误差的影响最大的是地形因素(也就是多路径效应),其他因素虽对GPS测量误差也有影响,但不及地形对其影响大。同时,GPS本身的定位精度也制约着其精度的提高,如GPS315,定位精度到秒级,接收机本身有可能产生15)20m的误差。

同时,计算机辅助填图(GeoSurvey)系统是利用投影转换将GPS所测量的经纬度坐标,投影到地图平面的大地坐标的相应位置上,而GPS使用 图4 不同地形因素下角度误差平均值

WGS84世界坐标体系[7],若不经坐标转换直接输入数据存在一定的误差,但误差在比较小(1-3m)的范围内。实际误差的计算需要通过相应的功能软件来实现,本文不再展开讨论。

卫星在运动过程中不停地发送信号,接收机接到信号后也在不停地运算,所以将手持机放在空旷的地方不动,定点后,其坐标数据仍会波动,并且高程的波动值要比经纬度波动值大。实际定位操作中,GPS开机后不宜立即读数,应按GPS手持姿态要求运行几分钟后再读数。

从以上的分析不难得出,在野外使用手持型GPS时,山腰、山脊、山顶、无山平坦处等地形下,GPS所受的影响相对较小。而在陡崖、沟谷等地GPS所受的影响较大。陡崖处的接收机定位误差很大,又无规律可寻,可以考虑使用GPS相对定位代替绝对定位,至于在山腰等处的定位点可以加上修正模型加以更正。

此外,高程、时间不是影响误差的关键因素。在地表范围内甚至不能单纯的说高程是影响GPS定位精度的因素。有个问题必须指出,手持型GPS高程定位能力是比较差的,GPS能够收到4颗及以上卫星的信号时,它能计算出本地的3维坐标:经 5 修正方案探讨

从前面对试验区数据的分析中可以对数据给出简单的修正方案,修正方案根据误差类型可以分两,2, 14四川测绘第29卷第1期2006年3月参考文献 [1] 高成发.GPS测量[M].北京:人民交通出版社,

2000. [2] 杨德麟,等.大比例尺数字测图的原理、方法与应用 [M].北京:清华大学出版社,2001. [3] 胡家华,陈清礼.GPS定位精度的影响因素及差分定

位[J].江汉石油学院学报,1997,19(4):39~42.[4] 王宁宁.GPS定位精度探讨[J].解放军信息工程学

院学报,1996,15(3):29~32. [5] 付水旺.浅谈GPS测量与误差分析[J].采矿技术, 2000,406~408. [6] 常庆生,唐四元,等.GPS测量的误差及精度控制

[J].测绘通报,2000,(4):13~15. [7] 徐卫明,赵俊生.GPS测量坐标转换实用性问题分析 [J].测绘工程,2000,(2):10~15. [8] 袁晓民,张欣,等.GPS测量中若干误差的削弱[J]. 潍坊高等专科学校学报,2000,(4):12~13. [9] 董申保,贾北昌.GPS定位的误差与接收机精度的检 验[J].矿山测量,1997,(4):41~42.[收稿日期]2005-09-20 [作者简介]刘少杰(1983-),男,河南人,中国地质大学资源学院资源勘查工程专业本科生。

重新设定原点。按照以一定半径的圆内落入的点数目最多为原则。经过尝试,选定(36m,50b)为新的原点,也就是说要对GPS点进行向50b方向偏移36m的修正,修正的数据如表3所示。

表3 原始距离误差与修正后的距离误差对照表距离误差 误差范围<30m30)50m50)100m>100m 所占百分比2513%2411%3713%1313% 修正后的距离误差误差范围<30m30m)50m50m)100m>100m 所占百分比5017%1710%2513%617% 可以看出,经过修正以后,GPS的数据精度大大增加。再考虑地形因素,尤其对于山顶、山脊、山腰等地形下的数据精度非常适用,可以考虑作为开阔地区进行GPS手持接收机测量的一条具有参考价值的修正方法。

第二种方案是利用计算机辅助区域调查系统提供的相对定位方式来消除随机误差,即利用未知点在已知点的相对方位来定点。并且在运用这种相对定位方式时,同一类地形条件之间相对定位更为有效。本文提出的方法对于不同型号的GPS都是适用的。

(上接第16页)

4 总结

本文从遥感图像监督分类的角度探讨了最大似然分类和最小距离法联合的分类器分类技术,该技术能有效提高分类准确率。对于其它分类器如K最近邻法(KNN)、子空间分类法、地统计学分类法、概率松弛法以及非监督分类方法还没有顾及,这将是今后需要进一步探讨的问题。 参考文献

[1] 孙家柄.遥感原理与方法[M].武汉:武汉大学出版 社,2003,P199-208. [2] 贾永红.数字图像处理[M].武汉:武汉大学出版 社,2003,P91-92. [3] 曾志远.卫星遥感图像计算机分类与地学应用研究 [M].北京:科学出版社,2004135-47. [4] 许榕峰,徐涵秋.多步骤分类法在土地利用覆盖专题

提取中的应用[J].福州大学学报,2003,408-412.[5] 骆剑承,王钦敏,等.遥感图像最大似然分类方法的

EM改进算法[J].测绘学报,2002,234-2391[6] 任靖,李春平.最小距离分类器的改进算法)))加权

最小距离分类器[J].计算机应用,2005,-9941 (5):992 [收稿日期]2005-09-28

上一篇:孩子在升学宴上的讲话下一篇:基本公共卫生宣传标语