密度测量的误差分析

2022-08-19

第一篇:密度测量的误差分析

从误差分析谈谈“测量固体的密度”实验改进期

江苏省江阴市新桥中学(214400)徐美蓉 1“测量固体的密度”教学目标分析 《物理课程标准(2011年版)》提出:“为了适应时代发展需要,义务教育物理课程应体现物理学的本质,反映物理学对社会发展的影响;应注重学生的全面发展,关注学生应对未来社会挑战的需求;应发挥在培养学生科学素养方面的重要作用。”此阶段的物理课程,不仅应注重科学知识的传授和技能的训练,而且应注重对学生学习兴趣、探究能力、创新意识、科学态度、科学精神等方面的培养。

苏科版初中物理教材《密度知识的应用》一节安排了学生实验——测量物质的密度,要求选择一个固体,测量其密度。要求“学会测量液体或一些形状不规则的固体的密度”、“尝试用密度知识解决简单的问题,能解释生活中一些与密度有关的物理现象”。本课不仅能培养学生的技能,锻炼学生的思维,还能培养学生应用物理知识解决问题的能力,体现了新课标“从生活走向物理,从物理走向社会”的理念。 2“测量固体的密度”实验设计

在社会生活和现代科学技术中,利用密度知识来鉴别物质、间接测量物体的质量或体积等,有一定的现实意义。常见的测量固体密度的方法如下(以测量小石块的密度为例)。 2.1实验步骤

(1)调节天平平衡,用天平测出小石块的质量m。 (2)在量筒中倒入适量的水,测出水的体积V1。

(3)用细线系好小石块,放入盛有水的量筒中,测出总体积V2。 (4)小石块的体积为V2-V1。

2.2实验数据记录及处理

收集其中一组学生的实验数据,见表1。

学生根据每次算出的小石块的密度,求出小石块的平均密度:

这是初中物理计算物理量时常用的计算方法,多次测量取平均值以减小测量误差。 3“测量固体的密度”实验误差分析

由于测量仪器、测量方法、测量条件和测量人员水平以及种种因素的局限,误差总是存在,不可避免。在物理教学中,经常采用第一种方法来测量固体的密度,对第一种实验方案误差分析如下。

3.1小石块的质量误差分析

该实验在测量小石块的质量时采用的是秤量为200 g、感量为0.2 g的JPT-2型架盘天平。根据实验方案,小石块的质量能比较准确地被测出,但实验数据还是有所偏差,可能是读数时存在误差或天平本身存在系统误差。小石块的质量误差计算如下:

用贝塞尔公式计算任意一次质量测量值的标准差为:

用格罗布斯判据剔除坏数据,查表得G6=1.82,G6S=0.14 质量不确定度的A类分量为ΔA=S(m)=0.077 g 托盘天平的仪器最大允差Δ仪=0.001 g

质量的测量结果:m=(11.7±0.08) g 通过计算可知,小石块质量的测量误差为0.001 7,其中该误差因素本身的误差为0.08,相应的误差传递系数为0.22。 误差分析如下:

(1)由于天平的制造、调整和实验时的环境、温度等原因,一般天平的两臂总是不严格相等。因此,当天平平衡时,砝码的质量和游码所示质量之和并不完全等于物体的质量。为消除这种误差,可以利用杠杆原理进行检测,求出天平臂长之比,从而做出更精确的测量。

(2)砝码的误差。由于使用时间长,砝码可能在操作过程中有磨损、生锈等各种现象发生,对测量结果也会有一定的影响。另外,托盘天平的灵敏度较低,也是一部分影响原因。 3.2小石块的体积误差分析

在测量小石块的体积时,采用了间接测量的方法。为使测量结果更加准确,改变了水的量,但从实验数据看出,小石块的体积每次测量的结果也有一定的误差。而测量的体积不仅包括小石块的体积,细线也占了一定的体积,所以测得的体积偏大。对小石块体积的计算及其误差分析如下:

用格罗布斯判据剔除坏数据,查表得G6=1.82,G6S=0.14 体积不确定度的A类分量为ΔA=S(V)=0.077 cm3

体积的测量结果:V=(4.6±0.3) cm3 通过计算可知:小石块体积的测量误差为0.16,因素本身的误差为0.3,相应的误差传递系数为0.54。 误差分析:

(1)在测量小石块的体积时,由于细线也占有一定的体积,导致测出的小石块的体积存在误差。为减少这部分误差,细线越细越好,浸入液体中的细线越少越好,而且细线的吸水性也要进行考虑。

(2)小石块本身可能吸附了一些杂质,对其体积的测量也有一定的影响。 3.3小石块的密度的计算

根据测量结果,小石块密度的置信区间为(2.3,2.7),相对不确定度为8%。据分析,体积误差因素对实验结果总误差的贡献较大。 4实验改进

在实验过程中,要减小实验误差,可以用更加精确的测量仪器,如用电子天平来测量小石块的质量,也可以采用多种方法进行实验,如可以用测力计或力传感器测量小石块的重力,从而算出小石块的质量。还可以利用杠杆的平衡条件测量小石块的重力。

根据计算,小石块的体积误差对实验结果的影响较大,所以在实验时要尽量减小小石块体积的误差,如用较细的细绳系住小石块、选用比较干净的小石块进行实验,减少杂质对实验结果的影响等。

除了以上方法测量小石块的密度,还可以利用阿基米德原理来测量小石块的密度,实验步骤如下。

(1)用细绳系住小石块,挂在弹簧测力计上,静止时测出小石块的重力G。

(2)在烧杯中倒入适量的水,将小石块慢慢浸没在水中,静止时读出弹簧测力计的示数F。

5结束语

本实验方案只用了一种测量工具——弹簧测力计,也可以用力传感器来代替弹簧测力计。由于采用了较精密的测量工具,该测量方法实验误差小,而且避免了细绳的体积对实验结果的影响。当然,在测小石块重力时,绳子的重力也对测量结果有一定的影响。误差不可避免,具体选择哪种方法进行实验,还要考虑学生认知特征和思维特点。

第二篇:野外地质测量中手持GPS定位的误差分析(精)

四川测绘第29卷第1期2006年3月11 野外地质测量中手持GPS定位的误差分析

刘少杰 宋在超 刘刚(中国地质大学,湖北武汉,430074) [摘 要]GPS在工程测量、导航定位等应用中所具有的优越性和方便性使其应用越来越广泛。在野外地质测量中小巧方便的手持GPS机能够起到辅助定点和导航的重要作用,是新时期实现现代化数字地质调查的基础设备之一。但由于野外地形、树木等多路径环境因素的影响,其测量精度和应用受到限制。针对手持机的特点,通过实际测点分类统计分析各方面因素对误差产生的影响程度,进而得出修正方案,提高测量精度和实用性。

[关键词]地质测量;GPS定位;误差分析;地形因素;数字地质调查;GeoSurvey系统[中图分类号]P22814 [文献标识码]B [文章编号]1001-8379(2006)01-0011-04 ErrorAnalysisofHandheldGPSPositioninginFieldGeologicalSurvey LIUShao-jie SONGZai-chao LIUGang (ChinaUniversityofGeosciences,Wuhan430074,China) Abstract:GPSiswidelyusedmoreandmoreinprojectmeasure,navigationorientation,andsoon.Italsoplayanimportantroleinfieldworkofgeologicalmeasure.TherearekindsoferrorslimitingtheprecisionofhandheldGPSinfield.Basedonstatisticsmethod,wecananalyzetheinfluenceofdifferentaspectssuchasterrain,vegetationandtime,ofpointmeasureinfieldpractice.Andthen,wetrytofindamodifiedschemetoimprovetheprecisionofGPS. Keywords:geologicalsurvey;GPSpositioning;erroranalysis;terrainfactor;digitalgeologicalsurvey;GeoSurvey 1 引言

GPS的英文全称是NavigationSatelliteTimingandRanging/GlobalPositioningSystem。含义就是利用导航卫星进行测时和测距,在海、陆、空进行全方位实 时三维导航与定位,构成全球定位系统[1]。

各种类型的GPS接收机体积越来越小,重量越来越轻,也出现了基于蓝牙无线传输的便携式GPS,便于野外携带和观测[2]。在利用GPS进行定位时,会受到各种各样因素的影响。影响GPS定位精度的因素可分为以下几大类:GPS卫星有关的因素(卫星星历误差、卫星钟差等);与传播途径有关的因素(电离层延迟、对流层延迟、多路径效应等);与接收机有关的因素(接收机天线相位中心偏差、接收机精度等);数据分析的软硬件误差等。本文探讨和分析在野外地质调查工作中GPS手持机误差产生的主要来源和具体类型,提出提高其定位精度的方法。 [4][5][6][9]

若干个样点的坐标,并利用微地形法则将其实际位置标注在地形图手图上,回到室内进行计算和统计分析。实测数据记录项目包括每个点的GPS坐标、地形、高程以及定点时的天气和时间。同时记录该点较其他点的特殊因素(比如某一点的植被较好)。实际操作时,利用中国地质大学资源学院开发的计算机辅助地质调查系统GeoSurvey(图1),对比计算实际点与GPS所定的点的距离误差以及方位角误差,然后分别得出各种地形、高程、天气等因素对GPS定位误差影响。以下是本次试验流程:数据获取y数据转录y统计比较y分析原因y提出校正模型。 2 试验方案设计

本次试验所用的手持GPS是美国麦哲伦公司(Magellan)于1999年推出的GPS315手持式仪器。其大小如同手机,重量约200克,定点经纬度显示精确到秒级。为了分析不同因素对GPS误差产生的

,,图1 GeoSurvey系统的操作界面

12四川测绘第29卷第1期2006年3月

3 数据分析

按照上述方案,笔者在典型的北京周口店地区对多个样点进行对比研究,从实际出发,针对手持 点号

NO11NO12NO13NO14NO15NO16 坐标

39b41c30dN,115b56c35dE39b41c35dN,39b41c41dE39b41c26dN,115b56c19dE39b41c32dN,115b56c13dE39b41c34dN,115b56c15dE39b41c35dN,115b56c21dE 高程(m)15117884116112148 型GPS的定位误差进行分析。实际取得100余个点位的数据,具体如表1所示。 通过对试验区样本与手图实际值的对比计算, 地形沟谷山腰,平地陡崖下山腰高地山脊 时间16:4017:0015:3815:189:1810:02 天气阴阴阴阴晴晴 植被较好备注

表1 野外原始数据点的记录示例

路径效应。由于接收机周围环境的影响,使得接收机所接收到的卫星信号中还包含有各种反射和折射信号的影响,甚至接受机无法捕获卫星或接收不到卫星的信号,使定位精度大大降低。在城市或在野外使用GPS时,接收机有时仅仅能接收到2-4颗卫星信号(6-8颗卫星时才能做到精确定位),而且时间短促,加之手持型接收机的

定位精度一般也就在20-30m左右(排除以上因素),这样误差达到50米甚至近百米也就不足为奇。在地形因素中,还有一个非常重要的问题)))水。水面对电磁波有 图2 极坐标系内GPS定点相对 于实际点的漂移投影散点图

很强的反射能力,因此在湖面湖边等处,GPS定位的精度也大打折扣。对于多路径效应,目前在手持机方面还没有很成熟的方法加以克服。

可以使用数据的离散程度来衡量在该种地形地貌下误差的大小,使用统计学中的AVEDEV函数来计算某地形下数据绝对偏差的平均值。

AVEDEV:result= 在极坐标系(以距离误差为极半径,以方位误差为极角)内绘出GPS定点相对于实际点的飘移投影散点图(图2)。可以看出GPS点相对于实际点的漂移并非杂乱无章。统计结果显示7212%的漂移的距离误差集中在0)80米范围内,7210%的方位误差集中在0)90b范围内。误差的这种分布规律可以认为是在影响GPS定位精度的众多因素中有一个指导性因素的指示。 地形的影响主要是引起信号传播过程中产生多

E x-x/n x:数据平均值,n:样本数。

表2即反映了各地形因素下的偏差平均值。换句话说,在地形因素影响下,偏差平均值越大,数据越混乱,在这种地形下的GPS误差也就越大。 表2 地形因素下的偏差平均值

四川测绘第29卷第1期2006年3月

(续表2) 误差影响 地形类型

距离误差影响的范围(m)均值(m)距离误差影响的平均偏差 山脊山脚山坡山腰

2512)67174513)1461330)75122313-10410 36160881045915739164

121

44351831817114196 13 方位误差影响的平均偏差 261

4828116451111361775 图3和图4分别是不同地形因素下距离误差和方位误差的分布。从上面图表可以非常直观地看出在各个不同地形下误差的大小(注意:对于方位误差,笔者在进行统计时所用的是360b角形式,这不是一种有效的分析地形因素下角度误差的方位表示值,所以超过180b的角进行图4的统计时使用的是其与180b的差值。所以不能单从角度的大小来衡量方位误差的大小)。

度、纬度、高度;若只能收到3颗卫星的信号,它

只能计算出2维坐标:经度和纬度,而且这时经度、纬度也不是一个很准确的值。这时它可能还会显示高度数据,但这数据是无效的。在野外定点时,不推荐使用手持GPS进行高程测量。

从理论上讲时间对GPS野外测量误差没有影响,实践中GPS定位的距离误差不受使用时间影响,而方位误差则在时间因素上成不规律的波动。 4 小结

手持型GPS从野外应用来看,具有方便携带、定位速度快等优点,但是精度不高,且误差易受外界条件干扰。从上面对各因素对距离误差和方位角误差的影响分析可以看出,外界因素中对GPS测量

图3 不同地形因素下距离误差平均值

误差的影响最大的是地形因素(也就是多路径效应),其他因素虽对GPS测量误差也有影响,但不及地形对其影响大。同时,GPS本身的定位精度也制约着其精度的提高,如GPS315,定位精度到秒级,接收机本身有可能产生15)20m的误差。

同时,计算机辅助填图(GeoSurvey)系统是利用投影转换将GPS所测量的经纬度坐标,投影到地图平面的大地坐标的相应位置上,而GPS使用 图4 不同地形因素下角度误差平均值

WGS84世界坐标体系[7],若不经坐标转换直接输入数据存在一定的误差,但误差在比较小(1-3m)的范围内。实际误差的计算需要通过相应的功能软件来实现,本文不再展开讨论。

卫星在运动过程中不停地发送信号,接收机接到信号后也在不停地运算,所以将手持机放在空旷的地方不动,定点后,其坐标数据仍会波动,并且高程的波动值要比经纬度波动值大。实际定位操作中,GPS开机后不宜立即读数,应按GPS手持姿态要求运行几分钟后再读数。

从以上的分析不难得出,在野外使用手持型GPS时,山腰、山脊、山顶、无山平坦处等地形下,GPS所受的影响相对较小。而在陡崖、沟谷等地GPS所受的影响较大。陡崖处的接收机定位误差很大,又无规律可寻,可以考虑使用GPS相对定位代替绝对定位,至于在山腰等处的定位点可以加上修正模型加以更正。

此外,高程、时间不是影响误差的关键因素。在地表范围内甚至不能单纯的说高程是影响GPS定位精度的因素。有个问题必须指出,手持型GPS高程定位能力是比较差的,GPS能够收到4颗及以上卫星的信号时,它能计算出本地的3维坐标:经 5 修正方案探讨

从前面对试验区数据的分析中可以对数据给出简单的修正方案,修正方案根据误差类型可以分两,2, 14四川测绘第29卷第1期2006年3月参考文献 [1] 高成发.GPS测量[M].北京:人民交通出版社,

2000. [2] 杨德麟,等.大比例尺数字测图的原理、方法与应用 [M].北京:清华大学出版社,2001. [3] 胡家华,陈清礼.GPS定位精度的影响因素及差分定

位[J].江汉石油学院学报,1997,19(4):39~42.[4] 王宁宁.GPS定位精度探讨[J].解放军信息工程学

院学报,1996,15(3):29~32. [5] 付水旺.浅谈GPS测量与误差分析[J].采矿技术, 2000,406~408. [6] 常庆生,唐四元,等.GPS测量的误差及精度控制

[J].测绘通报,2000,(4):13~15. [7] 徐卫明,赵俊生.GPS测量坐标转换实用性问题分析 [J].测绘工程,2000,(2):10~15. [8] 袁晓民,张欣,等.GPS测量中若干误差的削弱[J]. 潍坊高等专科学校学报,2000,(4):12~13. [9] 董申保,贾北昌.GPS定位的误差与接收机精度的检 验[J].矿山测量,1997,(4):41~42.[收稿日期]2005-09-20 [作者简介]刘少杰(1983-),男,河南人,中国地质大学资源学院资源勘查工程专业本科生。

重新设定原点。按照以一定半径的圆内落入的点数目最多为原则。经过尝试,选定(36m,50b)为新的原点,也就是说要对GPS点进行向50b方向偏移36m的修正,修正的数据如表3所示。

表3 原始距离误差与修正后的距离误差对照表距离误差 误差范围<30m30)50m50)100m>100m 所占百分比2513%2411%3713%1313% 修正后的距离误差误差范围<30m30m)50m50m)100m>100m 所占百分比5017%1710%2513%617% 可以看出,经过修正以后,GPS的数据精度大大增加。再考虑地形因素,尤其对于山顶、山脊、山腰等地形下的数据精度非常适用,可以考虑作为开阔地区进行GPS手持接收机测量的一条具有参考价值的修正方法。

第二种方案是利用计算机辅助区域调查系统提供的相对定位方式来消除随机误差,即利用未知点在已知点的相对方位来定点。并且在运用这种相对定位方式时,同一类地形条件之间相对定位更为有效。本文提出的方法对于不同型号的GPS都是适用的。

(上接第16页)

4 总结

本文从遥感图像监督分类的角度探讨了最大似然分类和最小距离法联合的分类器分类技术,该技术能有效提高分类准确率。对于其它分类器如K最近邻法(KNN)、子空间分类法、地统计学分类法、概率松弛法以及非监督分类方法还没有顾及,这将是今后需要进一步探讨的问题。 参考文献

[1] 孙家柄.遥感原理与方法[M].武汉:武汉大学出版 社,2003,P199-208. [2] 贾永红.数字图像处理[M].武汉:武汉大学出版 社,2003,P91-92. [3] 曾志远.卫星遥感图像计算机分类与地学应用研究 [M].北京:科学出版社,2004135-47. [4] 许榕峰,徐涵秋.多步骤分类法在土地利用覆盖专题

提取中的应用[J].福州大学学报,2003,408-412.[5] 骆剑承,王钦敏,等.遥感图像最大似然分类方法的

EM改进算法[J].测绘学报,2002,234-2391[6] 任靖,李春平.最小距离分类器的改进算法)))加权

最小距离分类器[J].计算机应用,2005,-9941 (5):992 [收稿日期]2005-09-28

第三篇:改进实验方法减小误差在测液体密度中的教学尝试

在物理实验中,一定存在误差,误差是不可避免的,只能减小。那么,如何减小误差?我们可以通过多次测量,取平均值来减小误差;也可以选用精密的测量仪器来减小误差;还可以通过提高实验者的操作技能和各种实验技能来减小误差;„。还有一种减小误差的方法不容易在教学中引起重视,那就是改进实验方法来减小误差。改进实验方法来减小误差也有很多种。例:测量数据很小,直接用测量工具不容易测出来或者直接测量误差较大,我们可以用累积法, „。实验方法的不同甚至实验步骤的不同,也可导致误差也不同。在测量液体密度的实验中,就如何改进实验方法来减小误差进行了一定的尝试,并且在培养学生的思考问题和解决实际问题的能力方面下了一点功夫。且取得了一些效果。在教学中,一步一步引导学生思考,让同学们知道如何测液体密度才是方法最好、误差最小的。

一、根据密度知识探讨测液体密度的方法

在学习测量液体密度之前,同学们已经掌握了密度的有关知识,知道测密度的原理:ρ=m/v,测密度需要测物体的质量和体积。

首先我们可以提问如何测液体密度,对于刚学习密度的学生来说,绝大多数学生会按以下步骤进行:

用已调节好的天平测空烧杯的的质量m1;

在烧杯中装适量的被测液体,测烧杯和液体的总质量m;

将烧杯中的液体全部倒入量筒中测出液体的体积v;

利用密度的公式计算液体密度。

首先我们要肯定同学们的回答是没有错的,实验原理是对的。然后引导学生进行分析,这样做误差较大:将液体倒入量筒中时是不可能倒完的,还有一部分液体残留在烧杯内壁,没有倒入量筒中,所以,残留的那部分液体的体积是没有测出来的,但烧杯和液体的总质量减去空烧杯的质量包含了残留液体的质量,使得被测液体质量准确而体积偏小,导致密度偏大。

二、就如何减小误差对实验进行改进

按上述方法测出来的液体密度误差较大。怎样解决这个问题呢?我们可以引导学生进行思考:解决这个问题的关键是解决残留液体产生误差的问题。提出问题后,同学们都会踊跃思考。学生思考的时候,可适当的对学生提示:实验时,残留液体的体积没有测出来,如果残留液体的质量也没有测出来就可以解决这个问题了。经过学生们的思考,有学生提出:先测烧杯和液体的总质量,将液体倒入量筒后再测空烧杯的质量,这时测出来的空烧杯的质量实际上包括了残留的液体质量。当总质量-空烧杯的质量时,空烧杯中残留的液体不就减掉了吗?所以,只要将上面的实验步骤顺序改变一下就可以避免。通过学生们的思考我们得出:上面实验步骤顺序改为②③①④的话,就可以解决这个问题。实验步骤如下:

① 在烧杯中装适量的被测液体,用已调节好的天平测烧杯和液体的总质量m1;

② 将烧杯中的液体全部倒入量筒中测出液体的体积v;

③ 用天平测出空烧杯的的质量m2;

④ 利用密度的公式计算液体密度。

经过这样改进,就不存在因为烧杯内壁残留液体的原因而产生误差了。我们还可以继续追问:在实验步骤改变的基础上是否还可改进,让实验更容易操作或计算更简便?经过学生们的思考,有的同学提出:将烧杯中的液体全部倒入量筒中是不可能的,只能说将烧杯中液体的一部分倒入量筒中,烧杯内残留的液体无论多少,都是剩余液体。为了便于测量或计算,倒入烧杯内的液体可以是整数的甚至是能被除尽的数,例如20ml、40ml、50ml等。所以,将步骤②中的“全部液体”改为“部分液体”更为完善。又将实验步骤改进如下:

① 在烧杯中装适量的被测液体,用天平测烧杯和液体的总质量m1;

② 将烧杯中的液体一部分倒入量筒中测出液体的体积v;

③ 用天平测烧杯和剩下的液体总质量m2;

④ 利用密度公式计算液体密度。

三、对液体密度实验进一步深化

经过这样的教学,既能提高学生的学习兴趣又能培养学生的思考能力和解决实际问题的能力。还为减小误差的教学奠定了基础。在同学们实际操作过程中,我又提出问题:测液体密度的实验还有没有另外的改进方法?我的话刚讲完,立即有同学提出:测液体密度在最先提出的基础上还可以进行改进,只要能解决因为残留液体产生误差的问题就行。如果在整个实验过程中,没有残留液体产生的话,就不会因为残留液体的原因产生误差了。如果用烧杯和液体的总质量减去空烧杯的质量的话(烧杯中原来没有如何液体),计算出来的是烧杯中液体的质量。可以考虑怎样正确测烧杯中全部液体的体积:我们可以先在量筒中装适量的液体,测出总体积,再将液体一部分从量筒倒入烧杯中,用量筒中原来液体的总体积减去量筒中剩下液体的体积即等于烧杯中液体的体积。这样也不存在因为残留液体产生误差的问题。步骤是:

① 用已调节好的天平测空烧杯的质量m1;

② 在量筒中装适量的液体,测液体的总体积v1;

③ 将量筒中的液体一部分倒入烧杯中,读出剩下液体的体积v2;

④ 用天平测出烧杯和液体的总质量m2;

⑤ 利用密度的公式计算液体密度。

因为,倒入烧杯中液体的体积是﹙v1-v2﹚,烧杯中液体的质量是﹙m2-m1﹚,整个实验过程中,烧杯内不存在残留液体之说,所以液体的密度为:。

我们教学的目的是教会学生进行思考,提高学生学习能力。我们这样教学除了能提高学生的学习兴趣外,还能教会学生怎样去思考。让学生从被动获得知识到主动获得知识。在实验教学中,我们要引导学生进行合理的实验设计、选择合理的实验方案即合适的实验方法;让学生带着问题去学习,然后,在实验中去实践,去获得知识、获得学习方法;让学生自己去发现问题、解决问题。本堂课做到了激发学生主动学习的积极性,学生能积极主动的去思考。这节课,学生的思维能力和积极性都得到了应有的发挥。改进实验方法其实就是一种创新,这堂课学生的创新能力也得到了提高。

第四篇:如何用误差理论减少测量中的误差

摘要:有测量就有误差,虽然误差不能完全的消除,但是可以尽量的减小误差,首先要对各种误差有所了解,针对不同的误差采取不同的方法进行减小。

1.随机误差

1.1随机误差的概念:是同一测量条件下,重复测量中以不可预知方式变化的测量误差分量。

1.2随机误差的特征

1)绝对值相等的正误差与负误差出现的次数相等,即误差的对称性。 2)绝对值小的误差比绝对值大的误差出现的次数多,即误差的单峰性。 3)在一定的测量条件下,随机误差的绝对值不会超过一定界限,即误差的有界性。

4)随着测量次数的增加,随机误差的算术平均值趋于零,即误差的抵偿性。 多数随机误差具有以上特性,这种误差的分布规律,人们称之为正态分布特性。

1.3减少随机误差的方法 1.3.1算数平均值

由于随机误差的抵偿性,当测量次数足够多时,正负误差的绝对值相等,因此多次测量的算术平均值作为被测量的测量结果,能减小随机误差的影响。

1n设x1,x2,,xn为n次测量值,则算术平均值xxi

ni11.3.2实验标准(偏)差

由于随机误差的存在,等精度测量中各测得值一般皆不相同,它们围绕着测量列的平均值有一定的分散性,测量的标准差可用实验标准(偏)差表征,由贝赛尔公式计算

1ns(xi-x)2 n111这里的标准差不是测量列中任何一个具体测得值的随机误差,标准差的大小说明在一定条件下的等精度测量随机误差的概率分布情况。标准差大,随机误差的分布范围宽,精密度低;标准差小,随机误差的分布范围窄,精密度高。 1.3.3算术平均值的标准偏差

如果在相同条件下对同一量值做多组测量,每一测量列都有一算术平均值,由于随机误差的存在,各个测量列的平均值各不相同,它们围绕着真值有一定的分散性,因此可用算术平均值的标准差来表征算术平均值的分散性。

ssxn

n1(xix)2 n(n1)i12.系统误差

2.1系统误差的概念:是同一测量条件下,重复测量中保持恒定或以可预知方式变化的测量误差分量。

2.2系统误差来源及对测量结果的影响

系统误差是由固定不变的或按某种规律变化的因素造成的,这些误差因素可能是由于

1)测量装置方面的原因:仪器设计上的缺欠,仪器零件制造和安装的不正确,仪器附件的制造偏差。

2)测量环境的原因:测量过程中温度、湿度等按一定的规律变化。 3)测量方法的原因:采用近似的测量方法或近似的计算公式引起的误差。 4)测量人员的原因:由于测量人的个人特点导致的测量误差。

系统误差具有确定的规律性,这与随机误差有根本区别。不过,有些系统误差的规律是并未掌握的。因而没有一个规则化的处理方法,这给处理系统误差带来困难。按其表现的规律特征,可分为恒定系统误差和变值系统误差。

2.3系统误差的分类

1)恒定系统误差:多次测量时,条件完全不变,或条件改变并不影响测量结果,因而各次测量的结果中该误差恒定不变。恒定系统误差以大小和符号固定的形式存在于每个测量值和算术平均值之中。它仅影响测量的算术平均值,并不影响其随机误差的分布规律及分布范围。

2)变值系统误差:指在整个测量过程中,误差的大小和符号按某一确定规律变化的误差。它不仅影响测量的算术平均值,而且改变其随机误差的分布规律和分布范围。 2.4系统误差的发现方法 2.4.1实验对比检验系统误差

为了验证某一测量仪器或测量方法是否存在系差,可用高一级精度的仪器或测量方法给出标准量进行对比检验。这种检定不仅能发现测量中是否存在系差,而且能够确定具体数值。有时,由于测量精度高或被测参数复杂,难以找到高一级精度的测量仪器或测量方法提供的标准量。此时,可用同精度的其它仪器或测量方法给出的测量结果作对比,若发现明显差别,表明二者之间有系差。

2.4.2通过理论分析判断系统误差

对测量器具、测量原理、方法及数据处理等方面进行具体分析,能够找到测量中的各系差因素。有时可根据测量的具体内容找出系差所遵从的函数关系,由此计算出测量的系差的具体数值,利用修正法予以消除。

2.4.3对测量数据进行直接判断

通过观察测量数据的变化趋势,直接发现测量中的系统误差。这一方法较为粗略,但简单易行。

2.4.4用统计方法进行检验

按随机误差的统计规律做出某种统计判断,如果不相符合,则说明包含系统误差。由于这种判别方法不涉及测量本身,仅针对测里数据,因而便于使用。但每种统计方法都不是完美的,其应用是有限的,在此只给出常用的几种。

1)残差校验法

将残差vi分为前后数目相等的两部分v

1、v

2、vk和vk

1、vk

2、vn。分别求和并作比较,若Vii1kik1V显著不为零,则怀疑存在系统误差。这种方法适

in于判别线性变化的系统误差。

2)阿贝·赫梅特判别法

对残差vi做统计量uv1v2v2v3vn1vnvvi1n1ii1

若un-1s2则判定该组数据含有系统误差。这种方法适于判别周期性的系统误差。

3)残差总和判别法 若残差vi有vi2sn则怀疑有系统误差的存在。

i1n4)标准差比较法

对测量结果,用不同公式计算其标准差,然后通过比较可发现系统误差。用贝赛尔公式计算为:

s1vi1n2in1

用别捷尔公式计算标准差为: s21.253s22 1s1n1vi1nin(n1)

若则怀疑存在系统误差。

3.粗大误差

3.1粗大误差的概念:指超出在规定条件下预期的误差。 3.2粗大误差的产生原因

测量数据中包含随机误差和系统误差是正常的,只要测量误差在一定的范围内,测量结果就是正确的。但当测量者在测量时由于疏忽造成错误读取示值,错误纪录测量值,错误操作以及使用有缺欠的计量器具时,会出现粗大误差,此数据的误差分量明显偏大,即明显歪曲测量结果。任意一测量数据都含有测量误差,并服从某一分布,它使测量结

果具有一定的分散性。因此,任凭直观判断,难于区分含有粗大误差的异常数据和正常数据。

3.3粗大误差的判别方法 3.3.1莱以特准则(3准则)

若对某一物理量等精度重复测量n次,得测量值x1,x2,,xn。如果某测得值的残差大于3倍的标准差,即v3时,该数据为异常数据,应剔除。莱以特准则的合理性是显然的,对服从正态分布的随机误差,其残差落在(-3,3)以外的概率仅为0.27%,当在有限次测量中发生的可能性很小,认为是不可能发生的。

3.3.2肖维勒准则

若对某一物理量等精度重复测量n次,得测量值x1,x2,,xn。若认为xi为可疑数据,若此数据的残差vZc,则此数据为异常数据,应剔除。实用中Zc<3,这在一定程度上弥补了3口准则的不足。Zc是与测量次数n有关的系数,具体的查表。

3.3.3格罗布斯准则

若对某一物理量等精度重复测量n次,得测量值x1,x2,,xn。为判别测得值中是否含有异常数据,将测得值由小到大排列成统计量xi。

x1x2xn

若认为x1是可疑的,则有统计量为

g1xx1

若认为xn是可疑的,则有统计量为

gnxxn

当g1g0n,a,认为测量值x1是异常数据,应剔除。 当gngnn,a,认为测量值xn是异常数据,应剔除。

g0n,a为测量次数为n显著度为a时的统计量临界值,可查表。 3.3.4 t检验准则(罗曼诺夫斯基准则) 罗曼诺夫斯基准则又称t检验准则,其特点是首先剔除一个可疑的测得值,然后按t分布检验被剔除的测量值是否为异常值。若对某一物理量等精度重复测量n次,得测量值x1,x2,,xn。若认为xj为可疑数据,将其剔除后计算平均值x(计算时不包含xj),并求得测量列的标准差(计算时不包含vjxjx)。若xjxKn,a,则认为xj为异常数据,应剔除。其中Kn,a为测量次数为n和显著度为a时的t检验系数,可查表得到。

小结:由于产生系统误差的因素是多方面的,又很复杂,我们还不能找到一套适用于所有系统误差的通用方法。但是根据三种误差的来源、特征以及寻找其方法,我们可以用给出的不同方法对其适当的减少。

读书的好处

1、行万里路,读万卷书。

2、书山有路勤为径,学海无涯苦作舟。

3、读书破万卷,下笔如有神。

4、我所学到的任何有价值的知识都是由自学中得来的。——达尔文

5、少壮不努力,老大徒悲伤。

6、黑发不知勤学早,白首方悔读书迟。——颜真卿

7、宝剑锋从磨砺出,梅花香自苦寒来。

8、读书要三到:心到、眼到、口到

9、玉不琢、不成器,人不学、不知义。

10、一日无书,百事荒废。——陈寿

11、书是人类进步的阶梯。

12、一日不读口生,一日不写手生。

13、我扑在书上,就像饥饿的人扑在面包上。——高尔基

14、书到用时方恨少、事非经过不知难。——陆游

15、读一本好书,就如同和一个高尚的人在交谈——歌德

16、读一切好书,就是和许多高尚的人谈话。——笛卡儿

17、学习永远不晚。——高尔基

18、少而好学,如日出之阳;壮而好学,如日中之光;志而好学,如炳烛之光。——刘向

19、学而不思则惘,思而不学则殆。——孔子

20、读书给人以快乐、给人以光彩、给人以才干。——培根

第五篇:平面度误差的测量

一、实验目的

1.了解平面度误差的测量原理及千分表的使用方法。

2.掌握平面度误差的评定方法级数据处理。

二、实验内容

用千分表测量平面度误差。

三、测量原理

平面度公差用以限制平面度的形状误差。其公差带是距离为公差值的平行平面之间的区域。并规定,理想状态的位置应符合最小条件,常见的平面度测量方法有指示表测量、用光学平晶测量平面度、用水平仪测量平面度级自准仪和反射镜测量平面度误差。

用各种不同的方法测量得的平面度测值,应进行数据处理,然后按照一定的评定准则处理结果。平面度误差的评定方法有:

1.最小包容区域法,由两平行平面包容实际被测要素时实现至少四点或者三点接触。且有下列形式之一者,即为最小包容区域,其平面度误差值最小。最小包容区域的判别方法有一下三种形式。

(1)两平行平面包容被测表面时,被测表面上有三个最低点(或三个最高点)及1个最高点(或一个最低点)分别与两包容平面接触,并且最高点(或最低点)能投影到三个最低点(或三个最高点)之间,则这两个平行平面符合最小包容原则。

(2)被测表面上有2个最高点和两个最低点分别与两个平行的包容面相接触。 并与两个最高点投影与2个低点连线之两测。则两个平行平面符合与平面度最小包容区原则。

(3)被测表面的同一截面内有2个最高点级两个低点(或相反)分别和两个平行的包容相接触。则该两平行平面符合于平面度最小包容区原则。

三角法是以通过被测表面上相距最远且不在一条直线上的三个点建立一个基准平面,各测点对此平面的偏差中最大值与最小值的绝对值之和为平面度误差。实测时,可以在被测表面上找到三个等高点,并且调到零。在被测表面上安布点测量,与三角形基准平面相距最远的最高和最低点的距离为平面度误差值。 2对角线法是通过被测表面的一条对角线作另一条对角线的平行平面该平面即为基准平面。偏差此平面的最大值和最小值的绝对值之和为平面度误差。

四、实验步骤

检测工具:平板、带千分表的测量架等。

检测时被测量零件放在平板上,带千分表的测量架饭在平板上,并使千分表测量头垂直地指向被测零件表面,压表并调整表盘,使指针只在零位。然后,按照图2所示,将被测平板沿纵横方向均布花好网络,四周离边缘10MM其画线的交点为测量的9个点。同时记录各点的度数值。全部被测点的测量值取得后,按对角线法求出平面度误差值。

上一篇:免费的门卫管理制度下一篇:免费招商部工作流程